Back to Multiple platform build/check report for BioC 3.14 |
|
This page was generated on 2022-04-13 12:08:49 -0400 (Wed, 13 Apr 2022).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4324 |
tokay2 | Windows Server 2012 R2 Standard | x64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4077 |
machv2 | macOS 10.14.6 Mojave | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4137 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
To the developers/maintainers of the SNPRelate package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/SNPRelate.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 1831/2083 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
SNPRelate 1.28.0 (landing page) Xiuwen Zheng
| nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) / x86_64 | OK | OK | OK | |||||||||
tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | OK | OK | |||||||||
machv2 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
Package: SNPRelate |
Version: 1.28.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:SNPRelate.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings SNPRelate_1.28.0.tar.gz |
StartedAt: 2022-04-12 18:45:43 -0400 (Tue, 12 Apr 2022) |
EndedAt: 2022-04-12 18:48:20 -0400 (Tue, 12 Apr 2022) |
EllapsedTime: 156.5 seconds |
RetCode: 0 |
Status: OK |
CheckDir: SNPRelate.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:SNPRelate.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings SNPRelate_1.28.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.14-bioc/meat/SNPRelate.Rcheck’ * using R version 4.1.3 (2022-03-10) * using platform: x86_64-apple-darwin17.0 (64-bit) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘SNPRelate/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘SNPRelate’ version ‘1.28.0’ * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘SNPRelate’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking line endings in C/C++/Fortran sources/headers ... OK * checking line endings in Makefiles ... OK * checking compilation flags in Makevars ... OK * checking for GNU extensions in Makefiles ... OK * checking for portable use of $(BLAS_LIBS) and $(LAPACK_LIBS) ... OK * checking use of PKG_*FLAGS in Makefiles ... OK * checking compiled code ... NOTE Note: information on .o files is not available * checking files in ‘vignettes’ ... OK * checking examples ... OK * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/Users/biocbuild/bbs-3.14-bioc/meat/SNPRelate.Rcheck/00check.log’ for details.
SNPRelate.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL SNPRelate ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.1/Resources/library’ * installing *source* package ‘SNPRelate’ ... ** using staged installation ** libs clang++ -mmacosx-version-min=10.13 -std=gnu++14 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -I. -I'/Library/Frameworks/R.framework/Versions/4.1/Resources/library/gdsfmt/include' -I/usr/local/include -fPIC -Wall -g -O2 -c ConvToGDS.cpp -o ConvToGDS.o clang -mmacosx-version-min=10.13 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -I. -I'/Library/Frameworks/R.framework/Versions/4.1/Resources/library/gdsfmt/include' -I/usr/local/include -fPIC -Wall -g -O2 -c R_SNPRelate.c -o R_SNPRelate.o clang++ -mmacosx-version-min=10.13 -std=gnu++14 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -I. -I'/Library/Frameworks/R.framework/Versions/4.1/Resources/library/gdsfmt/include' -I/usr/local/include -fPIC -Wall -g -O2 -c SNPRelate.cpp -o SNPRelate.o clang++ -mmacosx-version-min=10.13 -std=gnu++14 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -I. -I'/Library/Frameworks/R.framework/Versions/4.1/Resources/library/gdsfmt/include' -I/usr/local/include -fPIC -Wall -g -O2 -c ThreadPool.cpp -o ThreadPool.o clang++ -mmacosx-version-min=10.13 -std=gnu++14 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -I. -I'/Library/Frameworks/R.framework/Versions/4.1/Resources/library/gdsfmt/include' -I/usr/local/include -fPIC -Wall -g -O2 -c dGenGWAS.cpp -o dGenGWAS.o clang++ -mmacosx-version-min=10.13 -std=gnu++14 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -I. -I'/Library/Frameworks/R.framework/Versions/4.1/Resources/library/gdsfmt/include' -I/usr/local/include -fPIC -Wall -g -O2 -c dVect.cpp -o dVect.o clang++ -mmacosx-version-min=10.13 -std=gnu++14 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -I. -I'/Library/Frameworks/R.framework/Versions/4.1/Resources/library/gdsfmt/include' -I/usr/local/include -fPIC -Wall -g -O2 -c genBeta.cpp -o genBeta.o clang++ -mmacosx-version-min=10.13 -std=gnu++14 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -I. -I'/Library/Frameworks/R.framework/Versions/4.1/Resources/library/gdsfmt/include' -I/usr/local/include -fPIC -Wall -g -O2 -c genEIGMIX.cpp -o genEIGMIX.o clang++ -mmacosx-version-min=10.13 -std=gnu++14 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -I. -I'/Library/Frameworks/R.framework/Versions/4.1/Resources/library/gdsfmt/include' -I/usr/local/include -fPIC -Wall -g -O2 -c genFst.cpp -o genFst.o clang++ -mmacosx-version-min=10.13 -std=gnu++14 