Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-04-02 19:30 -0400 (Wed, 02 Apr 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4764 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.3 (2025-02-28 ucrt) -- "Trophy Case" | 4495 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4522 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4449 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4426 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-04-01 02:30:55 -0400 (Tue, 01 Apr 2025) |
EndedAt: 2025-04-01 02:37:06 -0400 (Tue, 01 Apr 2025) |
EllapsedTime: 370.7 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck' * using R version 4.4.3 (2025-02-28 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 13.3.0 GNU Fortran (GCC) 13.3.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.12.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 33.52 2.04 35.70 corr_plot 33.34 1.98 35.39 var_imp 33.70 1.34 35.05 pred_ensembel 14.21 0.27 13.04 enrichfindP 0.55 0.14 12.59 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.20-bioc/R/library' * installing *source* package 'HPiP' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.3 (2025-02-28 ucrt) -- "Trophy Case" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 94.237285 final value 93.915746 converged Fitting Repeat 2 # weights: 103 initial value 97.357218 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 104.107051 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 97.602423 final value 93.915746 converged Fitting Repeat 5 # weights: 103 initial value 94.634152 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 94.443699 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 103.060901 final value 93.915746 converged Fitting Repeat 3 # weights: 305 initial value 110.140692 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 101.040855 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 98.520295 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 99.210354 final value 93.915746 converged Fitting Repeat 2 # weights: 507 initial value 119.716460 final value 93.915746 converged Fitting Repeat 3 # weights: 507 initial value 100.912572 final value 93.915746 converged Fitting Repeat 4 # weights: 507 initial value 98.649995 iter 10 value 94.052910 iter 10 value 94.052910 iter 10 value 94.052910 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 133.214857 iter 10 value 94.052910 iter 10 value 94.052910 iter 10 value 94.052910 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 113.255710 iter 10 value 94.039985 iter 20 value 88.143782 iter 30 value 85.833384 iter 40 value 85.078122 final value 85.039628 converged Fitting Repeat 2 # weights: 103 initial value 99.744399 iter 10 value 94.089506 iter 20 value 94.056676 iter 30 value 94.032492 iter 40 value 93.944454 iter 50 value 93.931943 iter 60 value 93.915921 iter 70 value 93.865516 iter 80 value 84.811969 iter 90 value 82.981168 iter 100 value 82.214120 final value 82.214120 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.102845 iter 10 value 94.139029 iter 20 value 92.474551 iter 30 value 86.382101 iter 40 value 83.453318 iter 50 value 81.696521 iter 60 value 81.208656 iter 70 value 80.967896 iter 80 value 80.965316 final value 80.954465 converged Fitting Repeat 4 # weights: 103 initial value 99.359287 iter 10 value 94.085366 iter 20 value 94.016896 iter 30 value 86.268970 iter 40 value 85.842390 iter 50 value 85.609395 iter 60 value 84.279591 iter 70 value 83.998961 iter 80 value 83.883402 final value 83.862844 converged Fitting Repeat 5 # weights: 103 initial value 96.204379 iter 10 value 94.045701 iter 20 value 87.935057 iter 30 value 84.574876 iter 40 value 82.349576 iter 50 value 82.289904 iter 60 value 82.189509 iter 70 value 81.509413 iter 80 value 81.009103 iter 90 value 80.965146 final value 80.965102 converged Fitting Repeat 1 # weights: 305 initial value 115.137443 iter 10 value 94.279347 iter 20 value 90.053447 iter 30 value 88.496562 iter 40 value 84.699229 iter 50 value 82.128407 iter 60 value 81.442856 iter 70 value 81.015324 iter 80 value 80.645949 iter 90 value 79.933711 iter 100 value 79.774884 final value 79.774884 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.289705 iter 10 value 94.067213 iter 20 value 85.298796 iter 30 value 83.053888 iter 40 value 80.231507 iter 50 value 78.580148 iter 60 value 78.121863 iter 70 value 77.844024 iter 80 value 77.716946 iter 90 value 77.683866 iter 100 value 77.647291 final value 77.647291 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 111.590429 iter 10 value 93.930630 iter 20 value 91.390772 iter 30 value 90.695040 iter 40 value 82.168501 iter 50 value 79.792128 iter 60 value 79.169062 iter 70 value 78.181174 iter 80 value 77.883172 iter 90 value 77.815009 iter 100 value 77.769849 final value 77.769849 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 98.997529 iter 10 value 94.029532 iter 20 value 86.611295 iter 30 value 85.011133 iter 40 value 80.475133 iter 50 value 78.797594 iter 60 value 78.297528 iter 70 value 78.094390 iter 80 value 77.975331 iter 90 value 77.903700 iter 100 value 77.687352 final value 77.687352 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.266847 iter 10 value 89.830846 iter 20 value 82.080548 iter 30 value 81.716873 iter 40 value 81.071157 iter 50 value 80.861461 iter 60 value 80.363920 iter 70 value 80.327469 iter 80 value 80.256745 iter 90 value 78.973618 iter 100 value 78.606081 final value 78.606081 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 116.416309 iter 10 value 94.288232 iter 20 value 88.248614 iter 30 value 83.469099 iter 40 value 82.311792 iter 50 value 79.217321 iter 60 value 77.891475 iter 70 value 77.709390 iter 80 value 77.238899 iter 90 value 77.017962 iter 100 value 76.944743 final value 76.944743 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 122.866372 iter 10 value 93.897550 iter 20 value 88.527798 iter 30 value 84.190661 iter 40 value 81.812095 iter 50 value 80.796895 iter 60 value 80.251287 iter 70 value 80.048068 iter 80 value 79.757603 iter 90 value 79.409482 iter 100 value 79.307435 final value 79.307435 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.790346 iter 10 value 94.058926 iter 20 value 92.589913 iter 30 value 89.484676 iter 40 value 86.619404 iter 50 value 80.398681 