Back to Multiple platform build/check report for BioC 3.6 |
|
This page was generated on 2018-04-12 13:18:33 -0400 (Thu, 12 Apr 2018).
Package 165/1472 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||
BufferedMatrix 1.42.0 Ben Bolstad
| malbec1 | Linux (Ubuntu 16.04.1 LTS) / x86_64 | OK | OK | OK | |||||||
tokay1 | Windows Server 2012 R2 Standard / x64 | OK | OK | [ OK ] | OK | |||||||
veracruz1 | OS X 10.11.6 El Capitan / x86_64 | OK | OK | OK | OK |
Package: BufferedMatrix |
Version: 1.42.0 |
Command: rm -rf BufferedMatrix.buildbin-libdir BufferedMatrix.Rcheck && mkdir BufferedMatrix.buildbin-libdir BufferedMatrix.Rcheck && C:\Users\biocbuild\bbs-3.6-bioc\R\bin\R.exe CMD INSTALL --build --merge-multiarch --library=BufferedMatrix.buildbin-libdir BufferedMatrix_1.42.0.tar.gz >BufferedMatrix.Rcheck\00install.out 2>&1 && cp BufferedMatrix.Rcheck\00install.out BufferedMatrix-install.out && C:\Users\biocbuild\bbs-3.6-bioc\R\bin\R.exe CMD check --library=BufferedMatrix.buildbin-libdir --install="check:BufferedMatrix-install.out" --force-multiarch --no-vignettes --timings BufferedMatrix_1.42.0.tar.gz |
StartedAt: 2018-04-11 22:37:47 -0400 (Wed, 11 Apr 2018) |
EndedAt: 2018-04-11 22:38:51 -0400 (Wed, 11 Apr 2018) |
EllapsedTime: 64.4 seconds |
RetCode: 0 |
Status: OK |
CheckDir: BufferedMatrix.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### rm -rf BufferedMatrix.buildbin-libdir BufferedMatrix.Rcheck && mkdir BufferedMatrix.buildbin-libdir BufferedMatrix.Rcheck && C:\Users\biocbuild\bbs-3.6-bioc\R\bin\R.exe CMD INSTALL --build --merge-multiarch --library=BufferedMatrix.buildbin-libdir BufferedMatrix_1.42.0.tar.gz >BufferedMatrix.Rcheck\00install.out 2>&1 && cp BufferedMatrix.Rcheck\00install.out BufferedMatrix-install.out && C:\Users\biocbuild\bbs-3.6-bioc\R\bin\R.exe CMD check --library=BufferedMatrix.buildbin-libdir --install="check:BufferedMatrix-install.out" --force-multiarch --no-vignettes --timings BufferedMatrix_1.42.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck' * using R version 3.4.4 (2018-03-15) * using platform: x86_64-w64-mingw32 (64-bit) * using session charset: ISO8859-1 * using option '--no-vignettes' * checking for file 'BufferedMatrix/DESCRIPTION' ... OK * this is package 'BufferedMatrix' version '1.42.0' * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'BufferedMatrix' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * loading checks for arch 'i386' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... NOTE Warning: no function found corresponding to methods exports from 'BufferedMatrix' for: 'coerce', 'show' A namespace must be able to be loaded with just the base namespace loaded: otherwise if the namespace gets loaded by a saved object, the session will be unable to start. Probably some imports need to be declared in the NAMESPACE file. ** checking whether the namespace can be unloaded cleanly ... OK * loading checks for arch 'x64' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... NOTE Warning: no function found corresponding to methods exports from 'BufferedMatrix' for: 'coerce', 'show' A namespace must be able to be loaded with just the base namespace loaded: otherwise if the namespace gets loaded by a saved object, the session will be unable to start. Probably some imports need to be declared in the NAMESPACE file. ** checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... NOTE Package in Depends field not imported from: 'methods' These packages need to be imported from (in the NAMESPACE file) for when this namespace is loaded but not attached. * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE NB: .First.lib is obsolete and will not be used in R >= 3.0.0 as.BufferedMatrix: warning in createBufferedMatrix(rows = dim(x)[1], cols = dim(x)[2], bufferrows = bufferrows, buffercols = buffercols, director = directory): partial argument match of 'director' to 'directory' createBufferedMatrix: no visible global function definition for 'new' colApply,BufferedMatrix: no visible global function definition for 'new' duplicate,BufferedMatrix: no visible global function definition for 'new' rowApply,BufferedMatrix: no visible global function definition for 'new' subBufferedMatrix,BufferedMatrix: no visible global function definition for 'new' Undefined global functions or variables: new Consider adding importFrom("methods", "new") to your NAMESPACE file (and ensure that your DESCRIPTION Imports field contains 'methods'). * checking Rd files ... NOTE prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking line endings in C/C++/Fortran sources/headers ... OK * checking compiled code ... NOTE Note: information on .o files for i386 is not available Note: information on .o files for x64 is not available File 'C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.buildbin-libdir/BufferedMatrix/libs/i386/BufferedMatrix.dll': Found 'abort', possibly from 'abort' (C), 'runtime' (Fortran) Compiled code should not call entry points which might terminate R nor write to stdout/stderr instead of to the console, nor use Fortran I/O nor system RNGs. The detected symbols are linked into the code but might come from libraries and not actually be called. See 'Writing portable packages' in the 'Writing R Extensions' manual. * checking installed files from 'inst/doc' ... OK * checking files in 'vignettes' ... OK * checking examples ... NONE * checking for unstated dependencies in 'tests' ... OK * checking tests ... ** running tests for arch 'i386' ... Running 'Rcodetesting.R' Running 'c_code_level_tests.R' Running 'objectTesting.R' Running 'rawCalltesting.R' OK ** running tests for arch 'x64' ... Running 'Rcodetesting.R' Running 'c_code_level_tests.R' Running 'objectTesting.R' Running 'rawCalltesting.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 6 NOTEs See 'C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/00check.log' for details.
BufferedMatrix.Rcheck/00install.out
install for i386 * installing *source* package 'BufferedMatrix' ... ** libs C:/Rtools/mingw_32/bin/gcc -I"C:/Users/BIOCBU˜1/BBS-3˜1.6-B/R/include" -DNDEBUG -I"C:/local323/include" -O3 -Wall -std=gnu99 -mtune=generic -c RBufferedMatrix.c -o RBufferedMatrix.o C:/Rtools/mingw_32/bin/gcc -I"C:/Users/BIOCBU˜1/BBS-3˜1.6-B/R/include" -DNDEBUG -I"C:/local323/include" -O3 -Wall -std=gnu99 -mtune=generic -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o doubleBufferedMatrix.c: In function 'dbm_ReadOnlyMode': doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of '!' or change '&' to '&&' or '!' to '˜' [-Wparentheses] if (!(Matrix->readonly) & setting){ ^ doubleBufferedMatrix.c: At top level: doubleBufferedMatrix.c:3327:12: warning: 'sort_double' defined but not used [-Wunused-function] static int sort_double(const double *a1,const double *a2){ ^ C:/Rtools/mingw_32/bin/gcc -I"C:/Users/BIOCBU˜1/BBS-3˜1.6-B/R/include" -DNDEBUG -I"C:/local323/include" -O3 -Wall -std=gnu99 -mtune=generic -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o C:/Rtools/mingw_32/bin/gcc -I"C:/Users/BIOCBU˜1/BBS-3˜1.6-B/R/include" -DNDEBUG -I"C:/local323/include" -O3 -Wall -std=gnu99 -mtune=generic -c init_package.c -o init_package.o C:/Rtools/mingw_32/bin/g++ -shared -s -static-libgcc -o BufferedMatrix.dll tmp.def RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -LC:/local323/lib/i386 -LC:/local323/lib -LC:/Users/BIOCBU˜1/BBS-3˜1.6-B/R/bin/i386 -lR installing to C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.buildbin-libdir/BufferedMatrix/libs/i386 ** R ** inst ** preparing package for lazy loading Creating a new generic function for 'rowMeans' in package 'BufferedMatrix' Creating a new generic function for 'rowSums' in package 'BufferedMatrix' Creating a new generic function for 'colMeans' in package 'BufferedMatrix' Creating a new generic function for 'colSums' in package 'BufferedMatrix' Creating a generic function for 'ncol' from package 'base' in package 'BufferedMatrix' Creating a generic function for 'nrow' from package 'base' in package 'BufferedMatrix' ** help *** installing help indices converting help for package 'BufferedMatrix' finding HTML links ... done BufferedMatrix-class html as.BufferedMatrix html createBufferedMatrix html ** building package indices ** installing vignettes ** testing if installed package can be loaded In R CMD INSTALL install for x64 * installing *source* package 'BufferedMatrix' ... ** libs C:/Rtools/mingw_64/bin/gcc -I"C:/Users/BIOCBU˜1/BBS-3˜1.6-B/R/include" -DNDEBUG -I"C:/local323/include" -O2 -Wall -std=gnu99 -mtune=generic -c RBufferedMatrix.c -o RBufferedMatrix.o C:/Rtools/mingw_64/bin/gcc -I"C:/Users/BIOCBU˜1/BBS-3˜1.6-B/R/include" -DNDEBUG -I"C:/local323/include" -O2 -Wall -std=gnu99 -mtune=generic -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o doubleBufferedMatrix.c: In function 'dbm_ReadOnlyMode': doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of '!' or change '&' to '&&' or '!' to '˜' [-Wparentheses] if (!(Matrix->readonly) & setting){ ^ doubleBufferedMatrix.c: At top level: doubleBufferedMatrix.c:3327:12: warning: 'sort_double' defined but not used [-Wunused-function] static int sort_double(const double *a1,const double *a2){ ^ C:/Rtools/mingw_64/bin/gcc -I"C:/Users/BIOCBU˜1/BBS-3˜1.6-B/R/include" -DNDEBUG -I"C:/local323/include" -O2 -Wall -std=gnu99 -mtune=generic -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o C:/Rtools/mingw_64/bin/gcc -I"C:/Users/BIOCBU˜1/BBS-3˜1.6-B/R/include" -DNDEBUG -I"C:/local323/include" -O2 -Wall -std=gnu99 -mtune=generic -c init_package.c -o init_package.o C:/Rtools/mingw_64/bin/g++ -shared -s -static-libgcc -o BufferedMatrix.dll tmp.def RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -LC:/local323/lib/x64 -LC:/local323/lib -LC:/Users/BIOCBU˜1/BBS-3˜1.6-B/R/bin/x64 -lR installing to C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.buildbin-libdir/BufferedMatrix/libs/x64 ** testing if installed package can be loaded * MD5 sums packaged installation of 'BufferedMatrix' as BufferedMatrix_1.42.0.zip * DONE (BufferedMatrix) In R CMD INSTALL In R CMD INSTALL
BufferedMatrix.Rcheck/tests_i386/c_code_level_tests.Rout R version 3.4.4 (2018-03-15) -- "Someone to Lean On" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1)) Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 Adding Additional Column Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 Reassigning values 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Resizing Buffers Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 3 Buffer Cols: 3 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Activating Row Buffer In row mode: 1 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Squaring Last Column 1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 Square rooting Last Row, then turing off Row Buffer In row mode: 0 Checking on value that should be not be in column buffer2.236068 1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 Single Indexing. Assign each value its square 1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 Resizing Buffers Smaller Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 Activating Row Mode. Resizing Buffers Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 Activating ReadOnly Mode. The results of assignment is: 0 Printing matrix reversed. 900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 [[1]] [1] 0 > > proc.time() user system elapsed 0.46 0.10 0.56 |
BufferedMatrix.Rcheck/tests_x64/c_code_level_tests.Rout R version 3.4.4 (2018-03-15) -- "Someone to Lean On" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1)) Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 Adding Additional Column Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 Reassigning values 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Resizing Buffers Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 3 Buffer Cols: 3 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Activating Row Buffer In row mode: 1 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Squaring Last Column 1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 Square rooting Last Row, then turing off Row Buffer In row mode: 0 Checking on value that should be not be in column buffer2.236068 1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 Single Indexing. Assign each value its square 1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 Resizing Buffers Smaller Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 Activating Row Mode. Resizing Buffers Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 Activating ReadOnly Mode. The results of assignment is: 0 Printing matrix reversed. 900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 [[1]] [1] 0 > > proc.time() user system elapsed 0.42 0.03 0.43 |
BufferedMatrix.Rcheck/tests_i386/objectTesting.Rout R version 3.4.4 (2018-03-15) -- "Someone to Lean On" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > > ### this is used to control how many repetitions in something below > ### higher values result in more checks. > nreps <-100 ##20000 > > > ## test creation and some simple assignments and subsetting operations > > ## first on single elements > tmp <- createBufferedMatrix(1000,10) > > tmp[10,5] [1] 0 > tmp[10,5] <- 10 > tmp[10,5] [1] 10 > tmp[10,5] <- 12.445 > tmp[10,5] [1] 12.445 > > > > ## now testing accessing multiple elements > tmp2 <- createBufferedMatrix(10,20) > > > tmp2[3,1] <- 51.34 > tmp2[9,2] <- 9.87654 > tmp2[,1:2] [,1] [,2] [1,] 0.00 0.00000 [2,] 0.00 0.00000 [3,] 51.34 0.00000 [4,] 0.00 0.00000 [5,] 0.00 0.00000 [6,] 0.00 0.00000 [7,] 0.00 0.00000 [8,] 0.00 0.00000 [9,] 0.00 9.87654 [10,] 0.00 0.00000 > tmp2[,-(3:20)] [,1] [,2] [1,] 0.00 0.00000 [2,] 0.00 0.00000 [3,] 51.34 0.00000 [4,] 0.00 0.00000 [5,] 0.00 0.00000 [6,] 0.00 0.00000 [7,] 0.00 0.00000 [8,] 0.00 0.00000 [9,] 0.00 9.87654 [10,] 0.00 0.00000 > tmp2[3,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 51.34 0 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [1,] 0 0 0 0 0 0 0 > tmp2[-3,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [2,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [3,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [4,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [5,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [6,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [7,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [8,] 0 9.87654 0 0 0 0 0 0 0 0 0 0 0 [9,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [1,] 0 0 0 0 0 0 0 [2,] 0 0 0 0 0 0 0 [3,] 0 0 0 0 0 0 0 [4,] 0 0 0 0 0 0 0 [5,] 0 0 0 0 0 0 0 [6,] 0 0 0 0 0 0 0 [7,] 0 0 0 0 0 0 0 [8,] 0 0 0 0 0 0 0 [9,] 0 0 0 0 0 0 0 > tmp2[2,1:3] [,1] [,2] [,3] [1,] 0 0 0 > tmp2[3:9,1:3] [,1] [,2] [,3] [1,] 51.34 0.00000 0 [2,] 0.00 0.00000 0 [3,] 0.00 0.00000 0 [4,] 0.00 0.00000 0 [5,] 0.00 0.00000 0 [6,] 0.00 0.00000 0 [7,] 0.00 9.87654 0 > tmp2[-4,-4] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [2,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [3,] 51.34 0.00000 0 0 0 0 0 0 0 0 0 0 0 [4,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [5,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [6,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [7,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [8,] 0.00 9.87654 0 0 0 0 0 0 0 0 0 0 0 [9,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [1,] 0 0 0 0 0 0 [2,] 0 0 0 0 0 0 [3,] 0 0 0 0 0 0 [4,] 0 0 0 0 0 0 [5,] 0 0 0 0 0 0 [6,] 0 0 0 0 0 0 [7,] 0 0 0 0 0 0 [8,] 0 0 0 0 0 0 [9,] 0 0 0 0 0 0 > > ## now testing accessing/assigning multiple elements > tmp3 <- createBufferedMatrix(10,10) > > for (i in 1:10){ + for (j in 1:10){ + tmp3[i,j] <- (j-1)*10 + i + } + } > > tmp3[2:4,2:4] [,1] [,2] [,3] [1,] 12 22 32 [2,] 13 23 33 [3,] 14 24 34 > tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 11 21 31 11 21 31 91 1 11 1 11 21 31 [2,] 12 22 32 12 22 32 92 2 12 2 12 22 32 [3,] 13 23 33 13 23 33 93 3 13 3 13 23 33 [4,] 14 24 34 14 24 34 94 4 14 4 14 24 34 [5,] 15 25 35 15 25 35 95 5 15 5 15 25 35 [6,] 16 26 36 16 26 36 96 6 16 6 16 26 36 [7,] 17 27 37 17 27 37 97 7 17 7 17 27 37 [8,] 18 28 38 18 28 38 98 8 18 8 18 28 38 [9,] 19 29 39 19 29 39 99 9 19 9 19 29 39 