Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-05-01 11:40 -0400 (Thu, 01 May 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4832 |
palomino7 | Windows Server 2022 Datacenter | x64 | 4.5.0 RC (2025-04-04 r88126 ucrt) -- "How About a Twenty-Six" | 4574 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4599 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.5.0 RC (2025-04-04 r88129) -- "How About a Twenty-Six" | 4553 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 997/2341 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.14.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.14.0 |
Command: E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings HPiP_1.14.0.tar.gz |
StartedAt: 2025-04-29 06:21:56 -0400 (Tue, 29 Apr 2025) |
EndedAt: 2025-04-29 06:28:13 -0400 (Tue, 29 Apr 2025) |
EllapsedTime: 376.5 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings HPiP_1.14.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'E:/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck' * using R version 4.5.0 RC (2025-04-04 r88126 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 14.2.0 GNU Fortran (GCC) 14.2.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.14.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed corr_plot 35.64 1.37 37.05 var_imp 35.28 1.23 36.53 FSmethod 34.20 1.95 36.30 pred_ensembel 14.34 0.38 13.31 enrichfindP 0.67 0.10 14.16 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See 'E:/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'E:/biocbuild/bbs-3.21-bioc/R/library' * installing *source* package 'HPiP' ... ** this is package 'HPiP' version '1.14.0' ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.0 RC (2025-04-04 r88126 ucrt) -- "How About a Twenty-Six" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 95.076972 final value 94.473118 converged Fitting Repeat 2 # weights: 103 initial value 99.743662 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.014187 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.512644 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.168050 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.935777 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 96.569227 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 109.037948 iter 10 value 85.107886 iter 20 value 84.929134 final value 84.928944 converged Fitting Repeat 4 # weights: 305 initial value 101.289816 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 104.416919 iter 10 value 94.196332 iter 20 value 93.775051 final value 93.772974 converged Fitting Repeat 1 # weights: 507 initial value 106.289422 final value 94.484210 converged Fitting Repeat 2 # weights: 507 initial value 105.961415 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 101.444024 iter 10 value 93.772976 final value 93.772973 converged Fitting Repeat 4 # weights: 507 initial value 99.137112 iter 10 value 93.701669 final value 93.701657 converged Fitting Repeat 5 # weights: 507 initial value 96.520063 final value 94.473118 converged Fitting Repeat 1 # weights: 103 initial value 101.194408 iter 10 value 94.178366 iter 20 value 86.863633 iter 30 value 83.639919 iter 40 value 83.114890 iter 50 value 82.020173 iter 60 value 81.240908 iter 70 value 80.896063 iter 80 value 80.613463 iter 90 value 80.115131 final value 80.104723 converged Fitting Repeat 2 # weights: 103 initial value 110.484101 iter 10 value 94.435213 iter 20 value 93.764005 iter 30 value 85.372742 iter 40 value 85.158041 iter 50 value 83.852593 iter 60 value 82.144990 iter 70 value 81.934339 iter 80 value 81.432976 iter 90 value 81.289479 iter 100 value 80.880979 final value 80.880979 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 100.079983 iter 10 value 94.479015 iter 20 value 90.051659 iter 30 value 85.710805 iter 40 value 84.796960 iter 50 value 82.372852 iter 60 value 82.184453 iter 70 value 81.898053 iter 80 value 81.584715 iter 90 value 81.520820 final value 81.520551 converged Fitting Repeat 4 # weights: 103 initial value 97.699399 iter 10 value 94.526702 iter 20 value 94.486629 iter 30 value 93.890031 iter 40 value 93.884163 iter 50 value 91.054655 iter 60 value 86.088340 iter 70 value 85.169151 iter 80 value 82.671439 iter 90 value 81.564474 iter 100 value 81.374873 final value 81.374873 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 101.746723 iter 10 value 94.478493 iter 20 value 94.290311 iter 30 value 85.208270 iter 40 value 82.793925 iter 50 value 82.162480 iter 60 value 81.834613 iter 70 value 81.738292 iter 80 value 81.640800 iter 90 value 81.520562 final value 81.520551 converged Fitting Repeat 1 # weights: 305 initial value 105.446972 iter 10 value 94.357027 iter 20 value 88.643009 iter 30 value 82.434706 iter 40 value 81.959617 iter 50 value 81.791686 iter 60 value 81.424527 iter 70 value 81.209391 iter 80 value 80.315739 iter 90 value 79.238394 iter 100 value 78.787840 final value 78.787840 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.167086 iter 10 value 90.802729 iter 20 value 84.525700 iter 30 value 82.688058 iter 40 value 82.474690 iter 50 value 82.166841 iter 60 value 82.100502 iter 70 value 81.962893 iter 80 value 81.466396 iter 90 value 81.164550 iter 100 value 81.001389 final value 81.001389 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.254930 iter 10 value 94.313843 iter 20 value 88.698298 iter 30 value 83.408523 iter 40 value 80.840372 iter 50 value 80.178481 iter 60 value 79.489908 iter 70 value 79.145887 iter 80 value 78.974809 iter 90 value 78.671607 iter 100 value 78.525777 final value 78.525777 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.848299 iter 10 value 94.224988 iter 20 value 87.222549 iter 30 value 86.262576 iter 40 value 84.679699 iter 50 value 84.303852 iter 60 value 83.892954 iter 70 value 82.965731 iter 80 value 80.665341 iter 90 value 79.684417 iter 100 value 79.369006 final value 79.369006 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.763309 iter 10 value 94.440173 iter 20 value 85.443890 iter 30 value 84.633641 iter 40 value 84.311106 iter 50 value 82.356578 iter 60 value 81.785783 iter 70 value 81.703463 iter 80 value 81.614071 iter 90 value 81.312346 iter 100 value 81.251452 final value 81.251452 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 109.978249 iter 