iter 60 value 78.225445 iter 70 value 77.468239 iter 80 value 77.285509 iter 90 value 77.146201 iter 100 value 76.878080 final value 76.878080 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.487254 iter 10 value 93.589522 iter 20 value 90.199017 iter 30 value 89.799902 iter 40 value 86.851969 iter 50 value 84.170713 iter 60 value 81.597304 iter 70 value 80.758278 iter 80 value 80.412885 iter 90 value 79.957345 iter 100 value 79.885168 final value 79.885168 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.114155 iter 10 value 94.725289 iter 20 value 88.125515 iter 30 value 85.317885 iter 40 value 81.813270 iter 50 value 79.683684 iter 60 value 79.125917 iter 70 value 77.817023 iter 80 value 77.324711 iter 90 value 77.258845 iter 100 value 77.163774 final value 77.163774 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.556065 final value 94.054653 converged Fitting Repeat 2 # weights: 103 initial value 98.023999 iter 10 value 93.917676 iter 20 value 93.878366 iter 30 value 93.867396 iter 40 value 93.863621 final value 93.863619 converged Fitting Repeat 3 # weights: 103 initial value 94.342553 iter 10 value 92.092084 iter 20 value 91.946941 iter 30 value 91.946056 iter 40 value 91.939582 iter 50 value 91.934101 final value 91.934095 converged Fitting Repeat 4 # weights: 103 initial value 96.237488 final value 94.054577 converged Fitting Repeat 5 # weights: 103 initial value 95.460379 final value 94.054827 converged Fitting Repeat 1 # weights: 305 initial value 98.350621 iter 10 value 94.013741 iter 20 value 94.010166 iter 30 value 94.009658 iter 40 value 93.952244 iter 50 value 93.949916 iter 60 value 93.799293 iter 70 value 93.798341 iter 80 value 91.528751 iter 90 value 91.265324 iter 100 value 91.226976 final value 91.226976 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.074406 iter 10 value 93.920078 iter 20 value 93.916307 final value 93.915971 converged Fitting Repeat 3 # weights: 305 initial value 120.488571 iter 10 value 94.057391 iter 20 value 94.052927 iter 30 value 93.997589 iter 40 value 93.301554 iter 50 value 93.300797 final value 93.300758 converged Fitting Repeat 4 # weights: 305 initial value 104.706637 iter 10 value 88.146342 iter 20 value 88.020511 iter 30 value 88.020102 iter 40 value 85.672234 iter 50 value 85.118661 iter 60 value 85.116823 iter 70 value 85.114567 iter 80 value 83.458325 iter 90 value 83.213936 iter 100 value 83.209848 final value 83.209848 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 95.250593 iter 10 value 93.920650 iter 20 value 92.089362 iter 30 value 86.667853 iter 40 value 86.296406 iter 50 value 86.176072 iter 60 value 81.853428 iter 70 value 80.013141 iter 80 value 78.903162 iter 90 value 78.859601 iter 100 value 78.856664 final value 78.856664 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.807356 iter 10 value 93.996752 iter 20 value 93.801052 iter 30 value 90.025834 iter 40 value 89.433030 iter 50 value 88.924376 final value 88.921993 converged Fitting Repeat 2 # weights: 507 initial value 115.033956 iter 10 value 93.923777 iter 20 value 93.918216 iter 30 value 93.914236 iter 30 value 93.914236 iter 30 value 93.914236 final value 93.914236 converged Fitting Repeat 3 # weights: 507 initial value 98.842215 iter 10 value 93.878246 iter 20 value 93.868627 final value 93.866573 converged Fitting Repeat 4 # weights: 507 initial value 117.470796 iter 10 value 93.875041 iter 20 value 93.866633 iter 30 value 93.831485 iter 40 value 86.392701 iter 50 value 82.868929 iter 60 value 82.220750 iter 70 value 82.013979 iter 80 value 81.986886 iter 90 value 81.981977 iter 100 value 79.572506 final value 79.572506 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.278775 iter 10 value 93.296828 iter 20 value 93.294805 iter 30 value 93.071404 iter 40 value 86.303990 iter 50 value 84.035567 iter 60 value 79.146258 iter 70 value 77.481552 iter 80 value 76.093944 iter 90 value 75.967960 iter 100 value 75.967492 final value 75.967492 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.966374 iter 10 value 89.166401 iter 20 value 88.512157 final value 88.506719 converged Fitting Repeat 2 # weights: 103 initial value 102.340249 iter 10 value 93.613090 iter 20 value 93.578663 final value 93.577423 converged Fitting Repeat 3 # weights: 103 initial value 97.508472 final value 94.312038 converged Fitting Repeat 4 # weights: 103 initial value 94.527798 final value 94.484213 converged Fitting Repeat 5 # weights: 103 initial value 99.380368 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 105.602265 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 96.206112 iter 10 value 93.935001 iter 20 value 93.901430 final value 93.901356 converged Fitting Repeat 3 # weights: 305 initial value 104.714503 iter 10 value 93.753333 final value 93.753294 converged Fitting Repeat 4 # weights: 305 initial value 94.738293 iter 10 value 85.582745 iter 20 value 85.229704 iter 30 value 85.229653 final value 85.229651 converged Fitting Repeat 5 # weights: 305 initial value 100.985250 iter 10 value 94.004445 iter 20 value 93.922224 iter 20 value 93.922224 iter 20 value 93.922224 final value 93.922224 converged Fitting Repeat 1 # weights: 507 initial value 104.562878 iter 10 value 88.460830 iter 20 value 87.857719 iter 30 value 87.855212 iter 40 value 87.853900 iter 50 value 87.853876 iter 50 value 87.853875 iter 50 value 87.853875 final value 87.853875 converged Fitting Repeat 2 # weights: 507 initial value 98.962355 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 114.510204 iter 10 value 93.753425 iter 20 value 93.617619 iter 30 value 93.507140 iter 30 value 93.507140 iter 30 value 93.507140 final value 93.507140 converged Fitting Repeat 4 # weights: 507 initial value 113.091115 iter 10 value 94.466846 final value 94.466662 converged Fitting Repeat 5 # weights: 507 initial value 129.804753 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 102.559715 iter 10 value 94.489265 iter 20 value 93.824997 iter 30 value 86.803759 iter 40 value 83.901122 iter 50 value 83.381295 iter 60 value 82.859680 iter 70 value 82.434949 iter 80 value 81.709502 iter 90 value 80.548066 iter 100 value 80.008978 final value 80.008978 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.726896 iter 10 value 94.403908 iter 20 value 93.884776 iter 