Back to Multiple platform build/check report for BioC 3.20:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2025-04-02 19:30 -0400 (Wed, 02 Apr 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.3 (2025-02-28) -- "Trophy Case" 4764
palomino8Windows Server 2022 Datacenterx644.4.3 (2025-02-28 ucrt) -- "Trophy Case" 4495
merida1macOS 12.7.5 Montereyx86_644.4.3 (2025-02-28) -- "Trophy Case" 4522
kjohnson1macOS 13.6.6 Venturaarm644.4.3 (2025-02-28) -- "Trophy Case" 4449
taishanLinux (openEuler 24.03 LTS)aarch644.4.3 (2025-02-28) -- "Trophy Case" 4426
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 979/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.12.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2025-03-31 13:00 -0400 (Mon, 31 Mar 2025)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: RELEASE_3_20
git_last_commit: ce9e305
git_last_commit_date: 2024-10-29 11:04:11 -0400 (Tue, 29 Oct 2024)
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for HPiP on palomino8

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.12.0
Command: F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz
StartedAt: 2025-04-01 02:30:55 -0400 (Tue, 01 Apr 2025)
EndedAt: 2025-04-01 02:37:06 -0400 (Tue, 01 Apr 2025)
EllapsedTime: 370.7 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck'
* using R version 4.4.3 (2025-02-28 ucrt)
* using platform: x86_64-w64-mingw32
* R was compiled by
    gcc.exe (GCC) 13.3.0
    GNU Fortran (GCC) 13.3.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'HPiP/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'HPiP' version '1.12.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'HPiP' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: 'ftrCOOL'
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
               user system elapsed
FSmethod      33.52   2.04   35.70
corr_plot     33.34   1.98   35.39
var_imp       33.70   1.34   35.05
pred_ensembel 14.21   0.27   13.04
enrichfindP    0.55   0.14   12.59
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 3 NOTEs
See
  'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log'
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library 'F:/biocbuild/bbs-3.20-bioc/R/library'
* installing *source* package 'HPiP' ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R version 4.4.3 (2025-02-28 ucrt) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 94.237285 
final  value 93.915746 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.357218 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.107051 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.602423 
final  value 93.915746 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.634152 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 94.443699 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 103.060901 
final  value 93.915746 
converged
Fitting Repeat 3 

# weights:  305
initial  value 110.140692 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.040855 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 98.520295 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.210354 
final  value 93.915746 
converged
Fitting Repeat 2 

# weights:  507
initial  value 119.716460 
final  value 93.915746 
converged
Fitting Repeat 3 

# weights:  507
initial  value 100.912572 
final  value 93.915746 
converged
Fitting Repeat 4 

# weights:  507
initial  value 98.649995 
iter  10 value 94.052910
iter  10 value 94.052910
iter  10 value 94.052910
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  507
initial  value 133.214857 
iter  10 value 94.052910
iter  10 value 94.052910
iter  10 value 94.052910
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 113.255710 
iter  10 value 94.039985
iter  20 value 88.143782
iter  30 value 85.833384
iter  40 value 85.078122
final  value 85.039628 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.744399 
iter  10 value 94.089506
iter  20 value 94.056676
iter  30 value 94.032492
iter  40 value 93.944454
iter  50 value 93.931943
iter  60 value 93.915921
iter  70 value 93.865516
iter  80 value 84.811969
iter  90 value 82.981168
iter 100 value 82.214120
final  value 82.214120 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 98.102845 
iter  10 value 94.139029
iter  20 value 92.474551
iter  30 value 86.382101
iter  40 value 83.453318
iter  50 value 81.696521
iter  60 value 81.208656
iter  70 value 80.967896
iter  80 value 80.965316
final  value 80.954465 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.359287 
iter  10 value 94.085366
iter  20 value 94.016896
iter  30 value 86.268970
iter  40 value 85.842390
iter  50 value 85.609395
iter  60 value 84.279591
iter  70 value 83.998961
iter  80 value 83.883402
final  value 83.862844 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.204379 
iter  10 value 94.045701
iter  20 value 87.935057
iter  30 value 84.574876
iter  40 value 82.349576
iter  50 value 82.289904
iter  60 value 82.189509
iter  70 value 81.509413
iter  80 value 81.009103
iter  90 value 80.965146
final  value 80.965102 
converged
Fitting Repeat 1 

