Back to Multiple platform build/check report for BioC 3.14
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2022-04-13 12:05:58 -0400 (Wed, 13 Apr 2022).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 20.04.4 LTS)x86_644.1.3 (2022-03-10) -- "One Push-Up" 4324
tokay2Windows Server 2012 R2 Standardx644.1.3 (2022-03-10) -- "One Push-Up" 4077
machv2macOS 10.14.6 Mojavex86_644.1.3 (2022-03-10) -- "One Push-Up" 4137
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

CHECK results for singleCellTK on nebbiolo2


To the developers/maintainers of the singleCellTK package:
- Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to
reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information.
- Make sure to use the following settings in order to reproduce any error or warning you see on this page.

raw results

Package 1807/2083HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.4.0  (landing page)
Yichen Wang
Snapshot Date: 2022-04-12 01:55:07 -0400 (Tue, 12 Apr 2022)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_14
git_last_commit: 91f98fc
git_last_commit_date: 2021-10-27 11:24:49 -0400 (Wed, 27 Oct 2021)
nebbiolo2Linux (Ubuntu 20.04.4 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
tokay2Windows Server 2012 R2 Standard / x64  OK    OK    ERROR    OK  
machv2macOS 10.14.6 Mojave / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published

Summary

Package: singleCellTK
Version: 2.4.0
Command: /home/biocbuild/bbs-3.14-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.14-bioc/R/library --no-vignettes --timings singleCellTK_2.4.0.tar.gz
StartedAt: 2022-04-12 09:24:29 -0400 (Tue, 12 Apr 2022)
EndedAt: 2022-04-12 09:36:12 -0400 (Tue, 12 Apr 2022)
EllapsedTime: 703.6 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.14-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.14-bioc/R/library --no-vignettes --timings singleCellTK_2.4.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.14-bioc/meat/singleCellTK.Rcheck’
* using R version 4.1.3 (2022-03-10)
* using platform: x86_64-pc-linux-gnu (64-bit)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.4.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  6.5Mb
  sub-directories of 1Mb or more:
    extdata   1.6Mb
    shiny     2.8Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... NOTE
Namespaces in Imports field not imported from:
  'AnnotationDbi' 'RColorBrewer'
  All declared Imports should be used.
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking LazyData ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotDoubletFinderResults 24.602  0.135  24.729
plotScDblFinderResults   23.072  0.236  23.229
importExampleData        19.050  1.788  21.629
runDoubletFinder         16.205  0.024  16.229
plotBatchCorrCompare     11.359  0.248  11.589
runScDblFinder           11.043  0.164  11.170
plotScdsHybridResults     9.423  0.073   8.581
plotBcdsResults           9.021  0.253   8.350
plotDecontXResults        7.823  0.176   7.999
plotCxdsResults           7.140  0.036   7.167
runDecontX                6.811  0.084   6.895
plotEmptyDropsResults     6.830  0.036   6.865
plotEmptyDropsScatter     6.727  0.044   6.771
plotUMAP                  6.593  0.056   6.640
runEmptyDrops             6.452  0.004   6.456
findMarkerDiffExp         5.888  0.128   6.016
plotMarkerDiffExp         5.698  0.036   5.734
detectCellOutlier         5.168  0.205   5.373
findMarkerTopTable        5.148  0.064   5.213
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.14-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.



Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.14-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.14-bioc/R/library’
* installing *source* package ‘singleCellTK’ ...
** using staged installation
** R
** data
*** moving datasets to lazyload DB
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.146   0.031   0.164 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand


Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    aperm, apply, rowsum, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Estimating GSVA scores for 34 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  24%
  |                                                                            
  |===================                                                   |  26%
  |                                                                            
  |=====================                                                 |  29%
  |                                                                            
  |=======================                                               |  32%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |===============================================                       |  68%
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |===================================================                   |  74%
  |                                                                            
  |======================================================                |  76%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
[09:34:36] WARNING: amalgamation/../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[09:34:37] WARNING: amalgamation/../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[09:35:01] WARNING: amalgamation/../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 15 | SKIP 0 | PASS 126 ]