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [1,] 41 51 61 71 81 91 91 81 71 61 51 41 [2,] 42 52 62 72 82 92 92 82 72 62 52 42 [3,] 43 53 63 73 83 93 93 83 73 63 53 43 [4,] 44 54 64 74 84 94 94 84 74 64 54 44 [5,] 45 55 65 75 85 95 95 85 75 65 55 45 [6,] 46 56 66 76 86 96 96 86 76 66 56 46 [7,] 47 57 67 77 87 97 97 87 77 67 57 47 [8,] 48 58 68 78 88 98 98 88 78 68 58 48 [9,] 49 59 69 79 89 99 99 89 79 69 59 49 [,26] [,27] [,28] [,29] [1,] 31 21 11 1 [2,] 32 22 12 2 [3,] 33 23 13 3 [4,] 34 24 14 4 [5,] 35 25 15 5 [6,] 36 26 16 6 [7,] 37 27 17 7 [8,] 38 28 18 8 [9,] 39 29 19 9 > tmp3[-c(1:5),-c(6:10)] [,1] [,2] [,3] [,4] [,5] [1,] 6 16 26 36 46 [2,] 7 17 27 37 47 [3,] 8 18 28 38 48 [4,] 9 19 29 39 49 [5,] 10 20 30 40 50 > > ## assignment of whole columns > tmp3[,1] <- c(1:10*100.0) > tmp3[,1:2] <- tmp3[,1:2]*100 > tmp3[,1:2] <- tmp3[,2:1] > tmp3[,1:2] [,1] [,2] [1,] 1100 1e+04 [2,] 1200 2e+04 [3,] 1300 3e+04 [4,] 1400 4e+04 [5,] 1500 5e+04 [6,] 1600 6e+04 [7,] 1700 7e+04 [8,] 1800 8e+04 [9,] 1900 9e+04 [10,] 2000 1e+05 > > > tmp3[,-1] <- tmp3[,1:9] > tmp3[,1:10] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1100 1100 1e+04 21 31 41 51 61 71 81 [2,] 1200 1200 2e+04 22 32 42 52 62 72 82 [3,] 1300 1300 3e+04 23 33 43 53 63 73 83 [4,] 1400 1400 4e+04 24 34 44 54 64 74 84 [5,] 1500 1500 5e+04 25 35 45 55 65 75 85 [6,] 1600 1600 6e+04 26 36 46 56 66 76 86 [7,] 1700 1700 7e+04 27 37 47 57 67 77 87 [8,] 1800 1800 8e+04 28 38 48 58 68 78 88 [9,] 1900 1900 9e+04 29 39 49 59 69 79 89 [10,] 2000 2000 1e+05 30 40 50 60 70 80 90 > > tmp3[,1:2] <- rep(1,10) > tmp3[,1:2] <- rep(1,20) > tmp3[,1:2] <- matrix(c(1:5),1,5) > > tmp3[,-c(1:8)] <- matrix(c(1:5),1,5) > > tmp3[1,] <- 1:10 > tmp3[1,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 > tmp3[-1,] <- c(1,2) > tmp3[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 [2,] 1 2 1 2 1 2 1 2 1 2 [3,] 2 1 2 1 2 1 2 1 2 1 [4,] 1 2 1 2 1 2 1 2 1 2 [5,] 2 1 2 1 2 1 2 1 2 1 [6,] 1 2 1 2 1 2 1 2 1 2 [7,] 2 1 2 1 2 1 2 1 2 1 [8,] 1 2 1 2 1 2 1 2 1 2 [9,] 2 1 2 1 2 1 2 1 2 1 [10,] 1 2 1 2 1 2 1 2 1 2 > tmp3[-c(1:8),] <- matrix(c(1:5),1,5) > tmp3[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 [2,] 1 2 1 2 1 2 1 2 1 2 [3,] 2 1 2 1 2 1 2 1 2 1 [4,] 1 2 1 2 1 2 1 2 1 2 [5,] 2 1 2 1 2 1 2 1 2 1 [6,] 1 2 1 2 1 2 1 2 1 2 [7,] 2 1 2 1 2 1 2 1 2 1 [8,] 1 2 1 2 1 2 1 2 1 2 [9,] 1 3 5 2 4 1 3 5 2 4 [10,] 2 4 1 3 5 2 4 1 3 5 > > > tmp3[1:2,1:2] <- 5555.04 > tmp3[-(1:2),1:2] <- 1234.56789 > > > > ## testing accessors for the directory and prefix > directory(tmp3) [1] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386" > prefix(tmp3) [1] "BM" > > ## testing if we can remove these objects > rm(tmp, tmp2, tmp3) > gc() used (Mb) gc trigger (Mb) max used (Mb) Ncells 387895 10.4 750400 20.1 592000 15.9 Vcells 439126 3.4 1023718 7.9 786432 6.0 > > > > > ## > ## checking reads > ## > > tmp2 <- createBufferedMatrix(10,20) > > test.sample <- rnorm(10*20) > > tmp2[1:10,1:20] <- test.sample > > test.matrix <- matrix(test.sample,10,20) > > ## testing reads > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + which.col <- sample(1:20,1) + if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.col <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > date() [1] "Wed Apr 11 22:38:24 2018" > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > date() [1] "Wed Apr 11 22:38:24 2018" > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > > > RowMode(tmp2) <pointer: 0x02e753d0> > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + which.col <- sample(1:20,1) + if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,5,replace=TRUE) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > date() [1] "Wed Apr 11 22:38:26 2018" > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:20,5,replace=TRUE) + if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){ + cat("incorrect agreement") + break; + } + } > date() [1] "Wed Apr 11 22:38:27 2018" > > ColMode(tmp2) <pointer: 0x02e753d0> > > > > ### Now testing assignments > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + + new.data <- rnorm(20) + tmp2[which.row,] <- new.data + test.matrix[which.row,] <- new.data + if (rep > 1){ + if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + + } > > > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + new.data <- rnorm(10) + tmp2[,which.col] <- new.data + test.matrix[,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.col <- which.col + } > > > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,5,replace=TRUE) + new.data <- matrix(rnorm(50),5,10) + tmp2[,which.col] <- new.data + test.matrix[,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.col <- which.col + } > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + new.data <- matrix(rnorm(50),5,10) + tmp2[which.row,] <- new.data + test.matrix[which.row,]<- new.data + + if (rep > 1){ + if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + } > > > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:20,5,replace=TRUE) + new.data <- matrix(rnorm(25),5,5) + tmp2[which.row,which.col] <- new.data + test.matrix[which.row,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + prev.col <- which.col + } > > > > > ### > ### > ### testing some more functions > ### > > > > ## duplication function > tmp5 <- duplicate(tmp2) > > # making sure really did copy everything. > tmp5[1,1] <- tmp5[1,1] +100.00 > > if (tmp5[1,1] == tmp2[1,1]){ + stop("Problem with duplication") + } > > > > > ### testing elementwise applying of functions > > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 101.01054245 0.91165652 1.5662136 -0.79156934 [2,] -0.78626581 0.09686903 -1.5431959 0.57291065 [3,] -0.07080691 -1.72009568 -1.6265949 0.82720191 [4,] 0.28052717 1.22149985 -0.3565431 -0.03550101 > ewApply(tmp5,abs) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 101.01054245 0.91165652 1.5662136 0.79156934 [2,] 0.78626581 0.09686903 1.5431959 0.57291065 [3,] 0.07080691 1.72009568 1.6265949 0.82720191 [4,] 0.28052717 1.22149985 0.3565431 0.03550101 > ewApply(tmp5,sqrt) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 10.0504001 0.9548071 1.2514846 0.8897018 [2,] 0.8867163 0.3112379 1.2422544 0.7569086 [3,] 0.2660957 1.3115242 1.2753803 0.9095064 [4,] 0.5296482 1.1052148 0.5971123 0.1884171 > > my.function <- function(x,power){ + (x+5)^power + } > > ewApply(tmp5,my.function,power=2) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 226.51454 35.45973 39.08106 34.68859 [2,] 34.65343 28.20925 38.96574 33.14200 [3,] 27.73176 39.83534 39.38040 34.92227 [4,] 30.57701 37.27365 31.32767 26.91967 > > > > ## testing functions that elementwise transform the matrix > sqrt(tmp5) <pointer: 0x0308f358> > exp(tmp5) <pointer: 0x0308f358> > log(tmp5,2) <pointer: 0x0308f358> > pow(tmp5,2) > > > > > > ## testing functions that apply to entire matrix > Max(tmp5) [1] 471.4603 > Min(tmp5) [1] 54.0264 > mean(tmp5) [1] 72.30784 > Sum(tmp5) [1] 14461.57 > Var(tmp5) [1] 877.3138 > > > ## testing functions applied to rows or columns > > rowMeans(tmp5) [1] 90.69197 70.11209 73.09397 66.75911 70.29269 71.73778 69.44735 69.51539 [9] 71.14669 70.28135 > rowSums(tmp5) [1] 1813.839 1402.242 1461.879 1335.182 1405.854 1434.756 1388.947 1390.308 [9] 1422.934 1405.627 > rowVars(tmp5) [1] 8097.63961 43.12094 97.85334 32.88338 72.15224 98.17692 [7] 73.36976 75.61080 108.10453 68.71728 > rowSd(tmp5) [1] 89.986886 6.566654 9.892085 5.734403 8.494247 9.908427 8.565615 [8] 8.695447 10.397333 8.289588 > rowMax(tmp5) [1] 471.46034 81.10208 91.68684 77.58022 85.86522 87.75554 94.87037 [8] 86.65430 91.31551 84.34947 > rowMin(tmp5) [1] 54.51613 56.34120 57.72003 56.02977 58.39988 55.88112 59.22824 57.49452 [9] 54.02640 58.80725 > > colMeans(tmp5) [1] 106.26118 72.50716 75.53842 68.26864 72.39722 67.77622 73.90189 [8] 72.34749 75.05733 68.84243 66.11029 74.16487 68.79831 67.93832 [15] 70.45414 72.63649 67.50647 71.15099 68.43134 66.06759 > colSums(tmp5) [1] 1062.6118 725.0716 755.3842 682.6864 723.9722 677.7622 739.0189 [8] 723.4749 750.5733 688.4243 661.1029 741.6487 687.9831 679.3832 [15] 704.5414 726.3649 675.0647 711.5099 684.3134 660.6759 > colVars(tmp5) [1] 16508.85338 90.28138 57.89104 67.34878 74.43539 47.72487 [7] 98.98777 97.61237 89.86344 50.88518 47.10510 83.91953 [13] 43.97611 103.38581 74.28693 104.05184 47.68379 54.98809 [19] 84.42022 40.18509 > colSd(tmp5) [1] 128.486783 9.501652 7.608616 8.206630 8.627595 6.908319 [7] 9.949260 9.879897 9.479633 7.133385 6.863316 9.160760 [13] 6.631448 10.167881 8.618987 10.200580 6.905345 7.415396 [19] 9.188048 6.339171 > colMax(tmp5) [1] 471.46034 86.65430 84.68443 83.60409 81.76151 78.89880 94.87037 [8] 87.81485 91.68684 84.67186 77.11657 86.49919 84.34947 87.75554 [15] 83.54129 91.31551 74.52584 84.29084 83.37434 79.20419 > colMin(tmp5) [1] 55.88112 58.71385 65.20443 56.02977 59.53841 58.94175 62.46801 57.59605 [9] 56.31637 61.99265 56.34120 59.22824 61.98542 54.51613 59.50776 58.97035 [17] 54.82351 63.18194 54.02640 59.16530 > > > ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default) > > > which.row <- sample(1:10,1,replace=TRUE) > which.col <- sample(1:20,1,replace=TRUE) > > tmp5[which.row,which.col] <- NA > > Max(tmp5) [1] NA > Min(tmp5) [1] NA > mean(tmp5) [1] NA > Sum(tmp5) [1] NA > Var(tmp5) [1] NA > > rowMeans(tmp5) [1] 90.69197 70.11209 73.09397 66.75911 70.29269 71.73778 NA 69.51539 [9] 71.14669 70.28135 > rowSums(tmp5) [1] 1813.839 1402.242 1461.879 1335.182 1405.854 1434.756 NA 1390.308 [9] 1422.934 1405.627 > rowVars(tmp5) [1] 8097.63961 43.12094 97.85334 32.88338 72.15224 98.17692 [7] 75.65728 75.61080 108.10453 68.71728 > rowSd(tmp5) [1] 89.986886 6.566654 9.892085 5.734403 8.494247 9.908427 8.698120 [8] 8.695447 10.397333 8.289588 > rowMax(tmp5) [1] 471.46034 81.10208 91.68684 77.58022 85.86522 87.75554 NA [8] 86.65430 91.31551 84.34947 > rowMin(tmp5) [1] 54.51613 56.34120 57.72003 56.02977 58.39988 55.88112 NA 57.49452 [9] 54.02640 58.80725 > > colMeans(tmp5) [1] 106.26118 72.50716 NA 68.26864 72.39722 67.77622 73.90189 [8] 72.34749 75.05733 68.84243 66.11029 74.16487 68.79831 67.93832 [15] 70.45414 72.63649 67.50647 71.15099 68.43134 66.06759 > colSums(tmp5) [1] 1062.6118 725.0716 NA 682.6864 723.9722 677.7622 739.0189 [8] 723.4749 750.5733 688.4243 661.1029 741.6487 687.9831 679.3832 [15] 704.5414 726.3649 675.0647 711.5099 684.3134 660.6759 > colVars(tmp5) [1] 16508.85338 90.28138 NA 67.34878 74.43539 47.72487 [7] 98.98777 97.61237 89.86344 50.88518 47.10510 83.91953 [13] 43.97611 103.38581 74.28693 104.05184 47.68379 54.98809 [19] 84.42022 40.18509 > colSd(tmp5) [1] 128.486783 9.501652 NA 8.206630 8.627595 6.908319 [7] 9.949260 9.879897 9.479633 7.133385 6.863316 9.160760 [13] 6.631448 10.167881 8.618987 10.200580 6.905345 7.415396 [19] 9.188048 6.339171 > colMax(tmp5) [1] 471.46034 86.65430 NA 83.60409 81.76151 78.89880 94.87037 [8] 87.81485 91.68684 84.67186 77.11657 86.49919 84.34947 87.75554 [15] 83.54129 91.31551 74.52584 84.29084 83.37434 79.20419 > colMin(tmp5) [1] 55.88112 58.71385 NA 56.02977 59.53841 58.94175 62.46801 57.59605 [9] 56.31637 61.99265 56.34120 59.22824 61.98542 54.51613 59.50776 58.97035 [17] 54.82351 63.18194 54.02640 59.16530 > > Max(tmp5,na.rm=TRUE) [1] 471.4603 > Min(tmp5,na.rm=TRUE) [1] 54.0264 > mean(tmp5,na.rm=TRUE) [1] 72.29442 > Sum(tmp5,na.rm=TRUE) [1] 14386.59 > Var(tmp5,na.rm=TRUE) [1] 881.7085 > > rowMeans(tmp5,na.rm=TRUE) [1] 90.69197 70.11209 73.09397 66.75911 70.29269 71.73778 69.15628 69.51539 [9] 71.14669 70.28135 > rowSums(tmp5,na.rm=TRUE) [1] 1813.839 1402.242 1461.879 1335.182 1405.854 1434.756 1313.969 1390.308 [9] 1422.934 1405.627 > rowVars(tmp5,na.rm=TRUE) [1] 8097.63961 43.12094 97.85334 32.88338 72.15224 98.17692 [7] 75.65728 75.61080 108.10453 68.71728 > rowSd(tmp5,na.rm=TRUE) [1] 89.986886 6.566654 9.892085 5.734403 8.494247 9.908427 8.698120 [8] 8.695447 10.397333 8.289588 > rowMax(tmp5,na.rm=TRUE) [1] 471.46034 81.10208 91.68684 77.58022 85.86522 87.75554 94.87037 [8] 86.65430 91.31551 84.34947 > rowMin(tmp5,na.rm=TRUE) [1] 54.51613 56.34120 57.72003 56.02977 58.39988 55.88112 59.22824 57.49452 [9] 54.02640 58.80725 > > colMeans(tmp5,na.rm=TRUE) [1] 106.26118 72.50716 75.60073 68.26864 72.39722 67.77622 73.90189 [8] 72.34749 75.05733 68.84243 66.11029 74.16487 68.79831 67.93832 [15] 70.45414 72.63649 67.50647 71.15099 68.43134 66.06759 > colSums(tmp5,na.rm=TRUE) [1] 1062.6118 725.0716 680.4065 682.6864 723.9722 677.7622 739.0189 [8] 723.4749 750.5733 688.4243 661.1029 741.6487 687.9831 679.3832 [15] 704.5414 726.3649 675.0647 711.5099 684.3134 660.6759 > colVars(tmp5,na.rm=TRUE) [1] 16508.85338 90.28138 65.08375 67.34878 74.43539 47.72487 [7] 98.98777 97.61237 89.86344 50.88518 47.10510 83.91953 [13] 43.97611 103.38581 74.28693 104.05184 47.68379 54.98809 [19] 84.42022 40.18509 > colSd(tmp5,na.rm=TRUE) [1] 128.486783 9.501652 8.067450 8.206630 8.627595 6.908319 [7] 9.949260 9.879897 9.479633 7.133385 6.863316 9.160760 [13] 6.631448 10.167881 8.618987 10.200580 6.905345 7.415396 [19] 9.188048 6.339171 > colMax(tmp5,na.rm=TRUE) [1] 471.46034 86.65430 84.68443 83.60409 81.76151 78.89880 94.87037 [8] 87.81485 91.68684 84.67186 77.11657 86.49919 84.34947 87.75554 [15] 83.54129 91.31551 74.52584 84.29084 83.37434 79.20419 > colMin(tmp5,na.rm=TRUE) [1] 55.88112 58.71385 65.20443 56.02977 59.53841 58.94175 62.46801 57.59605 [9] 56.31637 61.99265 56.34120 59.22824 61.98542 54.51613 59.50776 58.97035 [17] 54.82351 63.18194 54.02640 59.16530 > > # now set an entire row to NA > > tmp5[which.row,] <- NA > rowMeans(tmp5,na.rm=TRUE) [1] 90.69197 70.11209 73.09397 66.75911 70.29269 71.73778 NaN 69.51539 [9] 71.14669 70.28135 > rowSums(tmp5,na.rm=TRUE) [1] 1813.839 1402.242 1461.879 1335.182 1405.854 1434.756 0.000 1390.308 [9] 1422.934 1405.627 > rowVars(tmp5,na.rm=TRUE) [1] 8097.63961 43.12094 97.85334 32.88338 72.15224 98.17692 [7] NA 75.61080 108.10453 68.71728 > rowSd(tmp5,na.rm=TRUE) [1] 89.986886 6.566654 9.892085 5.734403 8.494247 9.908427 NA [8] 8.695447 10.397333 8.289588 > rowMax(tmp5,na.rm=TRUE) [1] 471.46034 81.10208 91.68684 77.58022 85.86522 87.75554 NA [8] 86.65430 91.31551 84.34947 > rowMin(tmp5,na.rm=TRUE) [1] 54.51613 56.34120 57.72003 56.02977 58.39988 55.88112 NA 57.49452 [9] 54.02640 58.80725 > > > # now set an entire col to NA > > > tmp5[,which.col] <- NA > colMeans(tmp5,na.rm=TRUE) [1] 111.41275 72.35504 NaN 67.67846 71.57832 68.36603 71.57206 [8] 73.00795 75.66840 68.15147 65.26199 75.82450 69.33671 68.02817 [15] 71.67041 73.24952 67.43775 70.73944 69.15918 66.41454 > colSums(tmp5,na.rm=TRUE) [1] 1002.7148 651.1954 0.0000 609.1062 644.2049 615.2942 644.1486 [8] 657.0715 681.0156 613.3633 587.3579 682.4205 624.0304 612.2535 [15] 645.0336 659.2457 606.9398 636.6550 622.4326 597.7309 > colVars(tmp5,na.rm=TRUE) [1] 18273.89966 101.30622 NA 71.84886 76.19576 49.77696 [7] 50.29499 104.90663 96.89554 51.87485 44.89764 63.42294 [13] 46.21192 116.21822 66.93067 112.83044 53.59113 59.95616 [19] 89.01308 43.85399 > colSd(tmp5,na.rm=TRUE) [1] 135.180989 10.065099 NA 8.476371 8.729018 7.055279 [7] 7.091896 10.242394 9.843553 7.202420 6.700570 7.963852 [13] 6.797935 10.780456 8.181117 10.622167 7.320596 7.743136 [19] 9.434674 6.622235 > colMax(tmp5,na.rm=TRUE) [1] 471.46034 86.65430 -Inf 83.60409 81.76151 78.89880 85.86522 [8] 87.81485 91.68684 84.67186 77.11657 86.49919 84.34947 87.75554 [15] 83.54129 91.31551 74.52584 84.29084 83.37434 79.20419 > colMin(tmp5,na.rm=TRUE) [1] 55.88112 58.71385 Inf 56.02977 59.53841 58.94175 62.46801 57.59605 [9] 56.31637 61.99265 56.34120 61.75118 61.98542 54.51613 59.74365 58.97035 [17] 54.82351 63.18194 54.02640 59.16530 > > > > > copymatrix <- matrix(rnorm(200,150,15),10,20) > > tmp5[1:10,1:20] <- copymatrix > which.row <- 3 > which.col <- 1 > cat(which.row," ",which.col,"\n") 3 1 > tmp5[which.row,which.col] <- NA > copymatrix[which.row,which.col] <- NA > > rowVars(tmp5,na.rm=TRUE) [1] 308.58290 257.65281 326.68158 445.19664 247.77983 256.24998 202.28799 [8] 238.99505 88.51719 218.94567 > apply(copymatrix,1,var,na.rm=TRUE) [1] 308.58290 257.65281 326.68158 445.19664 247.77983 256.24998 202.28799 [8] 238.99505 88.51719 218.94567 > > > > copymatrix <- matrix(rnorm(200,150,15),10,20) > > tmp5[1:10,1:20] <- copymatrix > which.row <- 