# weights:  305
initial  value 115.137443 
iter  10 value 94.279347
iter  20 value 90.053447
iter  30 value 88.496562
iter  40 value 84.699229
iter  50 value 82.128407
iter  60 value 81.442856
iter  70 value 81.015324
iter  80 value 80.645949
iter  90 value 79.933711
iter 100 value 79.774884
final  value 79.774884 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 104.289705 
iter  10 value 94.067213
iter  20 value 85.298796
iter  30 value 83.053888
iter  40 value 80.231507
iter  50 value 78.580148
iter  60 value 78.121863
iter  70 value 77.844024
iter  80 value 77.716946
iter  90 value 77.683866
iter 100 value 77.647291
final  value 77.647291 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 111.590429 
iter  10 value 93.930630
iter  20 value 91.390772
iter  30 value 90.695040
iter  40 value 82.168501
iter  50 value 79.792128
iter  60 value 79.169062
iter  70 value 78.181174
iter  80 value 77.883172
iter  90 value 77.815009
iter 100 value 77.769849
final  value 77.769849 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 98.997529 
iter  10 value 94.029532
iter  20 value 86.611295
iter  30 value 85.011133
iter  40 value 80.475133
iter  50 value 78.797594
iter  60 value 78.297528
iter  70 value 78.094390
iter  80 value 77.975331
iter  90 value 77.903700
iter 100 value 77.687352
final  value 77.687352 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 111.266847 
iter  10 value 89.830846
iter  20 value 82.080548
iter  30 value 81.716873
iter  40 value 81.071157
iter  50 value 80.861461
iter  60 value 80.363920
iter  70 value 80.327469
iter  80 value 80.256745
iter  90 value 78.973618
iter 100 value 78.606081
final  value 78.606081 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 116.416309 
iter  10 value 94.288232
iter  20 value 88.248614
iter  30 value 83.469099
iter  40 value 82.311792
iter  50 value 79.217321
iter  60 value 77.891475
iter  70 value 77.709390
iter  80 value 77.238899
iter  90 value 77.017962
iter 100 value 76.944743
final  value 76.944743 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 122.866372 
iter  10 value 93.897550
iter  20 value 88.527798
iter  30 value 84.190661
iter  40 value 81.812095
iter  50 value 80.796895
iter  60 value 80.251287
iter  70 value 80.048068
iter  80 value 79.757603
iter  90 value 79.409482
iter 100 value 79.307435
final  value 79.307435 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 103.790346 
iter  10 value 94.058926
iter  20 value 92.589913
iter  30 value 89.484676
iter  40 value 86.619404
iter  50 value 80.398681
iter  60 value 78.225445
iter  70 value 77.468239
iter  80 value 77.285509
iter  90 value 77.146201
iter 100 value 76.878080
final  value 76.878080 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 107.487254 
iter  10 value 93.589522
iter  20 value 90.199017
iter  30 value 89.799902
iter  40 value 86.851969
iter  50 value 84.170713
iter  60 value 81.597304
iter  70 value 80.758278
iter  80 value 80.412885
iter  90 value 79.957345
iter 100 value 79.885168
final  value 79.885168 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 109.114155 
iter  10 value 94.725289
iter  20 value 88.125515
iter  30 value 85.317885
iter  40 value 81.813270
iter  50 value 79.683684
iter  60 value 79.125917
iter  70 value 77.817023
iter  80 value 77.324711
iter  90 value 77.258845
iter 100 value 77.163774
final  value 77.163774 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.556065 
final  value 94.054653 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.023999 
iter  10 value 93.917676
iter  20 value 93.878366
iter  30 value 93.867396
iter  40 value 93.863621
final  value 93.863619 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.342553 
iter  10 value 92.092084
iter  20 value 91.946941
iter  30 value 91.946056
iter  40 value 91.939582
iter  50 value 91.934101
final  value 91.934095 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.237488 
final  value 94.054577 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.460379 
final  value 94.054827 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.350621 
iter  10 value 94.013741
iter  20 value 94.010166
iter  30 value 94.009658
iter  40 value 93.952244
iter  50 value 93.949916
iter  60 value 93.799293
iter  70 value 93.798341
iter  80 value 91.528751
iter  90 value 91.265324
iter 100 value 91.226976
final  value 91.226976 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 108.074406 
iter  10 value 93.920078
iter  20 value 93.916307
final  value 93.915971 
converged
Fitting Repeat 3 

# weights:  305
initial  value 120.488571 
iter  10 value 94.057391
iter  20 value 94.052927
iter  30 value 93.997589
iter  40 value 93.301554
iter  50 value 93.300797
final  value 93.300758 
converged
Fitting Repeat 4 

# weights:  305
initial  value 104.706637 
iter  10 value 88.146342
iter  20 value 88.020511
iter  30 value 88.020102
iter  40 value 85.672234
iter  50 value 85.118661
iter  60 value 85.116823
iter  70 value 85.114567
iter  80 value 83.458325
iter  90 value 83.213936
iter 100 value 83.209848
final  value 83.209848 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 95.250593 
iter  10 value 93.920650
iter  20 value 92.089362
iter  30 value 86.667853
iter  40 value 86.296406
iter  50 value 86.176072
iter  60 value 81.853428
iter  70 value 80.013141
iter  80 value 78.903162
iter  90 value 78.859601
iter 100 value 78.856664
final  value 78.856664 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 102.807356 
iter  10 value 93.996752
iter  20 value 93.801052
iter  30 value 90.025834
iter  40 value 89.433030
iter  50 value 88.924376
final  value 88.921993 
converged
Fitting Repeat 2 

# weights:  507
initial  value 115.033956 
iter  10 value 93.923777
iter  20 value 93.918216
iter  30 value 93.914236
iter  30 value 93.914236
iter  30 value 93.914236
final  value 93.914236 
converged
Fitting Repeat 3 

# weights:  507
initial  value 98.842215 
iter  10 value 93.878246
iter  20 value 93.868627
final  value 93.866573 
converged
Fitting Repeat 4 

# weights:  507
initial  value 117.470796 
iter  10 value 93.875041
iter  20 value 93.866633
iter  30 value 93.831485
iter  40 value 86.392701
iter  50 value 82.868929
iter  60 value 82.220750
iter  70 value 82.013979
iter  80 value 81.986886
iter  90 value 81.981977
iter 100 value 79.572506
final  value 79.572506 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 104.278775 
iter  10 value 93.296828
iter  20 value 93.294805
iter  30 value 93.071404
iter  40 value 86.303990
iter  50 value 84.035567
iter  60 value 79.146258
iter  70 value 77.481552
iter  80 value 76.093944
iter  90 value 75.967960
iter 100 value 75.967492
final  value 75.967492 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 100.966374 
iter  10 value 89.166401
iter  20 value 88.512157
final  value 88.506719 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.340249 
iter  10 value 93.613090
iter  20 value 93.578663
final  value 93.577423 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.508472 
final  value 94.312038 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.527798 
final  value 94.484213 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.380368 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 105.602265 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.206112 
iter  10 value 93.935001
iter  20 value 93.901430
final  value 93.901356 
converged
Fitting Repeat 3 

# weights:  305
initial  value 104.714503 
iter  10 value 93.753333
final  value 93.753294 
converged
Fitting Repeat 4 

# weights:  305
initial  value 94.738293 
iter  10 value 85.582745
iter  20 value 85.229704
iter  30 value 85.229653
final  value 85.229651 
converged
Fitting Repeat 5 

# weights:  305
initial  value 100.985250 
iter  10 value 94.004445
iter  20 value 93.922224
iter  20 value 93.922224
iter  20 value 93.922224
final  value 93.922224 
converged
Fitting Repeat 1 

# weights:  507
initial  value 104.562878 
iter  10 value 88.460830
iter  20 value 87.857719
iter  30 value 87.855212
iter  40 value 87.853900
iter  50 value 87.853876
iter  50 value 87.853875
iter  50 value 87.853875
final  value 87.853875 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.962355 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 114.510204 
iter  10 value 93.753425
iter  20 value 93.617619
iter  30 value 93.507140
iter  30 value 93.507140
iter  30 value 93.507140
final  value 93.507140 
converged
Fitting Repeat 4 