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -I. -I'/Library/Frameworks/R.framework/Versions/4.1/Resources/library/gdsfmt/include' -I/usr/local/include -fPIC -Wall -g -O2 -c genHWE.cpp -o genHWE.o clang++ -mmacosx-version-min=10.13 -std=gnu++14 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -I. -I'/Library/Frameworks/R.framework/Versions/4.1/Resources/library/gdsfmt/include' -I/usr/local/include -fPIC -Wall -g -O2 -c genIBD.cpp -o genIBD.o clang++ -mmacosx-version-min=10.13 -std=gnu++14 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -I. -I'/Library/Frameworks/R.framework/Versions/4.1/Resources/library/gdsfmt/include' -I/usr/local/include -fPIC -Wall -g -O2 -c genIBS.cpp -o genIBS.o clang++ -mmacosx-version-min=10.13 -std=gnu++14 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -I. -I'/Library/Frameworks/R.framework/Versions/4.1/Resources/library/gdsfmt/include' -I/usr/local/include -fPIC -Wall -g -O2 -c genKING.cpp -o genKING.o clang++ -mmacosx-version-min=10.13 -std=gnu++14 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -I. -I'/Library/Frameworks/R.framework/Versions/4.1/Resources/library/gdsfmt/include' -I/usr/local/include -fPIC -Wall -g -O2 -c genLD.cpp -o genLD.o clang++ -mmacosx-version-min=10.13 -std=gnu++14 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -I. -I'/Library/Frameworks/R.framework/Versions/4.1/Resources/library/gdsfmt/include' -I/usr/local/include -fPIC -Wall -g -O2 -c genPCA.cpp -o genPCA.o clang++ -mmacosx-version-min=10.13 -std=gnu++14 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -I. -I'/Library/Frameworks/R.framework/Versions/4.1/Resources/library/gdsfmt/include' -I/usr/local/include -fPIC -Wall -g -O2 -c genSlideWin.cpp -o genSlideWin.o clang++ -mmacosx-version-min=10.13 -std=gnu++14 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -single_module -multiply_defined suppress -L/Library/Frameworks/R.framework/Resources/lib -L/usr/local/lib -o SNPRelate.so ConvToGDS.o R_SNPRelate.o SNPRelate.o ThreadPool.o dGenGWAS.o dVect.o genBeta.o genEIGMIX.o genFst.o genHWE.o genIBD.o genIBS.o genKING.o genLD.o genPCA.o genSlideWin.o -lpthread -L/Library/Frameworks/R.framework/Resources/lib -lRlapack -L/Library/Frameworks/R.framework/Resources/lib -lRblas -L/usr/local/gfortran/lib/gcc/x86_64-apple-darwin18/8.2.0 -L/usr/local/gfortran/lib -lgfortran -lquadmath -lm -F/Library/Frameworks/R.framework/.. -framework R -Wl,-framework -Wl,CoreFoundation installing to /Library/Frameworks/R.framework/Versions/4.1/Resources/library/00LOCK-SNPRelate/00new/SNPRelate/libs ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** checking absolute paths in shared objects and dynamic libraries ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (SNPRelate)
SNPRelate.Rcheck/tests/runTests.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage("SNPRelate") SNPRelate -- supported by Streaming SIMD Extensions 2 (SSE2) Genetic Relationship Matrix (GRM, GCTA): Excluding 8,088 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 1,000 using 1 thread GRM Calculation: the sum of all selected genotypes (0,1,2) = 282597 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:14 2022 (internal increment: 13960) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Saving to the GDS file: [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:14 2022 Done. Genetic Relationship Matrix (GRM, GCTA): Excluding 7,088 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 2,000 using 1 thread GRM Calculation: the sum of all selected genotypes (0,1,2) = 559412 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:14 2022 (internal increment: 13960) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 1s Saving to the GDS file: [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:15 2022 Done. Genetic Relationship Matrix (GRM, GCTA): Excluding 5,288 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 3,800 using 1 thread GRM Calculation: the sum of all selected genotypes (0,1,2) = 1066957 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:15 2022 (internal increment: 13960) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 1s Saving to the GDS file: [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:16 2022 Done. GRM merging: open 'tmp1.gds' (1,000 variants) open 'tmp2.gds' (2,000 variants) open 'tmp3.gds' (3,800 variants) Weight: 0.147059, 0.294118, 0.558824 Output: tmp.gds [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Genetic Relationship Matrix (GRM, GCTA): Excluding 2,288 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 6,800 using 1 thread GRM Calculation: the sum of all selected genotypes (0,1,2) = 1908966 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:16 2022 (internal increment: 13960) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 1s Tue Apr 12 18:47:17 2022 Done. Genetic Relationship Matrix (GRM, IndivBeta): Excluding 8,088 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 1,000 using 1 thread GRM Calculation: the sum of all selected genotypes (0,1,2) = 282597 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:17 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Saving to the GDS file: [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 1s Tue Apr 12 18:47:18 2022 