10 value 94.449400 iter 20 value 93.130172 iter 30 value 85.732994 iter 40 value 83.273974 iter 50 value 82.575760 iter 60 value 81.663045 iter 70 value 81.295923 iter 80 value 80.934396 iter 90 value 80.814472 iter 100 value 80.241781 final value 80.241781 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.253311 iter 10 value 94.413929 iter 20 value 89.478982 iter 30 value 88.047976 iter 40 value 83.223752 iter 50 value 81.072576 iter 60 value 80.287562 iter 70 value 79.900525 iter 80 value 79.428731 iter 90 value 78.817450 iter 100 value 78.546737 final value 78.546737 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 128.309289 iter 10 value 94.531799 iter 20 value 87.768593 iter 30 value 86.880150 iter 40 value 82.634040 iter 50 value 81.416042 iter 60 value 81.320713 iter 70 value 80.998771 iter 80 value 80.355853 iter 90 value 79.735391 iter 100 value 79.253269 final value 79.253269 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.636180 iter 10 value 94.470432 iter 20 value 93.333380 iter 30 value 86.708858 iter 40 value 84.505874 iter 50 value 82.075807 iter 60 value 80.731621 iter 70 value 78.761803 iter 80 value 78.407248 iter 90 value 78.184958 iter 100 value 77.910213 final value 77.910213 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 132.811603 iter 10 value 94.975424 iter 20 value 93.655588 iter 30 value 85.510600 iter 40 value 83.202729 iter 50 value 82.067166 iter 60 value 81.888605 iter 70 value 80.602436 iter 80 value 78.834547 iter 90 value 78.770457 iter 100 value 78.651243 final value 78.651243 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.034348 final value 94.485935 converged Fitting Repeat 2 # weights: 103 initial value 97.698590 final value 94.313616 converged Fitting Repeat 3 # weights: 103 initial value 95.520911 final value 94.485740 converged Fitting Repeat 4 # weights: 103 initial value 95.898430 final value 94.475003 converged Fitting Repeat 5 # weights: 103 initial value 95.340603 iter 10 value 94.485751 iter 20 value 94.484250 iter 30 value 94.338110 iter 40 value 90.031974 iter 50 value 89.901139 iter 60 value 89.900101 iter 70 value 89.896858 iter 80 value 89.896047 iter 90 value 89.895115 final value 89.894518 converged Fitting Repeat 1 # weights: 305 initial value 107.811513 iter 10 value 84.908988 iter 20 value 82.501085 iter 30 value 82.490344 iter 40 value 82.487244 iter 50 value 82.485542 iter 60 value 82.400677 iter 70 value 82.341917 iter 80 value 81.893287 iter 90 value 80.053378 iter 100 value 78.029701 final value 78.029701 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 112.386926 iter 10 value 94.489176 iter 20 value 94.484487 iter 30 value 94.407029 iter 40 value 88.010373 iter 50 value 80.783904 iter 60 value 79.656326 iter 70 value 79.033138 iter 80 value 78.991412 iter 90 value 78.990380 iter 100 value 78.965890 final value 78.965890 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 96.169638 iter 10 value 94.491322 iter 20 value 93.303531 iter 30 value 83.787041 iter 40 value 83.785313 iter 50 value 83.763459 iter 60 value 82.699959 iter 70 value 82.084822 iter 80 value 81.802638 iter 90 value 80.771963 iter 100 value 79.436800 final value 79.436800 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.810168 iter 10 value 93.688644 iter 20 value 93.651544 iter 30 value 83.832022 iter 40 value 81.153826 final value 81.015491 converged Fitting Repeat 5 # weights: 305 initial value 97.350285 iter 10 value 94.489477 iter 20 value 94.473324 iter 30 value 94.473248 final value 94.473242 converged Fitting Repeat 1 # weights: 507 initial value 131.606494 iter 10 value 94.375627 iter 20 value 94.320767 iter 30 value 94.312568 iter 40 value 93.881060 iter 50 value 91.815782 iter 60 value 91.721863 iter 60 value 91.721863 final value 91.721862 converged Fitting Repeat 2 # weights: 507 initial value 98.551743 iter 10 value 94.491540 iter 20 value 94.170149 iter 30 value 91.873918 iter 40 value 86.745251 iter 50 value 85.755624 iter 60 value 85.072445 iter 70 value 84.867643 iter 80 value 83.434285 iter 90 value 83.350096 iter 100 value 83.323274 final value 83.323274 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 119.643381 iter 10 value 94.481968 iter 20 value 94.475069 iter 30 value 93.142167 iter 40 value 92.183318 iter 50 value 92.105961 iter 60 value 84.196650 iter 70 value 83.729925 iter 80 value 82.445093 iter 90 value 82.419170 iter 100 value 82.397567 final value 82.397567 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 97.197382 iter 10 value 94.417410 iter 20 value 94.380718 iter 30 value 94.379492 iter 40 value 94.377670 iter 50 value 85.039641 iter 60 value 84.916122 iter 70 value 84.901098 iter 80 value 84.880954 iter 90 value 84.028570 iter 100 value 81.429140 final value 81.429140 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 99.347390 iter 10 value 93.079615 iter 20 value 93.035982 iter 30 value 93.025234 iter 40 value 92.953408 iter 50 value 92.879328 iter 60 value 92.871764 final value 92.871734 converged Fitting Repeat 1 # weights: 103 initial value 95.101624 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 95.468969 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 105.974209 iter 10 value 93.804515 iter 20 value 91.919445 iter 20 value 91.919444 iter 20 value 91.919444 final value 91.919444 converged Fitting Repeat 4 # weights: 103 initial value 102.897924 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 95.571778 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 94.924441 iter 10 value 93.999030 final value 93.582418 converged Fitting Repeat 2 # weights: 305 initial value 95.206840 final value 93.582418 converged Fitting Repeat 3 # weights: 305 initial value 97.228958 final value 93.582418 converged Fitting Repeat 4 # weights: 305 initial value 96.994455 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 99.966787 iter 10 value 93.582450 final value 93.582418 converged Fitting Repeat 1 # weights: 507 initial value 106.305800 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 100.406103 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 105.716989 final value 94.052874 converged Fitting Repeat 4 # weights: 507 initial value 117.852737 iter 10 value 94.053222 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 133.050952 