# weights:  507
initial  value 113.091115 
iter  10 value 94.466846
final  value 94.466662 
converged
Fitting Repeat 5 

# weights:  507
initial  value 129.804753 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 102.559715 
iter  10 value 94.489265
iter  20 value 93.824997
iter  30 value 86.803759
iter  40 value 83.901122
iter  50 value 83.381295
iter  60 value 82.859680
iter  70 value 82.434949
iter  80 value 81.709502
iter  90 value 80.548066
iter 100 value 80.008978
final  value 80.008978 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 99.726896 
iter  10 value 94.403908
iter  20 value 93.884776
iter  30 value 93.805321
iter  40 value 93.746368
iter  50 value 90.341842
iter  60 value 84.576426
iter  70 value 84.228914
iter  80 value 83.636068
iter  90 value 83.414355
iter 100 value 83.050942
final  value 83.050942 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 106.791488 
iter  10 value 91.710422
iter  20 value 86.746041
iter  30 value 86.535797
iter  40 value 84.906250
iter  50 value 84.104518
iter  60 value 83.505476
iter  70 value 83.357772
iter  80 value 83.037429
final  value 82.989675 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.381708 
iter  10 value 94.497887
iter  20 value 94.468310
iter  30 value 94.284703
iter  40 value 93.835923
iter  50 value 93.754591
iter  60 value 90.829943
iter  70 value 84.860663
iter  80 value 82.572592
iter  90 value 82.094779
iter 100 value 81.004828
final  value 81.004828 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 102.410060 
iter  10 value 94.483486
iter  20 value 84.116480
iter  30 value 83.498700
iter  40 value 82.706377
final  value 82.678197 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.833663 
iter  10 value 89.917566
iter  20 value 86.084746
iter  30 value 82.911472
iter  40 value 80.987475
iter  50 value 80.661519
iter  60 value 80.011223
iter  70 value 79.868569
iter  80 value 79.626327
iter  90 value 78.772036
iter 100 value 78.668362
final  value 78.668362 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 105.953631 
iter  10 value 94.088023
iter  20 value 87.579615
iter  30 value 84.231000
iter  40 value 81.362788
iter  50 value 79.278083
iter  60 value 78.756985
iter  70 value 78.561463
iter  80 value 78.333181
iter  90 value 78.204138
iter 100 value 78.095297
final  value 78.095297 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 119.067200 
iter  10 value 94.418215
iter  20 value 90.203562
iter  30 value 86.082979
iter  40 value 84.418793
iter  50 value 82.869785
iter  60 value 82.169472
iter  70 value 81.924974
iter  80 value 81.678010
iter  90 value 81.034085
iter 100 value 79.317591
final  value 79.317591 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 105.377525 
iter  10 value 94.434764
iter  20 value 94.313099
iter  30 value 93.958684
iter  40 value 86.977624
iter  50 value 84.779597
iter  60 value 84.598319
iter  70 value 84.418589
iter  80 value 83.636122
iter  90 value 82.958579
iter 100 value 80.800680
final  value 80.800680 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 109.544609 
iter  10 value 94.425964
iter  20 value 89.532321
iter  30 value 86.777631
iter  40 value 84.480874
iter  50 value 82.768718
iter  60 value 81.846818
iter  70 value 79.944660
iter  80 value 79.122814
iter  90 value 78.895462
iter 100 value 78.686328
final  value 78.686328 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 136.325314 
iter  10 value 93.832499
iter  20 value 83.519457
iter  30 value 81.619371
iter  40 value 80.428058
iter  50 value 79.521591
iter  60 value 78.840437
iter  70 value 78.404646
iter  80 value 78.339551
iter  90 value 78.145668
iter 100 value 78.027397
final  value 78.027397 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 106.204831 
iter  10 value 94.509288
iter  20 value 89.487398
iter  30 value 86.619216
iter  40 value 86.096162
iter  50 value 81.712037
iter  60 value 80.024837
iter  70 value 79.309459
iter  80 value 78.488185
iter  90 value 78.183998
iter 100 value 78.012778
final  value 78.012778 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 122.939018 
iter  10 value 94.833352
iter  20 value 92.423721
iter  30 value 90.987859
iter  40 value 87.961752
iter  50 value 84.800371
iter  60 value 82.417148
iter  70 value 81.012257
iter  80 value 80.559051
iter  90 value 79.834238
iter 100 value 79.520182
final  value 79.520182 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 121.627429 
iter  10 value 94.436127
iter  20 value 93.886082
iter  30 value 90.836712
iter  40 value 84.797428
iter  50 value 83.943989
iter  60 value 81.829067
iter  70 value 81.733926
iter  80 value 80.818374
iter  90 value 80.436327
iter 100 value 79.214341
final  value 79.214341 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 103.553249 
iter  10 value 92.223542
iter  20 value 88.414780
iter  30 value 83.778024
iter  40 value 83.580888
iter  50 value 81.901900
iter  60 value 80.794585
iter  70 value 80.048730
iter  80 value 79.171343
iter  90 value 78.978548
iter 100 value 78.588500
final  value 78.588500 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.954395 
iter  10 value 94.485859
iter  20 value 94.484223
iter  30 value 87.979722
iter  40 value 87.040581
iter  50 value 86.536795
iter  60 value 86.535200
iter  70 value 86.534789
iter  80 value 84.868110
iter  90 value 84.032068
iter 100 value 84.031374
final  value 84.031374 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 97.477726 
final  value 94.485767 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.429407 
iter  10 value 94.057334
iter  20 value 93.762772
final  value 93.754855 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.771618 
iter  10 value 94.485900
iter  20 value 90.698211
iter  30 value 82.988049
iter  40 value 82.914192
final  value 82.913854 
converged
Fitting Repeat 5 

# weights:  103
initial  value 114.459911 
iter  10 value 94.485907
iter  20 value 90.210893
final  value 86.945897 
converged
Fitting Repeat 1 

# weights:  305
initial  value 104.253109 
iter  10 value 94.489174
final  value 94.484560 
converged
Fitting Repeat 2 

# weights:  305
initial  value 130.050173 
iter  10 value 94.447825
iter  20 value 94.267495
iter  30 value 88.399686
iter  40 value 88.393543
iter  50 value 83.648520
iter  60 value 82.906819
final  value 82.906787 
converged
Fitting Repeat 3 

# weights:  305
initial  value 97.303026 
iter  10 value 94.486807
iter  20 value 91.095567
iter  30 value 80.387085
iter  40 value 80.076384
iter  50 value 79.826030
iter  60 value 79.057353
final  value 79.026304 
converged
Fitting Repeat 4 