Done. Genetic Relationship Matrix (GRM, IndivBeta): Excluding 7,088 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 2,000 using 1 thread GRM Calculation: the sum of all selected genotypes (0,1,2) = 559412 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:18 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Saving to the GDS file: [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:18 2022 Done. Genetic Relationship Matrix (GRM, IndivBeta): Excluding 5,288 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 3,800 using 1 thread GRM Calculation: the sum of all selected genotypes (0,1,2) = 1066957 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:19 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Saving to the GDS file: [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:19 2022 Done. GRM merging: open 'tmp1.gds' (1,000 variants) open 'tmp2.gds' (2,000 variants) open 'tmp3.gds' (3,800 variants) Weight: 0.147059, 0.294118, 0.558824 Output: tmp.gds [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Writing ... [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 1s Genetic Relationship Matrix (GRM, IndivBeta): Excluding 2,288 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 6,800 using 1 thread GRM Calculation: the sum of all selected genotypes (0,1,2) = 1908966 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:20 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:20 2022 Done. Linkage Disequilibrium (LD) estimation on genotypes: # of samples: 279 # of SNPs: 1,000 using 1 thread method: covariance LD matrix: the sum of all selected genotypes (0,1,2) = 283058 Linkage Disequilibrium (LD) estimation on genotypes: # of samples: 279 # of SNPs: 1,000 using 1 thread method: correlation LD matrix: the sum of all selected genotypes (0,1,2) = 283058 FUNCTION: SNPGDSFileClass FUNCTION: SNPRelate-package Start file conversion from PLINK BED to SNP GDS ... BED file: '/Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/plinkhapmap.bed.gz' SNP-major mode (Sample X SNP), 45.7K FAM file: '/Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/plinkhapmap.fam.gz' BIM file: '/Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/plinkhapmap.bim.gz' Tue Apr 12 18:47:25 2022 (store sample id, snp id, position, and chromosome) start writing: 60 samples, 5000 SNPs ... [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:25 2022 Done. Optimize the access efficiency ... Clean up the fragments of GDS file: open the file 'HapMap.gds' (98.1K) # of fragments: 38 save to 'HapMap.gds.tmp' rename 'HapMap.gds.tmp' (97.8K, reduced: 240B) # of fragments: 18 Principal Component Analysis (PCA) on genotypes: Excluding 203 SNPs on non-autosomes Excluding 28 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 60 # of SNPs: 4,769 using 1 thread # of principal components: 32 PCA: the sum of all selected genotypes (0,1,2) = 124273 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:25 2022 (internal increment: 64920) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:25 2022 Begin (eigenvalues and eigenvectors) Tue Apr 12 18:47:25 2022 Done. IBD analysis (PLINK method of moment) on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread PLINK IBD: the sum of all selected genotypes (0,1,2) = 2446510 Tue Apr 12 18:47:25 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 1s Tue Apr 12 18:47:26 2022 Done. Identity-By-State (IBS) analysis on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread IBS: the sum of all selected genotypes (0,1,2) = 2446510 Tue Apr 12 18:47:26 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:26 2022 Done. Linkage Disequilibrium (LD) estimation on genotypes: # of samples: 279 # of SNPs: 200 using 1 thread method: composite LD matrix: the sum of all selected genotypes (0,1,2) = 55417 FUNCTION: hapmap_geno FUNCTION: snpgdsAdmixPlot Eigen-analysis on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread Eigen-analysis: the sum of all selected genotypes (0,1,2) = 2446510 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:27 2022 (internal increment: 13960) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 1s Tue Apr 12 18:47:28 2022 Begin (eigenvalues and eigenvectors) Tue Apr 12 18:47:28 2022 Done. FUNCTION: snpgdsAdmixProp Eigen-analysis on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread Eigen-analysis: the sum of all selected genotypes (0,1,2) = 2446510 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:28 2022 (internal increment: 13960) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:28 2022 Begin (eigenvalues and eigenvectors) Tue Apr 12 18:47:28 2022 Done. FUNCTION: snpgdsAlleleSwitch Strand-switching at 50 SNP locus/loci. Unable to determine switching at 10 SNP locus/loci. FUNCTION: snpgdsApartSelection Tue Apr 12 18:47:29 2022 Chromosome 1, # of SNPs: 367 Tue Apr 12 18:47:29 2022 Chromosome 2, # of SNPs: 367 Tue Apr 12 18:47:29 2022 Chromosome 3, # of SNPs: 317 Tue Apr 12 18:47:29 2022 Chromosome 4, # of SNPs: 295 Tue Apr 12 18:47:29 2022 Chromosome 5, # of SNPs: 295 Tue Apr 12 18:47:29 2022 Chromosome 6, # of SNPs: 283 Tue Apr 12 18:47:29 2022 Chromosome 7, # of SNPs: 245 Tue Apr 12 18:47:29 