final value 93.582418 converged Fitting Repeat 1 # weights: 103 initial value 97.097645 iter 10 value 94.193998 iter 20 value 93.728567 iter 30 value 91.482182 iter 40 value 91.011309 iter 50 value 89.477653 iter 60 value 83.844270 iter 70 value 82.178637 iter 80 value 82.086123 iter 90 value 82.076311 final value 82.075733 converged Fitting Repeat 2 # weights: 103 initial value 100.519726 iter 10 value 93.844615 iter 20 value 86.283722 iter 30 value 84.551490 iter 40 value 84.349536 iter 50 value 83.634751 final value 83.599494 converged Fitting Repeat 3 # weights: 103 initial value 100.852626 iter 10 value 93.627003 iter 20 value 86.429740 iter 30 value 83.499494 iter 40 value 83.248475 iter 50 value 83.195313 iter 60 value 83.171109 final value 83.171106 converged Fitting Repeat 4 # weights: 103 initial value 97.945378 iter 10 value 94.054883 iter 20 value 93.186126 iter 30 value 89.803471 iter 40 value 84.787481 iter 50 value 84.255029 iter 60 value 83.822759 iter 70 value 82.996633 iter 80 value 82.321777 iter 90 value 82.079861 final value 82.076648 converged Fitting Repeat 5 # weights: 103 initial value 103.342461 iter 10 value 94.055122 iter 20 value 93.831449 iter 30 value 88.141930 iter 40 value 85.215228 iter 50 value 84.126396 iter 60 value 83.364435 iter 70 value 80.621852 iter 80 value 80.225817 iter 90 value 80.092559 iter 100 value 80.045297 final value 80.045297 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 101.371243 iter 10 value 93.979995 iter 20 value 88.843394 iter 30 value 86.586432 iter 40 value 84.730218 iter 50 value 81.132304 iter 60 value 80.533614 iter 70 value 80.223788 iter 80 value 79.897970 iter 90 value 79.796534 iter 100 value 79.427771 final value 79.427771 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.388900 iter 10 value 94.040125 iter 20 value 91.810419 iter 30 value 89.662901 iter 40 value 85.629877 iter 50 value 82.312417 iter 60 value 81.646912 iter 70 value 80.915734 iter 80 value 80.296641 iter 90 value 80.175423 iter 100 value 80.127206 final value 80.127206 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.574793 iter 10 value 94.270428 iter 20 value 93.629563 iter 30 value 87.713329 iter 40 value 84.514385 iter 50 value 84.259740 iter 60 value 82.680817 iter 70 value 81.280485 iter 80 value 81.093151 iter 90 value 80.846203 iter 100 value 80.224177 final value 80.224177 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.352648 iter 10 value 94.302739 iter 20 value 93.150067 iter 30 value 93.015235 iter 40 value 90.215165 iter 50 value 83.674427 iter 60 value 80.800465 iter 70 value 80.376069 iter 80 value 80.054200 iter 90 value 79.611127 iter 100 value 79.355219 final value 79.355219 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.268783 iter 10 value 94.240835 iter 20 value 85.989610 iter 30 value 84.056595 iter 40 value 83.134438 iter 50 value 81.419004 iter 60 value 80.242619 iter 70 value 79.663060 iter 80 value 79.541456 iter 90 value 79.516622 iter 100 value 79.455523 final value 79.455523 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 128.756186 iter 10 value 94.102333 iter 20 value 91.765134 iter 30 value 86.447964 iter 40 value 84.675440 iter 50 value 83.956946 iter 60 value 83.377528 iter 70 value 83.255257 iter 80 value 83.087984 iter 90 value 81.649534 iter 100 value 80.329521 final value 80.329521 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 124.519121 iter 10 value 94.884997 iter 20 value 93.880753 iter 30 value 91.480033 iter 40 value 84.312540 iter 50 value 83.010086 iter 60 value 81.541598 iter 70 value 81.318414 iter 80 value 80.501509 iter 90 value 79.857555 iter 100 value 79.274738 final value 79.274738 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.159425 iter 10 value 94.193299 iter 20 value 91.270946 iter 30 value 87.666692 iter 40 value 87.242440 iter 50 value 83.831929 iter 60 value 81.679484 iter 70 value 81.332465 iter 80 value 81.068888 iter 90 value 80.937949 iter 100 value 80.279543 final value 80.279543 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 128.731578 iter 10 value 93.637678 iter 20 value 85.037984 iter 30 value 82.611885 iter 40 value 82.234141 iter 50 value 81.169838 iter 60 value 80.417852 iter 70 value 80.316605 iter 80 value 80.155081 iter 90 value 79.493400 iter 100 value 78.728806 final value 78.728806 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.487695 iter 10 value 94.838632 iter 20 value 85.741653 iter 30 value 85.000811 iter 40 value 84.598359 iter 50 value 84.154846 iter 60 value 81.700962 iter 70 value 80.006171 iter 80 value 79.196595 iter 90 value 78.859438 iter 100 value 78.498169 final value 78.498169 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.834983 iter 10 value 91.787090 iter 20 value 90.000691 iter 30 value 89.991943 iter 40 value 89.991574 iter 50 value 89.903538 final value 89.902454 converged Fitting Repeat 2 # weights: 103 initial value 99.702112 final value 94.054652 converged Fitting Repeat 3 # weights: 103 initial value 98.657906 iter 10 value 94.054523 iter 20 value 94.052712 iter 30 value 93.583325 final value 93.583139 converged Fitting Repeat 4 # weights: 103 initial value 99.349816 iter 10 value 94.053361 iter 20 value 92.904586 iter 30 value 82.219763 iter 40 value 81.839904 iter 50 value 81.626451 iter 60 value 81.584592 iter 70 value 81.563137 iter 80 value 81.562958 iter 90 value 81.188293 iter 100 value 81.089848 final value 81.089848 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.564940 iter 10 value 93.584291 iter 20 value 93.583068 iter 30 value 93.261635 iter 40 value 92.072527 iter 50 value 92.072318 iter 60 value 87.719575 iter 70 value 83.041060 iter 80 value 81.203541 iter 90 value 81.013361 iter 100 value 81.006321 final value 81.006321 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 94.795319 iter 10 value 94.057576 iter 20 value 93.923479 iter 30 value 93.583214 iter 30 value 93.583214 iter 30 value 93.583214 final value 93.583214 converged Fitting Repeat 2 # weights: 305 initial value 106.377562 iter 10 value 93.341822 iter 20 value 93.333553 iter 30 value 93.330835 iter 40 value 93.330079 iter 50 value 93.274348 iter 60 value 93.273549 iter 70 value 92.840356 iter 80 value 92.753114 iter 90 value 92.744750 iter 100 value 84.806695 