1 > which.col <- 3 > cat(which.row," ",which.col,"\n") 1 3 > tmp5[which.row,which.col] <- NA > copymatrix[which.row,which.col] <- NA > > colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE) [1] 3.694822e-13 6.252776e-13 0.000000e+00 -1.421085e-14 1.278977e-13 [6] 1.989520e-13 0.000000e+00 1.421085e-14 2.842171e-14 2.842171e-14 [11] 5.684342e-13 5.684342e-14 -1.705303e-13 0.000000e+00 -1.421085e-13 [16] -5.684342e-14 -5.684342e-14 3.410605e-13 1.136868e-13 -1.705303e-13 > > > > > > > > > > > ## making sure these things agree > ## > ## first when there is no NA > > > > agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){ + + if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){ + stop("No agreement in Max") + } + + + if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){ + stop("No agreement in Min") + } + + + if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){ + + cat(Sum(buff.matrix,na.rm=TRUE),"\n") + cat(sum(r.matrix,na.rm=TRUE),"\n") + cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n") + + stop("No agreement in Sum") + } + + if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){ + stop("No agreement in mean") + } + + + if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){ + stop("No agreement in Var") + } + + + + if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowMeans") + } + + + if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in colMeans") + } + + + if(any(abs(rowSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in rowSums") + } + + + if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in colSums") + } + + ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when + ### computing variance + my.Var <- function(x,na.rm=FALSE){ + if (all(is.na(x))){ + return(NA) + } else { + var(x,na.rm=na.rm) + } + + } + + if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowVars") + } + + + if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowVars") + } + + + if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMax") + } + + + if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMax") + } + + + + if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMin") + } + + + if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMin") + } + + if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMedian") + } + + if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colRanges") + } + + + + } > > > > > > > > > > for (rep in 1:20){ + copymatrix <- matrix(rnorm(200,150,15),10,20) + + tmp5[1:10,1:20] <- copymatrix + + + agree.checks(tmp5,copymatrix) + + ## now lets assign some NA values and check agreement + + which.row <- sample(1:10,1,replace=TRUE) + which.col <- sample(1:20,1,replace=TRUE) + + cat(which.row," ",which.col,"\n") + + tmp5[which.row,which.col] <- NA + copymatrix[which.row,which.col] <- NA + + agree.checks(tmp5,copymatrix) + + ## make an entire row NA + tmp5[which.row,] <- NA + copymatrix[which.row,] <- NA + + + agree.checks(tmp5,copymatrix) + + ### also make an entire col NA + tmp5[,which.col] <- NA + copymatrix[,which.col] <- NA + + agree.checks(tmp5,copymatrix) + + ### now make 1 element non NA with NA in the rest of row and column + + tmp5[which.row,which.col] <- rnorm(1,150,15) + copymatrix[which.row,which.col] <- tmp5[which.row,which.col] + + agree.checks(tmp5,copymatrix) + } 1 15 6 8 4 4 9 13 8 1 9 11 5 17 6 8 7 9 8 9 9 10 9 16 4 18 2 20 5 18 6 15 1 7 4 10 2 18 8 1 There were 50 or more warnings (use warnings() to see the first 50) > > > ### now test 1 by n and n by 1 matrix > > > err.tol <- 1e-12 > > rm(tmp5) > > dataset1 <- rnorm(100) > dataset2 <- rnorm(100) > > tmp <- createBufferedMatrix(1,100) > tmp[1,] <- dataset1 > > tmp2 <- createBufferedMatrix(100,1) > tmp2[,1] <- dataset2 > > > > > > Max(tmp) [1] 2.646343 > Min(tmp) [1] -3.654092 > mean(tmp) [1] 0.06701054 > Sum(tmp) [1] 6.701054 > Var(tmp) [1] 0.9191925 > > rowMeans(tmp) [1] 0.06701054 > rowSums(tmp) [1] 6.701054 > rowVars(tmp) [1] 0.9191925 > rowSd(tmp) [1] 0.9587453 > rowMax(tmp) [1] 2.646343 > rowMin(tmp) [1] -3.654092 > > colMeans(tmp) [1] 0.25124050 -0.68917982 1.32465317 -0.48324518 0.71529556 -1.61830237 [7] 0.71788778 -0.45468332 0.10480566 0.60535495 -1.46965024 0.76493269 [13] 0.22780978 0.43296693 -0.62272643 0.26229913 1.09214137 -0.70899110 [19] 0.34763685 0.38776249 -0.07187514 0.02045075 -0.85531564 0.46203793 [25] -0.62295805 -0.80077976 -0.40115380 1.50074054 0.45283321 -0.06225586 [31] -3.65409154 -0.90744536 0.69282643 -0.83970646 -0.79404544 -0.58362988 [37] -0.25039101 -0.51589825 0.88347138 0.28601229 -0.85973054 1.59846395 [43] 1.92225904 1.04537209 -1.47274556 2.35820901 0.14276018 0.78780420 [49] -0.19376022 -0.44624249 1.02533753 -0.98317593 -1.38412267 -1.31097223 [55] 0.39757771 1.86249757 0.14217198 -1.88452965 1.93194514 -0.35514291 [61] 0.25414014 0.37522497 -1.09046955 2.64634274 -0.27495926 0.30527519 [67] -0.38695691 0.18379763 0.80514694 1.60555988 0.98255303 0.54643098 [73] 1.01063168 -0.13749487 0.02325716 0.55512551 -0.07850015 0.78524689 [79] -0.22108013 0.83536480 -0.76695897 -0.26094023 -0.53207690 1.41267765 [85] 0.78405522 -0.20789800 -0.10386798 -0.49121034 -0.52556382 -0.85114316 [91] -0.11186663 -0.12431682 0.69575256 0.23027528 -0.21451717 -0.55686266 [97] -0.28973651 -0.64235065 -0.14912252 1.23127783 > colSums(tmp) [1] 0.25124050 -0.68917982 1.32465317 -0.48324518 0.71529556 -1.61830237 [7] 0.71788778 -0.45468332 0.10480566 0.60535495 -1.46965024 0.76493269 [13] 0.22780978 0.43296693 -0.62272643 0.26229913 1.09214137 -0.70899110 [19] 0.34763685 0.38776249 -0.07187514 0.02045075 -0.85531564 0.46203793 [25] -0.62295805 -0.80077976 -0.40115380 1.50074054 0.45283321 -0.06225586 [31] -3.65409154 -0.90744536 0.69282643 -0.83970646 -0.79404544 -0.58362988 [37] -0.25039101 -0.51589825 0.88347138 0.28601229 -0.85973054 1.59846395 [43] 1.92225904 1.04537209 -1.47274556 2.35820901 0.14276018 0.78780420 [49] -0.19376022 -0.44624249 1.02533753 -0.98317593 -1.38412267 -1.31097223 [55] 0.39757771 1.86249757 0.14217198 -1.88452965 1.93194514 -0.35514291 [61] 0.25414014 0.37522497 -1.09046955 2.64634274 -0.27495926 0.30527519 [67] -0.38695691 0.18379763 0.80514694 1.60555988 0.98255303 0.54643098 [73] 1.01063168 -0.13749487 0.02325716 0.55512551 -0.07850015 0.78524689 [79] -0.22108013 0.83536480 -0.76695897 -0.26094023 -0.53207690 1.41267765 [85] 0.78405522 -0.20789800 -0.10386798 -0.49121034 -0.52556382 -0.85114316 [91] -0.11186663 -0.12431682 0.69575256 0.23027528 -0.21451717 -0.55686266 [97] -0.28973651 -0.64235065 -0.14912252 1.23127783 > colVars(tmp) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > colSd(tmp) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > colMax(tmp) [1] 0.25124050 -0.68917982 1.32465317 -0.48324518 0.71529556 -1.61830237 [7] 0.71788778 -0.45468332 0.10480566 0.60535495 -1.46965024 0.76493269 [13] 0.22780978 0.43296693 -0.62272643 0.26229913 1.09214137 -0.70899110 [19] 0.34763685 0.38776249 -0.07187514 0.02045075 -0.85531564 0.46203793 [25] -0.62295805 -0.80077976 -0.40115380 1.50074054 0.45283321 -0.06225586 [31] -3.65409154 -0.90744536 0.69282643 -0.83970646 -0.79404544 -0.58362988 [37] -0.25039101 -0.51589825 0.88347138 0.28601229 -0.85973054 1.59846395 [43] 1.92225904 1.04537209 -1.47274556 2.35820901 0.14276018 0.78780420 [49] -0.19376022 -0.44624249 1.02533753 -0.98317593 -1.38412267 -1.31097223 [55] 0.39757771 1.86249757 0.14217198 -1.88452965 1.93194514 -0.35514291 [61] 0.25414014 0.37522497 -1.09046955 2.64634274 -0.27495926 0.30527519 [67] -0.38695691 0.18379763 0.80514694 1.60555988 0.98255303 0.54643098 [73] 1.01063168 -0.13749487 0.02325716 0.55512551 -0.07850015 0.78524689 [79] -0.22108013 0.83536480 -0.76695897 -0.26094023 -0.53207690 1.41267765 [85] 0.78405522 -0.20789800 -0.10386798 -0.49121034 -0.52556382 -0.85114316 [91] -0.11186663 -0.12431682 0.69575256 0.23027528 -0.21451717 -0.55686266 [97] -0.28973651 -0.64235065 -0.14912252 1.23127783 > colMin(tmp) [1] 0.25124050 -0.68917982 1.32465317 -0.48324518 0.71529556 -1.61830237 [7] 0.71788778 -0.45468332 0.10480566 0.60535495 -1.46965024 0.76493269 [13] 0.22780978 0.43296693 -0.62272643 0.26229913 1.09214137 -0.70899110 [19] 0.34763685 0.38776249 -0.07187514 0.02045075 -0.85531564 0.46203793 [25] -0.62295805 -0.80077976 -0.40115380 1.50074054 0.45283321 -0.06225586 [31] -3.65409154 -0.90744536 0.69282643 -0.83970646 -0.79404544 -0.58362988 [37] -0.25039101 -0.51589825 0.88347138 0.28601229 -0.85973054 1.59846395 [43] 1.92225904 1.04537209 -1.47274556 2.35820901 0.14276018 0.78780420 [49] -0.19376022 -0.44624249 1.02533753 -0.98317593 -1.38412267 -1.31097223 [55] 0.39757771 1.86249757 0.14217198 -1.88452965 1.93194514 -0.35514291 [61] 0.25414014 0.37522497 -1.09046955 2.64634274 -0.27495926 0.30527519 [67] -0.38695691 0.18379763 0.80514694 1.60555988 0.98255303 0.54643098 [73] 1.01063168 -0.13749487 0.02325716 0.55512551 -0.07850015 0.78524689 [79] -0.22108013 0.83536480 -0.76695897 -0.26094023 -0.53207690 1.41267765 [85] 0.78405522 -0.20789800 -0.10386798 -0.49121034 -0.52556382 -0.85114316 [91] -0.11186663 -0.12431682 0.69575256 0.23027528 -0.21451717 -0.55686266 [97] -0.28973651 -0.64235065 -0.14912252 1.23127783 > colMedians(tmp) [1] 0.25124050 -0.68917982 1.32465317 -0.48324518 0.71529556 -1.61830237 [7] 0.71788778 -0.45468332 0.10480566 0.60535495 -1.46965024 0.76493269 [13] 0.22780978 0.43296693 -0.62272643 0.26229913 1.09214137 -0.70899110 [19] 0.34763685 0.38776249 -0.07187514 0.02045075 -0.85531564 0.46203793 [25] -0.62295805 -0.80077976 -0.40115380 1.50074054 0.45283321 -0.06225586 [31] -3.65409154 -0.90744536 0.69282643 -0.83970646 -0.79404544 -0.58362988 [37] -0.25039101 -0.51589825 0.88347138 0.28601229 -0.85973054 1.59846395 [43] 1.92225904 1.04537209 -1.47274556 2.35820901 0.14276018 0.78780420 [49] -0.19376022 -0.44624249 1.02533753 -0.98317593 -1.38412267 -1.31097223 [55] 0.39757771 1.86249757 0.14217198 -1.88452965 1.93194514 -0.35514291 [61] 0.25414014 0.37522497 -1.09046955 2.64634274 -0.27495926 0.30527519 [67] -0.38695691 0.18379763 0.80514694 1.60555988 0.98255303 0.54643098 [73] 1.01063168 -0.13749487 0.02325716 0.55512551 -0.07850015 0.78524689 [79] -0.22108013 0.83536480 -0.76695897 -0.26094023 -0.53207690 1.41267765 [85] 0.78405522 -0.20789800 -0.10386798 -0.49121034 -0.52556382 -0.85114316 [91] -0.11186663 -0.12431682 0.69575256 0.23027528 -0.21451717 -0.55686266 [97] -0.28973651 -0.64235065 -0.14912252 1.23127783 > colRanges(tmp) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 0.2512405 -0.6891798 1.324653 -0.4832452 0.7152956 -1.618302 0.7178878 [2,] 0.2512405 -0.6891798 1.324653 -0.4832452 0.7152956 -1.618302 0.7178878 [,8] [,9] [,10] [,11] [,12] [,13] [,14] [1,] -0.4546833 0.1048057 0.6053549 -1.46965 0.7649327 0.2278098 0.4329669 [2,] -0.4546833 0.1048057 0.6053549 -1.46965 0.7649327 0.2278098 0.4329669 [,15] [,16] [,17] [,18] [,19] [,20] [,21] [1,] -0.6227264 0.2622991 1.092141 -0.7089911 0.3476368 0.3877625 -0.07187514 [2,] -0.6227264 0.2622991 1.092141 -0.7089911 0.3476368 0.3877625 -0.07187514 [,22] [,23] [,24] [,25] [,26] [,27] [,28] [1,] 0.02045075 -0.8553156 0.4620379 -0.622958 -0.8007798 -0.4011538 1.500741 [2,] 0.02045075 -0.8553156 0.4620379 -0.622958 -0.8007798 -0.4011538 1.500741 [,29] [,30] [,31] [,32] [,33] [,34] [,35] [1,] 0.4528332 -0.06225586 -3.654092 -0.9074454 0.6928264 -0.8397065 -0.7940454 [2,] 0.4528332 -0.06225586 -3.654092 -0.9074454 0.6928264 -0.8397065 -0.7940454 [,36] [,37] [,38] [,39] [,40] [,41] [,42] [1,] -0.5836299 -0.250391 -0.5158982 0.8834714 0.2860123 -0.8597305 1.598464 [2,] -0.5836299 -0.250391 -0.5158982 0.8834714 0.2860123 -0.8597305 1.598464 [,43] [,44] [,45] [,46] [,47] [,48] [,49] [1,] 1.922259 1.045372 -1.472746 2.358209 0.1427602 0.7878042 -0.1937602 [2,] 1.922259 1.045372 -1.472746 2.358209 0.1427602 0.7878042 -0.1937602 [,50] [,51] [,52] [,53] [,54] [,55] [,56] [1,] -0.4462425 1.025338 -0.9831759 -1.384123 -1.310972 0.3975777 1.862498 [2,] -0.4462425 1.025338 -0.9831759 -1.384123 -1.310972 0.3975777 1.862498 [,57] [,58] [,59] [,60] [,61] [,62] [,63] [,64] [1,] 0.142172 -1.88453 1.931945 -0.3551429 0.2541401 0.375225 -1.09047 2.646343 [2,] 0.142172 -1.88453 1.931945 -0.3551429 0.2541401 0.375225 -1.09047 2.646343 [,65] [,66] [,67] [,68] [,69] [,70] [,71] [1,] -0.2749593 0.3052752 -0.3869569 0.1837976 0.8051469 1.60556 0.982553 [2,] -0.2749593 0.3052752 -0.3869569 0.1837976 0.8051469 1.60556 0.982553 [,72] [,73] [,74] [,75] [,76] [,77] [,78] [1,] 0.546431 1.010632 -0.1374949 0.02325716 0.5551255 -0.07850015 0.7852469 [2,] 0.546431 1.010632 -0.1374949 0.02325716 0.5551255 -0.07850015 0.7852469 [,79] [,80] [,81] [,82] [,83] [,84] [,85] [1,] -0.2210801 0.8353648 -0.766959 -0.2609402 -0.5320769 1.412678 0.7840552 [2,] -0.2210801 0.8353648 -0.766959 -0.2609402 -0.5320769 1.412678 0.7840552 [,86] [,87] [,88] [,89] [,90] [,91] [,92] [1,] -0.207898 -0.103868 -0.4912103 -0.5255638 -0.8511432 -0.1118666 -0.1243168 [2,] -0.207898 -0.103868 -0.4912103 -0.5255638 -0.8511432 -0.1118666 -0.1243168 [,93] [,94] [,95] [,96] [,97] [,98] [,99] [1,] 0.6957526 0.2302753 -0.2145172 -0.5568627 -0.2897365 -0.6423507 -0.1491225 [2,] 0.6957526 0.2302753 -0.2145172 -0.5568627 -0.2897365 -0.6423507 -0.1491225 [,100] [1,] 1.231278 [2,] 1.231278 > > > Max(tmp2) [1] 3.044279 > Min(tmp2) [1] -2.481782 > mean(tmp2) [1] -0.1098528 > Sum(tmp2) [1] -10.98528 > Var(tmp2) [1] 0.8456013 > > rowMeans(tmp2) [1] 3.04427937 0.26158430 0.10147469 -0.16771208 -0.95857230 -0.84714132 [7] 0.50075506 -1.94493699 -0.87360456 0.33322201 -0.63413482 0.90534619 [13] 0.60136057 0.69059877 0.66943233 0.74515252 0.36146792 0.44944666 [19] -0.44553381 1.48999010 1.07181280 1.00962496 -1.19754544 -0.27611871 [25] -0.63073124 -0.68622144 0.90930884 0.60975238 -0.50457931 -2.48178220 [31] 0.87185494 1.23442635 0.01657365 -0.02352123 0.51877773 -0.53443272 [37] -1.00380340 -2.25446421 -0.05880359 0.87668064 -0.58407706 -1.24675009 [43] -1.50519641 -1.33667887 1.25937389 -1.43656466 -0.77670431 0.06847645 [49] -0.71860570 -0.47408048 -0.20136406 0.75058199 -0.77641308 -0.69006524 [55] 0.29222123 -0.23930144 -0.56320354 0.36112648 0.73921467 -0.73770066 [61] 0.18953975 -0.01497507 0.69949198 -1.19039906 1.06650135 0.38629955 [67] -1.45097064 0.06493246 -0.58622286 -2.04890617 -0.14880099 -1.92086107 [73] 0.39763413 -0.08041592 0.45450815 -0.85262419 0.53339032 0.32155409 [79] 0.29360118 0.50464763 -0.19459569 1.28864618 1.61390787 0.10678772 [85] -0.10076164 0.64505111 -0.54983602 0.27678415 -0.83803782 0.89490725 [91] -1.56799099 -0.22639607 -0.70909622 -0.74897447 -0.24826462 -1.00510654 [97] 0.20284069 -0.32396154 0.27413348 -0.32680928 > rowSums(tmp2) [1] 3.04427937 0.26158430 0.10147469 -0.16771208 -0.95857230 -0.84714132 [7] 0.50075506 -1.94493699 -0.87360456 0.33322201 -0.63413482 0.90534619 [13] 0.60136057 0.69059877 0.66943233 0.74515252 0.36146792 0.44944666 [19] -0.44553381 1.48999010 1.07181280 1.00962496 -1.19754544 -0.27611871 [25] -0.63073124 -0.68622144 0.90930884 0.60975238 -0.50457931 -2.48178220 [31] 0.87185494 1.23442635 0.01657365 -0.02352123 0.51877773 -0.53443272 [37] -1.00380340 -2.25446421 -0.05880359 0.87668064 -0.58407706 -1.24675009 [43] -1.50519641 -1.33667887 1.25937389 -1.43656466 -0.77670431 0.06847645 [49] -0.71860570 -0.47408048 -0.20136406 0.75058199 -0.77641308 -0.69006524 [55] 0.29222123 -0.23930144 -0.56320354 0.36112648 0.73921467 -0.73770066 [61] 0.18953975 -0.01497507 0.69949198 -1.19039906 1.06650135 0.38629955 [67] -1.45097064 0.06493246 -0.58622286 -2.04890617 -0.14880099 -1.92086107 [73] 0.39763413 -0.08041592 0.45450815 -0.85262419 0.53339032 0.32155409 [79] 0.29360118 0.50464763 -0.19459569 1.28864618 1.61390787 0.10678772 [85] -0.10076164 0.64505111 -0.54983602 0.27678415 -0.83803782 0.89490725 [91] -1.56799099 -0.22639607 -0.70909622 -0.74897447 -0.24826462 -1.00510654 [97] 0.20284069 -0.32396154 0.27413348 -0.32680928 > rowVars(tmp2) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > rowSd(tmp2) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > rowMax(tmp2) [1] 3.04427937 0.26158430 0.10147469 -0.16771208 -0.95857230 -0.84714132 [7] 0.50075506 -1.94493699 -0.87360456 0.33322201 -0.63413482 0.90534619 [13] 0.60136057 0.69059877 0.66943233 0.74515252 