# weights:  305
initial  value 105.660470 
iter  10 value 94.489586
iter  20 value 94.438875
iter  30 value 88.631979
iter  40 value 83.536370
iter  50 value 83.532453
iter  60 value 83.531446
iter  70 value 82.252712
iter  80 value 82.045906
iter  90 value 82.039034
iter 100 value 82.033246
final  value 82.033246 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 105.420227 
iter  10 value 94.489018
iter  20 value 94.477190
iter  30 value 85.458495
iter  40 value 84.298815
iter  50 value 82.410967
iter  60 value 82.397231
iter  70 value 82.253828
iter  80 value 82.138432
iter  90 value 82.138206
iter 100 value 82.137661
final  value 82.137661 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 116.160775 
iter  10 value 94.320246
iter  20 value 94.312571
iter  30 value 93.946004
iter  40 value 88.803827
iter  50 value 85.741867
iter  60 value 85.701547
iter  70 value 85.700261
iter  80 value 84.531110
final  value 84.346672 
converged
Fitting Repeat 2 

# weights:  507
initial  value 121.796276 
iter  10 value 94.493346
iter  20 value 94.485448
iter  30 value 94.471226
iter  40 value 91.600526
iter  50 value 91.193962
iter  60 value 89.445625
iter  70 value 85.658620
iter  80 value 85.650089
iter  90 value 85.581030
iter 100 value 85.490343
final  value 85.490343 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 99.168356 
iter  10 value 93.730624
iter  20 value 93.725838
iter  30 value 93.624732
iter  40 value 89.956785
iter  50 value 83.115440
iter  60 value 82.069899
iter  70 value 81.895138
iter  80 value 80.960138
final  value 80.959548 
converged
Fitting Repeat 4 

# weights:  507
initial  value 95.024297 
iter  10 value 82.751967
iter  20 value 81.265221
iter  30 value 80.811934
iter  40 value 80.565042
iter  50 value 80.532898
iter  60 value 80.528221
iter  70 value 80.526854
iter  80 value 80.525482
final  value 80.525107 
converged
Fitting Repeat 5 

# weights:  507
initial  value 102.297409 
iter  10 value 94.451765
iter  20 value 93.912609
iter  30 value 85.190128
iter  40 value 84.088831
iter  50 value 84.040823
iter  60 value 84.040341
iter  70 value 83.995290
final  value 83.989561 
converged
Fitting Repeat 1 

# weights:  103
initial  value 95.276320 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.803429 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.340093 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.514350 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.586278 
iter  10 value 94.026542
iter  10 value 94.026542
iter  10 value 94.026542
final  value 94.026542 
converged
Fitting Repeat 1 

# weights:  305
initial  value 108.071509 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 109.454961 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.848860 
iter  10 value 93.750776
iter  20 value 93.201466
iter  30 value 93.201309
iter  30 value 93.201308
final  value 93.201305 
converged
Fitting Repeat 4 

# weights:  305
initial  value 109.402537 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 100.839051 
final  value 94.026542 
converged
Fitting Repeat 1 

# weights:  507
initial  value 100.628915 
iter  10 value 93.320268
final  value 93.320225 
converged
Fitting Repeat 2 

# weights:  507
initial  value 102.117963 
iter  10 value 94.231389
iter  20 value 93.772975
final  value 93.772973 
converged
Fitting Repeat 3 

# weights:  507
initial  value 102.646360 
iter  10 value 93.598541
iter  20 value 93.597903
iter  20 value 93.597903
iter  20 value 93.597903
final  value 93.597903 
converged
Fitting Repeat 4 

# weights:  507
initial  value 105.696195 
iter  10 value 94.310510
iter  10 value 94.310510
iter  10 value 94.310510
final  value 94.310510 
converged
Fitting Repeat 5 

# weights:  507
initial  value 114.450279 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.120199 
iter  10 value 94.488652
iter  20 value 94.164149
iter  30 value 91.406808
iter  40 value 86.533699
iter  50 value 85.774110
iter  60 value 85.569369
iter  70 value 85.418323
iter  80 value 84.297463
iter  90 value 83.408238
iter 100 value 83.244742
final  value 83.244742 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 109.586474 
iter  10 value 94.486575
iter  20 value 94.344883
iter  30 value 94.126474
iter  40 value 93.497204
iter  50 value 93.495314
iter  60 value 91.979592
iter  70 value 87.451221
iter  80 value 86.876633
iter  90 value 86.704789
iter 100 value 86.437613
final  value 86.437613 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 96.180945 
iter  10 value 94.519638
iter  20 value 94.488532
iter  30 value 87.194478
iter  40 value 86.524402
iter  50 value 86.324968
iter  60 value 84.892414
iter  70 value 83.692004
iter  80 value 83.478462
iter  90 value 83.079523
iter 100 value 83.061014
final  value 83.061014 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 96.953108 
iter  10 value 93.795230
iter  20 value 92.053230
iter  30 value 91.896654
iter  40 value 91.416945
iter  50 value 91.217370
final  value 91.216929 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.328763 
iter  10 value 94.488159
iter  20 value 88.073573
iter  30 value 86.407665
iter  40 value 86.192588
iter  50 value 85.683070
iter  60 value 84.729744
iter  70 value 84.534451
iter  80 value 83.212139
iter  90 value 83.147028
final  value 83.145413 
converged
Fitting Repeat 1 