final value 84.806695 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 96.603674 iter 10 value 91.032139 iter 20 value 82.320003 iter 30 value 81.432054 iter 40 value 80.897233 final value 80.896640 converged Fitting Repeat 4 # weights: 305 initial value 94.538062 iter 10 value 93.587516 iter 20 value 93.584401 iter 30 value 93.583658 iter 40 value 93.582148 final value 93.582078 converged Fitting Repeat 5 # weights: 305 initial value 100.561101 iter 10 value 93.159144 iter 20 value 93.156007 final value 93.154880 converged Fitting Repeat 1 # weights: 507 initial value 103.618681 iter 10 value 94.061037 iter 20 value 93.055047 iter 30 value 92.583372 iter 40 value 89.057474 iter 50 value 83.720482 iter 60 value 83.708443 iter 70 value 83.706869 iter 80 value 82.094753 iter 90 value 81.479165 iter 100 value 78.462105 final value 78.462105 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.226637 iter 10 value 94.060990 iter 20 value 94.052947 final value 94.052935 converged Fitting Repeat 3 # weights: 507 initial value 109.131254 iter 10 value 93.591854 iter 20 value 93.585638 iter 30 value 93.582083 iter 40 value 87.332827 iter 50 value 84.139717 final value 84.063913 converged Fitting Repeat 4 # weights: 507 initial value 107.773537 iter 10 value 94.061014 iter 20 value 93.964688 iter 30 value 93.117714 iter 40 value 86.160804 iter 50 value 82.762720 iter 60 value 81.279615 iter 70 value 81.136334 iter 80 value 79.950977 iter 90 value 79.335675 iter 100 value 79.068933 final value 79.068933 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.191963 iter 10 value 94.062176 iter 20 value 93.235769 iter 30 value 84.129439 iter 40 value 83.911138 iter 50 value 82.369327 iter 60 value 81.062210 iter 70 value 80.452164 iter 80 value 80.276206 iter 90 value 80.190865 iter 100 value 80.190750 final value 80.190750 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.643352 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 102.092772 final value 94.461207 converged Fitting Repeat 3 # weights: 103 initial value 104.466902 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 100.634170 final value 94.026542 converged Fitting Repeat 5 # weights: 103 initial value 109.658367 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.928573 iter 10 value 94.482326 iter 20 value 94.015120 iter 30 value 93.508177 final value 93.508117 converged Fitting Repeat 2 # weights: 305 initial value 103.698736 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 105.617541 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 112.646429 iter 10 value 94.026542 iter 10 value 94.026542 iter 10 value 94.026542 final value 94.026542 converged Fitting Repeat 5 # weights: 305 initial value 96.578513 iter 10 value 88.514857 iter 20 value 85.369048 iter 20 value 85.369048 iter 20 value 85.369048 final value 85.369048 converged Fitting Repeat 1 # weights: 507 initial value 104.755771 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 99.142008 iter 10 value 94.026561 final value 94.026542 converged Fitting Repeat 3 # weights: 507 initial value 101.984024 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 99.176026 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 117.357571 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 100.413593 iter 10 value 94.423865 iter 20 value 86.526760 iter 30 value 84.834781 iter 40 value 83.858632 iter 50 value 83.023614 iter 60 value 81.532398 iter 70 value 81.501242 iter 80 value 81.431798 iter 90 value 81.321215 iter 100 value 81.305310 final value 81.305310 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 102.081282 iter 10 value 93.329505 iter 20 value 88.590681 iter 30 value 85.764548 iter 40 value 84.977126 iter 50 value 83.594311 iter 60 value 83.549119 final value 83.549116 converged Fitting Repeat 3 # weights: 103 initial value 112.310866 iter 10 value 94.486502 iter 20 value 94.150259 iter 30 value 94.127233 iter 40 value 94.126340 iter 50 value 93.860176 iter 60 value 91.840379 iter 70 value 90.192508 iter 80 value 87.976763 iter 90 value 84.867789 iter 100 value 83.755477 final value 83.755477 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.081852 iter 10 value 94.550124 iter 20 value 94.216877 iter 30 value 94.126360 iter 40 value 87.346309 iter 50 value 84.966347 iter 60 value 84.076790 iter 70 value 82.870042 iter 80 value 82.074054 iter 90 value 81.740604 iter 100 value 81.684686 final value 81.684686 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.979029 iter 10 value 91.638548 iter 20 value 89.087397 iter 30 value 88.508557 iter 40 value 87.791382 iter 50 value 85.494977 iter 60 value 84.931541 iter 70 value 83.990838 iter 80 value 83.957617 final value 83.957615 converged Fitting Repeat 1 # weights: 305 initial value 111.158196 iter 10 value 94.306333 iter 20 value 92.241580 iter 30 value 90.547593 iter 40 value 89.410984 iter 50 value 82.947473 iter 60 value 82.227502 iter 70 value 81.588163 iter 80 value 80.966270 iter 90 value 80.368907 iter 100 value 79.959997 final value 79.959997 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 118.740972 iter 10 value 94.542490 iter 20 value 92.274440 iter 30 value 89.336243 iter 40 value 86.602641 iter 50 value 82.085977 iter 60 value 81.606203 iter 70 value 81.268807 iter 80 value 80.918917 iter 90 value 80.141297 iter 100 value 80.045358 final value 80.045358 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.556560 iter 10 value 94.498644 iter 20 value 92.270500 iter 30 value 88.318740 iter 40 value 83.899562 iter 50 value 82.509326 iter 60 value 81.595146 iter 70 value 80.876646 iter 80 value 80.485903 iter 90 value 80.441297 iter 100 value 80.432820 final value 80.432820 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.386637 iter 10 value 93.753061 iter 20 value 83.869676 iter 30 value 83.507522 iter 40 value 82.792896 iter 50 value 82.246649 iter 60 value 80.736039 iter 70 value 80.471048 iter 80 value 80.301239 iter 90 value 80.104513 iter 100 value 80.037546 final value 80.037546 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.885670 iter 10 value 93.448772 iter 20 value 91.473945 iter 30 value 86.740864 iter 40 value 86.018625 iter 50 value 85.689575 iter 60 value 84.924906 iter 70 value 84.009753 iter 80 value 82.940852 iter 90 value 