[ FAIL 0 | WARN 15 | SKIP 0 | PASS 126 ]
> 
> proc.time()
   user  system elapsed 
203.025   3.849 205.739 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0000.0030.003
SEG0.0020.0000.003
calcEffectSizes0.1430.0080.150
combineSCE2.1190.0402.159
computeZScore0.3110.0520.362
convertSCEToSeurat3.0390.1683.208
convertSeuratToSCE0.4740.0830.557
dedupRowNames0.0560.0080.063
detectCellOutlier5.1680.2055.373
diffAbundanceFET0.0470.0000.048
discreteColorPalette0.0060.0000.006
distinctColors0.0020.0000.002
downSampleCells0.7620.0640.826
downSampleDepth0.680.000.68
enrichRSCE0.3520.0041.417
exportSCE0.0010.0000.001
exportSCEtoAnnData0.1190.0160.134
exportSCEtoFlatFile0.1250.0200.145
featureIndex0.0270.0040.031
findMarkerDiffExp5.8880.1286.016
findMarkerTopTable5.1480.0645.213
generateSimulatedData0.0370.0000.036
getBiomarker0.0270.0040.031
getDEGTopTable0.7510.0080.759
getMSigDBTable0.0030.0000.003
getTSNE0.3940.0200.413
getTopHVG0.2800.0240.303
getUMAP3.9920.1164.098
importAnnData0.0010.0000.001
importBUStools0.3050.0110.316
importCellRanger1.1620.0371.199
importCellRangerV2Sample0.3040.0000.304
importCellRangerV3Sample0.4210.0000.421
importDropEst0.4070.0040.410
importExampleData19.050 1.78821.629
importGeneSetsFromCollection0.7320.0120.744
importGeneSetsFromGMT0.0790.0040.084
importGeneSetsFromList0.1850.0040.189
importGeneSetsFromMSigDB3.9860.2604.247
importMitoGeneSet0.0480.0000.049
importOptimus0.0010.0000.000
importSEQC0.2990.0000.299
importSTARsolo0.3270.0000.327
iterateSimulations0.4900.0080.498
mergeSCEColData0.4840.0040.488
mouseBrainSubsetSCE0.0010.0000.001
msigdb_table0.0010.0000.001
plotBarcodeRankDropsResults1.0480.0001.048
plotBarcodeRankScatter0.7980.0120.810
plotBatchCorrCompare11.359 0.24811.589
plotBatchVariance0.2500.0360.286
plotBcdsResults9.0210.2538.350
plotClusterAbundance0.6540.0120.666
plotCxdsResults7.1400.0367.167
plotDEGHeatmap4.8230.0364.858
plotDEGRegression3.2640.0243.275
plotDEGViolin3.9830.1204.096
plotDecontXResults7.8230.1767.999
plotDimRed0.3790.0000.379
plotDoubletFinderResults24.602 0.13524.729
plotEmptyDropsResults6.8300.0366.865
plotEmptyDropsScatter6.7270.0446.771
plotMASTThresholdGenes1.6730.0361.709
plotMarkerDiffExp5.6980.0365.734
plotPCA0.6090.0040.613
plotRunPerCellQCResults0.0020.0000.002
plotSCEBarAssayData0.1560.0000.156
plotSCEBarColData0.1020.0000.102
plotSCEBatchFeatureMean0.1710.0030.175
plotSCEDensity0.1570.0040.161
plotSCEDensityAssayData0.1150.0040.119
plotSCEDensityColData0.1540.0000.154
plotSCEDimReduceColData0.8750.0040.879
plotSCEDimReduceFeatures0.4180.0000.418
plotSCEHeatmap0.8970.0000.897
plotSCEScatter0.3870.0040.391
plotSCEViolin0.180.000.18
plotSCEViolinAssayData0.2050.0000.205
plotSCEViolinColData0.1900.0000.191
plotScDblFinderResults23.072 0.23623.229
plotScdsHybridResults9.4230.0738.581
plotScrubletResults0.0020.0000.002
plotTSNE0.6760.0040.680
plotTopHVG0.4910.0120.502
plotUMAP6.5930.0566.640
readSingleCellMatrix0.0040.0000.004
reportCellQC0.210.000.21
reportDropletQC0.0020.0000.002
reportQCTool0.2160.0000.216
retrieveSCEIndex0.0130.0000.013
runANOVA1.2220.0001.222
runBBKNN000
runBarcodeRankDrops0.6170.0160.633
runBcds2.7030.0081.733
runCellQC0.2210.0120.233
runComBatSeq0.4330.0080.440
runCxds0.7300.0040.734
runCxdsBcdsHybrid2.5350.0001.678
runDEAnalysis1.0480.0001.048
runDESeq24.8760.0604.936
runDecontX6.8110.0846.895
runDimReduce1.1330.0081.142
runDoubletFinder16.205 0.02416.229
runDropletQC0.0010.0000.001
runEmptyDrops6.4520.0046.456
runFastMNN1.5730.0121.586
runFeatureSelection0.2240.0000.225
runGSVA0.9110.0040.915
runKMeans0.5920.0000.593
runLimmaBC0.0970.0000.096
runLimmaDE0.9540.0040.958
runMAST3.5500.0003.522
runMNNCorrect0.6600.0080.668
runNormalization1.5460.0161.563
runPerCellQC0.4270.0000.428
runSCANORAMA000
runSCMerge0.0010.0000.001
runScDblFinder11.043 0.16411.170
runScranSNN0.5770.0040.582
runScrublet0.0010.0000.001
runSingleR0.0440.0000.045
runVAM0.8070.0080.816
runWilcox101
runZINBWaVE0.0010.0000.001
sampleSummaryStats0.4160.0000.416
scaterCPM0.1730.0000.172
scaterPCA0.7120.0040.716
scaterlogNormCounts0.8200.0040.824
sce0.0010.0000.001
scranModelGeneVar0.2540.0040.258
sctkListGeneSetCollections0.2540.0080.262
sctkPythonInstallConda0.0000.0000.001
sctkPythonInstallVirtualEnv000
selectSCTKConda0.0010.0000.000
selectSCTKVirtualEnvironment000
setSCTKDisplayRow0.4600.0200.479
seuratComputeHeatmap0.0010.0000.001
seuratComputeJackStraw0.0010.0000.001
seuratElbowPlot0.0020.0000.001
seuratFindClusters0.0010.0000.001
seuratFindHVG0.0010.0000.001
seuratICA0.0010.0000.001
seuratJackStrawPlot0.0010.0000.001
seuratNormalizeData0.0010.0000.001
seuratPCA0.0010.0000.001
seuratPlotHVG0.0010.0000.001
seuratReductionPlot0.0000.0010.001
seuratRunUMAP0.0000.0010.001
seuratSCTransform3.0960.0733.171
seuratScaleData0.0010.0000.001
singleCellTK000
subDiffEx0.5930.0000.592
subsetSCECols0.2230.0000.222
subsetSCERows0.6050.0000.604
summarizeSCE0.0580.0000.057
trimCounts0.3000.0040.304