# weights:  305
initial  value 108.991008 
iter  10 value 95.291413
iter  20 value 87.509374
iter  30 value 86.327741
iter  40 value 85.563157
iter  50 value 83.382704
iter  60 value 82.780838
iter  70 value 82.401341
iter  80 value 82.256319
iter  90 value 82.099764
iter 100 value 82.055615
final  value 82.055615 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 99.787526 
iter  10 value 91.001345
iter  20 value 86.028550
iter  30 value 84.632401
iter  40 value 84.315946
iter  50 value 84.178023
iter  60 value 83.898107
iter  70 value 83.363854
iter  80 value 82.670945
iter  90 value 82.548445
iter 100 value 82.331478
final  value 82.331478 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 117.267419 
iter  10 value 94.036105
iter  20 value 88.690172
iter  30 value 85.809556
iter  40 value 83.897026
iter  50 value 83.275322
iter  60 value 82.732302
iter  70 value 82.501104
iter  80 value 82.358781
iter  90 value 81.989011
iter 100 value 81.891820
final  value 81.891820 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 101.275449 
iter  10 value 94.619238
iter  20 value 92.112935
iter  30 value 87.144921
iter  40 value 86.849625
iter  50 value 85.693595
iter  60 value 84.732613
iter  70 value 82.461239
iter  80 value 82.080391
iter  90 value 81.831720
iter 100 value 81.759748
final  value 81.759748 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 103.280988 
iter  10 value 94.518089
iter  20 value 93.743842
iter  30 value 91.187881
iter  40 value 89.530824
iter  50 value 88.645472
iter  60 value 86.274347
iter  70 value 84.405599
iter  80 value 83.471227
iter  90 value 83.280274
iter 100 value 82.778844
final  value 82.778844 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 104.048626 
iter  10 value 95.105164
iter  20 value 87.395339
iter  30 value 83.936791
iter  40 value 82.702996
iter  50 value 82.613567
iter  60 value 82.440083
iter  70 value 81.999112
iter  80 value 81.706594
iter  90 value 81.590141
iter 100 value 81.515616
final  value 81.515616 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 106.530853 
iter  10 value 94.267471
iter  20 value 92.939754
iter  30 value 90.910938
iter  40 value 86.398658
iter  50 value 84.120144
iter  60 value 83.053223
iter  70 value 82.636245
iter  80 value 82.325079
iter  90 value 82.087078
iter 100 value 82.020905
final  value 82.020905 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 135.566712 
iter  10 value 94.737203
iter  20 value 87.095360
iter  30 value 84.786625
iter  40 value 83.492054
iter  50 value 82.666603
iter  60 value 82.546620
iter  70 value 82.442045
iter  80 value 82.361881
iter  90 value 82.222114
iter 100 value 82.082632
final  value 82.082632 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 110.974463 
iter  10 value 94.474159
iter  20 value 88.656191
iter  30 value 87.951778
iter  40 value 85.784932
iter  50 value 83.702753
iter  60 value 83.091079
iter  70 value 82.817302
iter  80 value 82.610887
iter  90 value 82.585424
iter 100 value 82.546019
final  value 82.546019 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 107.454031 
iter  10 value 94.067590
iter  20 value 93.533792
iter  30 value 89.577120
iter  40 value 87.161087
iter  50 value 86.018777
iter  60 value 84.892823
iter  70 value 83.166432
iter  80 value 82.536056
iter  90 value 82.057836
iter 100 value 81.825466
final  value 81.825466 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 99.969430 
final  value 94.485704 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.034429 
iter  10 value 94.028352
final  value 94.027881 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.883687 
final  value 94.486100 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.648464 
final  value 94.485576 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.017329 
iter  10 value 94.485916
iter  20 value 94.484232
final  value 94.484216 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.731697 
iter  10 value 94.487544
iter  20 value 93.083312
iter  30 value 86.697989
final  value 86.697617 
converged
Fitting Repeat 2 

# weights:  305
initial  value 114.985242 
iter  10 value 94.489191
iter  20 value 94.484430
iter  30 value 93.320748
iter  30 value 93.320748
iter  30 value 93.320748
final  value 93.320748 
converged
Fitting Repeat 3 

# weights:  305
initial  value 99.359612 
iter  10 value 94.031644
iter  20 value 94.030055
iter  30 value 93.324898
iter  40 value 93.322311
final  value 93.322050 
converged
Fitting Repeat 4 

# weights:  305
initial  value 105.875897 
iter  10 value 91.954140
iter  20 value 86.653487
iter  30 value 86.505116
iter  40 value 85.343306
iter  50 value 85.216631
iter  60 value 85.216218
iter  70 value 85.183642
iter  80 value 84.659487
final  value 84.574543 
converged
Fitting Repeat 5 

# weights:  305
initial  value 105.582064 
iter  10 value 94.489602
iter  20 value 94.484253
iter  30 value 94.312715
iter  40 value 90.567151
final  value 87.812704 
converged
Fitting Repeat 1 

# weights:  507
initial  value 104.315833 
iter  10 value 94.457740
iter  20 value 93.722566
iter  30 value 93.489852
iter  40 value 93.487371
iter  50 value 93.485295
iter  60 value 91.704248
iter  70 value 91.664055
final  value 91.664007 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.723197 
iter  10 value 94.490637
iter  20 value 92.226922
iter  30 value 87.816000
iter  40 value 87.788406
iter  50 value 86.783160
iter  60 value 84.403820
iter  70 value 83.445651
iter  80 value 83.422735
iter  90 value 83.422024
iter  90 value 83.422024
iter  90 value 83.422024
final  value 83.422024 
converged
Fitting Repeat 3 

# weights:  507
initial  value 109.078616 
iter  10 value 92.924563
iter  20 value 88.718638
iter  30 value 88.690552
iter  40 value 88.680549
iter  50 value 85.902682
iter  60 value 84.607306
iter  70 value 83.292934
iter  80 value 82.522203
iter  90 value 81.795896
iter 100 value 80.862565
final  value 80.862565 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 110.830230 
iter  10 value 94.063323
iter  20 value 94.053027
iter  30 value 87.367398
iter  40 value 83.927349
iter  50 value 83.080405
iter  60 value 82.815954
iter  70 value 82.787407
iter  80 value 82.787122
final  value 82.787075 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.169967 
iter  10 value 92.456169
iter  20 value 91.961022
iter  30 value 91.747170
iter  40 value 91.671331
iter  50 value 91.662429
iter  60 value 91.555689
iter  70 value 91.552837
iter  80 value 86.683691
iter  90 value 84.889190
iter 100 value 84.572114
final  value 84.572114 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.812773 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.069134 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.176622 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 108.101256 
iter  10 value 94.484211
iter  10 value 94.484211
iter  10 value 94.484211
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.569858 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 99.077190 
iter  10 value 87.381695
iter  20 value 86.702442
iter  30 value 86.682981
iter  40 value 86.682133
final  value 86.682091 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.583545 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 109.914641 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.889153 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 93.967785 
iter  10 value 86.404957
iter  20 value 86.400019
final  value 86.400011 
converged
Fitting Repeat 1 

# weights:  507
initial  value 96.966070 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 114.166485 
iter  10 value 94.340808
final  value 94.275345 
converged
Fitting Repeat 3 

# weights:  507
initial  value 99.481450 
final  value 94.483810 
converged
Fitting Repeat 4 

# weights:  507
initial  value 103.936575 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 112.865537 
iter  10 value 94.484211
iter  10 value 94.484211
iter  10 value 94.484211
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 108.614482 
iter  10 value 94.346572
iter  20 value 91.331975
iter  30 value 89.347880
iter  40 value 89.124831
iter  50 value 89.046626
iter  60 value 87.679963
iter  70 value 86.560864
iter  80 value 85.307049
iter  90 value 84.796186
final  value 84.792033 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.518132 
iter  10 value 88.635613
iter  20 value 87.150955
iter  30 value 86.280954
iter  40 value 84.703724
iter  50 value 84.417714
iter  60 value 84.375228
final  value 84.366335 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.698696 
iter  10 value 94.311232
iter  20 value 87.909409
iter  30 value 86.407084
iter  40 value 85.836208
iter  50 value 85.736638
final  value 85.736612 
converged
Fitting Repeat 4 