82.098621 iter 100 value 81.596316 final value 81.596316 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.945502 iter 10 value 94.510109 iter 20 value 92.851252 iter 30 value 89.845333 iter 40 value 89.431204 iter 50 value 88.302396 iter 60 value 88.176597 iter 70 value 87.952343 iter 80 value 85.813924 iter 90 value 81.696802 iter 100 value 80.994618 final value 80.994618 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.297597 iter 10 value 93.815393 iter 20 value 89.614165 iter 30 value 87.765379 iter 40 value 86.620533 iter 50 value 85.386690 iter 60 value 83.926625 iter 70 value 82.672912 iter 80 value 82.047312 iter 90 value 81.855519 iter 100 value 81.761499 final value 81.761499 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 135.994686 iter 10 value 94.297534 iter 20 value 93.298228 iter 30 value 88.101984 iter 40 value 86.524900 iter 50 value 85.422314 iter 60 value 83.876758 iter 70 value 83.461405 iter 80 value 83.176036 iter 90 value 82.947641 iter 100 value 82.336952 final value 82.336952 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.398547 iter 10 value 94.513286 iter 20 value 94.229133 iter 30 value 91.584066 iter 40 value 84.167608 iter 50 value 83.666940 iter 60 value 82.248300 iter 70 value 81.665914 iter 80 value 80.895705 iter 90 value 80.840159 iter 100 value 80.779582 final value 80.779582 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.577422 iter 10 value 94.561116 iter 20 value 94.304831 iter 30 value 94.048950 iter 40 value 92.915682 iter 50 value 89.351197 iter 60 value 84.746129 iter 70 value 83.541220 iter 80 value 82.205316 iter 90 value 81.523398 iter 100 value 81.449068 final value 81.449068 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.411162 final value 94.485862 converged Fitting Repeat 2 # weights: 103 initial value 96.519147 final value 94.485975 converged Fitting Repeat 3 # weights: 103 initial value 97.034365 final value 94.486167 converged Fitting Repeat 4 # weights: 103 initial value 103.730564 final value 94.485704 converged Fitting Repeat 5 # weights: 103 initial value 98.016789 final value 94.486110 converged Fitting Repeat 1 # weights: 305 initial value 112.279794 iter 10 value 94.489325 iter 20 value 94.469167 iter 30 value 88.184888 iter 40 value 83.544035 iter 50 value 82.475301 iter 60 value 82.466474 iter 60 value 82.466474 iter 60 value 82.466474 final value 82.466474 converged Fitting Repeat 2 # weights: 305 initial value 109.627559 iter 10 value 89.842727 iter 20 value 84.583631 iter 30 value 83.084781 iter 40 value 83.002143 iter 50 value 82.999649 iter 60 value 82.838987 final value 82.837291 converged Fitting Repeat 3 # weights: 305 initial value 112.871953 iter 10 value 94.488659 iter 20 value 92.153986 iter 30 value 86.206268 iter 40 value 85.608426 final value 85.605451 converged Fitting Repeat 4 # weights: 305 initial value 103.586338 iter 10 value 94.496418 iter 20 value 89.588630 iter 30 value 88.567339 iter 40 value 88.559342 iter 50 value 88.186837 iter 60 value 88.181734 iter 70 value 87.603504 final value 87.602510 converged Fitting Repeat 5 # weights: 305 initial value 96.925004 iter 10 value 94.485342 final value 94.026841 converged Fitting Repeat 1 # weights: 507 initial value 98.280508 iter 10 value 93.895494 iter 20 value 93.891649 iter 30 value 93.890862 iter 40 value 87.752957 iter 50 value 85.501974 iter 60 value 85.473560 iter 70 value 85.418098 iter 80 value 84.822374 iter 90 value 84.821324 iter 100 value 84.184007 final value 84.184007 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 122.275749 iter 10 value 94.492051 iter 20 value 94.243111 iter 30 value 83.637238 iter 40 value 83.450899 iter 50 value 83.447938 iter 50 value 83.447938 final value 83.447938 converged Fitting Repeat 3 # weights: 507 initial value 98.481416 iter 10 value 94.261152 iter 20 value 94.128394 final value 94.027979 converged Fitting Repeat 4 # weights: 507 initial value 101.311753 iter 10 value 93.897898 iter 20 value 93.892864 iter 30 value 88.495905 iter 40 value 80.842293 iter 50 value 80.316207 iter 60 value 80.199522 iter 70 value 79.994224 iter 80 value 78.693646 iter 90 value 78.668220 iter 100 value 78.611907 final value 78.611907 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.592041 iter 10 value 94.037782 iter 20 value 94.030942 iter 30 value 94.029485 iter 40 value 90.251315 iter 50 value 84.922589 iter 60 value 84.282283 iter 70 value 83.600057 iter 80 value 81.111418 iter 90 value 79.983790 iter 100 value 79.283384 final value 79.283384 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.583416 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.028211 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 111.964947 final value 94.484209 converged Fitting Repeat 4 # weights: 103 initial value 97.713419 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.377327 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 97.536265 final value 94.467391 converged Fitting Repeat 2 # weights: 305 initial value 108.130144 final value 94.467391 converged Fitting Repeat 3 # weights: 305 initial value 111.852468 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 99.637892 final value 94.448052 converged Fitting Repeat 5 # weights: 305 initial value 95.180976 final value 94.467391 converged Fitting Repeat 1 # weights: 507 initial value 95.529115 iter 10 value 92.954604 iter 20 value 92.837801 iter 30 value 92.837084 iter 30 value 92.837083 iter 30 value 92.837083 final value 92.837083 converged Fitting Repeat 2 # weights: 507 initial value 100.576860 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 107.754095 iter 10 value 93.842899 iter 20 value 87.927328 iter 30 value 86.640118 iter 40 value 86.525413 iter 50 value 86.242042 iter 60 value 86.090917 iter 70 value 86.090158 final value 86.090149 converged Fitting Repeat 4 # weights: 507 initial value 101.525580 final value 94.467391 converged Fitting Repeat 5 # weights: 507 initial value 113.395612 final value 94.467391 converged Fitting Repeat 1 # weights: 103 initial value 101.846058 iter 10 value 94.504549 iter 20 value 88.920744 iter 30 value 87.236418 iter 40 value 86.929559 iter 50 value 86.441204 iter 60 value 86.092180 iter 70 value 85.682405 iter 80 value 85.673606 iter 90 value 85.596944 iter 100 