30 value 93.805321 iter 40 value 93.746368 iter 50 value 90.341842 iter 60 value 84.576426 iter 70 value 84.228914 iter 80 value 83.636068 iter 90 value 83.414355 iter 100 value 83.050942 final value 83.050942 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 106.791488 iter 10 value 91.710422 iter 20 value 86.746041 iter 30 value 86.535797 iter 40 value 84.906250 iter 50 value 84.104518 iter 60 value 83.505476 iter 70 value 83.357772 iter 80 value 83.037429 final value 82.989675 converged Fitting Repeat 4 # weights: 103 initial value 96.381708 iter 10 value 94.497887 iter 20 value 94.468310 iter 30 value 94.284703 iter 40 value 93.835923 iter 50 value 93.754591 iter 60 value 90.829943 iter 70 value 84.860663 iter 80 value 82.572592 iter 90 value 82.094779 iter 100 value 81.004828 final value 81.004828 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 102.410060 iter 10 value 94.483486 iter 20 value 84.116480 iter 30 value 83.498700 iter 40 value 82.706377 final value 82.678197 converged Fitting Repeat 1 # weights: 305 initial value 103.833663 iter 10 value 89.917566 iter 20 value 86.084746 iter 30 value 82.911472 iter 40 value 80.987475 iter 50 value 80.661519 iter 60 value 80.011223 iter 70 value 79.868569 iter 80 value 79.626327 iter 90 value 78.772036 iter 100 value 78.668362 final value 78.668362 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.953631 iter 10 value 94.088023 iter 20 value 87.579615 iter 30 value 84.231000 iter 40 value 81.362788 iter 50 value 79.278083 iter 60 value 78.756985 iter 70 value 78.561463 iter 80 value 78.333181 iter 90 value 78.204138 iter 100 value 78.095297 final value 78.095297 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 119.067200 iter 10 value 94.418215 iter 20 value 90.203562 iter 30 value 86.082979 iter 40 value 84.418793 iter 50 value 82.869785 iter 60 value 82.169472 iter 70 value 81.924974 iter 80 value 81.678010 iter 90 value 81.034085 iter 100 value 79.317591 final value 79.317591 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.377525 iter 10 value 94.434764 iter 20 value 94.313099 iter 30 value 93.958684 iter 40 value 86.977624 iter 50 value 84.779597 iter 60 value 84.598319 iter 70 value 84.418589 iter 80 value 83.636122 iter 90 value 82.958579 iter 100 value 80.800680 final value 80.800680 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.544609 iter 10 value 94.425964 iter 20 value 89.532321 iter 30 value 86.777631 iter 40 value 84.480874 iter 50 value 82.768718 iter 60 value 81.846818 iter 70 value 79.944660 iter 80 value 79.122814 iter 90 value 78.895462 iter 100 value 78.686328 final value 78.686328 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 136.325314 iter 10 value 93.832499 iter 20 value 83.519457 iter 30 value 81.619371 iter 40 value 80.428058 iter 50 value 79.521591 iter 60 value 78.840437 iter 70 value 78.404646 iter 80 value 78.339551 iter 90 value 78.145668 iter 100 value 78.027397 final value 78.027397 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.204831 iter 10 value 94.509288 iter 20 value 89.487398 iter 30 value 86.619216 iter 40 value 86.096162 iter 50 value 81.712037 iter 60 value 80.024837 iter 70 value 79.309459 iter 80 value 78.488185 iter 90 value 78.183998 iter 100 value 78.012778 final value 78.012778 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 122.939018 iter 10 value 94.833352 iter 20 value 92.423721 iter 30 value 90.987859 iter 40 value 87.961752 iter 50 value 84.800371 iter 60 value 82.417148 iter 70 value 81.012257 iter 80 value 80.559051 iter 90 value 79.834238 iter 100 value 79.520182 final value 79.520182 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 121.627429 iter 10 value 94.436127 iter 20 value 93.886082 iter 30 value 90.836712 iter 40 value 84.797428 iter 50 value 83.943989 iter 60 value 81.829067 iter 70 value 81.733926 iter 80 value 80.818374 iter 90 value 80.436327 iter 100 value 79.214341 final value 79.214341 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.553249 iter 10 value 92.223542 iter 20 value 88.414780 iter 30 value 83.778024 iter 40 value 83.580888 iter 50 value 81.901900 iter 60 value 80.794585 iter 70 value 80.048730 iter 80 value 79.171343 iter 90 value 78.978548 iter 100 value 78.588500 final value 78.588500 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.954395 iter 10 value 94.485859 iter 20 value 94.484223 iter 30 value 87.979722 iter 40 value 87.040581 iter 50 value 86.536795 iter 60 value 86.535200 iter 70 value 86.534789 iter 80 value 84.868110 iter 90 value 84.032068 iter 100 value 84.031374 final value 84.031374 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.477726 final value 94.485767 converged Fitting Repeat 3 # weights: 103 initial value 104.429407 iter 10 value 94.057334 iter 20 value 93.762772 final value 93.754855 converged Fitting Repeat 4 # weights: 103 initial value 96.771618 iter 10 value 94.485900 iter 20 value 90.698211 iter 30 value 82.988049 iter 40 value 82.914192 final value 82.913854 converged Fitting Repeat 5 # weights: 103 initial value 114.459911 iter 10 value 94.485907 iter 20 value 90.210893 final value 86.945897 converged Fitting Repeat 1 # weights: 305 initial value 104.253109 iter 10 value 94.489174 final value 94.484560 converged Fitting Repeat 2 # weights: 305 initial value 130.050173 iter 10 value 94.447825 iter 20 value 94.267495 iter 30 value 88.399686 iter 40 value 88.393543 iter 50 value 83.648520 iter 60 value 82.906819 final value 82.906787 converged Fitting Repeat 3 # weights: 305 initial value 97.303026 iter 10 value 94.486807 iter 20 value 91.095567 iter 30 value 80.387085 iter 40 value 80.076384 iter 50 value 79.826030 iter 60 value 79.057353 final value 79.026304 converged Fitting Repeat 4 # weights: 305 initial value 105.660470 iter 10 value 94.489586 iter 20 value 94.438875 iter 30 value 88.631979 iter 40 value 83.536370 iter 50 value 83.532453 iter 60 value 83.531446 iter 70 value 82.252712 iter 80 value 82.045906 iter 90 value 82.039034 iter 100 value 82.033246 final value 82.033246 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.420227 iter 10 value 94.489018 iter 20 value 94.477190 iter 30 value 85.458495 iter 40 value 84.298815 iter 50 value 82.410967 iter 60 value 82.397231 iter 70 value 82.253828 iter 80 value 82.138432 iter 