2022 Chromosome 8, # of SNPs: 234 Tue Apr 12 18:47:29 2022 Chromosome 9, # of SNPs: 202 Tue Apr 12 18:47:29 2022 Chromosome 10, # of SNPs: 224 Tue Apr 12 18:47:29 2022 Chromosome 11, # of SNPs: 223 Tue Apr 12 18:47:29 2022 Chromosome 12, # of SNPs: 208 Tue Apr 12 18:47:29 2022 Chromosome 13, # of SNPs: 172 Tue Apr 12 18:47:29 2022 Chromosome 14, # of SNPs: 147 Tue Apr 12 18:47:29 2022 Chromosome 15, # of SNPs: 121 Tue Apr 12 18:47:29 2022 Chromosome 16, # of SNPs: 129 Tue Apr 12 18:47:29 2022 Chromosome 17, # of SNPs: 116 Tue Apr 12 18:47:29 2022 Chromosome 18, # of SNPs: 129 Tue Apr 12 18:47:29 2022 Chromosome 19, # of SNPs: 73 Tue Apr 12 18:47:29 2022 Chromosome 20, # of SNPs: 106 Tue Apr 12 18:47:29 2022 Chromosome 21, # of SNPs: 62 Tue Apr 12 18:47:29 2022 Chromosome 22, # of SNPs: 51 Tue Apr 12 18:47:29 2022 Chromosome 23, # of SNPs: 204 Total # of SNPs selected:4570 FUNCTION: snpgdsBED2GDS Start file conversion from PLINK BED to SNP GDS ... BED file: '/Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/plinkhapmap.bed.gz' SNP-major mode (Sample X SNP), 45.7K FAM file: '/Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/plinkhapmap.fam.gz' BIM file: '/Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/plinkhapmap.bim.gz' Tue Apr 12 18:47:29 2022 (store sample id, snp id, position, and chromosome) start writing: 60 samples, 5000 SNPs ... [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:29 2022 Done. Optimize the access efficiency ... Clean up the fragments of GDS file: open the file 'HapMap.gds' (98.1K) # of fragments: 38 save to 'HapMap.gds.tmp' rename 'HapMap.gds.tmp' (97.8K, reduced: 240B) # of fragments: 18 FUNCTION: snpgdsClose FUNCTION: snpgdsCombineGeno Create a GDS genotype file: The new dataset consists of 10 samples and 3000 SNPs write sample.id write snp.id write snp.rs.id write snp.position write snp.chromosome write snp.allele SNP genotypes are stored in SNP-major mode (Sample X SNP). Create a GDS genotype file: The new dataset consists of 20 samples and 3000 SNPs write sample.id write snp.id write snp.rs.id write snp.position write snp.chromosome write snp.allele SNP genotypes are stored in SNP-major mode (Sample X SNP). Merge SNP GDS files: open 't1.gds' ... 10 samples, 3000 SNPs open 't2.gds' ... 20 samples, 3000 SNPs Concatenating samples (mapping to the first GDS file) ... reference: 3000 SNPs (100.0%) file 2: 0 allele flips, 0 ambiguous locus/loci [no flip]: 3000 create 'test.gds': 30 samples, 3000 SNPs FileFormat = SNP_ARRAY writing genotypes ... Clean up the fragments of GDS file: open the file 'test.gds' (46.2K) # of fragments: 32 save to 'test.gds.tmp' rename 'test.gds.tmp' (46.0K, reduced: 204B) # of fragments: 15 Done. Create a GDS genotype file: The new dataset consists of 279 samples and 100 SNPs write sample.id write snp.id write snp.rs.id write snp.position write snp.chromosome write snp.allele SNP genotypes are stored in SNP-major mode (Sample X SNP). Create a GDS genotype file: The new dataset consists of 279 samples and 200 SNPs write sample.id write snp.id write snp.rs.id write snp.position write snp.chromosome write snp.allele SNP genotypes are stored in SNP-major mode (Sample X SNP). Merge SNP GDS files: open 't1.gds' ... 279 samples, 100 SNPs open 't2.gds' ... 279 samples, 200 SNPs Concatenating SNPs ... create 'test.gds': 279 samples, 300 SNPs FileFormat = SNP_ARRAY writing genotypes ... Clean up the fragments of GDS file: open the file 'test.gds' (19.1K) # of fragments: 32 save to 'test.gds.tmp' rename 'test.gds.tmp' (18.9K, reduced: 204B) # of fragments: 15 Done. FUNCTION: snpgdsCreateGeno Principal Component Analysis (PCA) on genotypes: Excluding 42 SNPs on non-autosomes Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 958 using 1 thread # of principal components: 32 PCA: the sum of all selected genotypes (0,1,2) = 264760 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:29 2022 (internal increment: 13960) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 1s Tue Apr 12 18:47:30 2022 Begin (eigenvalues and eigenvectors) Tue Apr 12 18:47:30 2022 Done. FUNCTION: snpgdsCreateGenoSet SNP pruning based on LD: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread sliding window: 500,000 basepairs, Inf SNPs |LD| threshold: 0.2 method: composite Chromosome 1: 76.12%, 545/716 Chromosome 2: 72.78%, 540/742 Chromosome 3: 74.71%, 455/609 Chromosome 4: 73.49%, 413/562 Chromosome 5: 76.86%, 435/566 Chromosome 6: 75.75%, 428/565 Chromosome 7: 75.42%, 356/472 Chromosome 8: 71.11%, 347/488 Chromosome 9: 77.88%, 324/416 Chromosome 10: 74.12%, 358/483 Chromosome 11: 77.85%, 348/447 Chromosome 12: 76.81%, 328/427 Chromosome 13: 76.16%, 262/344 Chromosome 14: 76.60%, 216/282 Chromosome 15: 76.34%, 200/262 Chromosome 16: 72.66%, 202/278 Chromosome 17: 73.91%, 153/207 Chromosome 18: 73.68%, 196/266 Chromosome 19: 85.00%, 102/120 Chromosome 20: 71.62%, 164/229 Chromosome 21: 76.98%, 97/126 Chromosome 22: 75.86%, 88/116 6,557 markers are selected in total. Create a GDS genotype file: The new dataset consists of 279 samples and 6557 SNPs write sample.id write snp.id write snp.rs.id write snp.position write