0.36146792 0.44944666 [19] -0.44553381 1.48999010 1.07181280 1.00962496 -1.19754544 -0.27611871 [25] -0.63073124 -0.68622144 0.90930884 0.60975238 -0.50457931 -2.48178220 [31] 0.87185494 1.23442635 0.01657365 -0.02352123 0.51877773 -0.53443272 [37] -1.00380340 -2.25446421 -0.05880359 0.87668064 -0.58407706 -1.24675009 [43] -1.50519641 -1.33667887 1.25937389 -1.43656466 -0.77670431 0.06847645 [49] -0.71860570 -0.47408048 -0.20136406 0.75058199 -0.77641308 -0.69006524 [55] 0.29222123 -0.23930144 -0.56320354 0.36112648 0.73921467 -0.73770066 [61] 0.18953975 -0.01497507 0.69949198 -1.19039906 1.06650135 0.38629955 [67] -1.45097064 0.06493246 -0.58622286 -2.04890617 -0.14880099 -1.92086107 [73] 0.39763413 -0.08041592 0.45450815 -0.85262419 0.53339032 0.32155409 [79] 0.29360118 0.50464763 -0.19459569 1.28864618 1.61390787 0.10678772 [85] -0.10076164 0.64505111 -0.54983602 0.27678415 -0.83803782 0.89490725 [91] -1.56799099 -0.22639607 -0.70909622 -0.74897447 -0.24826462 -1.00510654 [97] 0.20284069 -0.32396154 0.27413348 -0.32680928 > rowMin(tmp2) [1] 3.04427937 0.26158430 0.10147469 -0.16771208 -0.95857230 -0.84714132 [7] 0.50075506 -1.94493699 -0.87360456 0.33322201 -0.63413482 0.90534619 [13] 0.60136057 0.69059877 0.66943233 0.74515252 0.36146792 0.44944666 [19] -0.44553381 1.48999010 1.07181280 1.00962496 -1.19754544 -0.27611871 [25] -0.63073124 -0.68622144 0.90930884 0.60975238 -0.50457931 -2.48178220 [31] 0.87185494 1.23442635 0.01657365 -0.02352123 0.51877773 -0.53443272 [37] -1.00380340 -2.25446421 -0.05880359 0.87668064 -0.58407706 -1.24675009 [43] -1.50519641 -1.33667887 1.25937389 -1.43656466 -0.77670431 0.06847645 [49] -0.71860570 -0.47408048 -0.20136406 0.75058199 -0.77641308 -0.69006524 [55] 0.29222123 -0.23930144 -0.56320354 0.36112648 0.73921467 -0.73770066 [61] 0.18953975 -0.01497507 0.69949198 -1.19039906 1.06650135 0.38629955 [67] -1.45097064 0.06493246 -0.58622286 -2.04890617 -0.14880099 -1.92086107 [73] 0.39763413 -0.08041592 0.45450815 -0.85262419 0.53339032 0.32155409 [79] 0.29360118 0.50464763 -0.19459569 1.28864618 1.61390787 0.10678772 [85] -0.10076164 0.64505111 -0.54983602 0.27678415 -0.83803782 0.89490725 [91] -1.56799099 -0.22639607 -0.70909622 -0.74897447 -0.24826462 -1.00510654 [97] 0.20284069 -0.32396154 0.27413348 -0.32680928 > > colMeans(tmp2) [1] -0.1098528 > colSums(tmp2) [1] -10.98528 > colVars(tmp2) [1] 0.8456013 > colSd(tmp2) [1] 0.9195658 > colMax(tmp2) [1] 3.044279 > colMin(tmp2) [1] -2.481782 > colMedians(tmp2) [1] -0.06960975 > colRanges(tmp2) [,1] [1,] -2.481782 [2,] 3.044279 > > dataset1 <- matrix(dataset1,1,100) > > agree.checks(tmp,dataset1) > > dataset2 <- matrix(dataset2,100,1) > agree.checks(tmp2,dataset2) > > > tmp <- createBufferedMatrix(10,10) > > tmp[1:10,1:10] <- rnorm(100) > colApply(tmp,sum) [1] -2.6486596 1.9211783 1.0141964 -2.3805740 2.1967922 0.5146614 [7] -0.2897057 -0.2412777 4.0919439 -1.0274477 > colApply(tmp,quantile)[,1] [,1] [1,] -1.3624654 [2,] -0.9533434 [3,] -0.3786847 [4,] 0.1374389 [5,] 1.6026552 > > rowApply(tmp,sum) [1] 7.2887424 1.7648098 -1.6187136 -1.0619415 1.7459867 -2.2135883 [7] 0.2868536 1.3417201 -2.3316825 -2.0510792 > rowApply(tmp,rank)[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 4 2 8 3 1 10 1 7 3 [2,] 6 9 9 3 2 6 5 7 10 8 [3,] 7 6 7 6 1 9 6 2 8 5 [4,] 9 8 1 5 5 5 8 3 2 7 [5,] 10 3 3 2 10 7 4 5 9 10 [6,] 2 7 10 1 8 3 1 9 6 6 [7,] 4 10 5 7 4 2 9 8 1 2 [8,] 5 2 6 9 9 10 3 4 4 1 [9,] 8 5 4 10 7 4 2 10 3 9 [10,] 3 1 8 4 6 8 7 6 5 4 > > tmp <- createBufferedMatrix(5,20) > > tmp[1:5,1:20] <- rnorm(100) > colApply(tmp,sum) [1] 0.355220539 -1.040650007 -0.005201167 1.884695714 -1.153324554 [6] 2.751227371 -3.824204764 4.184035625 3.998805376 2.907430380 [11] 3.199532153 2.319582241 -1.535336915 1.380728442 2.091836227 [16] 2.863632478 1.821017482 1.585848229 1.208104139 -0.565407392 > colApply(tmp,quantile)[,1] [,1] [1,] -0.3793918 [2,] 0.1233614 [3,] 0.1528460 [4,] 0.2112416 [5,] 0.2471633 > > rowApply(tmp,sum) [1] 8.339365 3.878929 5.902667 2.243277 4.063334 > rowApply(tmp,rank)[1:5,] [,1] [,2] [,3] [,4] [,5] [1,] 9 10 11 10 10 [2,] 12 1 8 15 1 [3,] 6 19 4 16 2 [4,] 10 15 6 19 8 [5,] 3 6 17 5 3 > > > as.matrix(tmp) [,1] [,2] [,3] [,4] [,5] [,6] [1,] 0.1528460 0.5368621 0.003315969 0.33741160 -0.4744013 0.02582693 [2,] 0.2112416 -1.2310613 0.879218411 0.68004326 -0.3283242 -0.84030697 [3,] 0.2471633 -0.2308469 -0.892125107 -0.67793646 1.3540108 2.23477873 [4,] -0.3793918 1.2662985 1.288894259 1.58352239 -0.8290180 -0.42623506 [5,] 0.1233614 -1.3819025 -1.284504699 -0.03834507 -0.8755919 1.75716374 [,7] [,8] [,9] [,10] [,11] [,12] [1,] 1.0867393 -0.6297192 -0.2571678 1.6122406 1.66413184 1.1672113 [2,] -0.8985957 0.4701838 0.7793526 0.4172443 -0.11389330 0.6133394 [3,] -1.3820248 2.3596637 1.2462418 1.2198117 0.04170846 -0.6700439 [4,] -1.8859299 1.0965065 1.4323742 -1.3356963 0.64474345 1.5046884 [5,] -0.7443936 0.8874008 0.7980045 0.9938301 0.96284169 -0.2956129 [,13] [,14] [,15] [,16] [,17] [,18] [1,] -1.4897045 -0.2258214 0.77643487 0.01850985 1.1890925 1.1480754 [2,] 0.7457675 0.7657305 0.14530996 -0.59470804 -0.1280299 -0.3747354 [3,] -0.9731529 1.5203175 0.93860826 0.07847011 0.2558024 1.2554790 [4,] -0.3925490 -1.0556863 0.24581809 1.58739056 0.7736468 -0.7827569 [5,] 0.5743020 0.3761882 -0.01433495 1.77397000 -0.2694944 0.3397861 [,19] [,20] [1,] 0.5144629 1.183018 [2,] 2.3743001 0.306852 [3,] -0.7247475 -1.298511 [4,] -0.7318814 -1.361462 [5,] -0.2240299 0.604695 > > > is.BufferedMatrix(tmp) [1] TRUE > > as.BufferedMatrix(as.matrix(tmp)) BufferedMatrix object Matrix size: 5 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 1.9 Kilobytes. Disk usage : 800 bytes. > > > > subBufferedMatrix(tmp,1:5,1:5) BufferedMatrix object Matrix size: 5 5 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 631 bytes. Disk usage : 200 bytes. > subBufferedMatrix(tmp,,5:8) BufferedMatrix object Matrix size: 5 4 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 543 bytes. Disk usage : 160 bytes. > subBufferedMatrix(tmp,1:3,) BufferedMatrix object Matrix size: 3 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 1.9 Kilobytes. Disk usage : 480 bytes. > > > rm(tmp) > > > ### > ### Testing colnames and rownames > ### > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > > > colnames(tmp) NULL > rownames(tmp) NULL > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > colnames(tmp) [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > rownames(tmp) [1] "row1" "row2" "row3" "row4" "row5" > > > tmp["row1",] col1 col2 col3 col4 col5 col6 col7 row1 0.4892798 -1.485915 -0.09326381 -1.583413 1.47167 0.03741334 0.5419318 col8 col9 col10 col11 col12 col13 col14 row1 0.1603854 -0.0770387 1.981432 1.816843 -0.2017936 1.721762 0.5902164 col15 col16 col17 col18 col19 col20 row1 -0.2680484 0.09689628 0.6148404 1.083016 -1.237795 -0.3424428 > tmp[,"col10"] col10 row1 1.98143229 row2 0.38425247 row3 -0.04899879 row4 1.78489553 row5 0.92157773 > tmp[c("row1","row5"),] col1 col2 col3 col4 col5 col6 row1 0.4892798 -1.48591517 -0.09326381 -1.5834132 1.471670 0.03741334 row5 -1.5052240 -0.05051883 2.03865391 0.3182086 1.962632 0.54437424 col7 col8 col9 col10 col11 col12 col13 row1 0.5419318 0.1603854 -0.0770387 1.9814323 1.8168428 -0.20179364 1.721762 row5 0.4040367 1.1518739 -1.0459806 0.9215777 0.7804369 -0.01864656 -1.184626 col14 col15 col16 col17 col18 col19 col20 row1 0.5902164 -0.2680484 0.09689628 0.6148404 1.083016 -1.237795 -0.3424428 row5 0.4447114 0.7515147 -0.08042622 1.0200984 -2.906795 1.004451 -0.2517408 > tmp[,c("col6","col20")] col6 col20 row1 0.03741334 -0.3424428 row2 -1.13839634 0.7696683 row3 -0.50111558 2.0263254 row4 0.83754729 -0.4622507 row5 0.54437424 -0.2517408 > tmp[c("row1","row5"),c("col6","col20")] col6 col20 row1 0.03741334 -0.3424428 row5 0.54437424 -0.2517408 > > > > > tmp["row1",] <- rnorm(20,mean=10) > tmp[,"col10"] <- rnorm(5,mean=30) > tmp[c("row1","row5"),] <- rnorm(40,mean=50) > tmp[,c("col6","col20")] <- rnorm(10,mean=75) > tmp[c("row1","row5"),c("col6","col20")] <- rnorm(4,mean=105) > > tmp["row1",] col1 col2 col3 col4 col5 col6 col7 col8 row1 50.37904 49.15615 49.41509 51.51599 51.00056 106.0564 47.95416 49.62822 col9 col10 col11 col12 col13 col14 col15 col16 row1 48.85028 50.40857 49.54896 48.12953 49.9769 51.68464 48.92036 49.56788 col17 col18 col19 col20 row1 50.13411 50.37773 49.3848 105.3691 > tmp[,"col10"] col10 row1 50.40857 row2 31.46855 row3 31.14873 row4 28.55082 row5 50.95325 > tmp[c("row1","row5"),] col1 col2 col3 col4 col5 col6 col7 col8 row1 50.37904 49.15615 49.41509 51.51599 51.00056 106.0564 47.95416 49.62822 row5 49.93219 49.35540 49.27861 50.12767 49.86562 105.2319 49.88552 50.66448 col9 col10 col11 col12 col13 col14 col15 col16 row1 48.85028 50.40857 49.54896 48.12953 49.97690 51.68464 48.92036 49.56788 row5 49.67526 50.95325 47.97085 50.67356 51.74301 49.82537 50.43335 50.09277 col17 col18 col19 col20 row1 50.13411 50.37773 49.38480 105.3691 row5 52.16944 49.54578 49.51131 105.2800 > tmp[,c("col6","col20")] col6 col20 row1 106.05638 105.36906 row2 74.72334 74.88472 row3 74.24298 73.73307 row4 76.47260 75.06260 row5 105.23193 105.27997 > tmp[c("row1","row5"),c("col6","col20")] col6 col20 row1 106.0564 105.3691 row5 105.2319 105.2800 > > > subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2] col6 col20 row1 106.0564 105.3691 row5 105.2319 105.2800 > > > > > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > > tmp[,"col13"] col13 [1,] -0.5674379 [2,] -0.7374979 [3,] 0.5838711 [4,] 0.7778766 [5,] -0.1703799 > tmp[,c("col17","col7")] col17 col7 [1,] 0.679805482 -0.5781688 [2,] 0.005623386 0.5127722 [3,] 0.390109663 -0.1481162 [4,] 0.036942680 -0.1983940 [5,] -1.126183378 -1.5530656 > > subBufferedMatrix(tmp,,c("col6","col20"))[,1:2] col6 col20 [1,] 2.1374953 -0.03917491 [2,] -0.1623595 0.34445188 [3,] 1.5933282 2.39573552 [4,] -0.2269895 0.61193745 [5,] -0.7307255 -0.56460173 > subBufferedMatrix(tmp,1,c("col6"))[,1] col1 [1,] 2.137495 > subBufferedMatrix(tmp,1:2,c("col6"))[,1] col6 [1,] 2.1374953 [2,] -0.1623595 > > > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > > > > subBufferedMatrix(tmp,c("row3","row1"),)[,1:20] [,1] [,2] [,3] [,4] [,5] [,6] [,7] row3 -1.040003 -0.285826 0.2482136 -1.003115 0.6286516 -0.3257297 -0.6844508 row1 -1.458130 -1.325203 -0.2969067 -1.733544 -1.5950944 0.6906610 0.7970594 [,8] [,9] [,10] [,11] [,12] [,13] row3 0.4362233 0.8359326 1.83899441 -0.1308329 0.6119340 -0.03360141 row1 0.3353216 0.2666076 0.01062213 -2.5675065 -0.5465411 -1.05952231 [,14] [,15] [,16] [,17] [,18] [,19] [,20] row3 0.2372795 -1.4116613 0.7224817 0.7923260 1.2500660 0.2020130 1.7566513 row1 -0.5922339 0.2377477 -1.7846535 -0.3828276 0.6386419 0.9515298 -0.2177721 > subBufferedMatrix(tmp,c("row2"),1:10)[,1:10] [,1] [,2] [,3] [,4] [,5] [,6] [,7] row2 -0.5951484 2.073918 -1.02002 1.26776 0.8414951 0.4407763 0.07753956 [,8] [,9] [,10] row2 -1.338671 1.015516 -0.4758805 > subBufferedMatrix(tmp,c("row5"),1:20)[,1:20] [,1] [,2] [,3] [,4] [,5] [,6] [,7] row5 -1.371723 1.303327 -0.1516874 1.620951 -0.03306273 -0.5701038 -1.598076 [,8] [,9] [,10] [,11] [,12] [,13] [,14] row5 -2.141813 -0.4336464 -0.4334193 -1.645615 0.4349509 -0.1731735 0.09329817 [,15] [,16] [,17] [,18] [,19] [,20] row5 -1.295433 0.6473776 -0.8433173 0.5438625 0.6351642 -1.199671 > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > colnames(tmp) [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > rownames(tmp) [1] "row1" "row2" "row3" "row4" "row5" > > > colnames(tmp) <- NULL > rownames(tmp) <- NULL > > colnames(tmp) NULL > rownames(tmp) NULL > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > dimnames(tmp) [[1]] [1] "row1" "row2" "row3" "row4" "row5" [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > dimnames(tmp) <- NULL > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > dimnames(tmp) [[1]] NULL [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > > dimnames(tmp) <- NULL > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > dimnames(tmp) [[1]] [1] "row1" "row2" "row3" "row4" "row5" [[2]] NULL > > dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE))) > dimnames(tmp) [[1]] NULL [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > > > ### > ### Testing logical indexing > ### > ### > > tmp <- createBufferedMatrix(230,15) > tmp[1:230,1:15] <- rnorm(230*15) > x <-tmp[1:230,1:15] > > for (rep in 1:10){ + which.cols <- sample(c(TRUE,FALSE),15,replace=T) + which.rows <- sample(c(TRUE,FALSE),230,replace=T) + + if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){ + stop("No agreement when logical indexing\n") + } + + if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] == x[,which.cols])){ + stop("No agreement when logical indexing in subBufferedMatrix cols\n") + } + if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] == x[which.rows,])){ + stop("No agreement when logical indexing in subBufferedMatrix rows\n") + } + + + if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]== x[which.rows,which.cols])){ + stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n") + } + } > > > ## > ## Test the ReadOnlyMode > ## > > ReadOnlyMode(tmp) <pointer: 0x02f10788> > is.ReadOnlyMode(tmp) [1] TRUE > > filenames(tmp) [1] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM124432e22a6a" [2] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM1244605fc54" [3] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM124414f85843" [4] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM12446d50306b" [5] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM12445de63d12" [6] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM124426dd20ce" [7] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM1244f602b8b" [8] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM12446cf42af3" [9] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM12445e686af2" [10] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM12441f4d4f63" [11] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM124440147830" [12] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM1244304c2b6b" [13] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM124433925d26" [14] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM12445f2a2b15" [15] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM12446d691241" > > > ### testing coercion functions > ### > > tmp <- as(tmp,"matrix") > tmp <- as(tmp,"BufferedMatrix") > > > > ### testing whether can move storage from one location to another > > MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE) <pointer: 0x07b1f018> > MoveStorageDirectory(tmp,getwd(),full.path=TRUE) <pointer: 0x07b1f018> Warning message: In dir.create(new.directory) : 'C:\Users\biocbuild\bbs-3.6-bioc\meat\BufferedMatrix.Rcheck\tests_i386' already exists > > > RowMode(tmp) <pointer: 0x07b1f018> > rowMedians(tmp) [1] -0.020999869 0.188942922 -0.271768991 0.364987340 0.802380446 [6] -0.093605946 0.038449126 -0.296137508 0.126549235 -0.011324543 [11] 0.207843188 -0.068476805 0.260185680 0.215200497 0.159124049 [16] -0.324146008 0.397865424 0.079773049 -0.037708816 0.098946416 [21] -0.181045519 -0.166018226 -0.325930365 0.333137046 -0.213611150 [26] -0.499799049 0.517953231 0.115154402 -0.277667514 -0.311683683 [31] -0.263363046 -0.444453396 0.076083187 0.308174796 0.710410604 [36] -0.191505205 0.162971846 -0.353275746 -0.258049114 0.112326854 [41] 0.120017905 0.041322515 -0.252944680 -0.159930766 -0.590729723 [46] 0.071802639 0.504688158 -0.535104085 -0.430124235 -0.046772677 [51] 0.219660772 -0.006517440 -0.053921540 0.123260790 0.277815046 [56] -0.066784167 0.304740788 -0.463896592 -0.166732051 -0.055431495 [61] 0.090073519 -0.822539135 -0.153153913 0.127400351 -0.026133523 [66] -0.466446255 0.253299017 -0.205909853 -0.194883407 -0.503410134 [71] -0.031790992 -0.327280897 0.034728766 -0.055608391 0.090512387 [76] 0.318035183 0.337563797 0.192717803 0.040624601 -0.112383870 [81] 0.117675647 -0.056024603 0.494332411 -0.063782722 0.086808593 [86] 0.073287589 0.649524280 0.022278070 -0.237033097 0.269475694 [91] 0.303567101 -0.343619152 0.172338409 -0.503856339 0.224229901 [96] -0.618435745 0.149456637 -0.366447331 -0.133365727 -0.025993232 [101] 0.344628529 -0.183036866 -0.053627454 0.039834959 0.138989291 [106] 0.022308045 -0.309557436 -0.074857073 -0.305566860 0.208585813 [111] -0.471831480 -0.896046233 0.467473475 0.116434257 -0.009922656 [116] -0.023419798 -0.292528757 -0.035661466 -0.080406959 -0.396469094 [121] 0.483063767 -0.787484501 -0.342903400 -0.305952776 0.523185659 [126] 0.041154964 0.165294910 0.596686013 0.288638650 0.378498521 [131] -0.237964540 0.439886936 -0.238602400 -0.039765985 0.125991950 [136] 0.066632721 0.435481418 0.272832703 -0.322600190 -0.138740759 [141] 0.017065688 0.274572528 0.195961799 -0.356735629 0.196530328 [146] -0.430907946 0.719070640 0.290466789 0.119860451 -0.153644792 [151] -0.021130472 0.300092777 -0.013535591 -0.023374821 -0.007313249 [156] 0.245515483 -0.066431398 -0.164458468 -0.219136338 0.275194685 [161] -0.009706579 -0.454892770 -0.090129860 -0.175773286 0.141527172 [166] -0.195289359 -0.277159664 0.199152886 0.060838996 0.556468779 [171] 0.027479489 0.223298129 0.034061575 0.606876245 -0.145649149 [176] -0.169071440 -0.089624662 0.006391243 0.449224079 -0.375088020 [181] 0.002919832 -0.163698139 0.018689518 -0.109307926 0.733470376 [186] -0.171479764 0.178204027 0.089337435 -0.270065835 -0.081173514 [191] -0.349437955 0.358476599 -0.354415125 -0.425798769 -0.294877501 [196] 0.524569936 0.184607258 0.371417455 0.001367856 -0.075516350 [201] -0.215023407 0.214895456 -0.322040117 -0.472601744 -0.115108514 [206] -0.157508065 -0.546033744 0.302040216 0.274414572 0.098856296 [211] -0.227612988 -0.702065966 0.705109249 -0.225619923 0.112903733 [216] 0.392755232 0.528841661 0.250448390 0.073716783 0.276391641 [221] 0.610824797 0.277655565 0.010390972 -0.138760086 -0.069827556 [226] 0.395565191 0.132147838 -0.084424909 0.031653898 -0.227297483 > > proc.time() user system elapsed 3.00 7.15 10.79 |