90 value 82.138206 iter 100 value 82.137661 final value 82.137661 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 116.160775 iter 10 value 94.320246 iter 20 value 94.312571 iter 30 value 93.946004 iter 40 value 88.803827 iter 50 value 85.741867 iter 60 value 85.701547 iter 70 value 85.700261 iter 80 value 84.531110 final value 84.346672 converged Fitting Repeat 2 # weights: 507 initial value 121.796276 iter 10 value 94.493346 iter 20 value 94.485448 iter 30 value 94.471226 iter 40 value 91.600526 iter 50 value 91.193962 iter 60 value 89.445625 iter 70 value 85.658620 iter 80 value 85.650089 iter 90 value 85.581030 iter 100 value 85.490343 final value 85.490343 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 99.168356 iter 10 value 93.730624 iter 20 value 93.725838 iter 30 value 93.624732 iter 40 value 89.956785 iter 50 value 83.115440 iter 60 value 82.069899 iter 70 value 81.895138 iter 80 value 80.960138 final value 80.959548 converged Fitting Repeat 4 # weights: 507 initial value 95.024297 iter 10 value 82.751967 iter 20 value 81.265221 iter 30 value 80.811934 iter 40 value 80.565042 iter 50 value 80.532898 iter 60 value 80.528221 iter 70 value 80.526854 iter 80 value 80.525482 final value 80.525107 converged Fitting Repeat 5 # weights: 507 initial value 102.297409 iter 10 value 94.451765 iter 20 value 93.912609 iter 30 value 85.190128 iter 40 value 84.088831 iter 50 value 84.040823 iter 60 value 84.040341 iter 70 value 83.995290 final value 83.989561 converged Fitting Repeat 1 # weights: 103 initial value 95.276320 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 94.803429 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.340093 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.514350 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 102.586278 iter 10 value 94.026542 iter 10 value 94.026542 iter 10 value 94.026542 final value 94.026542 converged Fitting Repeat 1 # weights: 305 initial value 108.071509 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 109.454961 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 95.848860 iter 10 value 93.750776 iter 20 value 93.201466 iter 30 value 93.201309 iter 30 value 93.201308 final value 93.201305 converged Fitting Repeat 4 # weights: 305 initial value 109.402537 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 100.839051 final value 94.026542 converged Fitting Repeat 1 # weights: 507 initial value 100.628915 iter 10 value 93.320268 final value 93.320225 converged Fitting Repeat 2 # weights: 507 initial value 102.117963 iter 10 value 94.231389 iter 20 value 93.772975 final value 93.772973 converged Fitting Repeat 3 # weights: 507 initial value 102.646360 iter 10 value 93.598541 iter 20 value 93.597903 iter 20 value 93.597903 iter 20 value 93.597903 final value 93.597903 converged Fitting Repeat 4 # weights: 507 initial value 105.696195 iter 10 value 94.310510 iter 10 value 94.310510 iter 10 value 94.310510 final value 94.310510 converged Fitting Repeat 5 # weights: 507 initial value 114.450279 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 98.120199 iter 10 value 94.488652 iter 20 value 94.164149 iter 30 value 91.406808 iter 40 value 86.533699 iter 50 value 85.774110 iter 60 value 85.569369 iter 70 value 85.418323 iter 80 value 84.297463 iter 90 value 83.408238 iter 100 value 83.244742 final value 83.244742 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 109.586474 iter 10 value 94.486575 iter 20 value 94.344883 iter 30 value 94.126474 iter 40 value 93.497204 iter 50 value 93.495314 iter 60 value 91.979592 iter 70 value 87.451221 iter 80 value 86.876633 iter 90 value 86.704789 iter 100 value 86.437613 final value 86.437613 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.180945 iter 10 value 94.519638 iter 20 value 94.488532 iter 30 value 87.194478 iter 40 value 86.524402 iter 50 value 86.324968 iter 60 value 84.892414 iter 70 value 83.692004 iter 80 value 83.478462 iter 90 value 83.079523 iter 100 value 83.061014 final value 83.061014 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.953108 iter 10 value 93.795230 iter 20 value 92.053230 iter 30 value 91.896654 iter 40 value 91.416945 iter 50 value 91.217370 final value 91.216929 converged Fitting Repeat 5 # weights: 103 initial value 98.328763 iter 10 value 94.488159 iter 20 value 88.073573 iter 30 value 86.407665 iter 40 value 86.192588 iter 50 value 85.683070 iter 60 value 84.729744 iter 70 value 84.534451 iter 80 value 83.212139 iter 90 value 83.147028 final value 83.145413 converged Fitting Repeat 1 # weights: 305 initial value 108.991008 iter 10 value 95.291413 iter 20 value 87.509374 iter 30 value 86.327741 iter 40 value 85.563157 iter 50 value 83.382704 iter 60 value 82.780838 iter 70 value 82.401341 iter 80 value 82.256319 iter 90 value 82.099764 iter 100 value 82.055615 final value 82.055615 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.787526 iter 10 value 91.001345 iter 20 value 86.028550 iter 30 value 84.632401 iter 40 value 84.315946 iter 50 value 84.178023 iter 60 value 83.898107 iter 70 value 83.363854 iter 80 value 82.670945 iter 90 value 82.548445 iter 100 value 82.331478 final value 82.331478 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 117.267419 iter 10 value 94.036105 iter 20 value 88.690172 iter 30 value 85.809556 iter 40 value 83.897026 iter 50 value 83.275322 iter 60 value 82.732302 iter 70 value 82.501104 iter 80 value 82.358781 iter 90 value 81.989011 iter 100 value 81.891820 final value 81.891820 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.275449 iter 10 value 94.619238 iter 20 value 92.112935 iter 30 value 87.144921 iter 40 value 86.849625 iter 50 value 85.693595 iter 60 value 84.732613 iter 70 value 82.461239 iter 80 value 82.080391 iter 90 value 81.831720 iter 100 value 81.759748 final value 81.759748 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.280988 iter 10 value 94.518089 iter 20 value 93.743842 iter 30 value 91.187881 iter 40 value 89.530824 iter 50 value 88.645472 iter 60 value 86.274347 iter 70 value 84.405599 iter 80 value 83.471227 iter 90 value 83.280274 iter 100 value 82.778844 final value 82.778844 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.048626 iter 10 value 95.105164 iter 20 value 87.395339 iter 30 value 83.936791 iter 40 value 