snp.chromosome write snp.allele SNP genotypes are stored in SNP-major mode (Sample X SNP). FUNCTION: snpgdsCutTree Individual dissimilarity analysis on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread Dissimilarity: the sum of all selected genotypes (0,1,2) = 2446510 Dissimilarity: Tue Apr 12 18:47:30 2022 0% Dissimilarity: Tue Apr 12 18:47:32 2022 100% Determine groups by permutation (Z threshold: 15, outlier threshold: 5): Create 3 groups. Create 4 groups. FUNCTION: snpgdsDiss Individual dissimilarity analysis on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread Dissimilarity: the sum of all selected genotypes (0,1,2) = 2446510 Dissimilarity: Tue Apr 12 18:47:33 2022 0% Dissimilarity: Tue Apr 12 18:47:34 2022 100% Determine groups by permutation (Z threshold: 15, outlier threshold: 5): Create 3 groups. FUNCTION: snpgdsDrawTree Individual dissimilarity analysis on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread Dissimilarity: the sum of all selected genotypes (0,1,2) = 2446510 Dissimilarity: Tue Apr 12 18:47:36 2022 0% Dissimilarity: Tue Apr 12 18:47:37 2022 100% Determine groups by permutation (Z threshold: 15, outlier threshold: 5): Create 3 groups. FUNCTION: snpgdsEIGMIX Eigen-analysis on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread Eigen-analysis: the sum of all selected genotypes (0,1,2) = 2446510 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:38 2022 (internal increment: 13960) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:38 2022 Begin (eigenvalues and eigenvectors) Tue Apr 12 18:47:38 2022 Done. FUNCTION: snpgdsErrMsg FUNCTION: snpgdsExampleFileName FUNCTION: snpgdsFst Fst estimation on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 Method: Weir & Cockerham, 1984 # of Populations: 4 CEU (92), HCB (47), JPT (47), YRI (93) Fst estimation on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 Method: Weir & Hill, 2002 # of Populations: 4 CEU (92), HCB (47), JPT (47), YRI (93) FUNCTION: snpgdsGDS2BED Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: 0.95) Converting from GDS to PLINK binary PED: Working space: 279 samples, 8722 SNPs Output a BIM file. Output a BED file ... Tue Apr 12 18:47:38 2022 0% Tue Apr 12 18:47:38 2022 100% Done. FUNCTION: snpgdsGDS2Eigen Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: 0.95) Converting from GDS to EIGENSOFT: save to *.snp: 8722 snps save to *.ind: 279 samples Output: Tue Apr 12 18:47:38 2022 0% Output: Tue Apr 12 18:47:39 2022 100% Done. FUNCTION: snpgdsGDS2PED Converting from GDS to PLINK PED: Output a MAP file DONE. Output a PED file ... Output: Tue Apr 12 18:47:39 2022 0% Output: Tue Apr 12 18:47:40 2022 100% FUNCTION: snpgdsGEN2GDS running snpgdsGEN2GDS ... FUNCTION: snpgdsGRM Genetic Relationship Matrix (GRM, GCTA): Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread GRM Calculation: the sum of all selected genotypes (0,1,2) = 2446510 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:40 2022 (internal increment: 13960) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 1s Tue Apr 12 18:47:41 2022 Done. Genetic Relationship Matrix (GRM, GCTA): Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread GRM Calculation: the sum of all selected genotypes (0,1,2) = 2446510 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:41 2022 (internal increment: 13960) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Saving to the GDS file: [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 1s Tue Apr 12 18:47:42 2022 Done. FUNCTION: snpgdsGetGeno Genotype matrix: 1000 SNPs X 279 samples Genotype matrix: 279 samples X 1000 SNPs FUNCTION: snpgdsHCluster Individual dissimilarity analysis on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread Dissimilarity: the sum of all selected genotypes (0,1,2) = 2446510 Dissimilarity: Tue Apr 12 18:47:42 2022 0% Dissimilarity: Tue Apr 12 18:47:43 2022 100% Determine groups by permutation (Z threshold: 15, outlier threshold: 5): Create 3 groups. FUNCTION: snpgdsHWE Keeping 716 SNPs according to chromosome 1 Excluding 160 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN) FUNCTION: snpgdsIBDKING IBD analysis (KING method of moment) on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1,217 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 92 # of SNPs: 7,506 using 1 thread No family is specified, and all individuals are treated as singletons. Relationship inference in the presence of population stratification. KING IBD: the sum of all selected genotypes (0,1,2) = 702139 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:44 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:44 2022 Done. IBD analysis (KING method of moment) on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1,217 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 92 # of SNPs: 7,506 using 1 thread No family is specified, and all individuals are treated as singletons. Relationship inference in the presence of population stratification. KING IBD: the sum of all selected genotypes (0,1,2) = 702139 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:44 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:44 2022 Done. IBD