value 85.577771 final value 85.577771 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.425263 iter 10 value 93.983718 iter 20 value 87.413753 iter 30 value 87.141100 iter 40 value 86.310577 iter 50 value 85.643679 iter 60 value 85.359156 iter 70 value 85.351454 final value 85.351234 converged Fitting Repeat 3 # weights: 103 initial value 109.170910 iter 10 value 94.326705 iter 20 value 91.582140 iter 30 value 91.352491 iter 40 value 90.801432 iter 50 value 88.815104 iter 60 value 86.695085 iter 70 value 86.569812 iter 80 value 86.390051 iter 90 value 84.667439 iter 100 value 83.147305 final value 83.147305 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 103.141348 iter 10 value 93.926162 iter 20 value 85.481979 iter 30 value 85.298697 iter 40 value 84.347648 iter 50 value 83.551906 iter 60 value 83.345638 iter 70 value 83.237411 iter 80 value 82.934724 iter 90 value 82.670235 final value 82.666393 converged Fitting Repeat 5 # weights: 103 initial value 102.003657 iter 10 value 94.697222 iter 20 value 94.488146 iter 30 value 90.899589 iter 40 value 88.802866 iter 50 value 88.195125 iter 60 value 86.798740 iter 70 value 86.492671 iter 80 value 86.469432 iter 90 value 86.458665 final value 86.455096 converged Fitting Repeat 1 # weights: 305 initial value 101.502667 iter 10 value 94.595197 iter 20 value 90.891705 iter 30 value 87.947921 iter 40 value 86.791220 iter 50 value 86.404411 iter 60 value 85.390490 iter 70 value 84.357892 iter 80 value 83.965917 iter 90 value 82.965652 iter 100 value 82.144102 final value 82.144102 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.585660 iter 10 value 94.404018 iter 20 value 93.735045 iter 30 value 91.480057 iter 40 value 89.010137 iter 50 value 87.432917 iter 60 value 87.032065 iter 70 value 84.401377 iter 80 value 83.298123 iter 90 value 83.112276 iter 100 value 83.052167 final value 83.052167 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.633670 iter 10 value 95.650803 iter 20 value 94.497738 iter 30 value 89.839586 iter 40 value 88.625635 iter 50 value 88.462727 iter 60 value 86.433535 iter 70 value 86.286206 iter 80 value 86.153762 iter 90 value 85.963415 iter 100 value 83.746357 final value 83.746357 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 122.655208 iter 10 value 94.551263 iter 20 value 91.951989 iter 30 value 87.363049 iter 40 value 85.966791 iter 50 value 85.721290 iter 60 value 85.665012 iter 70 value 85.468807 iter 80 value 84.940845 iter 90 value 83.712038 iter 100 value 83.101913 final value 83.101913 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.464537 iter 10 value 94.770447 iter 20 value 89.492992 iter 30 value 88.747218 iter 40 value 88.400627 iter 50 value 87.313787 iter 60 value 85.119192 iter 70 value 84.599189 iter 80 value 83.968561 iter 90 value 83.818667 iter 100 value 83.800635 final value 83.800635 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.631872 iter 10 value 94.596501 iter 20 value 94.453686 iter 30 value 90.033068 iter 40 value 87.270232 iter 50 value 85.524805 iter 60 value 84.340217 iter 70 value 83.243356 iter 80 value 82.874756 iter 90 value 82.613029 iter 100 value 82.557488 final value 82.557488 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 117.466275 iter 10 value 95.016462 iter 20 value 94.287160 iter 30 value 94.157216 iter 40 value 91.441511 iter 50 value 87.625690 iter 60 value 87.280153 iter 70 value 86.956779 iter 80 value 85.272386 iter 90 value 83.635971 iter 100 value 82.944464 final value 82.944464 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 122.401267 iter 10 value 94.203761 iter 20 value 89.757961 iter 30 value 85.418003 iter 40 value 85.019465 iter 50 value 84.127529 iter 60 value 82.089751 iter 70 value 81.291801 iter 80 value 81.161244 iter 90 value 80.956994 iter 100 value 80.873354 final value 80.873354 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 124.099032 iter 10 value 94.174271 iter 20 value 91.336728 iter 30 value 87.783613 iter 40 value 85.230262 iter 50 value 83.712791 iter 60 value 83.163238 iter 70 value 83.018056 iter 80 value 82.920538 iter 90 value 82.072659 iter 100 value 81.454599 final value 81.454599 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.729571 iter 10 value 94.573797 iter 20 value 91.516376 iter 30 value 89.874892 iter 40 value 86.173389 iter 50 value 84.753034 iter 60 value 83.889311 iter 70 value 82.129327 iter 80 value 81.682842 iter 90 value 81.632430 iter 100 value 81.484974 final value 81.484974 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.095797 iter 10 value 94.485979 iter 20 value 94.475191 iter 30 value 94.467472 final value 94.467405 converged Fitting Repeat 2 # weights: 103 initial value 101.620379 final value 94.442326 converged Fitting Repeat 3 # weights: 103 initial value 99.556735 final value 94.485633 converged Fitting Repeat 4 # weights: 103 initial value 106.910657 final value 94.485684 converged Fitting Repeat 5 # weights: 103 initial value 104.970419 final value 94.485359 converged Fitting Repeat 1 # weights: 305 initial value 96.645671 iter 10 value 94.472184 iter 20 value 94.468223 iter 30 value 90.851283 iter 40 value 84.646364 iter 50 value 84.525146 iter 60 value 84.525003 final value 84.524960 converged Fitting Repeat 2 # weights: 305 initial value 97.884511 iter 10 value 94.162255 iter 20 value 94.093070 iter 30 value 92.728597 iter 40 value 89.056491 iter 50 value 88.557165 iter 60 value 87.314330 final value 87.298081 converged Fitting Repeat 3 # weights: 305 initial value 102.127153 iter 10 value 94.489054 final value 94.484218 converged Fitting Repeat 4 # weights: 305 initial value 104.084030 iter 10 value 93.808393 iter 20 value 93.729933 iter 30 value 92.583634 iter 40 value 92.565181 iter 50 value 92.564940 iter 60 value 92.562616 iter 70 value 92.442077 iter 80 value 91.868002 iter 90 value 91.844647 iter 100 value 91.842431 final value 91.842431 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 97.765756 iter 10 value 94.093687 iter 20 value 90.707580 iter 30 value 88.555740 final value 88.554280 converged Fitting Repeat 1 # weights: 507 initial value 144.618612 iter 10 value 95.658061 iter 20 value 94.488566 iter 30 value 94.486745 iter 40 value 94.457826 iter 50 value 94.450719 iter 60 value 92.275327 iter 70 