# weights:  103
initial  value 103.628751 
iter  10 value 94.435270
iter  20 value 91.296690
iter  30 value 88.473480
iter  40 value 88.293958
iter  50 value 87.670043
iter  60 value 87.248013
iter  70 value 84.811574
iter  80 value 84.165273
iter  90 value 84.138905
iter 100 value 84.107802
final  value 84.107802 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 99.608532 
iter  10 value 94.486542
iter  20 value 94.159833
iter  30 value 90.330060
iter  40 value 87.494496
iter  50 value 86.863957
iter  60 value 86.493852
final  value 86.493736 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.438032 
iter  10 value 94.565681
iter  20 value 88.167959
iter  30 value 87.337703
iter  40 value 86.976277
iter  50 value 86.557303
iter  60 value 85.051107
iter  70 value 84.028724
iter  80 value 83.792981
iter  90 value 83.254262
iter 100 value 82.703582
final  value 82.703582 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 109.996527 
iter  10 value 95.964047
iter  20 value 94.324525
iter  30 value 87.377945
iter  40 value 86.290858
iter  50 value 86.018976
iter  60 value 85.736748
iter  70 value 85.671122
iter  80 value 85.135185
iter  90 value 85.016742
iter 100 value 84.373442
final  value 84.373442 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 103.655528 
iter  10 value 94.355564
iter  20 value 91.468751
iter  30 value 87.860636
iter  40 value 87.450088
iter  50 value 86.535354
iter  60 value 85.356555
iter  70 value 84.615146
iter  80 value 83.816949
iter  90 value 83.240142
iter 100 value 82.903766
final  value 82.903766 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 114.747774 
iter  10 value 94.359831
iter  20 value 93.470912
iter  30 value 91.156160
iter  40 value 87.961729
iter  50 value 87.313230
iter  60 value 87.037297
iter  70 value 84.853790
iter  80 value 83.644031
iter  90 value 83.444633
iter 100 value 83.211711
final  value 83.211711 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 108.111686 
iter  10 value 95.525538
iter  20 value 94.399965
iter  30 value 94.367873
iter  40 value 91.846760
iter  50 value 87.340614
iter  60 value 85.124480
iter  70 value 84.340401
iter  80 value 84.061877
iter  90 value 83.152437
iter 100 value 82.989733
final  value 82.989733 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 114.795447 
iter  10 value 94.483620
iter  20 value 89.281614
iter  30 value 87.679917
iter  40 value 86.414295
iter  50 value 86.164468
iter  60 value 85.398398
iter  70 value 83.962185
iter  80 value 83.050605
iter  90 value 82.748188
iter 100 value 82.574937
final  value 82.574937 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 118.400964 
iter  10 value 94.499633
iter  20 value 94.173664
iter  30 value 89.223224
iter  40 value 87.784204
iter  50 value 85.979217
iter  60 value 84.176229
iter  70 value 83.501522
iter  80 value 83.018238
iter  90 value 82.798215
iter 100 value 82.653134
final  value 82.653134 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 120.662356 
iter  10 value 97.390586
iter  20 value 93.860154
iter  30 value 87.781086
iter  40 value 85.830757
iter  50 value 84.333759
iter  60 value 83.603861
iter  70 value 83.257425
iter  80 value 83.143956
iter  90 value 83.029473
iter 100 value 82.991783
final  value 82.991783 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 112.175867 
iter  10 value 94.419941
iter  20 value 90.012818
iter  30 value 86.694769
iter  40 value 86.140269
iter  50 value 85.846699
iter  60 value 85.613875
iter  70 value 84.933371
iter  80 value 83.325712
iter  90 value 83.086205
iter 100 value 82.989364
final  value 82.989364 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 109.213673 
iter  10 value 94.927630
iter  20 value 89.534401
iter  30 value 87.413563
iter  40 value 87.066446
iter  50 value 86.079259
iter  60 value 83.851010
iter  70 value 83.223378
iter  80 value 83.080977
iter  90 value 82.984050
iter 100 value 82.763874
final  value 82.763874 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 105.180951 
final  value 94.485852 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.059403 
iter  10 value 94.485887
iter  20 value 94.482554
iter  30 value 88.099841
iter  40 value 85.900954
iter  50 value 85.758423
iter  60 value 85.694161
iter  70 value 85.693671
final  value 85.693669 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.018635 
final  value 94.485911 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.722637 
iter  10 value 94.277622
iter  20 value 94.276606
final  value 94.275563 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.101759 
final  value 94.485798 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.276794 
iter  10 value 94.280390
iter  20 value 94.276164
final  value 94.275785 
converged
Fitting Repeat 2 

# weights:  305
initial  value 102.023404 
iter  10 value 94.489266
iter  20 value 94.420168
iter  30 value 87.456647
iter  40 value 87.375444
iter  50 value 87.334911
iter  60 value 87.246936
iter  70 value 87.233559
final  value 87.219783 
converged
Fitting Repeat 3 

# weights:  305
initial  value 98.949351 
iter  10 value 94.489477
iter  20 value 93.717444
iter  30 value 87.984130
iter  40 value 87.982885
iter  40 value 87.982885
final  value 87.982885 
converged
Fitting Repeat 4 

# weights:  305
initial  value 106.578081 
iter  10 value 94.446793
iter  20 value 91.529816
iter  30 value 88.802400
iter  40 value 87.717013
iter  50 value 87.705970
iter  60 value 86.742426
iter  70 value 86.738521
iter  80 value 86.737182
iter  90 value 86.735584
final  value 86.735469 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.741866 
iter  10 value 94.484463
iter  20 value 94.421001
iter  30 value 92.663512
iter  40 value 92.628297
iter  50 value 92.574268
iter  50 value 92.574268
final  value 92.574268 
converged
Fitting Repeat 1 