82.702996 iter 50 value 82.613567 iter 60 value 82.440083 iter 70 value 81.999112 iter 80 value 81.706594 iter 90 value 81.590141 iter 100 value 81.515616 final value 81.515616 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.530853 iter 10 value 94.267471 iter 20 value 92.939754 iter 30 value 90.910938 iter 40 value 86.398658 iter 50 value 84.120144 iter 60 value 83.053223 iter 70 value 82.636245 iter 80 value 82.325079 iter 90 value 82.087078 iter 100 value 82.020905 final value 82.020905 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 135.566712 iter 10 value 94.737203 iter 20 value 87.095360 iter 30 value 84.786625 iter 40 value 83.492054 iter 50 value 82.666603 iter 60 value 82.546620 iter 70 value 82.442045 iter 80 value 82.361881 iter 90 value 82.222114 iter 100 value 82.082632 final value 82.082632 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.974463 iter 10 value 94.474159 iter 20 value 88.656191 iter 30 value 87.951778 iter 40 value 85.784932 iter 50 value 83.702753 iter 60 value 83.091079 iter 70 value 82.817302 iter 80 value 82.610887 iter 90 value 82.585424 iter 100 value 82.546019 final value 82.546019 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.454031 iter 10 value 94.067590 iter 20 value 93.533792 iter 30 value 89.577120 iter 40 value 87.161087 iter 50 value 86.018777 iter 60 value 84.892823 iter 70 value 83.166432 iter 80 value 82.536056 iter 90 value 82.057836 iter 100 value 81.825466 final value 81.825466 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.969430 final value 94.485704 converged Fitting Repeat 2 # weights: 103 initial value 95.034429 iter 10 value 94.028352 final value 94.027881 converged Fitting Repeat 3 # weights: 103 initial value 94.883687 final value 94.486100 converged Fitting Repeat 4 # weights: 103 initial value 97.648464 final value 94.485576 converged Fitting Repeat 5 # weights: 103 initial value 100.017329 iter 10 value 94.485916 iter 20 value 94.484232 final value 94.484216 converged Fitting Repeat 1 # weights: 305 initial value 98.731697 iter 10 value 94.487544 iter 20 value 93.083312 iter 30 value 86.697989 final value 86.697617 converged Fitting Repeat 2 # weights: 305 initial value 114.985242 iter 10 value 94.489191 iter 20 value 94.484430 iter 30 value 93.320748 iter 30 value 93.320748 iter 30 value 93.320748 final value 93.320748 converged Fitting Repeat 3 # weights: 305 initial value 99.359612 iter 10 value 94.031644 iter 20 value 94.030055 iter 30 value 93.324898 iter 40 value 93.322311 final value 93.322050 converged Fitting Repeat 4 # weights: 305 initial value 105.875897 iter 10 value 91.954140 iter 20 value 86.653487 iter 30 value 86.505116 iter 40 value 85.343306 iter 50 value 85.216631 iter 60 value 85.216218 iter 70 value 85.183642 iter 80 value 84.659487 final value 84.574543 converged Fitting Repeat 5 # weights: 305 initial value 105.582064 iter 10 value 94.489602 iter 20 value 94.484253 iter 30 value 94.312715 iter 40 value 90.567151 final value 87.812704 converged Fitting Repeat 1 # weights: 507 initial value 104.315833 iter 10 value 94.457740 iter 20 value 93.722566 iter 30 value 93.489852 iter 40 value 93.487371 iter 50 value 93.485295 iter 60 value 91.704248 iter 70 value 91.664055 final value 91.664007 converged Fitting Repeat 2 # weights: 507 initial value 95.723197 iter 10 value 94.490637 iter 20 value 92.226922 iter 30 value 87.816000 iter 40 value 87.788406 iter 50 value 86.783160 iter 60 value 84.403820 iter 70 value 83.445651 iter 80 value 83.422735 iter 90 value 83.422024 iter 90 value 83.422024 iter 90 value 83.422024 final value 83.422024 converged Fitting Repeat 3 # weights: 507 initial value 109.078616 iter 10 value 92.924563 iter 20 value 88.718638 iter 30 value 88.690552 iter 40 value 88.680549 iter 50 value 85.902682 iter 60 value 84.607306 iter 70 value 83.292934 iter 80 value 82.522203 iter 90 value 81.795896 iter 100 value 80.862565 final value 80.862565 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.830230 iter 10 value 94.063323 iter 20 value 94.053027 iter 30 value 87.367398 iter 40 value 83.927349 iter 50 value 83.080405 iter 60 value 82.815954 iter 70 value 82.787407 iter 80 value 82.787122 final value 82.787075 converged Fitting Repeat 5 # weights: 507 initial value 96.169967 iter 10 value 92.456169 iter 20 value 91.961022 iter 30 value 91.747170 iter 40 value 91.671331 iter 50 value 91.662429 iter 60 value 91.555689 iter 70 value 91.552837 iter 80 value 86.683691 iter 90 value 84.889190 iter 100 value 84.572114 final value 84.572114 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.812773 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.069134 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 98.176622 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 108.101256 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.569858 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 99.077190 iter 10 value 87.381695 iter 20 value 86.702442 iter 30 value 86.682981 iter 40 value 86.682133 final value 86.682091 converged Fitting Repeat 2 # weights: 305 initial value 96.583545 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 109.914641 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 101.889153 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 93.967785 iter 10 value 86.404957 iter 20 value 86.400019 final value 86.400011 converged Fitting Repeat 1 # weights: 507 initial value 96.966070 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 114.166485 iter 10 value 94.340808 final value 94.275345 converged Fitting Repeat 3 # weights: 507 initial value 99.481450 final value 94.483810 converged Fitting Repeat 4 # weights: 507 initial value 103.936575 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 112.865537 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 108.614482 iter 10 value 94.346572 iter 20 value 91.331975 iter 30 value 89.347880 iter 40 value 89.124831 iter 50 value 89.046626 iter 60 value 87.679963 iter 70 value 86.560864 iter 80 value 85.307049 iter 90 value 84.796186 final value 84.792033 converged Fitting Repeat 2 # weights: 103 initial value 103.518132 iter 10 value 88.635613 iter 20 value 87.150955 iter 30 value 86.280954 iter 40 value 84.703724 iter 50 value 84.417714 iter 60 value 84.375228 final value 