BufferedMatrix.Rcheck/tests_x64/objectTesting.Rout R version 3.4.4 (2018-03-15) -- "Someone to Lean On" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > > ### this is used to control how many repetitions in something below > ### higher values result in more checks. > nreps <-100 ##20000 > > > ## test creation and some simple assignments and subsetting operations > > ## first on single elements > tmp <- createBufferedMatrix(1000,10) > > tmp[10,5] [1] 0 > tmp[10,5] <- 10 > tmp[10,5] [1] 10 > tmp[10,5] <- 12.445 > tmp[10,5] [1] 12.445 > > > > ## now testing accessing multiple elements > tmp2 <- createBufferedMatrix(10,20) > > > tmp2[3,1] <- 51.34 > tmp2[9,2] <- 9.87654 > tmp2[,1:2] [,1] [,2] [1,] 0.00 0.00000 [2,] 0.00 0.00000 [3,] 51.34 0.00000 [4,] 0.00 0.00000 [5,] 0.00 0.00000 [6,] 0.00 0.00000 [7,] 0.00 0.00000 [8,] 0.00 0.00000 [9,] 0.00 9.87654 [10,] 0.00 0.00000 > tmp2[,-(3:20)] [,1] [,2] [1,] 0.00 0.00000 [2,] 0.00 0.00000 [3,] 51.34 0.00000 [4,] 0.00 0.00000 [5,] 0.00 0.00000 [6,] 0.00 0.00000 [7,] 0.00 0.00000 [8,] 0.00 0.00000 [9,] 0.00 9.87654 [10,] 0.00 0.00000 > tmp2[3,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 51.34 0 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [1,] 0 0 0 0 0 0 0 > tmp2[-3,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [2,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [3,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [4,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [5,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [6,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [7,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [8,] 0 9.87654 0 0 0 0 0 0 0 0 0 0 0 [9,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [1,] 0 0 0 0 0 0 0 [2,] 0 0 0 0 0 0 0 [3,] 0 0 0 0 0 0 0 [4,] 0 0 0 0 0 0 0 [5,] 0 0 0 0 0 0 0 [6,] 0 0 0 0 0 0 0 [7,] 0 0 0 0 0 0 0 [8,] 0 0 0 0 0 0 0 [9,] 0 0 0 0 0 0 0 > tmp2[2,1:3] [,1] [,2] [,3] [1,] 0 0 0 > tmp2[3:9,1:3] [,1] [,2] [,3] [1,] 51.34 0.00000 0 [2,] 0.00 0.00000 0 [3,] 0.00 0.00000 0 [4,] 0.00 0.00000 0 [5,] 0.00 0.00000 0 [6,] 0.00 0.00000 0 [7,] 0.00 9.87654 0 > tmp2[-4,-4] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [2,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [3,] 51.34 0.00000 0 0 0 0 0 0 0 0 0 0 0 [4,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [5,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [6,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [7,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [8,] 0.00 9.87654 0 0 0 0 0 0 0 0 0 0 0 [9,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [1,] 0 0 0 0 0 0 [2,] 0 0 0 0 0 0 [3,] 0 0 0 0 0 0 [4,] 0 0 0 0 0 0 [5,] 0 0 0 0 0 0 [6,] 0 0 0 0 0 0 [7,] 0 0 0 0 0 0 [8,] 0 0 0 0 0 0 [9,] 0 0 0 0 0 0 > > ## now testing accessing/assigning multiple elements > tmp3 <- createBufferedMatrix(10,10) > > for (i in 1:10){ + for (j in 1:10){ + tmp3[i,j] <- (j-1)*10 + i + } + } > > tmp3[2:4,2:4] [,1] [,2] [,3] [1,] 12 22 32 [2,] 13 23 33 [3,] 14 24 34 > tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 11 21 31 11 21 31 91 1 11 1 11 21 31 [2,] 12 22 32 12 22 32 92 2 12 2 12 22 32 [3,] 13 23 33 13 23 33 93 3 13 3 13 23 33 [4,] 14 24 34 14 24 34 94 4 14 4 14 24 34 [5,] 15 25 35 15 25 35 95 5 15 5 15 25 35 [6,] 16 26 36 16 26 36 96 6 16 6 16 26 36 [7,] 17 27 37 17 27 37 97 7 17 7 17 27 37 [8,] 18 28 38 18 28 38 98 8 18 8 18 28 38 [9,] 19 29 39 19 29 39 99 9 19 9 19 29 39 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [1,] 41 51 61 71 81 91 91 81 71 61 51 41 [2,] 42 52 62 72 82 92 92 82 72 62 52 42 [3,] 43 53 63 73 83 93 93 83 73 63 53 43 [4,] 44 54 64 74 84 94 94 84 74 64 54 44 [5,] 45 55 65 75 85 95 95 85 75 65 55 45 [6,] 46 56 66 76 86 96 96 86 76 66 56 46 [7,] 47 57 67 77 87 97 97 87 77 67 57 47 [8,] 48 58 68 78 88 98 98 88 78 68 58 48 [9,] 49 59 69 79 89 99 99 89 79 69 59 49 [,26] [,27] [,28] [,29] [1,] 31 21 11 1 [2,] 32 22 12 2 [3,] 33 23 13 3 [4,] 34 24 14 4 [5,] 35 25 15 5 [6,] 36 26 16 6 [7,] 37 27 17 7 [8,] 38 28 18 8 [9,] 39 29 19 9 > tmp3[-c(1:5),-c(6:10)] [,1] [,2] [,3] [,4] [,5] [1,] 6 16 26 36 46 [2,] 7 17 27 37 47 [3,] 8 18 28 38 48 [4,] 9 19 29 39 49 [5,] 10 20 30 40 50 > > ## assignment of whole columns > tmp3[,1] <- c(1:10*100.0) > tmp3[,1:2] <- tmp3[,1:2]*100 > tmp3[,1:2] <- tmp3[,2:1] > tmp3[,1:2] [,1] [,2] [1,] 1100 1e+04 [2,] 1200 2e+04 [3,] 1300 3e+04 [4,] 1400 4e+04 [5,] 1500 5e+04 [6,] 1600 6e+04 [7,] 1700 7e+04 [8,] 1800 8e+04 [9,] 1900 9e+04 [10,] 2000 1e+05 > > > tmp3[,-1] <- tmp3[,1:9] > tmp3[,1:10] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1100 1100 1e+04 21 31 41 51 61 71 81 [2,] 1200 1200 2e+04 22 32 42 52 62 72 82 [3,] 1300 1300 3e+04 23 33 43 53 63 73 83 [4,] 1400 1400 4e+04 24 34 44 54 64 74 84 [5,] 1500 1500 5e+04 25 35 45 55 65 75 85 [6,] 1600 1600 6e+04 26 36 46 56 66 76 86 [7,] 1700 1700 7e+04 27 37 47 57 67 77 87 [8,] 1800 1800 8e+04 28 38 48 58 68 78 88 [9,] 1900 1900 9e+04 29 39 49 59 69 79 89 [10,] 2000 2000 1e+05 30 40 50 60 70 80 90 > > tmp3[,1:2] <- rep(1,10) > tmp3[,1:2] <- rep(1,20) > tmp3[,1:2] <- matrix(c(1:5),1,5) > > tmp3[,-c(1:8)] <- matrix(c(1:5),1,5) > > tmp3[1,] <- 1:10 > tmp3[1,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 > tmp3[-1,] <- c(1,2) > tmp3[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 [2,] 1 2 1 2 1 2 1 2 1 2 [3,] 2 1 2 1 2 1 2 1 2 1 [4,] 1 2 1 2 1 2 1 2 1 2 [5,] 2 1 2 1 2 1 2 1 2 1 [6,] 1 2 1 2 1 2 1 2 1 2 [7,] 2 1 2 1 2 1 2 1 2 1 [8,] 1 2 1 2 1 2 1 2 1 2 [9,] 2 1 2 1 2 1 2 1 2 1 [10,] 1 2 1 2 1 2 1 2 1 2 > tmp3[-c(1:8),] <- matrix(c(1:5),1,5) > tmp3[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 [2,] 1 2 1 2 1 2 1 2 1 2 [3,] 2 1 2 1 2 1 2 1 2 1 [4,] 1 2 1 2 1 2 1 2 1 2 [5,] 2 1 2 1 2 1 2 1 2 1 [6,] 1 2 1 2 1 2 1 2 1 2 [7,] 2 1 2 1 2 1 2 1 2 1 [8,] 1 2 1 2 1 2 1 2 1 2 [9,] 1 3 5 2 4 1 3 5 2 4 [10,] 2 4 1 3 5 2 4 1 3 5 > > > tmp3[1:2,1:2] <- 5555.04 > tmp3[-(1:2),1:2] <- 1234.56789 > > > > ## testing accessors for the directory and prefix > directory(tmp3) [1] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64" > prefix(tmp3) [1] "BM" > > ## testing if we can remove these objects > rm(tmp, tmp2, tmp3) > gc() used (Mb) gc trigger (Mb) max used (Mb) Ncells 387896 20.8 750400 40.1 592000 31.7 Vcells 661080 5.1 1308461 10.0 1023718 7.9 > > > > > ## > ## checking reads > ## > > tmp2 <- createBufferedMatrix(10,20) > > test.sample <- rnorm(10*20) > > tmp2[1:10,1:20] <- test.sample > > test.matrix <- matrix(test.sample,10,20) > > ## testing reads > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + which.col <- sample(1:20,1) + if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.col <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > date() [1] "Wed Apr 11 22:38:38 2018" > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > date() [1] "Wed Apr 11 22:38:38 2018" > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > > > RowMode(tmp2) <pointer: 0x00000000068ab7c0> > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + which.col <- sample(1:20,1) + if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,5,replace=TRUE) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > date() [1] "Wed Apr 11 22:38:40 2018" > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:20,5,replace=TRUE) + if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){ + cat("incorrect agreement") + break; + } + } > date() [1] "Wed Apr 11 22:38:41 2018" > > ColMode(tmp2) <pointer: 0x00000000068ab7c0> > > > > ### Now testing assignments > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + + new.data <- rnorm(20) + tmp2[which.row,] <- new.data + test.matrix[which.row,] <- new.data + if (rep > 1){ + if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + + } > > > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + new.data <- rnorm(10) + tmp2[,which.col] <- new.data + test.matrix[,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.col <- which.col + } > > > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,5,replace=TRUE) + new.data <- matrix(rnorm(50),5,10) + tmp2[,which.col] <- new.data + test.matrix[,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.col <- which.col + } > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + new.data <- matrix(rnorm(50),5,10) + tmp2[which.row,] <- new.data + test.matrix[which.row,]<- new.data + + if (rep > 1){ + if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + } > > > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:20,5,replace=TRUE) + new.data <- matrix(rnorm(25),5,5) + tmp2[which.row,which.col] <- new.data + test.matrix[which.row,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + prev.col <- which.col + } > > > > > ### > ### > ### testing some more functions > ### > > > > ## duplication function > tmp5 <- duplicate(tmp2) > > # making sure really did copy everything. > tmp5[1,1] <- tmp5[1,1] +100.00 > > if (tmp5[1,1] == tmp2[1,1]){ + stop("Problem with duplication") + } > > > > > ### testing elementwise applying of functions > > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 100.7991832 1.9864510 -0.4533436426 -0.55268551 [2,] -1.2028543 1.1211628 -0.0005722444 -0.08296907 [3,] 0.4536412 0.5545540 1.2065891855 0.50912046 [4,] 0.2673513 0.8813558 0.9755083359 0.97790751 > ewApply(tmp5,abs) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 100.7991832 1.9864510 0.4533436426 0.55268551 [2,] 1.2028543 1.1211628 0.0005722444 0.08296907 [3,] 0.4536412 0.5545540 1.2065891855 0.50912046 [4,] 0.2673513 0.8813558 0.9755083359 0.97790751 > ewApply(tmp5,sqrt) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 10.0398796 1.4094151 0.67330798 0.7434282 [2,] 1.0967472 1.0588497 0.02392163 0.2880435 [3,] 0.6735289 0.7446838 1.09844854 0.7135268 [4,] 0.5170602 0.9388055 0.98767826 0.9888921 > > my.function <- function(x,power){ + (x+5)^power + } > > ewApply(tmp5,my.function,power=2) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 226.19798 41.08060 32.18642 32.98697 [2,] 37.17033 36.70966 25.23979 27.96340 [3,] 32.18893 33.00139 37.19107 32.64439 [4,] 30.43795 35.26941 35.85229 35.86683 > > > > ## testing functions that elementwise transform the matrix > sqrt(tmp5) <pointer: 0x000000000bfaa330> > exp(tmp5) <pointer: 0x000000000bfaa330> > log(tmp5,2) <pointer: 0x000000000bfaa330> > pow(tmp5,2) > > > > > > ## testing functions that apply to entire matrix > Max(tmp5) [1] 470.8015 > Min(tmp5) [1] 52.15502 > mean(tmp5) [1] 73.09596 > Sum(tmp5) [1] 14619.19 > Var(tmp5) [1] 873.7338 > > > ## testing functions applied to rows or columns > > rowMeans(tmp5) [1] 92.37896 71.10689 68.48547 68.93004 74.38204 73.75050 69.25735 72.29962 [9] 70.63913 69.72965 > rowSums(tmp5) [1] 1847.579 1422.138 1369.709 1378.601 1487.641 1475.010 1385.147 1445.992 [9] 1412.783 1394.593 > rowVars(tmp5) [1] 8013.25411 82.98915 50.34976 58.73499 42.80776 63.93765 [7] 91.58952 79.19852 90.34908 105.13697 > rowSd(tmp5) [1] 89.516781 9.109838 7.095757 7.663875 6.542764 7.996102 9.570241 [8] 8.899355 9.505213 10.253632 > rowMax(tmp5) [1] 470.80146 85.13366 83.75168 82.16223 86.15667 91.37433 86.46560 [8] 88.91008 88.93920 95.98831 > rowMin(tmp5) [1] 54.32856 52.53331 57.20667 52.69041 59.24656 60.87735 52.15502 56.40120 [9] 55.99231 54.81974 > > colMeans(tmp5) [1] 109.87257 71.19489 69.65009 73.88665 70.62396 70.73431 72.12679 [8] 69.90317 72.63649 70.83836 71.93321 72.73964 73.57380 70.95345 [15] 71.70516 67.91627 71.42216 73.09331 67.14316 69.97185 > colSums(tmp5) [1] 1098.7257 711.9489 696.5009 738.8665 706.2396 707.3431 721.2679 [8] 699.0317 726.3649 708.3836 719.3321 727.3964 735.7380 709.5345 [15] 717.0516 679.1627 714.2216 730.9331 671.4316 699.7185 > colVars(tmp5) [1] 16102.46325 74.80587 102.06595 133.60356 36.94329 66.55184 [7] 56.70159 132.35239 68.41497 152.55869 84.43265 66.96174 [13] 110.59727 138.65185 77.31727 29.51593 87.23930 44.54091 [19] 40.55012 68.71277 > colSd(tmp5) [1] 126.895482 8.649038 10.102769 11.558701 6.078099 8.157931 [7] 7.530046 11.504451 8.271334 12.351465 9.188724 8.183015 [13] 10.516524 11.775052 8.793024 5.432856 9.340198 6.673897 [19] 6.367898 8.289317 > colMax(tmp5) [1] 470.80146 85.50389 81.37693 91.37433 81.07939 85.13366 81.40704 [8] 83.75168 84.97471 88.91008 86.46560 84.20133 84.96399 95.98831 [15] 82.66503 76.72541 85.45901 80.69925 77.80250 86.15667 > colMin(tmp5) [1] 63.35261 56.25545 52.53331 58.19319 60.87735 57.26413 61.04883 52.69041 [9] 60.56454 52.15502 56.40120 58.65797 54.32856 55.99231 57.20667 59.11378 [17] 58.70697 65.57459 59.24656 58.60336 > > > ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default) > > > which.row <- sample(1:10,1,replace=TRUE) > which.col <- sample(1:20,1,replace=TRUE) > > tmp5[which.row,which.col] <- NA > > Max(tmp5) [1] NA > Min(tmp5) [1] NA > mean(tmp5) [1] NA > Sum(tmp5) [1] NA > Var(tmp5) [1] NA > > rowMeans(tmp5) [1] 92.37896 71.10689 68.48547 68.93004 74.38204 73.75050 69.25735 72.29962 [9] NA 69.72965 > rowSums(tmp5) [1] 1847.579 1422.138 1369.709 1378.601 1487.641 1475.010 1385.147 1445.992 [9] NA 1394.593 > rowVars(tmp5) [1] 8013.25411 82.98915 50.34976 58.73499 42.80776 63.93765 [7] 91.58952 79.19852 87.69582 105.13697 > rowSd(tmp5) [1] 89.516781 9.109838 7.095757 7.663875 6.542764 7.996102 9.570241 [8] 8.899355 9.364604 10.253632 > rowMax(tmp5) [1] 470.80146 85.13366 83.75168 82.16223 86.15667 91.37433 86.46560 [8] 88.91008 NA 95.98831 > rowMin(tmp5) [1] 54.32856 52.53331 57.20667 52.69041 59.24656 60.87735 52.15502 56.40120 [9] NA 54.81974 > > colMeans(tmp5) [1] 109.87257 71.19489 69.65009 73.88665 70.62396 70.73431 72.12679 [8] NA 72.63649 70.83836 71.93321 72.73964 73.57380 70.95345 [15] 71.70516 67.91627 71.42216 73.09331 67.14316 69.97185 > colSums(tmp5) [1] 1098.7257 711.9489 696.5009 738.8665 706.2396 707.3431 721.2679 [8] NA 726.3649 708.3836 719.3321 727.3964 735.7380 709.5345 [15] 717.0516 679.1627 714.2216 730.9331 671.4316 699.7185 > colVars(tmp5) [1] 16102.46325 74.80587 102.06595 133.60356 36.94329 66.55184 [7] 56.70159 NA 68.41497 152.55869 84.43265 66.96174 [13] 110.59727 138.65185 77.31727 29.51593 87.23930 44.54091 [19] 40.55012 68.71277 > colSd(tmp5) [1] 126.895482 8.649038 10.102769 11.558701 6.078099 8.157931 [7] 7.530046 NA 8.271334 12.351465 9.188724 8.183015 [13] 10.516524 11.775052 8.793024 5.432856 9.340198 6.673897 [19] 6.367898 8.289317 > colMax(tmp5) [1] 470.80146 85.50389 81.37693 91.37433 81.07939 85.13366 81.40704 [8] NA 84.97471 88.91008 86.46560 84.20133 84.96399 95.98831 [15] 82.66503 