# weights:  507
initial  value 103.120306 
iter  10 value 94.491911
iter  20 value 94.484233
iter  30 value 92.748559
iter  40 value 87.567870
iter  50 value 86.945199
iter  60 value 86.944299
iter  70 value 86.596254
iter  80 value 86.520710
iter  90 value 85.648353
iter 100 value 85.475994
final  value 85.475994 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 94.940536 
iter  10 value 94.491571
iter  20 value 94.435539
iter  30 value 92.731437
iter  40 value 92.707162
iter  50 value 87.142998
iter  60 value 86.847921
iter  70 value 86.757906
iter  80 value 86.702729
iter  90 value 86.700509
iter 100 value 86.662154
final  value 86.662154 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 110.100727 
iter  10 value 94.492254
iter  20 value 94.484405
iter  30 value 87.610845
iter  40 value 86.088851
iter  50 value 86.076317
iter  60 value 86.075695
iter  70 value 86.074053
iter  80 value 86.073549
iter  90 value 85.958481
iter 100 value 85.825825
final  value 85.825825 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 105.563037 
iter  10 value 94.489726
iter  20 value 92.173579
iter  30 value 86.929011
final  value 86.797053 
converged
Fitting Repeat 5 

# weights:  507
initial  value 95.865081 
iter  10 value 94.283510
iter  20 value 94.276054
iter  30 value 90.463303
iter  40 value 86.069672
iter  50 value 83.477884
iter  60 value 83.406943
iter  70 value 83.406100
iter  80 value 83.294180
iter  90 value 82.968936
iter 100 value 82.176547
final  value 82.176547 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.157576 
final  value 94.038251 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.049517 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.763272 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.538939 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.470391 
iter  10 value 94.038258
final  value 94.038251 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.976205 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 103.437054 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.485858 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 102.704079 
final  value 94.052908 
converged
Fitting Repeat 5 

# weights:  305
initial  value 106.698165 
final  value 94.038251 
converged
Fitting Repeat 1 

# weights:  507
initial  value 102.562076 
iter  10 value 94.038251
iter  10 value 94.038251
iter  10 value 94.038251
final  value 94.038251 
converged
Fitting Repeat 2 

# weights:  507
initial  value 105.945354 
final  value 94.038251 
converged
Fitting Repeat 3 

# weights:  507
initial  value 103.799521 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  507
initial  value 114.847045 
final  value 94.038251 
converged
Fitting Repeat 5 

# weights:  507
initial  value 98.535938 
iter  10 value 93.864032
iter  20 value 93.860383
iter  30 value 85.916130
iter  40 value 85.182170
final  value 85.181512 
converged
Fitting Repeat 1 

# weights:  103
initial  value 101.230817 
iter  10 value 94.056911
iter  20 value 93.839849
iter  30 value 87.890730
iter  40 value 84.802445
iter  50 value 84.556206
iter  60 value 84.529066
final  value 84.526853 
converged
Fitting Repeat 2 

# weights:  103
initial  value 104.094770 
iter  10 value 94.014658
iter  20 value 88.348424
iter  30 value 87.135262
iter  40 value 86.817986
iter  50 value 85.140011
iter  60 value 84.753775
iter  70 value 84.533798
iter  80 value 84.526856
final  value 84.526853 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.283763 
iter  10 value 94.320227
iter  20 value 94.056371
iter  30 value 93.980852
iter  40 value 92.066823
iter  50 value 91.500419
iter  60 value 91.301400
iter  70 value 88.848748
iter  80 value 83.485954
iter  90 value 82.574005
iter 100 value 82.018999
final  value 82.018999 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 101.395551 
iter  10 value 94.002886
iter  20 value 86.948190
iter  30 value 85.702760
iter  40 value 85.008652
iter  50 value 84.825635
iter  60 value 84.651575
iter  70 value 84.527154
final  value 84.526853 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.455122 
iter  10 value 94.033150
iter  20 value 90.657401
iter  30 value 84.769909
iter  40 value 84.247659
iter  50 value 84.016654
iter  60 value 83.575455
iter  70 value 82.006402
iter  80 value 81.633570
iter  90 value 81.445221
iter 100 value 81.199257
final  value 81.199257 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 112.777802 
iter  10 value 89.682499
iter  20 value 85.197163
iter  30 value 84.928387
iter  40 value 84.520630
iter  50 value 83.678342
iter  60 value 83.264125
iter  70 value 83.037558
iter  80 value 82.700427
iter  90 value 82.386052
iter 100 value 81.878738
final  value 81.878738 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.511033 
iter  10 value 93.887443
iter  20 value 85.735783
iter  30 value 83.790011
iter  40 value 83.048617
iter  50 value 82.996552
iter  60 value 82.865049
iter  70 value 81.491918
iter  80 value 80.606718
iter  90 value 80.438505
iter 100 value 80.204263
final  value 80.204263 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 137.844540 
iter  10 value 94.119993
iter  20 value 90.445202
iter  30 value 85.444778
iter  40 value 85.120312
iter  50 value 84.496216
iter  60 value 83.061136
iter  70 value 82.125909
iter  80 value 81.819050
iter  90 value 81.433423
iter 100 value 81.030265
final  value 81.030265 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 101.493931 
iter  10 value 93.845058
iter  20 value 87.423746
iter  30 value 83.536112
iter  40 value 82.224869
iter  50 value 81.425628
iter  60 value 81.079919
iter  70 value 80.780435
iter  80 value 80.523889
iter  90 value 80.428554
iter 100 value 80.223685
final  value 80.223685 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 102.446719 
iter  10 value 93.860206
iter  20 value 85.518219
iter  30 value 83.174387
iter  40 value 82.927613
iter  50 value 82.366109
iter  60 value 81.319155
iter  70 value 80.448770
iter  80 value 80.192525
iter  90 value 80.156034
iter 100 value 80.124754
final  value 80.124754 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 126.073395 
iter  10 value 94.080129
iter  20 value 93.986345
iter  30 value 86.195036
iter  40 value 85.473472
iter  50 value 81.944020
iter  60 value 81.439698
iter  70 value 80.399757
iter  80 value 80.097464
iter  90 value 79.702860
iter 100 value 79.328356
final  value 79.328356 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 103.529444 
iter  10 value 94.100095
iter  20 value 85.980076
iter  30 value 84.723449
iter  40 value 84.510817
iter  50 value 84.029417
iter  60 value 83.887580
iter  70 value 83.843633
iter  80 value 83.233374
iter  90 value 82.611030
iter 100 value 82.431157
final  value 82.431157 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 110.619467 
iter  10 value 93.915394
iter  20 value 85.179417
iter  30 value 82.603789
iter  40 value 82.005979
iter  50 value 80.600517
iter  60 value 80.307616
iter  70 value 79.993942
iter  80 value 79.640457
iter  90 value 79.431612
iter 100 value 79.394116
final  value 79.394116 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 103.787632 
iter  10 value 93.976922
iter  20 value 86.760626
iter  30 value 85.847209
iter  40 value 84.457531
iter  50 value 84.108612
iter  60 value 83.943655
iter  70 value 82.119325
iter  80 value 81.516336
iter  90 value 80.744660
iter 100 value 80.218719
final  value 80.218719 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 104.447903 
iter  10 value 94.098541
iter  20 value 89.265634
iter  30 value 86.704635
iter  40 value 86.063368
iter  50 value 84.105137
iter  60 value 83.802109
iter  70 value 83.089359
iter  80 value 82.267275
iter  90 value 81.520609
iter 100 value 81.132406
final  value 81.132406 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 101.595504 
final  value 94.054861 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.684306 
final  value 94.054700 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.468509 
final  value 94.054699 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.085487 
final  value 94.054323 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.633558 
final  value 94.054779 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.531526 
iter  10 value 94.057665
iter  20 value 94.048180
iter  30 value 92.817035
iter  40 value 90.049728
iter  50 value 89.936223
iter  60 value 89.898051
final  value 89.897458 
converged
Fitting Repeat 2 