analysis (KING method of moment) on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1,217 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 92 # of SNPs: 7,506 using 1 thread # of families: 20, and within- and between-family relationship are estimated differently. Relationship inference in the presence of population stratification. KING IBD: the sum of all selected genotypes (0,1,2) = 702139 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:46 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:46 2022 Done. IBD analysis (KING method of moment) on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1,217 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 92 # of SNPs: 7,506 using 1 thread Relationship inference in a homogeneous population. KING IBD: the sum of all selected genotypes (0,1,2) = 702139 Tue Apr 12 18:47:46 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 1s Tue Apr 12 18:47:47 2022 Done. IBD analysis (KING method of moment) on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1,217 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 92 # of SNPs: 7,506 using 1 thread Relationship inference in a homogeneous population. KING IBD: the sum of all selected genotypes (0,1,2) = 702139 Tue Apr 12 18:47:47 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:47 2022 Done. FUNCTION: snpgdsIBDMLE SNP pruning based on LD: Excluding 365 SNPs on non-autosomes Excluding 1,581 SNPs (monomorphic: TRUE, MAF: 0.05, missing rate: 0.05) # of samples: 30 # of SNPs: 7,142 using 1 thread sliding window: 500,000 basepairs, Inf SNPs |LD| threshold: 0.2 method: composite Chromosome 1: 54.75%, 392/716 Chromosome 2: 54.31%, 403/742 Chromosome 3: 55.99%, 341/609 Chromosome 4: 56.58%, 318/562 Chromosome 5: 56.36%, 319/566 Chromosome 6: 52.74%, 298/565 Chromosome 7: 56.14%, 265/472 Chromosome 8: 51.84%, 253/488 Chromosome 9: 54.81%, 228/416 Chromosome 10: 49.90%, 241/483 Chromosome 11: 54.81%, 245/447 Chromosome 12: 54.57%, 233/427 Chromosome 13: 53.49%, 184/344 Chromosome 14: 56.03%, 158/282 Chromosome 15: 54.58%, 143/262 Chromosome 16: 54.68%, 152/278 Chromosome 17: 55.56%, 115/207 Chromosome 18: 55.64%, 148/266 Chromosome 19: 66.67%, 80/120 Chromosome 20: 53.28%, 122/229 Chromosome 21: 50.79%, 64/126 Chromosome 22: 51.72%, 60/116 4,762 markers are selected in total. Identity-By-Descent analysis (MLE) on genotypes: Excluding 8,838 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 30 # of SNPs: 250 using 1 thread MLE IBD: the sum of all selected genotypes (0,1,2) = 7859 MLE IBD: Tue Apr 12 18:47:47 2022 0% MLE IBD: Tue Apr 12 18:47:48 2022 100% Identity-By-Descent analysis (MLE) on genotypes: Excluding 8,838 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 25 # of SNPs: 250 using 1 thread Specifying allele frequencies, mean: 0.525, sd: 0.288 MLE IBD: the sum of all selected genotypes (0,1,2) = 6545 MLE IBD: Tue Apr 12 18:47:48 2022 0% MLE IBD: Tue Apr 12 18:47:48 2022 100% FUNCTION: snpgdsIBDMLELogLik SNP pruning based on LD: Excluding 365 SNPs on non-autosomes Excluding 1,581 SNPs (monomorphic: TRUE, MAF: 0.05, missing rate: 0.05) # of samples: 30 # of SNPs: 7,142 using 1 thread sliding window: 500,000 basepairs, Inf SNPs |LD| threshold: 0.2 method: composite Chromosome 1: 54.75%, 392/716 Chromosome 2: 54.31%, 403/742 Chromosome 3: 55.99%, 341/609 Chromosome 4: 56.58%, 318/562 Chromosome 5: 56.36%, 319/566 Chromosome 6: 52.74%, 298/565 Chromosome 7: 56.14%, 265/472 Chromosome 8: 51.84%, 253/488 Chromosome 9: 54.81%, 228/416 Chromosome 10: 49.90%, 241/483 Chromosome 11: 54.81%, 245/447 Chromosome 12: 54.57%, 233/427 Chromosome 13: 53.49%, 184/344 Chromosome 14: 56.03%, 158/282 Chromosome 15: 54.58%, 143/262 Chromosome 16: 54.68%, 152/278 Chromosome 17: 55.56%, 115/207 Chromosome 18: 55.64%, 148/266 Chromosome 19: 66.67%, 80/120 Chromosome 20: 53.28%, 122/229 Chromosome 21: 50.79%, 64/126 Chromosome 22: 51.72%, 60/116 4,762 markers are selected in total. Identity-By-Descent analysis (MLE) on genotypes: Excluding 8,838 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 30 # of SNPs: 250 using 1 thread MLE IBD: the sum of all selected genotypes (0,1,2) = 7859 MLE IBD: Tue Apr 12 18:47:48 2022 0% MLE IBD: Tue Apr 12 18:47:49 2022 100% Identity-By-Descent analysis (MLE) on genotypes: Excluding 8,838 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 25 # of SNPs: 250 using 1 thread Specifying allele frequencies, mean: 0.525, sd: 0.288 MLE IBD: the sum of all selected genotypes (0,1,2) = 6545 MLE IBD: Tue Apr 12 18:47:49 2022 0% MLE IBD: Tue Apr 12 18:47:49 2022 100% FUNCTION: snpgdsIBDMoM IBD analysis (PLINK method of moment) on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1,217 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 92 # of SNPs: 7,506 using 1 thread PLINK IBD: the sum of all selected genotypes (0,1,2) = 702139 Tue Apr 12 18:47:49 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:49 2022 Done. IBD analysis (PLINK method of moment) on genotypes: Excluding 365 SNPs on non-autosomes Excluding 563 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 93 # of SNPs: 8,160 using 1 thread PLINK IBD: the sum of all selected genotypes (0,1,2) = 755648 Tue Apr 12 18:47:49 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:49 2022 Done. IBD analysis (PLINK method of moment) on genotypes: Excluding 365 SNPs on non-autosomes Excluding 563 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 93 # of SNPs: 8,160 using 1 thread Specifying allele frequencies, mean: 0.500, sd: 0.315 *** A correction factor based on allele count is not used, since the allele frequencies are specified. PLINK IBD: the sum of all selected genotypes (0,1,2) = 755648 Tue Apr 12 18:47:49 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:49 2022 Done. IBD analysis (PLINK method of moment) on genotypes: Excluding 365 SNPs on non-autosomes Excluding 563 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 25 # of SNPs: 8,160 using 1 thread Specifying allele frequencies, mean: 0.500, sd: 0.315 *** A correction factor based on allele count is not used, since the allele frequencies are specified. PLINK IBD: the sum of all selected genotypes (0,1,2) = 203285 Tue Apr 12 18:47:49 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:49 2022 Done. FUNCTION: snpgdsIBDSelection IBD analysis (PLINK method of moment) on genotypes: Excluding 365 SNPs on non-autosomes Excluding 563 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 93 # of SNPs: 8,160 using 1 thread PLINK IBD: the sum of all selected genotypes (0,1,2) = 755648 Tue Apr 12 18:47:49 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:49 2022 Done. FUNCTION: snpgdsIBS Identity-By-State (IBS) analysis on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread IBS: the sum of all selected genotypes (0,1,2) = 2446510 Tue Apr 12 18:47:49 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 1s Tue Apr 12 18:47:50 2022 Done. FUNCTION: snpgdsIBSNum Identity-By-State (IBS) analysis on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread IBS: the sum of all selected genotypes (0,1,2) = 2446510 Tue Apr 12 18:47:50 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:50 2022 Done. FUNCTION: snpgdsIndInb Estimating individual inbreeding coefficients: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s FUNCTION: snpgdsIndInbCoef FUNCTION: snpgdsIndivBeta Individual Inbreeding and Relatedness (beta estimator): Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread Individual Beta: the sum of all selected genotypes (0,1,2) = 2446510 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:50 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 1s Tue Apr 12 18:47:51 2022 Done. FUNCTION: snpgdsLDMat Linkage Disequilibrium (LD) estimation on genotypes: # of samples: 279 # of SNPs: 203 using 1 thread method: composite LD matrix: the sum of all selected genotypes (0,1,2) = 56582 Linkage Disequilibrium (LD) estimation on genotypes: # of samples: 279 # of SNPs: 203 using 1 thread sliding window size: 203 method: composite LD matrix: the sum of all selected genotypes (0,1,2) = 56582 FUNCTION: snpgdsLDpair FUNCTION: snpgdsLDpruning SNP pruning based on LD: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread sliding window: 500,000 basepairs, Inf SNPs |LD| threshold: 0.2 method: composite Chromosome 1: 76.12%, 545/716 Chromosome 2: 72.78%, 540/742 Chromosome 3: 74.71%, 455/609 Chromosome 4: 73.49%, 413/562 Chromosome 5: 76.86%, 435/566 Chromosome 6: 75.75%, 428/565 Chromosome 7: 75.42%, 356/472 Chromosome 8: 71.11%, 347/488 Chromosome 9: 77.88%, 324/416 Chromosome 10: 74.12%, 358/483 Chromosome 11: 77.85%, 348/447 Chromosome 12: 76.81%, 328/427 Chromosome 13: 76.16%, 262/344 Chromosome 14: 76.60%, 216/282 Chromosome 15: 76.34%, 200/262 Chromosome 16: 72.66%, 202/278 Chromosome 17: 73.91%, 153/207 Chromosome 18: 73.68%, 196/266 Chromosome 19: 85.00%, 102/120 Chromosome 20: 71.62%, 164/229 Chromosome 21: 76.98%, 97/126 Chromosome 22: 75.86%, 88/116 6,557 markers are selected in total. List of 22 $ chr1 : int [1:545] 1 2 4 5 7 10 12 14 15 16 ... $ chr2 : int [1:540] 717 718 719 720 721 723 724 725 726 727 ... $ chr3 : int [1:455] 1459 1460 1461 1464 1466 1468 1469 1471 1472 1473 ... $ chr4 : int [1:413] 2068 2069 2070 2071 2072 2074 2075 2076 2077 2078 ... $ chr5 : int [1:435] 2630 2631 2633 2635 2636 2637 2638 2640 2642 2643 ... $ chr6 : int [1:428] 3196 3197 3198 3200 3201 3204 3205 3206 3207 3208 ... $ chr7 : int [1:356] 3761 3762 3763 3766 3767 3768 3770 3771 3772 3773 ... $ chr8 : int [1:347] 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 ... $ chr9 : int [1:324] 4721 4722 4724 4727 4728 4730 4731 4732 4733 4735 ... $ chr10: int [1:358] 5138 5139 5140 5143 5144 5145 5146 5147 5148 5149 ... $ chr11: int [1:348] 5620 5621 5623 5624 5625 5626 5628 5629 5630 5631 ... $ chr12: int [1:328] 6067 6068 6069 6070 6073 6074 6075 6077 6078 6079 ... $ chr13: int [1:262] 6494 6497 6498 6499 6500 6501 6503 6505 6507 6509 ... $ chr14: int [1:216] 6840 6841 6842 6843 6844 6845 6846 6847 6848 6850 ... $ chr15: int [1:200] 7120 7121 7122 7124 7125 7126 7127 7128 7129 7130 ... $ chr16: int [1:202] 7382 7383 7384 7385 7387 7388 7389 7391 7392 7394 ... $ chr17: int [1:153] 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 ... $ chr18: int [1:196] 7867 7868 7869 7870 7871 7872 7873 