value 87.983422 iter 80 value 84.002746 iter 90 value 83.286615 iter 100 value 82.983711 final value 82.983711 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 125.120179 iter 10 value 94.475906 iter 20 value 94.468002 final value 94.467595 converged Fitting Repeat 3 # weights: 507 initial value 96.038272 iter 10 value 94.480711 iter 20 value 94.456960 iter 30 value 94.448177 final value 94.448072 converged Fitting Repeat 4 # weights: 507 initial value 97.153238 iter 10 value 94.451123 iter 20 value 94.402278 iter 30 value 91.527260 iter 40 value 90.488423 iter 50 value 90.488236 iter 50 value 90.488235 iter 50 value 90.488235 final value 90.488235 converged Fitting Repeat 5 # weights: 507 initial value 102.220421 iter 10 value 93.626976 iter 20 value 92.715354 iter 30 value 92.346414 iter 40 value 92.313387 iter 50 value 83.975112 iter 60 value 83.406786 iter 70 value 83.001228 iter 80 value 82.787437 iter 90 value 82.232568 iter 100 value 81.328941 final value 81.328941 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.568180 final value 93.915746 converged Fitting Repeat 2 # weights: 103 initial value 98.409222 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.564123 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 108.447727 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 98.412655 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 111.920998 iter 10 value 91.119537 iter 20 value 88.639544 iter 30 value 84.818222 iter 40 value 84.595260 iter 50 value 84.592204 final value 84.592200 converged Fitting Repeat 2 # weights: 305 initial value 94.633828 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 95.439319 iter 10 value 93.866992 final value 93.865909 converged Fitting Repeat 4 # weights: 305 initial value 102.096635 final value 93.865909 converged Fitting Repeat 5 # weights: 305 initial value 99.285678 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 96.863691 final value 93.869755 converged Fitting Repeat 2 # weights: 507 initial value 108.884568 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 98.536600 final value 93.915746 converged Fitting Repeat 4 # weights: 507 initial value 107.057380 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 93.633482 iter 10 value 86.666156 iter 20 value 84.165736 iter 30 value 83.764913 final value 83.764688 converged Fitting Repeat 1 # weights: 103 initial value 102.469563 iter 10 value 91.180927 iter 20 value 87.282258 iter 30 value 86.951862 iter 40 value 85.455695 iter 50 value 84.980207 iter 60 value 84.960101 final value 84.959664 converged Fitting Repeat 2 # weights: 103 initial value 102.186750 iter 10 value 93.930521 iter 20 value 90.139286 iter 30 value 89.252362 iter 40 value 86.181242 iter 50 value 85.214249 iter 60 value 85.168902 iter 70 value 84.938005 iter 80 value 84.076224 iter 90 value 83.812401 iter 100 value 83.528321 final value 83.528321 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 102.678065 iter 10 value 94.394790 iter 20 value 94.056785 iter 30 value 93.734743 iter 40 value 93.690660 iter 50 value 89.833072 iter 60 value 86.511461 iter 70 value 85.488782 iter 80 value 85.341421 iter 90 value 85.058513 iter 100 value 84.959660 final value 84.959660 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 106.751192 iter 10 value 93.177487 iter 20 value 87.086843 iter 30 value 86.520090 iter 40 value 84.720666 iter 50 value 83.983891 iter 60 value 83.860131 iter 70 value 83.729094 iter 80 value 83.706457 iter 90 value 83.635729 iter 100 value 83.595305 final value 83.595305 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 107.665498 iter 10 value 94.056065 iter 20 value 88.456453 iter 30 value 87.177962 iter 40 value 87.056571 iter 50 value 85.210973 iter 60 value 84.959657 final value 84.959653 converged Fitting Repeat 1 # weights: 305 initial value 110.283419 iter 10 value 93.878562 iter 20 value 89.062383 iter 30 value 86.463862 iter 40 value 85.478830 iter 50 value 84.941634 iter 60 value 84.873901 iter 70 value 84.699075 iter 80 value 83.977351 iter 90 value 83.156240 iter 100 value 82.947977 final value 82.947977 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 109.071623 iter 10 value 94.100841 iter 20 value 88.258268 iter 30 value 87.460805 iter 40 value 84.616890 iter 50 value 84.038501 iter 60 value 83.323374 iter 70 value 82.496098 iter 80 value 81.991627 iter 90 value 81.947809 iter 100 value 81.865586 final value 81.865586 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.141846 iter 10 value 93.995736 iter 20 value 91.316680 iter 30 value 87.024654 iter 40 value 86.816985 iter 50 value 86.569865 iter 60 value 86.184521 iter 70 value 85.998175 iter 80 value 85.749619 iter 90 value 83.501487 iter 100 value 82.942050 final value 82.942050 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.345215 iter 10 value 94.228864 iter 20 value 90.382274 iter 30 value 86.392112 iter 40 value 83.458894 iter 50 value 83.267146 iter 60 value 83.036454 iter 70 value 82.886657 iter 80 value 82.754374 iter 90 value 82.563267 iter 100 value 82.136509 final value 82.136509 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.414207 iter 10 value 94.252500 iter 20 value 92.818077 iter 30 value 90.420117 iter 40 value 87.755924 iter 50 value 86.653461 iter 60 value 84.552610 iter 70 value 83.337446 iter 80 value 82.667383 iter 90 value 82.217738 iter 100 value 81.974685 final value 81.974685 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.679945 iter 10 value 93.729713 iter 20 value 87.099803 iter 30 value 86.850009 iter 40 value 84.894566 iter 50 value 83.454137 iter 60 value 82.929482 iter 70 value 82.425640 iter 80 value 82.087799 iter 90 value 81.959405 iter 100 value 81.837509 final value 81.837509 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.298023 iter 10 value 95.311339 iter 20 value 88.599340 iter 30 value 86.770138 iter 40 value 86.410305 iter 50 value 85.893919 iter 60 value 84.527573 iter 70 value 83.948739 iter 80 value 83.529072 iter 90 value 82.914059 iter 100 value 82.098016 final value 82.098016 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.829246 iter 10 value 94.185228 iter 20 value 89.084117 iter 30 value 85.904789 iter 40 value 83.857487 iter 50 value 83.230927 iter 60 value 82.739120 iter 70 value 