76.72541 85.45901 80.69925 77.80250 86.15667 > colMin(tmp5) [1] 63.35261 56.25545 52.53331 58.19319 60.87735 57.26413 61.04883 NA [9] 60.56454 52.15502 56.40120 58.65797 54.32856 55.99231 57.20667 59.11378 [17] 58.70697 65.57459 59.24656 58.60336 > > Max(tmp5,na.rm=TRUE) [1] 470.8015 > Min(tmp5,na.rm=TRUE) [1] 52.15502 > mean(tmp5,na.rm=TRUE) [1] 73.05075 > Sum(tmp5,na.rm=TRUE) [1] 14537.1 > Var(tmp5,na.rm=TRUE) [1] 877.7357 > > rowMeans(tmp5,na.rm=TRUE) [1] 92.37896 71.10689 68.48547 68.93004 74.38204 73.75050 69.25735 72.29962 [9] 70.03627 69.72965 > rowSums(tmp5,na.rm=TRUE) [1] 1847.579 1422.138 1369.709 1378.601 1487.641 1475.010 1385.147 1445.992 [9] 1330.689 1394.593 > rowVars(tmp5,na.rm=TRUE) [1] 8013.25411 82.98915 50.34976 58.73499 42.80776 63.93765 [7] 91.58952 79.19852 87.69582 105.13697 > rowSd(tmp5,na.rm=TRUE) [1] 89.516781 9.109838 7.095757 7.663875 6.542764 7.996102 9.570241 [8] 8.899355 9.364604 10.253632 > rowMax(tmp5,na.rm=TRUE) [1] 470.80146 85.13366 83.75168 82.16223 86.15667 91.37433 86.46560 [8] 88.91008 88.93920 95.98831 > rowMin(tmp5,na.rm=TRUE) [1] 54.32856 52.53331 57.20667 52.69041 59.24656 60.87735 52.15502 56.40120 [9] 55.99231 54.81974 > > colMeans(tmp5,na.rm=TRUE) [1] 109.87257 71.19489 69.65009 73.88665 70.62396 70.73431 72.12679 [8] 68.54869 72.63649 70.83836 71.93321 72.73964 73.57380 70.95345 [15] 71.70516 67.91627 71.42216 73.09331 67.14316 69.97185 > colSums(tmp5,na.rm=TRUE) [1] 1098.7257 711.9489 696.5009 738.8665 706.2396 707.3431 721.2679 [8] 616.9383 726.3649 708.3836 719.3321 727.3964 735.7380 709.5345 [15] 717.0516 679.1627 714.2216 730.9331 671.4316 699.7185 > colVars(tmp5,na.rm=TRUE) [1] 16102.46325 74.80587 102.06595 133.60356 36.94329 66.55184 [7] 56.70159 128.25701 68.41497 152.55869 84.43265 66.96174 [13] 110.59727 138.65185 77.31727 29.51593 87.23930 44.54091 [19] 40.55012 68.71277 > colSd(tmp5,na.rm=TRUE) [1] 126.895482 8.649038 10.102769 11.558701 6.078099 8.157931 [7] 7.530046 11.325061 8.271334 12.351465 9.188724 8.183015 [13] 10.516524 11.775052 8.793024 5.432856 9.340198 6.673897 [19] 6.367898 8.289317 > colMax(tmp5,na.rm=TRUE) [1] 470.80146 85.50389 81.37693 91.37433 81.07939 85.13366 81.40704 [8] 83.75168 84.97471 88.91008 86.46560 84.20133 84.96399 95.98831 [15] 82.66503 76.72541 85.45901 80.69925 77.80250 86.15667 > colMin(tmp5,na.rm=TRUE) [1] 63.35261 56.25545 52.53331 58.19319 60.87735 57.26413 61.04883 52.69041 [9] 60.56454 52.15502 56.40120 58.65797 54.32856 55.99231 57.20667 59.11378 [17] 58.70697 65.57459 59.24656 58.60336 > > # now set an entire row to NA > > tmp5[which.row,] <- NA > rowMeans(tmp5,na.rm=TRUE) [1] 92.37896 71.10689 68.48547 68.93004 74.38204 73.75050 69.25735 72.29962 [9] NaN 69.72965 > rowSums(tmp5,na.rm=TRUE) [1] 1847.579 1422.138 1369.709 1378.601 1487.641 1475.010 1385.147 1445.992 [9] 0.000 1394.593 > rowVars(tmp5,na.rm=TRUE) [1] 8013.25411 82.98915 50.34976 58.73499 42.80776 63.93765 [7] 91.58952 79.19852 NA 105.13697 > rowSd(tmp5,na.rm=TRUE) [1] 89.516781 9.109838 7.095757 7.663875 6.542764 7.996102 9.570241 [8] 8.899355 NA 10.253632 > rowMax(tmp5,na.rm=TRUE) [1] 470.80146 85.13366 83.75168 82.16223 86.15667 91.37433 86.46560 [8] 88.91008 NA 95.98831 > rowMin(tmp5,na.rm=TRUE) [1] 54.32856 52.53331 57.20667 52.69041 59.24656 60.87735 52.15502 56.40120 [9] NA 54.81974 > > > # now set an entire col to NA > > > tmp5[,which.col] <- NA > colMeans(tmp5,na.rm=TRUE) [1] 114.22956 72.85483 69.63184 72.21414 70.31836 71.00480 71.09565 [8] NaN 73.97782 70.30263 72.06000 74.30427 73.91424 72.61580 [15] 70.75856 67.77099 69.86251 73.92277 67.75758 70.23391 > colSums(tmp5,na.rm=TRUE) [1] 1028.0660 655.6935 626.6865 649.9273 632.8652 639.0432 639.8609 [8] 0.0000 665.8004 632.7237 648.5400 668.7384 665.2281 653.5422 [15] 636.8270 609.9389 628.7626 665.3050 609.8183 632.1052 > colVars(tmp5,na.rm=TRUE) [1] 17901.70870 53.15841 114.82044 118.83466 40.51055 74.04775 [7] 51.82776 NA 56.72629 168.39976 94.80589 47.79122 [13] 123.11811 124.89503 76.90128 32.96795 70.77847 42.36841 [19] 41.37188 76.52926 > colSd(tmp5,na.rm=TRUE) [1] 133.797267 7.290981 10.715430 10.901131 6.364790 8.605101 [7] 7.199150 NA 7.531686 12.976893 9.736832 6.913119 [13] 11.095860 11.175644 8.769338 5.741772 8.412994 6.509102 [19] 6.432098 8.748100 > colMax(tmp5,na.rm=TRUE) [1] 470.80146 85.50389 81.37693 91.37433 81.07939 85.13366 80.45644 [8] -Inf 84.97471 88.91008 86.46560 84.20133 84.96399 95.98831 [15] 82.66503 76.72541 83.90599 80.69925 77.80250 86.15667 > colMin(tmp5,na.rm=TRUE) [1] 63.35261 58.09741 52.53331 58.19319 60.87735 57.26413 61.04883 Inf [9] 60.77807 52.15502 56.40120 64.01008 54.32856 58.31209 57.20667 59.11378 [17] 58.70697 65.57459 59.24656 58.60336 > > > > > copymatrix <- matrix(rnorm(200,150,15),10,20) > > tmp5[1:10,1:20] <- copymatrix > which.row <- 3 > which.col <- 1 > cat(which.row," ",which.col,"\n") 3 1 > tmp5[which.row,which.col] <- NA > copymatrix[which.row,which.col] <- NA > > rowVars(tmp5,na.rm=TRUE) [1] 232.0204 356.6810 109.3844 209.7725 231.5947 218.6947 160.1926 207.3002 [9] 194.7740 333.6527 > apply(copymatrix,1,var,na.rm=TRUE) [1] 232.0204 356.6810 109.3844 209.7725 231.5947 218.6947 160.1926 207.3002 [9] 194.7740 333.6527 > > > > copymatrix <- matrix(rnorm(200,150,15),10,20) > > tmp5[1:10,1:20] <- copymatrix > which.row <- 1 > which.col <- 3 > cat(which.row," ",which.col,"\n") 1 3 > tmp5[which.row,which.col] <- NA > copymatrix[which.row,which.col] <- NA > > colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE) [1] -5.684342e-14 5.684342e-14 -1.705303e-13 1.136868e-13 -1.136868e-13 [6] 5.684342e-14 -3.979039e-13 -1.136868e-13 5.684342e-14 1.136868e-13 [11] 5.684342e-14 0.000000e+00 -2.842171e-14 0.000000e+00 1.705303e-13 [16] -5.684342e-14 7.105427e-14 -5.684342e-14 1.136868e-13 0.000000e+00 > > > > > > > > > > > ## making sure these things agree > ## > ## first when there is no NA > > > > agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){ + + if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){ + stop("No agreement in Max") + } + + + if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){ + stop("No agreement in Min") + } + + + if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){ + + cat(Sum(buff.matrix,na.rm=TRUE),"\n") + cat(sum(r.matrix,na.rm=TRUE),"\n") + cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n") + + stop("No agreement in Sum") + } + + if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){ + stop("No agreement in mean") + } + + + if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){ + stop("No agreement in Var") + } + + + + if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowMeans") + } + + + if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in colMeans") + } + + + if(any(abs(rowSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in rowSums") + } + + + if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in colSums") + } + + ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when + ### computing variance + my.Var <- function(x,na.rm=FALSE){ + if (all(is.na(x))){ + return(NA) + } else { + var(x,na.rm=na.rm) + } + + } + + if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowVars") + } + + + if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowVars") + } + + + if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMax") + } + + + if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMax") + } + + + + if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMin") + } + + + if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMin") + } + + if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMedian") + } + + if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colRanges") + } + + + + } > > > > > > > > > > for (rep in 1:20){ + copymatrix <- matrix(rnorm(200,150,15),10,20) + + tmp5[1:10,1:20] <- copymatrix + + + agree.checks(tmp5,copymatrix) + + ## now lets assign some NA values and check agreement + + which.row <- sample(1:10,1,replace=TRUE) + which.col <- sample(1:20,1,replace=TRUE) + + cat(which.row," ",which.col,"\n") + + tmp5[which.row,which.col] <- NA + copymatrix[which.row,which.col] <- NA + + agree.checks(tmp5,copymatrix) + + ## make an entire row NA + tmp5[which.row,] <- NA + copymatrix[which.row,] <- NA + + + agree.checks(tmp5,copymatrix) + + ### also make an entire col NA + tmp5[,which.col] <- NA + copymatrix[,which.col] <- NA + + agree.checks(tmp5,copymatrix) + + ### now make 1 element non NA with NA in the rest of row and column + + tmp5[which.row,which.col] <- rnorm(1,150,15) + copymatrix[which.row,which.col] <- tmp5[which.row,which.col] + + agree.checks(tmp5,copymatrix) + } 9 18 5 9 10 13 1 14 6 9 3 10 4 18 5 14 6 15 8 14 6 20 7 11 5 13 10 2 7 20 9 15 9 2 8 8 8 11 6 13 There were 50 or more warnings (use warnings() to see the first 50) > > > ### now test 1 by n and n by 1 matrix > > > err.tol <- 1e-12 > > rm(tmp5) > > dataset1 <- rnorm(100) > dataset2 <- rnorm(100) > > tmp <- createBufferedMatrix(1,100) > tmp[1,] <- dataset1 > > tmp2 <- createBufferedMatrix(100,1) > tmp2[,1] <- dataset2 > > > > > > Max(tmp) [1] 2.676685 > Min(tmp) [1] -2.631028 > mean(tmp) [1] -0.02780406 > Sum(tmp) [1] -2.780406 > Var(tmp) [1] 0.8666042 > > rowMeans(tmp) [1] -0.02780406 > rowSums(tmp) [1] -2.780406 > rowVars(tmp) [1] 0.8666042 > rowSd(tmp) [1] 0.9309158 > rowMax(tmp) [1] 2.676685 > rowMin(tmp) [1] -2.631028 > > colMeans(tmp) [1] 0.608367364 1.793301654 -0.291932756 0.356051538 -0.280671801 [6] 0.054396311 0.354489600 1.472200896 -0.472201879 1.914003322 [11] 0.308770186 -0.826048420 0.757995817 1.288247086 -0.842451463 [16] 1.890004182 -0.318262824 0.093752278 -0.068728601 -0.592685620 [21] 0.596883749 -1.167758940 -0.005961172 1.816109035 -0.585831797 [26] 0.519320523 0.547933010 -0.471017522 -0.478409328 -0.870422660 [31] -0.796374671 -0.311335043 -0.014745630 1.925113074 1.050241273 [36] -0.624948675 0.502886790 -1.202011860 -1.009190181 2.676685395 [41] 0.005194969 -0.944797306 -0.716791662 0.329262165 0.520815192 [46] 0.789903679 0.675786448 -0.740851613 -1.891838080 -0.015976530 [51] 0.209458316 0.458631743 -0.157484510 -2.631027786 -0.250348333 [56] -1.145478620 -0.519159292 0.647716497 -0.252219513 -0.182334713 [61] 0.819505105 2.203296112 1.110631046 -1.186001117 0.279037082 [66] -1.092965912 -0.163604088 0.026033444 -1.024730717 -0.338035445 [71] -0.231439989 -1.387027570 -0.001505870 0.301336595 -1.012354568 [76] -1.103309067 0.126651438 -1.694845525 -0.343329252 -0.693740230 [81] 0.383245830 0.342711052 -1.222450641 0.309466894 0.150635318 [86] -0.698054861 -1.580904981 -0.232953217 1.163940046 -0.296888665 [91] -0.931485109 0.430193655 0.281142404 -0.087871629 -0.686719796 [96] 0.730727246 -0.456931056 0.602365765 -0.159406517 1.101007531 > colSums(tmp) [1] 0.608367364 1.793301654 -0.291932756 0.356051538 -0.280671801 [6] 0.054396311 0.354489600 1.472200896 -0.472201879 1.914003322 [11] 0.308770186 -0.826048420 0.757995817 1.288247086 -0.842451463 [16] 1.890004182 -0.318262824 0.093752278 -0.068728601 -0.592685620 [21] 0.596883749 -1.167758940 -0.005961172 1.816109035 -0.585831797 [26] 0.519320523 0.547933010 -0.471017522 -0.478409328 -0.870422660 [31] -0.796374671 -0.311335043 -0.014745630 1.925113074 1.050241273 [36] -0.624948675 0.502886790 -1.202011860 -1.009190181 2.676685395 [41] 0.005194969 -0.944797306 -0.716791662 0.329262165 0.520815192 [46] 0.789903679 0.675786448 -0.740851613 -1.891838080 -0.015976530 [51] 0.209458316 0.458631743 -0.157484510 -2.631027786 -0.250348333 [56] -1.145478620 -0.519159292 0.647716497 -0.252219513 -0.182334713 [61] 0.819505105 2.203296112 1.110631046 -1.186001117 0.279037082 [66] -1.092965912 -0.163604088 0.026033444 -1.024730717 -0.338035445 [71] -0.231439989 -1.387027570 -0.001505870 0.301336595 -1.012354568 [76] -1.103309067 0.126651438 -1.694845525 -0.343329252 -0.693740230 [81] 0.383245830 0.342711052 -1.222450641 0.309466894 0.150635318 [86] -0.698054861 -1.580904981 -0.232953217 1.163940046 -0.296888665 [91] -0.931485109 0.430193655 0.281142404 -0.087871629 -0.686719796 [96] 0.730727246 -0.456931056 0.602365765 -0.159406517 1.101007531 > colVars(tmp) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > colSd(tmp) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > colMax(tmp) [1] 0.608367364 1.793301654 -0.291932756 0.356051538 -0.280671801 [6] 0.054396311 0.354489600 1.472200896 -0.472201879 1.914003322 [11] 0.308770186 -0.826048420 0.757995817 1.288247086 -0.842451463 [16] 1.890004182 -0.318262824 0.093752278 -0.068728601 -0.592685620 [21] 0.596883749 -1.167758940 -0.005961172 1.816109035 -0.585831797 [26] 0.519320523 0.547933010 -0.471017522 -0.478409328 -0.870422660 [31] -0.796374671 -0.311335043 -0.014745630 1.925113074 1.050241273 [36] -0.624948675 0.502886790 -1.202011860 -1.009190181 2.676685395 [41] 0.005194969 -0.944797306 -0.716791662 0.329262165 0.520815192 [46] 0.789903679 0.675786448 -0.740851613 -1.891838080 -0.015976530 [51] 0.209458316 0.458631743 -0.157484510 -2.631027786 -0.250348333 [56] -1.145478620 -0.519159292 0.647716497 -0.252219513 -0.182334713 [61] 0.819505105 2.203296112 1.110631046 -1.186001117 0.279037082 [66] -1.092965912 -0.163604088 0.026033444 -1.024730717 -0.338035445 [71] -0.231439989 -1.387027570 -0.001505870 0.301336595 -1.012354568 [76] -1.103309067 0.126651438 -1.694845525 -0.343329252 -0.693740230 [81] 0.383245830 0.342711052 -1.222450641 0.309466894 0.150635318 [86] -0.698054861 -1.580904981 -0.232953217 1.163940046 -0.296888665 [91] -0.931485109 0.430193655 0.281142404 -0.087871629 -0.686719796 [96] 0.730727246 -0.456931056 0.602365765 -0.159406517 1.101007531 > colMin(tmp) [1] 0.608367364 1.793301654 -0.291932756 0.356051538 -0.280671801 [6] 0.054396311 0.354489600 1.472200896 -0.472201879 1.914003322 [11] 0.308770186 -0.826048420 0.757995817 1.288247086 -0.842451463 [16] 1.890004182 -0.318262824 0.093752278 -0.068728601 -0.592685620 [21] 0.596883749 -1.167758940 -0.005961172 1.816109035 -0.585831797 [26] 0.519320523 0.547933010 -0.471017522 -0.478409328 -0.870422660 [31] -0.796374671 -0.311335043 -0.014745630 1.925113074 1.050241273 [36] -0.624948675 0.502886790 -1.202011860 -1.009190181 2.676685395 [41] 0.005194969 -0.944797306 -0.716791662 0.329262165 0.520815192 [46] 0.789903679 0.675786448 -0.740851613 -1.891838080 -0.015976530 [51] 0.209458316 0.458631743 -0.157484510 -2.631027786 -0.250348333 [56] -1.145478620 -0.519159292 0.647716497 -0.252219513 -0.182334713 [61] 0.819505105 2.203296112 1.110631046 -1.186001117 0.279037082 [66] -1.092965912 -0.163604088 0.026033444 -1.024730717 -0.338035445 [71] -0.231439989 -1.387027570 -0.001505870 0.301336595 -1.012354568 [76] -1.103309067 0.126651438 -1.694845525 -0.343329252 -0.693740230 [81] 0.383245830 0.342711052 -1.222450641 0.309466894 0.150635318 [86] -0.698054861 -1.580904981 -0.232953217 1.163940046 -0.296888665 [91] -0.931485109 0.430193655 0.281142404 -0.087871629 -0.686719796 [96] 0.730727246 -0.456931056 0.602365765 -0.159406517 1.101007531 > colMedians(tmp) [1] 0.608367364 1.793301654 -0.291932756 0.356051538 -0.280671801 [6] 0.054396311 0.354489600 1.472200896 -0.472201879 1.914003322 [11] 0.308770186 -0.826048420 0.757995817 1.288247086 -0.842451463 [16] 1.890004182 -0.318262824 0.093752278 -0.068728601 -0.592685620 [21] 0.596883749 -1.167758940 -0.005961172 1.816109035 -0.585831797 [26] 0.519320523 0.547933010 -0.471017522 -0.478409328 -0.870422660 [31] -0.796374671 -0.311335043 -0.014745630 1.925113074 1.050241273 [36] -0.624948675 0.502886790 -1.202011860 -1.009190181 2.676685395 [41] 0.005194969 -0.944797306 -0.716791662 0.329262165 0.520815192 [46] 0.789903679 0.675786448 -0.740851613 -1.891838080 -0.015976530 [51] 0.209458316 0.458631743 -0.157484510 -2.631027786 -0.250348333 [56] -1.145478620 -0.519159292 0.647716497 -0.252219513 -0.182334713 [61] 0.819505105 2.203296112 1.110631046 -1.186001117 0.279037082 [66] -1.092965912 -0.163604088 0.026033444 -1.024730717 -0.338035445 [71] -0.231439989 -1.387027570 -0.001505870 0.301336595 -1.012354568 [76] -1.103309067 0.126651438 -1.694845525 -0.343329252 -0.693740230 [81] 0.383245830 0.342711052 -1.222450641 0.309466894 0.150635318 [86] -0.698054861 -1.580904981 -0.232953217 1.163940046 -0.296888665 [91] -0.931485109 