84.366335 converged Fitting Repeat 3 # weights: 103 initial value 102.698696 iter 10 value 94.311232 iter 20 value 87.909409 iter 30 value 86.407084 iter 40 value 85.836208 iter 50 value 85.736638 final value 85.736612 converged Fitting Repeat 4 # weights: 103 initial value 103.628751 iter 10 value 94.435270 iter 20 value 91.296690 iter 30 value 88.473480 iter 40 value 88.293958 iter 50 value 87.670043 iter 60 value 87.248013 iter 70 value 84.811574 iter 80 value 84.165273 iter 90 value 84.138905 iter 100 value 84.107802 final value 84.107802 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.608532 iter 10 value 94.486542 iter 20 value 94.159833 iter 30 value 90.330060 iter 40 value 87.494496 iter 50 value 86.863957 iter 60 value 86.493852 final value 86.493736 converged Fitting Repeat 1 # weights: 305 initial value 103.438032 iter 10 value 94.565681 iter 20 value 88.167959 iter 30 value 87.337703 iter 40 value 86.976277 iter 50 value 86.557303 iter 60 value 85.051107 iter 70 value 84.028724 iter 80 value 83.792981 iter 90 value 83.254262 iter 100 value 82.703582 final value 82.703582 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 109.996527 iter 10 value 95.964047 iter 20 value 94.324525 iter 30 value 87.377945 iter 40 value 86.290858 iter 50 value 86.018976 iter 60 value 85.736748 iter 70 value 85.671122 iter 80 value 85.135185 iter 90 value 85.016742 iter 100 value 84.373442 final value 84.373442 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.655528 iter 10 value 94.355564 iter 20 value 91.468751 iter 30 value 87.860636 iter 40 value 87.450088 iter 50 value 86.535354 iter 60 value 85.356555 iter 70 value 84.615146 iter 80 value 83.816949 iter 90 value 83.240142 iter 100 value 82.903766 final value 82.903766 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 114.747774 iter 10 value 94.359831 iter 20 value 93.470912 iter 30 value 91.156160 iter 40 value 87.961729 iter 50 value 87.313230 iter 60 value 87.037297 iter 70 value 84.853790 iter 80 value 83.644031 iter 90 value 83.444633 iter 100 value 83.211711 final value 83.211711 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.111686 iter 10 value 95.525538 iter 20 value 94.399965 iter 30 value 94.367873 iter 40 value 91.846760 iter 50 value 87.340614 iter 60 value 85.124480 iter 70 value 84.340401 iter 80 value 84.061877 iter 90 value 83.152437 iter 100 value 82.989733 final value 82.989733 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 114.795447 iter 10 value 94.483620 iter 20 value 89.281614 iter 30 value 87.679917 iter 40 value 86.414295 iter 50 value 86.164468 iter 60 value 85.398398 iter 70 value 83.962185 iter 80 value 83.050605 iter 90 value 82.748188 iter 100 value 82.574937 final value 82.574937 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 118.400964 iter 10 value 94.499633 iter 20 value 94.173664 iter 30 value 89.223224 iter 40 value 87.784204 iter 50 value 85.979217 iter 60 value 84.176229 iter 70 value 83.501522 iter 80 value 83.018238 iter 90 value 82.798215 iter 100 value 82.653134 final value 82.653134 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 120.662356 iter 10 value 97.390586 iter 20 value 93.860154 iter 30 value 87.781086 iter 40 value 85.830757 iter 50 value 84.333759 iter 60 value 83.603861 iter 70 value 83.257425 iter 80 value 83.143956 iter 90 value 83.029473 iter 100 value 82.991783 final value 82.991783 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.175867 iter 10 value 94.419941 iter 20 value 90.012818 iter 30 value 86.694769 iter 40 value 86.140269 iter 50 value 85.846699 iter 60 value 85.613875 iter 70 value 84.933371 iter 80 value 83.325712 iter 90 value 83.086205 iter 100 value 82.989364 final value 82.989364 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.213673 iter 10 value 94.927630 iter 20 value 89.534401 iter 30 value 87.413563 iter 40 value 87.066446 iter 50 value 86.079259 iter 60 value 83.851010 iter 70 value 83.223378 iter 80 value 83.080977 iter 90 value 82.984050 iter 100 value 82.763874 final value 82.763874 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 105.180951 final value 94.485852 converged Fitting Repeat 2 # weights: 103 initial value 96.059403 iter 10 value 94.485887 iter 20 value 94.482554 iter 30 value 88.099841 iter 40 value 85.900954 iter 50 value 85.758423 iter 60 value 85.694161 iter 70 value 85.693671 final value 85.693669 converged Fitting Repeat 3 # weights: 103 initial value 95.018635 final value 94.485911 converged Fitting Repeat 4 # weights: 103 initial value 100.722637 iter 10 value 94.277622 iter 20 value 94.276606 final value 94.275563 converged Fitting Repeat 5 # weights: 103 initial value 103.101759 final value 94.485798 converged Fitting Repeat 1 # weights: 305 initial value 102.276794 iter 10 value 94.280390 iter 20 value 94.276164 final value 94.275785 converged Fitting Repeat 2 # weights: 305 initial value 102.023404 iter 10 value 94.489266 iter 20 value 94.420168 iter 30 value 87.456647 iter 40 value 87.375444 iter 50 value 87.334911 iter 60 value 87.246936 iter 70 value 87.233559 final value 87.219783 converged Fitting Repeat 3 # weights: 305 initial value 98.949351 iter 10 value 94.489477 iter 20 value 93.717444 iter 30 value 87.984130 iter 40 value 87.982885 iter 40 value 87.982885 final value 87.982885 converged Fitting Repeat 4 # weights: 305 initial value 106.578081 iter 10 value 94.446793 iter 20 value 91.529816 iter 30 value 88.802400 iter 40 value 87.717013 iter 50 value 87.705970 iter 60 value 86.742426 iter 70 value 86.738521 iter 80 value 86.737182 iter 90 value 86.735584 final value 86.735469 converged Fitting Repeat 5 # weights: 305 initial value 96.741866 iter 10 value 94.484463 iter 20 value 94.421001 iter 30 value 92.663512 iter 40 value 92.628297 iter 50 value 92.574268 iter 50 value 92.574268 final value 92.574268 converged Fitting Repeat 1 # weights: 507 initial value 103.120306 iter 10 value 94.491911 iter 20 value 94.484233 iter 30 value 92.748559 iter 40 value 87.567870 iter 50 value 86.945199 iter 60 value 86.944299 iter 70 value 86.596254 iter 80 value 86.520710 iter 90 value 85.648353 iter 100 value 85.475994 final value 85.475994 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 94.940536 iter 10 value 94.491571 iter 20 value 94.435539 iter 30 value 