82.272842 iter 80 value 82.049435 iter 90 value 81.945509 iter 100 value 81.813785 final value 81.813785 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 118.434484 iter 10 value 93.906826 iter 20 value 87.194650 iter 30 value 85.351940 iter 40 value 85.284320 iter 50 value 84.699200 iter 60 value 84.070426 iter 70 value 83.649331 iter 80 value 83.532879 iter 90 value 82.888124 iter 100 value 82.415524 final value 82.415524 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.878726 iter 10 value 94.273407 iter 20 value 93.261591 iter 30 value 87.219388 iter 40 value 84.881014 iter 50 value 84.277142 iter 60 value 83.848712 iter 70 value 83.443623 iter 80 value 83.039585 iter 90 value 82.299271 iter 100 value 82.086946 final value 82.086946 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.813451 iter 10 value 94.055606 final value 94.052900 converged Fitting Repeat 2 # weights: 103 initial value 96.889807 final value 94.054417 converged Fitting Repeat 3 # weights: 103 initial value 95.858528 iter 10 value 94.054604 final value 94.052912 converged Fitting Repeat 4 # weights: 103 initial value 95.257978 iter 10 value 94.054806 iter 20 value 93.992725 final value 93.657655 converged Fitting Repeat 5 # weights: 103 initial value 99.358802 final value 93.871417 converged Fitting Repeat 1 # weights: 305 initial value 98.370783 iter 10 value 93.920774 iter 20 value 93.915925 final value 93.915915 converged Fitting Repeat 2 # weights: 305 initial value 103.656562 iter 10 value 94.055503 iter 10 value 94.055503 iter 10 value 94.055503 final value 94.055503 converged Fitting Repeat 3 # weights: 305 initial value 100.662463 iter 10 value 90.224837 iter 20 value 89.611029 iter 30 value 88.659930 iter 40 value 87.445289 iter 50 value 87.437152 iter 60 value 87.029723 iter 70 value 86.500041 iter 80 value 86.492476 iter 90 value 84.903240 iter 100 value 84.636498 final value 84.636498 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.121279 iter 10 value 93.920559 iter 20 value 93.869588 iter 30 value 93.662720 iter 40 value 93.654272 iter 50 value 93.631186 iter 60 value 92.276184 iter 70 value 89.125688 iter 80 value 87.079533 iter 90 value 86.531871 iter 100 value 86.430972 final value 86.430972 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 98.386371 iter 10 value 93.814984 iter 20 value 93.771115 iter 30 value 93.758728 iter 40 value 93.758081 iter 50 value 90.384572 iter 60 value 90.363961 iter 70 value 90.203120 final value 90.202933 converged Fitting Repeat 1 # weights: 507 initial value 103.383010 iter 10 value 93.663115 iter 20 value 93.661260 iter 30 value 93.654088 iter 40 value 90.626483 iter 50 value 86.484726 iter 60 value 83.368814 iter 70 value 82.647492 iter 80 value 82.555154 iter 90 value 82.389314 iter 100 value 82.228006 final value 82.228006 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 102.386855 iter 10 value 94.060525 iter 20 value 94.050991 iter 30 value 93.655730 final value 93.654568 converged Fitting Repeat 3 # weights: 507 initial value 121.046166 iter 10 value 93.722703 iter 20 value 93.649759 iter 30 value 88.564543 iter 40 value 85.006849 iter 50 value 83.316318 iter 60 value 82.970179 iter 70 value 82.762663 iter 80 value 82.745911 iter 90 value 82.658586 iter 100 value 81.854274 final value 81.854274 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 113.160991 iter 10 value 94.270837 iter 20 value 89.364098 iter 30 value 85.856293 iter 40 value 83.001178 iter 50 value 82.468627 iter 60 value 82.374577 iter 70 value 82.339903 iter 80 value 82.335021 final value 82.334829 converged Fitting Repeat 5 # weights: 507 initial value 116.194254 iter 10 value 93.722437 iter 20 value 93.718275 iter 30 value 93.713883 iter 40 value 93.713452 iter 50 value 92.685531 iter 60 value 86.831978 iter 70 value 83.886809 iter 80 value 81.309376 iter 90 value 80.949958 iter 100 value 80.915050 final value 80.915050 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 124.878025 iter 10 value 117.894743 iter 20 value 117.890303 iter 30 value 117.019395 iter 40 value 116.110848 iter 50 value 116.011180 final value 116.011033 converged Fitting Repeat 2 # weights: 305 initial value 118.796759 iter 10 value 117.103018 iter 20 value 117.099472 final value 117.099307 converged Fitting Repeat 3 # weights: 305 initial value 120.115452 iter 10 value 117.561417 iter 20 value 117.551470 iter 30 value 112.279113 iter 40 value 108.790009 iter 50 value 108.788930 iter 60 value 107.910119 iter 70 value 107.781528 iter 80 value 107.718753 iter 90 value 107.718372 iter 100 value 107.716268 final value 107.716268 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 121.331573 iter 10 value 117.763822 iter 20 value 117.390498 iter 30 value 114.792891 iter 40 value 113.922193 iter 50 value 113.615617 iter 60 value 113.377070 final value 113.351941 converged Fitting Repeat 5 # weights: 305 initial value 120.867913 iter 10 value 117.894721 iter 20 value 117.778176 iter 30 value 108.162006 iter 40 value 107.984111 iter 50 value 107.982236 iter 60 value 105.603006 iter 70 value 105.275211 iter 80 value 105.251174 iter 90 value 103.306668 iter 100 value 102.165082 final value 102.165082 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Apr 29 06:28:01 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 44.42 1.32 107.37
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 34.20 | 1.95 | 36.30 | |
FreqInteractors | 0.28 | 0.03 | 0.35 | |
calculateAAC | 0.03 | 0.03 | 0.06 | |
calculateAutocor | 0.50 | 0.10 | 0.59 | |
calculateCTDC | 0.09 | 0.01 | 0.11 | |
calculateCTDD | 0.75 | 0.00 | 0.75 | |
calculateCTDT | 0.31 | 0.02 | 0.32 | |
calculateCTriad | 0.45 | 0.03 | 0.48 | |
calculateDC | 0.13 | 0.00 | 0.13 | |
calculateF | 0.32 | 0.04 | 0.37 | |
calculateKSAAP | 0.10 | 0.00 | 0.09 | |
calculateQD_Sm | 2.36 | 0.16 | 2.52 | |
calculateTC | 1.67 | 0.16 | 1.83 | |
calculateTC_Sm | 0.3 | 0.0 | 0.3 | |
corr_plot | 35.64 | 1.37 | 37.05 | |
enrichfindP | 0.67 | 0.10 | 14.16 | |
enrichfind_hp | 0.08 | 0.01 | 1.12 | |
enrichplot | 0.45 | 0.03 | 0.48 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.01 | 0.00 | 2.27 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.13 | 0.00 | 0.20 | |
pred_ensembel | 14.34 | 0.38 | 13.31 | |
var_imp | 35.28 | 1.23 | 36.53 | |