0.430193655 0.281142404 -0.087871629 -0.686719796 [96] 0.730727246 -0.456931056 0.602365765 -0.159406517 1.101007531 > colRanges(tmp) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 0.6083674 1.793302 -0.2919328 0.3560515 -0.2806718 0.05439631 0.3544896 [2,] 0.6083674 1.793302 -0.2919328 0.3560515 -0.2806718 0.05439631 0.3544896 [,8] [,9] [,10] [,11] [,12] [,13] [,14] [1,] 1.472201 -0.4722019 1.914003 0.3087702 -0.8260484 0.7579958 1.288247 [2,] 1.472201 -0.4722019 1.914003 0.3087702 -0.8260484 0.7579958 1.288247 [,15] [,16] [,17] [,18] [,19] [,20] [,21] [1,] -0.8424515 1.890004 -0.3182628 0.09375228 -0.0687286 -0.5926856 0.5968837 [2,] -0.8424515 1.890004 -0.3182628 0.09375228 -0.0687286 -0.5926856 0.5968837 [,22] [,23] [,24] [,25] [,26] [,27] [,28] [1,] -1.167759 -0.005961172 1.816109 -0.5858318 0.5193205 0.547933 -0.4710175 [2,] -1.167759 -0.005961172 1.816109 -0.5858318 0.5193205 0.547933 -0.4710175 [,29] [,30] [,31] [,32] [,33] [,34] [,35] [1,] -0.4784093 -0.8704227 -0.7963747 -0.311335 -0.01474563 1.925113 1.050241 [2,] -0.4784093 -0.8704227 -0.7963747 -0.311335 -0.01474563 1.925113 1.050241 [,36] [,37] [,38] [,39] [,40] [,41] [,42] [1,] -0.6249487 0.5028868 -1.202012 -1.00919 2.676685 0.005194969 -0.9447973 [2,] -0.6249487 0.5028868 -1.202012 -1.00919 2.676685 0.005194969 -0.9447973 [,43] [,44] [,45] [,46] [,47] [,48] [,49] [1,] -0.7167917 0.3292622 0.5208152 0.7899037 0.6757864 -0.7408516 -1.891838 [2,] -0.7167917 0.3292622 0.5208152 0.7899037 0.6757864 -0.7408516 -1.891838 [,50] [,51] [,52] [,53] [,54] [,55] [,56] [1,] -0.01597653 0.2094583 0.4586317 -0.1574845 -2.631028 -0.2503483 -1.145479 [2,] -0.01597653 0.2094583 0.4586317 -0.1574845 -2.631028 -0.2503483 -1.145479 [,57] [,58] [,59] [,60] [,61] [,62] [,63] [1,] -0.5191593 0.6477165 -0.2522195 -0.1823347 0.8195051 2.203296 1.110631 [2,] -0.5191593 0.6477165 -0.2522195 -0.1823347 0.8195051 2.203296 1.110631 [,64] [,65] [,66] [,67] [,68] [,69] [,70] [1,] -1.186001 0.2790371 -1.092966 -0.1636041 0.02603344 -1.024731 -0.3380354 [2,] -1.186001 0.2790371 -1.092966 -0.1636041 0.02603344 -1.024731 -0.3380354 [,71] [,72] [,73] [,74] [,75] [,76] [,77] [1,] -0.23144 -1.387028 -0.00150587 0.3013366 -1.012355 -1.103309 0.1266514 [2,] -0.23144 -1.387028 -0.00150587 0.3013366 -1.012355 -1.103309 0.1266514 [,78] [,79] [,80] [,81] [,82] [,83] [,84] [1,] -1.694846 -0.3433293 -0.6937402 0.3832458 0.3427111 -1.222451 0.3094669 [2,] -1.694846 -0.3433293 -0.6937402 0.3832458 0.3427111 -1.222451 0.3094669 [,85] [,86] [,87] [,88] [,89] [,90] [,91] [1,] 0.1506353 -0.6980549 -1.580905 -0.2329532 1.16394 -0.2968887 -0.9314851 [2,] 0.1506353 -0.6980549 -1.580905 -0.2329532 1.16394 -0.2968887 -0.9314851 [,92] [,93] [,94] [,95] [,96] [,97] [,98] [1,] 0.4301937 0.2811424 -0.08787163 -0.6867198 0.7307272 -0.4569311 0.6023658 [2,] 0.4301937 0.2811424 -0.08787163 -0.6867198 0.7307272 -0.4569311 0.6023658 [,99] [,100] [1,] -0.1594065 1.101008 [2,] -0.1594065 1.101008 > > > Max(tmp2) [1] 2.288312 > Min(tmp2) [1] -2.760983 > mean(tmp2) [1] -0.1862338 > Sum(tmp2) [1] -18.62338 > Var(tmp2) [1] 0.9692308 > > rowMeans(tmp2) [1] -0.121827038 -0.621727915 0.020051477 0.004325182 0.292888646 [6] -1.528525748 -0.314009073 -0.184596722 0.349192906 0.654364269 [11] 2.288311638 0.492633110 -1.191676223 -1.060332197 -0.126581808 [16] -0.487672513 -0.100016466 -0.175764549 -0.422898243 -1.395818951 [21] 0.072340631 -1.112010168 -0.974615580 -0.507404008 1.194902866 [26] 0.204361456 1.852201899 -0.434224278 -1.316634022 -1.136429989 [31] -2.760983046 0.179626991 0.802878244 0.823578553 -1.587194012 [36] 1.176441575 -0.889942422 -0.083434991 -0.102963895 -0.698686521 [41] -1.611093386 -1.061544912 -1.130078578 0.357888009 0.196579572 [46] -0.143095204 -0.336707901 -1.871194606 1.115555936 0.107354685 [51] -1.990840029 0.111093388 0.681076974 0.167814189 -0.419262481 [56] -0.723092599 -1.377547804 0.060563606 0.610195574 -1.496159973 [61] -0.122729527 1.553793193 -1.716727375 0.997600541 -1.571104175 [66] 0.045610195 1.437822275 0.290570473 0.850898309 -1.710592795 [71] -1.447750180 -0.364475675 -0.555042072 -0.902252668 -0.093060071 [76] 0.792780942 -0.650106892 0.030667706 0.807371166 1.634974411 [81] -1.505185740 0.161385743 2.214406526 1.043706320 -0.030597399 [86] 1.043110487 -0.267441912 -1.442906032 -0.788899049 0.019938427 [91] 0.193311845 -0.873358935 0.174424914 0.029074080 1.747423071 [96] -1.189592182 -0.789813978 -0.593643984 0.340760382 0.262634653 > rowSums(tmp2) [1] -0.121827038 -0.621727915 0.020051477 0.004325182 0.292888646 [6] -1.528525748 -0.314009073 -0.184596722 0.349192906 0.654364269 [11] 2.288311638 0.492633110 -1.191676223 -1.060332197 -0.126581808 [16] -0.487672513 -0.100016466 -0.175764549 -0.422898243 -1.395818951 [21] 0.072340631 -1.112010168 -0.974615580 -0.507404008 1.194902866 [26] 0.204361456 1.852201899 -0.434224278 -1.316634022 -1.136429989 [31] -2.760983046 0.179626991 0.802878244 0.823578553 -1.587194012 [36] 1.176441575 -0.889942422 -0.083434991 -0.102963895 -0.698686521 [41] -1.611093386 -1.061544912 -1.130078578 0.357888009 0.196579572 [46] -0.143095204 -0.336707901 -1.871194606 1.115555936 0.107354685 [51] -1.990840029 0.111093388 0.681076974 0.167814189 -0.419262481 [56] -0.723092599 -1.377547804 0.060563606 0.610195574 -1.496159973 [61] -0.122729527 1.553793193 -1.716727375 0.997600541 -1.571104175 [66] 0.045610195 1.437822275 0.290570473 0.850898309 -1.710592795 [71] -1.447750180 -0.364475675 -0.555042072 -0.902252668 -0.093060071 [76] 0.792780942 -0.650106892 0.030667706 0.807371166 1.634974411 [81] -1.505185740 0.161385743 2.214406526 1.043706320 -0.030597399 [86] 1.043110487 -0.267441912 -1.442906032 -0.788899049 0.019938427 [91] 0.193311845 -0.873358935 0.174424914 0.029074080 1.747423071 [96] -1.189592182 -0.789813978 -0.593643984 0.340760382 0.262634653 > rowVars(tmp2) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > rowSd(tmp2) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > rowMax(tmp2) [1] -0.121827038 -0.621727915 0.020051477 0.004325182 0.292888646 [6] -1.528525748 -0.314009073 -0.184596722 0.349192906 0.654364269 [11] 2.288311638 0.492633110 -1.191676223 -1.060332197 -0.126581808 [16] -0.487672513 -0.100016466 -0.175764549 -0.422898243 -1.395818951 [21] 0.072340631 -1.112010168 -0.974615580 -0.507404008 1.194902866 [26] 0.204361456 1.852201899 -0.434224278 -1.316634022 -1.136429989 [31] -2.760983046 0.179626991 0.802878244 0.823578553 -1.587194012 [36] 1.176441575 -0.889942422 -0.083434991 -0.102963895 -0.698686521 [41] -1.611093386 -1.061544912 -1.130078578 0.357888009 0.196579572 [46] -0.143095204 -0.336707901 -1.871194606 1.115555936 0.107354685 [51] -1.990840029 0.111093388 0.681076974 0.167814189 -0.419262481 [56] -0.723092599 -1.377547804 0.060563606 0.610195574 -1.496159973 [61] -0.122729527 1.553793193 -1.716727375 0.997600541 -1.571104175 [66] 0.045610195 1.437822275 0.290570473 0.850898309 -1.710592795 [71] -1.447750180 -0.364475675 -0.555042072 -0.902252668 -0.093060071 [76] 0.792780942 -0.650106892 0.030667706 0.807371166 1.634974411 [81] -1.505185740 0.161385743 2.214406526 1.043706320 -0.030597399 [86] 1.043110487 -0.267441912 -1.442906032 -0.788899049 0.019938427 [91] 0.193311845 -0.873358935 0.174424914 0.029074080 1.747423071 [96] -1.189592182 -0.789813978 -0.593643984 0.340760382 0.262634653 > rowMin(tmp2) [1] -0.121827038 -0.621727915 0.020051477 0.004325182 0.292888646 [6] -1.528525748 -0.314009073 -0.184596722 0.349192906 0.654364269 [11] 2.288311638 0.492633110 -1.191676223 -1.060332197 -0.126581808 [16] -0.487672513 -0.100016466 -0.175764549 -0.422898243 -1.395818951 [21] 0.072340631 -1.112010168 -0.974615580 -0.507404008 1.194902866 [26] 0.204361456 1.852201899 -0.434224278 -1.316634022 -1.136429989 [31] -2.760983046 0.179626991 0.802878244 0.823578553 -1.587194012 [36] 1.176441575 -0.889942422 -0.083434991 -0.102963895 -0.698686521 [41] -1.611093386 -1.061544912 -1.130078578 0.357888009 0.196579572 [46] -0.143095204 -0.336707901 -1.871194606 1.115555936 0.107354685 [51] -1.990840029 0.111093388 0.681076974 0.167814189 -0.419262481 [56] -0.723092599 -1.377547804 0.060563606 0.610195574 -1.496159973 [61] -0.122729527 1.553793193 -1.716727375 0.997600541 -1.571104175 [66] 0.045610195 1.437822275 0.290570473 0.850898309 -1.710592795 [71] -1.447750180 -0.364475675 -0.555042072 -0.902252668 -0.093060071 [76] 0.792780942 -0.650106892 0.030667706 0.807371166 1.634974411 [81] -1.505185740 0.161385743 2.214406526 1.043706320 -0.030597399 [86] 1.043110487 -0.267441912 -1.442906032 -0.788899049 0.019938427 [91] 0.193311845 -0.873358935 0.174424914 0.029074080 1.747423071 [96] -1.189592182 -0.789813978 -0.593643984 0.340760382 0.262634653 > > colMeans(tmp2) [1] -0.1862338 > colSums(tmp2) [1] -18.62338 > colVars(tmp2) [1] 0.9692308 > colSd(tmp2) [1] 0.9844952 > colMax(tmp2) [1] 2.288312 > colMin(tmp2) [1] -2.760983 > colMedians(tmp2) [1] -0.1123955 > colRanges(tmp2) [,1] [1,] -2.760983 [2,] 2.288312 > > dataset1 <- matrix(dataset1,1,100) > > agree.checks(tmp,dataset1) > > dataset2 <- matrix(dataset2,100,1) > agree.checks(tmp2,dataset2) > > > tmp <- createBufferedMatrix(10,10) > > tmp[1:10,1:10] <- rnorm(100) > colApply(tmp,sum) [1] 4.46133750 -3.41653582 -1.32245552 -2.06291201 3.24571103 -0.06015098 [7] -2.15862064 3.73632214 -3.39411733 1.91073579 > colApply(tmp,quantile)[,1] [,1] [1,] -0.94307771 [2,] -0.01834947 [3,] 0.46730502 [4,] 1.11185687 [5,] 1.80728876 > > rowApply(tmp,sum) [1] -0.7696908 -4.8863756 -3.2394938 4.5661930 3.4904119 -4.6284588 [7] 2.6957507 -3.3375638 4.0218837 3.0266575 > rowApply(tmp,rank)[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 8 10 6 7 1 6 10 3 8 2 [2,] 3 1 1 5 10 1 7 7 10 6 [3,] 7 2 2 9 9 8 2 1 5 7 [4,] 2 7 5 1 5 3 5 10 1 10 [5,] 6 8 9 2 7 5 6 5 9 5 [6,] 5 5 3 8 2 7 4 9 3 8 [7,] 4 4 10 3 4 10 1 2 4 3 [8,] 10 6 7 6 8 9 3 4 6 4 [9,] 1 3 8 4 6 2 9 6 2 9 [10,] 9 9 4 10 3 4 8 8 7 1 > > tmp <- createBufferedMatrix(5,20) > > tmp[1:5,1:20] <- rnorm(100) > colApply(tmp,sum) [1] 3.69007659 1.48451931 1.76341500 2.27710774 0.83011308 1.40039703 [7] -0.36224941 1.00696584 -0.90973267 0.06516137 -4.37344588 1.13394317 [13] -2.50262499 -0.18006283 -3.70915279 0.38900926 2.04765244 -3.09703820 [19] 2.45707907 1.19833826 > colApply(tmp,quantile)[,1] [,1] [1,] -0.9297268 [2,] 0.3217605 [3,] 0.4891377 [4,] 0.7035346 [5,] 3.1053706 > > rowApply(tmp,sum) [1] -0.9117128 2.3402735 -0.2007129 0.8701974 2.5114262 > rowApply(tmp,rank)[1:5,] [,1] [,2] [,3] [,4] [,5] [1,] 3 13 14 20 14 [2,] 19 6 17 5 16 [3,] 2 19 19 1 20 [4,] 5 5 20 16 17 [5,] 8 14 12 7 12 > > > as.matrix(tmp) [,1] [,2] [,3] [,4] [,5] [,6] [1,] -0.9297268 0.8849200 -1.359281 -0.3770064 -0.1345512 0.54937418 [2,] 0.7035346 -0.4171568 1.488639 -1.0143894 0.8229758 0.64415293 [3,] 0.3217605 0.9183720 1.671142 1.8812117 0.1654867 -0.08236694 [4,] 3.1053706 -0.5557771 -1.580172 0.5983181 -0.4471688 0.45869919 [5,] 0.4891377 0.6541613 1.543088 1.1889737 0.4233707 -0.16946234 [,7] [,8] [,9] [,10] [,11] [,12] [1,] -0.9264934 0.3519017 0.2779527 0.4643529 -0.18697020 0.3705654 [2,] 0.9868501 2.2164841 0.3876797 -1.0305114 -1.59378423 -0.3323296 [3,] 0.3155917 -1.7892676 -0.8367348 -1.6601236 -0.05255111 0.7274744 [4,] -0.3010820 0.9719190 -0.5177229 0.8856147 -0.72702472 -0.1255481 [5,] -0.4371159 -0.7440714 -0.2209073 1.4058286 -1.81311562 0.4937811 [,13] [,14] [,15] [,16] [,17] [,18] [1,] 0.3738980 0.04915249 -2.7872246 0.67252287 -0.29200052 0.07650978 [2,] -1.9289909 1.00052546 1.0746869 0.09499421 1.15166572 -1.66433542 [3,] -2.2917345 -0.06866738 -0.1930081 0.08356186 0.51992960 -1.03405637 [4,] 0.1116938 -0.43146860 -1.0353192 -0.66037727 0.62267190 -0.43114616 [5,] 1.2325086 -0.72960481 -0.7682878 0.19830760 0.04538573 -0.04401003 [,19] [,20] [1,] 0.57753832 1.4328528 [2,] -0.07350702 -0.1769101 [3,] 1.04249918 0.1607680 [4,] 0.45194511 0.4767723 [5,] 0.45860347 -0.6951448 > > > is.BufferedMatrix(tmp) [1] TRUE > > as.BufferedMatrix(as.matrix(tmp)) BufferedMatrix object Matrix size: 5 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 800 bytes. > > > > subBufferedMatrix(tmp,1:5,1:5) BufferedMatrix object Matrix size: 5 5 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 679 bytes. Disk usage : 200 bytes. > subBufferedMatrix(tmp,,5:8) BufferedMatrix object Matrix size: 5 4 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 588 bytes. Disk usage : 160 bytes. > subBufferedMatrix(tmp,1:3,) BufferedMatrix object Matrix size: 3 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 480 bytes. > > > rm(tmp) > > > ### > ### Testing colnames and rownames > ### > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > > > colnames(tmp) NULL > rownames(tmp) NULL > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > colnames(tmp) [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > rownames(tmp) [1] "row1" "row2" "row3" "row4" "row5" > > > tmp["row1",] col1 col2 col3 col4 col5 col6 col7 row1 0.8514471 0.2703197 1.252723 -0.6969306 1.89497 -0.6768948 0.3753756 col8 col9 col10 col11 col12 col13 col14 row1 0.3063049 1.140368 -0.02334931 1.139401 -0.181743 -1.971715 -1.701774 col15 col16 col17 col18 col19 col20 row1 0.5851355 -0.5290219 -0.6255334 -0.688917 1.533991 0.486904 > tmp[,"col10"] col10 row1 -0.023349306 row2 -1.791404708 row3 -0.001591272 row4 -1.989790114 row5 -1.238679448 > tmp[c("row1","row5"),] col1 col2 col3 col4 col5 col6 col7 row1 0.8514471 0.2703197 1.2527231 -0.6969306 1.894970 -0.6768948 0.3753756 row5 -0.1710591 0.1803253 -0.3824604 -1.8770946 1.600946 0.3981932 0.1546385 col8 col9 col10 col11 col12 col13 row1 0.3063049 1.1403675 -0.02334931 1.1394011 -0.1817430 -1.97171465 row5 0.4676666 -0.4260983 -1.23867945 0.5284227 0.3179518 -0.02095088 col14 col15 col16 col17 col18 col19 col20 row1 -1.7017738 0.5851355 -0.5290219 -0.6255334 -0.6889170 1.533991 0.4869040 row5 -0.4705794 -0.3821890 0.8840776 2.0359383 0.3748784 1.957047 -0.3038788 > tmp[,c("col6","col20")] col6 col20 row1 -0.6768948 0.4869040 row2 -0.4035983 -1.1046405 row3 0.4728309 0.3224378 row4 -0.7158832 -0.8302024 row5 0.3981932 -0.3038788 > tmp[c("row1","row5"),c("col6","col20")] col6 col20 row1 -0.6768948 0.4869040 row5 0.3981932 -0.3038788 > > > > > tmp["row1",] <- rnorm(20,mean=10) > tmp[,"col10"] <- rnorm(5,mean=30) > tmp[c("row1","row5"),] <- rnorm(40,mean=50) > tmp[,c("col6","col20")] <- rnorm(10,mean=75) > tmp[c("row1","row5"),c("col6","col20")] <- rnorm(4,mean=105) > > tmp["row1",] col1 col2 col3 col4 col5 col6 col7 col8 row1 50.18934 49.73577 49.72869 49.63893 50.30578 105.2451 49.75455 51.14644 col9 col10 col11 col12 col13 col14 col15 col16 row1 48.4605 49.83988 50.03666 50.53428 50.30793 49.29721 48.96727 49.8122 col17 col18 col19 col20 row1 49.71553 48.62411 50.22692 104.6987 > tmp[,"col10"] col10 row1 49.83988 row2 29.51597 row3 29.82654 row4 29.96048 row5 49.06092 > tmp[c("row1","row5"),] col1 col2 col3 col4 col5 col6 col7 col8 row1 50.18934 49.73577 49.72869 49.63893 50.30578 105.2451 49.75455 51.14644 row5 50.91820 50.30893 49.71390 49.35219 50.91654 105.0585 51.05228 47.83693 col9 col10 col11 col12 col13 col14 col15 col16 row1 48.46050 49.83988 50.03666 50.53428 50.30793 49.29721 48.96727 49.81220 row5 50.89386 49.06092 51.31655 49.29863 51.36699 50.32245 50.05893 49.67778 col17 col18 col19 col20 row1 49.71553 48.62411 50.22692 104.6987 row5 49.62840 51.52614 49.90221 104.7320 > tmp[,c("col6","col20")] col6 col20 row1 105.24506 104.69868 row2 74.23299 74.95834 row3 72.70238 73.84044 row4 75.51894 74.16076 row5 105.05852 104.73202 > tmp[c("row1","row5"),c("col6","col20")] col6 col20 row1 105.2451 104.6987 row5 105.0585 104.7320 > > > subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2] col6 col20 row1 105.2451 104.6987 row5 105.0585 104.7320 > > > > > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > > tmp[,"col13"] col13 [1,] -0.9326477 [2,] 1.2200277 [3,] -0.3000212 [4,] 1.7514075 [5,] 0.2709712 > tmp[,c("col17","col7")] col17 col7 [1,] 1.1616111 0.45647136 [2,] 0.9064270 -0.21294511 [3,] -0.2167480 -0.54137713 [4,] 0.1128381 0.06978229 [5,] 0.4297695 -0.74959458 > > subBufferedMatrix(tmp,,c("col6","col20"))[,1:2] col6 col20 [1,] 1.0067832 -1.7966666 [2,] -0.6592791 -0.6779591 [3,] 0.5344039 -0.5450912 [4,] 0.5651167 0.6465082 [5,] -0.7546512 -0.2492155 > subBufferedMatrix(tmp,1,c("col6"))[,1] col1 [1,] 1.006783 > subBufferedMatrix(tmp,1:2,c("col6"))[,1] col6 [1,] 1.0067832 [2,] -0.6592791 > > > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > > > > subBufferedMatrix(tmp,c("row3","row1"),)[,1:20] [,1] [,2] [,3] [,4] [,5] [,6] row3 0.1338937 1.26175055 -0.1426790 -0.8828652 -0.8941966 1.170914 row1 -1.2552859 0.02287856 -0.7006064 -0.7323725 -0.8998622 -1.117172 [,7] [,8] [,9] [,10] [,11] [,12] [,13] row3 -0.2246448 -1.1939108 -0.5916424 -2.3485049 0.4086685 1.1997051 0.4451943 row1 -0.2828135 -0.4244194 0.2672507 -0.7820725 -0.6692904 0.2369586 0.2828415 [,14] [,15] [,16] [,17] [,18] [,19] [,20] row3 -0.3050641 -0.2208069 1.2147740 1.172621 0.0925839 -0.08266532 -0.6618716 row1 1.5318899 1.0697460 -0.6016738 1.293540 0.4984534 2.40349247 0.8763167 > subBufferedMatrix(tmp,c("row2"),1:10)[,1:10] [,1] [,2] [,3] [,4] [,5] [,6] [,7] row2 1.846369 -0.4461545 0.604152 -0.2633499 1.311296 0.02600957 0.2260367 [,8] [,9] [,10] row2 -0.3992303 -0.2104834 1.315875 > subBufferedMatrix(tmp,c("row5"),1:20)[,1:20] [,1] [,2] [,3] [,4] [,5] [,6] [,7] row5 0.4787392 -1.383818 -0.2554899 0.568025 -0.9078263 -0.3788704 0.6457037 [,8] [,9] [,10] [,11] [,12] [,13] [,14] row5 1.569239 0.6841912 -1.061979 1.778177 -0.7553178 -0.01754741 -0.6141209 [,15] [,16] [,17] [,18] [,19] [,20] row5 0.1920825 0.7056592 0.532178 1.271645 -0.4047963 1.056255 > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > colnames(tmp) [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > rownames(tmp) [1] "row1" "row2" "row3" "row4" "row5" > > > colnames(tmp) <- NULL > rownames(tmp) <- NULL > > colnames(tmp) NULL > rownames(tmp) NULL > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > dimnames(tmp) [[1]] [1] "row1" "row2" "row3" "row4" "row5" [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > dimnames(tmp) <- NULL > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > dimnames(tmp) [[1]] NULL [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > > dimnames(tmp) <- NULL > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > dimnames(tmp) [[1]] [1] "row1" "row2" "row3" "row4" "row5" [[2]] NULL > > dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE))) > dimnames(tmp) [[1]] NULL [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > > > ### > ### Testing logical indexing > ### > ### > > tmp <- createBufferedMatrix(230,15) > tmp[1:230,1:15] <- rnorm(230*15) > x <-tmp[1:230,1:15] > > for (rep in 1:10){ + which.cols <- sample(c(TRUE,FALSE),15,replace=T) + which.rows <- sample(c(TRUE,FALSE),230,replace=T) + + if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){ + stop("No agreement when logical indexing\n") + } + + if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] == x[,which.cols])){ + stop("No agreement when logical indexing in subBufferedMatrix cols\n") + } + if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] == x[which.rows,])){ + stop("No agreement when logical indexing in subBufferedMatrix rows\n") + } + + + if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]== x[which.rows,which.cols])){ + stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n") + } + } > > > ## > ## Test the ReadOnlyMode > ## > > ReadOnlyMode(tmp) <pointer: 0x0000000005023658> > is.ReadOnlyMode(tmp) [1] TRUE > > filenames(tmp) [1] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM1940768468b7" [2] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM1940cfd5e04" [3] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM19401d4d471c" [4] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM1940f653ff9" [5] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM194017fa4542" [6] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM1940296760d6" [7] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM1940407173b6" [8] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM194014415034" [9] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM19402b112e8a" [10] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM1940215c174c" [11] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM19401f9f7a54" [12] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM19401adc1e16" [13] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM19401e833279" [14] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM194012756bb2" [15] "C:/Users/biocbuild/bbs-3.6-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM194046346cac" > > > ### testing coercion functions > ### > > tmp <- as(tmp,"matrix") > tmp <- as(tmp,"BufferedMatrix") > > > > ### testing whether can move storage from one location to another > > MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE) <pointer: 0x000000000b7227e8> > MoveStorageDirectory(tmp,getwd(),full.path=TRUE) <pointer: 0x000000000b7227e8> Warning message: In dir.create(new.directory) : 'C:\Users\biocbuild\bbs-3.6-bioc\meat\BufferedMatrix.Rcheck\tests_x64' already exists > > > RowMode(tmp) <pointer: 0x000000000b7227e8> > rowMedians(tmp) [1] -0.3379020220 -0.2153367528 -0.3209684149 0.1521928554 -0.2397777313 [6] 0.1484543288 -0.0523128210 0.0768651351 0.4507862812 0.1395834457 [11] -0.1809097610 -0.1415543370 0.1679998545 -0.1153618286 -0.4426999789 [16] 0.0046190666 0.1602307766 -0.1516056344 -0.2635133342 -0.1530725246 [21] -0.2297714924 -0.2455203564 -0.0221421524 -0.5722633782 0.3595153672 [26] -0.4132308931 -0.0388400268 0.2209296508 -0.4471142854 0.1046072917 [31] -0.2535723847 -0.2017218104 0.2553451574 0.0127041283 0.2067855941 [36] 0.2880198293 0.5916593459 0.2004455331 -0.1571520716 0.4935003205 [41] -0.2525998946 -0.4270978885 -0.1982563085 0.5486271855 0.4790388336 [46] -0.5969177018 -0.1729303005 -0.1322054044 -0.3882486557 0.1528209599 [51] -0.2779006352 -0.2997095657 0.2484269476 0.0600045022 0.2359645802 [56] -0.1485989119 -0.3271994889 -0.9230414396 0.0003645476 0.1647964288 [61] 0.1652503943 0.6952627828 -0.0782739104 0.3797773531 -0.0389564645 [66] -0.0016499787 0.7505754075 0.3953136494 0.2210139833 0.1609438440 [71] -0.0013781555 0.3305376201 -0.4410929997 -0.4330148430 -0.2809136262 [76] -0.4664000238 0.1447208158 0.0885510943 -0.4416775723 -0.1888121314 [81] 0.2449855835 -0.1748361818 0.0824059086 -0.1508543969 -0.0727803801 [86] -0.0367840110 0.1178770143 0.7233730148 -0.3261519565 0.0599243842 [91] 0.1288060422 -0.1693222197 0.0310707571 -0.2498410861 -0.0316228963 [96] 0.3467768846 -0.2400189959 0.0216236926 0.0929539432 -0.1104646107 [101] -0.3028524391 -0.7337697278 -0.0259369152 0.0994956980 -0.2313400839 [106] 0.3681328969 1.0187515402 0.0504299420 0.3906841964 0.0597876767 [111] 0.2974527327 -0.1132582233 -0.0872316976 0.5066382451 -0.1582803108 [116] -0.1097030068 -0.6048591814 -0.6031855965 0.0395058270 -0.1053950459 [121] 0.2132242759 0.6063308299 -0.3323542709 0.0511265877 -0.2681563572 [126] 0.0451261755 0.1074877908 0.4842713707 -0.0847527533 0.1370202142 [131] 0.1998035526 -0.5996871157 0.1948760745 -0.2849940607 0.4253237400 [136] -0.5688147089 -0.2767767860 0.2984337808 -0.4506092383 0.4795435232 [141] 0.2865719974 -0.6588905371 0.4109615439 -0.5902343713 -0.1279582950 [146] 0.5853150754 0.0530303282 -0.2722652638 0.0745202068 -0.5557052174 [151] -0.2665342812 -0.3703624944 -0.0933887611 -0.3060361181 -0.3919469972 [156] -0.0424362174 -0.1074703023 -0.2602001850 0.0354703888 -0.3192648681 [161] 0.7979225798 0.2483018877 0.3635606369 -0.3506910052 -0.3093720012 [166] 0.3314176505 0.3850007511 0.2681617953 -0.0735400390 0.3093560556 [171] 0.3231702353 -0.5017475551 -0.2691538803 -0.4140013908 0.0491084564 [176] -0.5289777839 0.6092362726 0.2525512379 -0.3706264487 -0.1858642115 [181] 0.2355751177 0.9591933432 -0.3571478275 -0.2599463724 0.1098196854 [186] -0.4576894535 0.5042992241 0.9319105911 -0.1141507018 0.5815168288 [191] 0.1959265987 0.6394579747 0.1502090288 -0.2852900533 0.2051925927 [196] -0.2869989678 -0.0408290173 -0.1075445835 0.4257510002 0.1974298209 [201] 0.3551975207 0.1079967408 -0.5434713293 0.3708384962 -0.4294939259 [206] 0.2080717640 0.4311810397 0.4134364418 0.1279548328 -0.0015667533 [211] -0.2384519207 0.2593500409 0.2816548023 -0.3635497340 -0.4981019917 [216] 0.6820422855 -0.3316305947 -0.4103019859 -0.4676226836 0.0816960963 [221] -0.2052958196 0.2653601403 -0.7419116593 -0.3692961369 0.0527889718 [226] -0.1562840509 0.3101587150 -0.4404008048 0.1354061672 -0.2550537538 > > proc.time() user system elapsed 2.96 6.42 9.76 |
BufferedMatrix.Rcheck/tests_i386/rawCalltesting.Rout R version 3.4.4 (2018-03-15) -- "Someone to Lean On" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > prefix <- "dbmtest" > directory <- getwd() > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x021fc878> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x021fc878> > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 10 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x021fc878> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 10 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x021fc878> > rm(P) > > #P <- .Call("R_bm_Destroy",P) > #.Call("R_bm_Destroy",P) > #.Call("R_bm_Test_C",P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,5) [1] TRUE > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 0 Buffer Rows: 1 Buffer Cols: 1 Printing Values <pointer: 0x0228a4a0> > .Call("R_bm_AddColumn",P) <pointer: 0x0228a4a0> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 1 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x0228a4a0> > .Call("R_bm_AddColumn",P) <pointer: 0x0228a4a0> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x0228a4a0> > rm(P) > > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,5) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x026fa4c0> > .Call("R_bm_AddColumn",P) <pointer: 0x026fa4c0> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x026fa4c0> > > .Call("R_bm_ResizeBuffer",P,5,5) <pointer: 0x026fa4c0> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x026fa4c0> > > .Call("R_bm_RowMode",P) <pointer: 0x026fa4c0> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x026fa4c0> > > .Call("R_bm_ColMode",P) <pointer: 0x026fa4c0> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x026fa4c0> > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x02968f78> > .Call("R_bm_SetPrefix",P,"BufferedMatrixFile") <pointer: 0x02968f78> > .Call("R_bm_AddColumn",P) <pointer: 0x02968f78> > .Call("R_bm_AddColumn",P) <pointer: 0x02968f78> > dir(pattern="BufferedMatrixFile") [1] "BufferedMatrixFile186054dc5650" "BufferedMatrixFile1860563c2ed4" > rm(P) > dir(pattern="BufferedMatrixFile") [1] "BufferedMatrixFile186054dc5650" "BufferedMatrixFile1860563c2ed4" > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x02a452e0> > .Call("R_bm_AddColumn",P) <pointer: 0x02a452e0> > .Call("R_bm_ReadOnlyModeToggle",P) <pointer: 0x02a452e0> > .Call("R_bm_isReadOnlyMode",P) [1] TRUE > .Call("R_bm_ReadOnlyModeToggle",P) <pointer: 0x02a452e0> > .Call("R_bm_isReadOnlyMode",P) [1] FALSE > .Call("R_bm_isRowMode",P) [1] FALSE > .Call("R_bm_RowMode",P) <pointer: 0x02a452e0> > .Call("R_bm_isRowMode",P) [1] TRUE > .Call("R_bm_ColMode",P) <pointer: 0x02a452e0> > .Call("R_bm_isRowMode",P) [1] FALSE > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x022643e0> > .Call("R_bm_AddColumn",P) <pointer: 0x022643e0> > > .Call("R_bm_getSize",P) [1] 10 2 > .Call("R_bm_getBufferSize",P) [1] 1 1 > .Call("R_bm_ResizeBuffer",P,5,5) <pointer: 0x022643e0> > > .Call("R_bm_getBufferSize",P) [1] 5 5 > .Call("R_bm_ResizeBuffer",P,-1,5) <pointer: 0x022643e0> > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x02f09a10> > .Call("R_bm_getValue",P,3,3) [1] 6 > > .Call("R_bm_getValue",P,100000,10000) [1] NA > .Call("R_bm_setValue",P,3,3,12345.0) [1] TRUE > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 12345.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x02f09a10> > rm(P) > > proc.time() user system elapsed 0.34 0.04 0.39 |
BufferedMatrix.Rcheck/tests_x64/rawCalltesting.Rout R version 3.4.4 (2018-03-15) -- "Someone to Lean On" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > prefix <- "dbmtest" > directory <- getwd() > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x0000000006859638> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x0000000006859638> > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 10 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x0000000006859638> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 10 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x0000000006859638> > rm(P) > > #P <- .Call("R_bm_Destroy",P) > #.Call("R_bm_Destroy",P) > #.Call("R_bm_Test_C",P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,5) [1] TRUE > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 0 Buffer Rows: 1 Buffer Cols: 1 Printing Values <pointer: 0x0000000006715c48> > .Call("R_bm_AddColumn",P) <pointer: 0x0000000006715c48> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 1 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x0000000006715c48> > .Call("R_bm_AddColumn",P) <pointer: 0x0000000006715c48> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x0000000006715c48> > rm(P) > > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,5) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x00000000051e5008> > .Call("R_bm_AddColumn",P) <pointer: 0x00000000051e5008> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x00000000051e5008> > > .Call("R_bm_ResizeBuffer",P,5,5) <pointer: 0x00000000051e5008> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x00000000051e5008> > > .Call("R_bm_RowMode",P) <pointer: 0x00000000051e5008> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x00000000051e5008> > > .Call("R_bm_ColMode",P) <pointer: 0x00000000051e5008> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x00000000051e5008> > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x0000000006075f48> > .Call("R_bm_SetPrefix",P,"BufferedMatrixFile") <pointer: 0x0000000006075f48> > .Call("R_bm_AddColumn",P) <pointer: 0x0000000006075f48> > .Call("R_bm_AddColumn",P) <pointer: 0x0000000006075f48> > dir(pattern="BufferedMatrixFile") [1] "BufferedMatrixFile11c827432ab2" "BufferedMatrixFile11c85dc9b13" > rm(P) > dir(pattern="BufferedMatrixFile") [1] "BufferedMatrixFile11c827432ab2" "BufferedMatrixFile11c85dc9b13" > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x00000000059ccd98> > .Call("R_bm_AddColumn",P) <pointer: 0x00000000059ccd98> > .Call("R_bm_ReadOnlyModeToggle",P) <pointer: 0x00000000059ccd98> > .Call("R_bm_isReadOnlyMode",P) [1] TRUE > .Call("R_bm_ReadOnlyModeToggle",P) <pointer: 0x00000000059ccd98> > .Call("R_bm_isReadOnlyMode",P) [1] FALSE > .Call("R_bm_isRowMode",P) [1] FALSE > .Call("R_bm_RowMode",P) <pointer: 0x00000000059ccd98> > .Call("R_bm_isRowMode",P) [1] TRUE > .Call("R_bm_ColMode",P) <pointer: 0x00000000059ccd98> > .Call("R_bm_isRowMode",P) [1] FALSE > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x0000000005174aa8> > .Call("R_bm_AddColumn",P) <pointer: 0x0000000005174aa8> > > .Call("R_bm_getSize",P) [1] 10 2 > .Call("R_bm_getBufferSize",P) [1] 1 1 > .Call("R_bm_ResizeBuffer",P,5,5) <pointer: 0x0000000005174aa8> > > .Call("R_bm_getBufferSize",P) [1] 5 5 > .Call("R_bm_ResizeBuffer",P,-1,5) <pointer: 0x0000000005174aa8> > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x0000000004ed2c90> > .Call("R_bm_getValue",P,3,3) [1] 6 > > .Call("R_bm_getValue",P,100000,10000) [1] NA > .Call("R_bm_setValue",P,3,3,12345.0) [1] TRUE > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 12345.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x0000000004ed2c90> > rm(P) > > proc.time() user system elapsed 0.40 0.04 0.46 |
BufferedMatrix.Rcheck/tests_i386/Rcodetesting.Rout R version 3.4.4 (2018-03-15) -- "Someone to Lean On" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > Temp <- createBufferedMatrix(100) > dim(Temp) [1] 100 0 > buffer.dim(Temp) [1] 1 1 > > > proc.time() user system elapsed 0.35 0.00 0.36 |
BufferedMatrix.Rcheck/tests_x64/Rcodetesting.Rout R version 3.4.4 (2018-03-15) -- "Someone to Lean On" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > Temp <- createBufferedMatrix(100) > dim(Temp) [1] 100 0 > buffer.dim(Temp) [1] 1 1 > > > proc.time() user system elapsed 0.35 0.06 0.40 |