92.731437 iter 40 value 92.707162 iter 50 value 87.142998 iter 60 value 86.847921 iter 70 value 86.757906 iter 80 value 86.702729 iter 90 value 86.700509 iter 100 value 86.662154 final value 86.662154 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.100727 iter 10 value 94.492254 iter 20 value 94.484405 iter 30 value 87.610845 iter 40 value 86.088851 iter 50 value 86.076317 iter 60 value 86.075695 iter 70 value 86.074053 iter 80 value 86.073549 iter 90 value 85.958481 iter 100 value 85.825825 final value 85.825825 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.563037 iter 10 value 94.489726 iter 20 value 92.173579 iter 30 value 86.929011 final value 86.797053 converged Fitting Repeat 5 # weights: 507 initial value 95.865081 iter 10 value 94.283510 iter 20 value 94.276054 iter 30 value 90.463303 iter 40 value 86.069672 iter 50 value 83.477884 iter 60 value 83.406943 iter 70 value 83.406100 iter 80 value 83.294180 iter 90 value 82.968936 iter 100 value 82.176547 final value 82.176547 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.157576 final value 94.038251 converged Fitting Repeat 2 # weights: 103 initial value 95.049517 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 96.763272 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 96.538939 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 96.470391 iter 10 value 94.038258 final value 94.038251 converged Fitting Repeat 1 # weights: 305 initial value 101.976205 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 103.437054 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 95.485858 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 102.704079 final value 94.052908 converged Fitting Repeat 5 # weights: 305 initial value 106.698165 final value 94.038251 converged Fitting Repeat 1 # weights: 507 initial value 102.562076 iter 10 value 94.038251 iter 10 value 94.038251 iter 10 value 94.038251 final value 94.038251 converged Fitting Repeat 2 # weights: 507 initial value 105.945354 final value 94.038251 converged Fitting Repeat 3 # weights: 507 initial value 103.799521 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 114.847045 final value 94.038251 converged Fitting Repeat 5 # weights: 507 initial value 98.535938 iter 10 value 93.864032 iter 20 value 93.860383 iter 30 value 85.916130 iter 40 value 85.182170 final value 85.181512 converged Fitting Repeat 1 # weights: 103 initial value 101.230817 iter 10 value 94.056911 iter 20 value 93.839849 iter 30 value 87.890730 iter 40 value 84.802445 iter 50 value 84.556206 iter 60 value 84.529066 final value 84.526853 converged Fitting Repeat 2 # weights: 103 initial value 104.094770 iter 10 value 94.014658 iter 20 value 88.348424 iter 30 value 87.135262 iter 40 value 86.817986 iter 50 value 85.140011 iter 60 value 84.753775 iter 70 value 84.533798 iter 80 value 84.526856 final value 84.526853 converged Fitting Repeat 3 # weights: 103 initial value 103.283763 iter 10 value 94.320227 iter 20 value 94.056371 iter 30 value 93.980852 iter 40 value 92.066823 iter 50 value 91.500419 iter 60 value 91.301400 iter 70 value 88.848748 iter 80 value 83.485954 iter 90 value 82.574005 iter 100 value 82.018999 final value 82.018999 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 101.395551 iter 10 value 94.002886 iter 20 value 86.948190 iter 30 value 85.702760 iter 40 value 85.008652 iter 50 value 84.825635 iter 60 value 84.651575 iter 70 value 84.527154 final value 84.526853 converged Fitting Repeat 5 # weights: 103 initial value 96.455122 iter 10 value 94.033150 iter 20 value 90.657401 iter 30 value 84.769909 iter 40 value 84.247659 iter 50 value 84.016654 iter 60 value 83.575455 iter 70 value 82.006402 iter 80 value 81.633570 iter 90 value 81.445221 iter 100 value 81.199257 final value 81.199257 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 112.777802 iter 10 value 89.682499 iter 20 value 85.197163 iter 30 value 84.928387 iter 40 value 84.520630 iter 50 value 83.678342 iter 60 value 83.264125 iter 70 value 83.037558 iter 80 value 82.700427 iter 90 value 82.386052 iter 100 value 81.878738 final value 81.878738 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.511033 iter 10 value 93.887443 iter 20 value 85.735783 iter 30 value 83.790011 iter 40 value 83.048617 iter 50 value 82.996552 iter 60 value 82.865049 iter 70 value 81.491918 iter 80 value 80.606718 iter 90 value 80.438505 iter 100 value 80.204263 final value 80.204263 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 137.844540 iter 10 value 94.119993 iter 20 value 90.445202 iter 30 value 85.444778 iter 40 value 85.120312 iter 50 value 84.496216 iter 60 value 83.061136 iter 70 value 82.125909 iter 80 value 81.819050 iter 90 value 81.433423 iter 100 value 81.030265 final value 81.030265 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.493931 iter 10 value 93.845058 iter 20 value 87.423746 iter 30 value 83.536112 iter 40 value 82.224869 iter 50 value 81.425628 iter 60 value 81.079919 iter 70 value 80.780435 iter 80 value 80.523889 iter 90 value 80.428554 iter 100 value 80.223685 final value 80.223685 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.446719 iter 10 value 93.860206 iter 20 value 85.518219 iter 30 value 83.174387 iter 40 value 82.927613 iter 50 value 82.366109 iter 60 value 81.319155 iter 70 value 80.448770 iter 80 value 80.192525 iter 90 value 80.156034 iter 100 value 80.124754 final value 80.124754 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 126.073395 iter 10 value 94.080129 iter 20 value 93.986345 iter 30 value 86.195036 iter 40 value 85.473472 iter 50 value 81.944020 iter 60 value 81.439698 iter 70 value 80.399757 iter 80 value 80.097464 iter 90 value 79.702860 iter 100 value 79.328356 final value 79.328356 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.529444 iter 10 value 94.100095 iter 20 value 85.980076 iter 30 value 84.723449 iter 40 value 84.510817 iter 50 value 84.029417 iter 60 value 83.887580 iter 70 value 83.843633 iter 80 value 83.233374 iter 90 value 82.611030 iter 100 value 82.431157 final value 82.431157 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.619467 iter 10 value 93.915394 iter 20 value 85.179417 iter 30 value 82.603789 iter 40 value 82.005979 iter 50 value 80.600517 iter 60 value 80.307616 iter 70 value 79.993942 