# weights:  305
initial  value 101.266334 
iter  10 value 94.058214
iter  20 value 94.052833
iter  30 value 85.681037
iter  40 value 84.210684
iter  50 value 80.810070
iter  60 value 80.310578
iter  70 value 80.227119
iter  80 value 80.209813
iter  90 value 80.207990
iter 100 value 80.205412
final  value 80.205412 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 102.759706 
iter  10 value 94.057816
iter  20 value 94.022932
iter  30 value 85.898301
iter  40 value 85.431679
iter  50 value 82.487158
iter  60 value 80.141917
iter  70 value 79.132912
iter  80 value 78.816415
iter  90 value 78.586704
iter 100 value 78.310020
final  value 78.310020 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 95.617320 
iter  10 value 85.151612
iter  20 value 84.135128
iter  30 value 84.129650
iter  40 value 83.872994
iter  50 value 83.815380
iter  60 value 83.811654
iter  70 value 83.809245
iter  80 value 83.809084
final  value 83.809036 
converged
Fitting Repeat 5 

# weights:  305
initial  value 126.799658 
iter  10 value 94.057451
iter  20 value 94.051972
iter  30 value 87.256916
iter  40 value 85.804768
iter  50 value 84.009184
iter  60 value 80.726000
iter  70 value 79.468195
iter  80 value 78.747257
iter  90 value 77.888051
iter 100 value 77.816275
final  value 77.816275 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 96.128967 
iter  10 value 93.738257
iter  20 value 92.949170
iter  30 value 92.777458
iter  40 value 92.708783
iter  50 value 92.627493
iter  60 value 84.726013
iter  70 value 84.244090
iter  80 value 84.013822
iter  90 value 82.799057
iter 100 value 82.705511
final  value 82.705511 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 122.943114 
iter  10 value 94.061942
iter  20 value 94.053556
iter  30 value 93.465666
iter  40 value 93.465295
final  value 93.465252 
converged
Fitting Repeat 3 

# weights:  507
initial  value 131.957865 
iter  10 value 94.059222
iter  20 value 93.981323
iter  30 value 89.151168
iter  40 value 84.926698
iter  50 value 84.922736
iter  60 value 84.915113
iter  70 value 84.912934
iter  80 value 84.632487
iter  90 value 84.631986
iter 100 value 84.631413
final  value 84.631413 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 92.504549 
iter  10 value 85.386456
iter  20 value 85.330467
iter  30 value 85.319607
iter  40 value 84.832991
iter  50 value 84.785408
final  value 84.785044 
converged
Fitting Repeat 5 

# weights:  507
initial  value 110.226503 
iter  10 value 94.056172
iter  20 value 93.362349
iter  30 value 93.333700
final  value 93.333699 
converged
Fitting Repeat 1 

# weights:  305
initial  value 139.563624 
iter  10 value 117.895946
iter  20 value 117.891080
iter  30 value 117.684962
iter  40 value 112.117550
iter  50 value 112.057009
iter  60 value 112.056783
iter  70 value 111.746179
iter  80 value 111.733969
final  value 111.733741 
converged
Fitting Repeat 2 

# weights:  305
initial  value 131.968517 
iter  10 value 117.763857
iter  20 value 116.766372
iter  30 value 105.103988
iter  40 value 103.981045
iter  50 value 103.977467
iter  60 value 103.975449
iter  70 value 103.794628
iter  80 value 102.762059
iter  90 value 101.115395
iter 100 value 99.696810
final  value 99.696810 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 138.198007 
iter  10 value 117.894555
iter  20 value 114.813699
iter  30 value 107.615651
iter  40 value 107.551225
iter  50 value 106.914396
iter  60 value 103.970055
iter  70 value 103.922972
iter  80 value 103.746373
iter  90 value 103.649935
iter 100 value 103.647896
final  value 103.647896 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 125.566662 
iter  10 value 117.895202
iter  20 value 117.890534
iter  30 value 115.539827
iter  40 value 106.824660
final  value 106.778003 
converged
Fitting Repeat 5 

# weights:  305
initial  value 122.384354 
iter  10 value 117.894447
iter  20 value 117.761924
iter  30 value 108.535344
final  value 108.528318 
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Tue Apr  1 02:36:54 2025 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  40.92    1.43  117.37 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod33.52 2.0435.70
FreqInteractors0.290.050.38
calculateAAC0.050.020.06
calculateAutocor0.760.090.86
calculateCTDC0.10.00.1
calculateCTDD0.810.000.81
calculateCTDT0.280.000.28
calculateCTriad0.450.000.43
calculateDC0.140.000.14
calculateF0.390.020.41
calculateKSAAP0.080.010.09
calculateQD_Sm2.070.172.25
calculateTC1.790.141.94
calculateTC_Sm0.300.020.31
corr_plot33.34 1.9835.39
enrichfindP 0.55 0.1412.59
enrichfind_hp0.080.021.06
enrichplot0.480.030.52
filter_missing_values000
getFASTA0.010.002.05
getHPI000
get_negativePPI000
get_positivePPI000
impute_missing_data000
plotPPI0.110.000.11
pred_ensembel14.21 0.2713.04
var_imp33.70 1.3435.05