iter 80 value 79.640457 iter 90 value 79.431612 iter 100 value 79.394116 final value 79.394116 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.787632 iter 10 value 93.976922 iter 20 value 86.760626 iter 30 value 85.847209 iter 40 value 84.457531 iter 50 value 84.108612 iter 60 value 83.943655 iter 70 value 82.119325 iter 80 value 81.516336 iter 90 value 80.744660 iter 100 value 80.218719 final value 80.218719 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.447903 iter 10 value 94.098541 iter 20 value 89.265634 iter 30 value 86.704635 iter 40 value 86.063368 iter 50 value 84.105137 iter 60 value 83.802109 iter 70 value 83.089359 iter 80 value 82.267275 iter 90 value 81.520609 iter 100 value 81.132406 final value 81.132406 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.595504 final value 94.054861 converged Fitting Repeat 2 # weights: 103 initial value 96.684306 final value 94.054700 converged Fitting Repeat 3 # weights: 103 initial value 97.468509 final value 94.054699 converged Fitting Repeat 4 # weights: 103 initial value 97.085487 final value 94.054323 converged Fitting Repeat 5 # weights: 103 initial value 101.633558 final value 94.054779 converged Fitting Repeat 1 # weights: 305 initial value 98.531526 iter 10 value 94.057665 iter 20 value 94.048180 iter 30 value 92.817035 iter 40 value 90.049728 iter 50 value 89.936223 iter 60 value 89.898051 final value 89.897458 converged Fitting Repeat 2 # weights: 305 initial value 101.266334 iter 10 value 94.058214 iter 20 value 94.052833 iter 30 value 85.681037 iter 40 value 84.210684 iter 50 value 80.810070 iter 60 value 80.310578 iter 70 value 80.227119 iter 80 value 80.209813 iter 90 value 80.207990 iter 100 value 80.205412 final value 80.205412 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.759706 iter 10 value 94.057816 iter 20 value 94.022932 iter 30 value 85.898301 iter 40 value 85.431679 iter 50 value 82.487158 iter 60 value 80.141917 iter 70 value 79.132912 iter 80 value 78.816415 iter 90 value 78.586704 iter 100 value 78.310020 final value 78.310020 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 95.617320 iter 10 value 85.151612 iter 20 value 84.135128 iter 30 value 84.129650 iter 40 value 83.872994 iter 50 value 83.815380 iter 60 value 83.811654 iter 70 value 83.809245 iter 80 value 83.809084 final value 83.809036 converged Fitting Repeat 5 # weights: 305 initial value 126.799658 iter 10 value 94.057451 iter 20 value 94.051972 iter 30 value 87.256916 iter 40 value 85.804768 iter 50 value 84.009184 iter 60 value 80.726000 iter 70 value 79.468195 iter 80 value 78.747257 iter 90 value 77.888051 iter 100 value 77.816275 final value 77.816275 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 96.128967 iter 10 value 93.738257 iter 20 value 92.949170 iter 30 value 92.777458 iter 40 value 92.708783 iter 50 value 92.627493 iter 60 value 84.726013 iter 70 value 84.244090 iter 80 value 84.013822 iter 90 value 82.799057 iter 100 value 82.705511 final value 82.705511 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 122.943114 iter 10 value 94.061942 iter 20 value 94.053556 iter 30 value 93.465666 iter 40 value 93.465295 final value 93.465252 converged Fitting Repeat 3 # weights: 507 initial value 131.957865 iter 10 value 94.059222 iter 20 value 93.981323 iter 30 value 89.151168 iter 40 value 84.926698 iter 50 value 84.922736 iter 60 value 84.915113 iter 70 value 84.912934 iter 80 value 84.632487 iter 90 value 84.631986 iter 100 value 84.631413 final value 84.631413 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 92.504549 iter 10 value 85.386456 iter 20 value 85.330467 iter 30 value 85.319607 iter 40 value 84.832991 iter 50 value 84.785408 final value 84.785044 converged Fitting Repeat 5 # weights: 507 initial value 110.226503 iter 10 value 94.056172 iter 20 value 93.362349 iter 30 value 93.333700 final value 93.333699 converged Fitting Repeat 1 # weights: 305 initial value 139.563624 iter 10 value 117.895946 iter 20 value 117.891080 iter 30 value 117.684962 iter 40 value 112.117550 iter 50 value 112.057009 iter 60 value 112.056783 iter 70 value 111.746179 iter 80 value 111.733969 final value 111.733741 converged Fitting Repeat 2 # weights: 305 initial value 131.968517 iter 10 value 117.763857 iter 20 value 116.766372 iter 30 value 105.103988 iter 40 value 103.981045 iter 50 value 103.977467 iter 60 value 103.975449 iter 70 value 103.794628 iter 80 value 102.762059 iter 90 value 101.115395 iter 100 value 99.696810 final value 99.696810 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 138.198007 iter 10 value 117.894555 iter 20 value 114.813699 iter 30 value 107.615651 iter 40 value 107.551225 iter 50 value 106.914396 iter 60 value 103.970055 iter 70 value 103.922972 iter 80 value 103.746373 iter 90 value 103.649935 iter 100 value 103.647896 final value 103.647896 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 125.566662 iter 10 value 117.895202 iter 20 value 117.890534 iter 30 value 115.539827 iter 40 value 106.824660 final value 106.778003 converged Fitting Repeat 5 # weights: 305 initial value 122.384354 iter 10 value 117.894447 iter 20 value 117.761924 iter 30 value 108.535344 final value 108.528318 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Apr 1 02:36:54 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 40.92 1.43 117.37
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 33.52 | 2.04 | 35.70 | |
FreqInteractors | 0.29 | 0.05 | 0.38 | |
calculateAAC | 0.05 | 0.02 | 0.06 | |
calculateAutocor | 0.76 | 0.09 | 0.86 | |
calculateCTDC | 0.1 | 0.0 | 0.1 | |
calculateCTDD | 0.81 | 0.00 | 0.81 | |
calculateCTDT | 0.28 | 0.00 | 0.28 | |
calculateCTriad | 0.45 | 0.00 | 0.43 | |
calculateDC | 0.14 | 0.00 | 0.14 | |
calculateF | 0.39 | 0.02 | 0.41 | |
calculateKSAAP | 0.08 | 0.01 | 0.09 | |
calculateQD_Sm | 2.07 | 0.17 | 2.25 | |
calculateTC | 1.79 | 0.14 | 1.94 | |
calculateTC_Sm | 0.30 | 0.02 | 0.31 | |
corr_plot | 33.34 | 1.98 | 35.39 | |
enrichfindP | 0.55 | 0.14 | 12.59 | |
enrichfind_hp | 0.08 | 0.02 | 1.06 | |
enrichplot | 0.48 | 0.03 | 0.52 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.01 | 0.00 | 2.05 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.11 | 0.00 | 0.11 | |
pred_ensembel | 14.21 | 0.27 | 13.04 | |
var_imp | 33.70 | 1.34 | 35.05 | |