7874 7875 7877 ... $ chr19: int [1:102] 8133 8135 8136 8137 8138 8139 8140 8141 8142 8144 ... $ chr20: int [1:164] 8253 8254 8257 8258 8259 8260 8261 8262 8265 8266 ... $ chr21: int [1:97] 8482 8484 8485 8486 8487 8488 8489 8490 8491 8492 ... $ chr22: int [1:88] 8608 8609 8610 8612 8613 8614 8615 8617 8618 8619 ... FUNCTION: snpgdsMergeGRM Genetic Relationship Matrix (GRM, GCTA): Excluding 2,288 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 6,800 using 1 thread GRM Calculation: the sum of all selected genotypes (0,1,2) = 1908966 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:51 2022 (internal increment: 13960) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 1s Tue Apr 12 18:47:52 2022 Done. Genetic Relationship Matrix (GRM, GCTA): Excluding 5,688 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 3,400 using 1 thread GRM Calculation: the sum of all selected genotypes (0,1,2) = 951558 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:52 2022 (internal increment: 13960) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Saving to the GDS file: [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 1s Tue Apr 12 18:47:53 2022 Done. Genetic Relationship Matrix (GRM, GCTA): Excluding 5,688 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 3,400 using 1 thread GRM Calculation: the sum of all selected genotypes (0,1,2) = 957408 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:53 2022 (internal increment: 13960) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Saving to the GDS file: [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:53 2022 Done. GRM merging: open 'tmp1.gds' (3,400 variants) open 'tmp2.gds' (3,400 variants) Weight: 0.5, 0.5 Output: tmp.gds [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s GRM merging: open 'tmp1.gds' (3,400 variants) open 'tmp2.gds' (3,400 variants) Weight: 0.5, 0.5 [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s FUNCTION: snpgdsOpen FUNCTION: snpgdsOption FUNCTION: snpgdsPCA Principal Component Analysis (PCA) on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread # of principal components: 32 PCA: the sum of all selected genotypes (0,1,2) = 2446510 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:54 2022 (internal increment: 13960) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 1s Tue Apr 12 18:47:55 2022 Begin (eigenvalues and eigenvectors) Tue Apr 12 18:47:55 2022 Done. FUNCTION: snpgdsPCACorr Principal Component Analysis (PCA) on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread # of principal components: 32 PCA: the sum of all selected genotypes (0,1,2) = 2446510 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:55 2022 (internal increment: 13960) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 1s Tue Apr 12 18:47:56 2022 Begin (eigenvalues and eigenvectors) Tue Apr 12 18:47:56 2022 Done. SNP Correlation: # of samples: 279 # of SNPs: 9,088 using 1 thread Correlation: the sum of all selected genotypes (0,1,2) = 2553065 Tue Apr 12 18:47:56 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:56 2022 Done. SNP Correlation: # of samples: 279 # of SNPs: 9,088 using 1 thread Creating 'test.gds' ... Correlation: the sum of all selected genotypes (0,1,2) = 2553065 Tue Apr 12 18:47:56 2022 [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:56 2022 Done. FUNCTION: snpgdsPCASNPLoading Principal Component Analysis (PCA) on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread # of principal components: 8 PCA: the sum of all selected genotypes (0,1,2) = 2446510 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:56 2022 (internal increment: 13960) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 1s Tue Apr 12 18:47:57 2022 Begin (eigenvalues and eigenvectors) Tue Apr 12 18:47:57 2022 Done. SNP Loading: # of samples: 279 # of SNPs: 8,722 using 1 thread using the top 8 eigenvectors SNP Loading: the sum of all selected genotypes (0,1,2) = 2446510 Tue Apr 12 18:47:57 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:57 2022 Done. FUNCTION: snpgdsPCASampLoading Principal Component Analysis (PCA) on genotypes: Excluding 365 SNPs on non-autosomes Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 8,722 using 1 thread # of principal components: 8 PCA: the sum of all selected genotypes (0,1,2) = 2446510 CPU capabilities: Double-Precision SSE2 Tue Apr 12 18:47:57 2022 (internal increment: 13960) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 1s Tue Apr 12 18:47:58 2022 Begin (eigenvalues and eigenvectors) Tue Apr 12 18:47:58 2022 Done. SNP Loading: # of samples: 279 # of SNPs: 8,722 using 1 thread using the top 8 eigenvectors SNP Loading: the sum of all selected genotypes (0,1,2) = 2446510 Tue Apr 12 18:47:58 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:58 2022 Done. Sample Loading: # of samples: 100 # of SNPs: 8,722 using 1 thread using the top 8 eigenvectors Sample Loading: the sum of all selected genotypes (0,1,2) = 878146 Tue Apr 12 18:47:58 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:47:58 2022 Done. FUNCTION: snpgdsPED2GDS Converting from GDS to PLINK PED: Output a MAP file DONE. Output a PED file ... Output: Tue Apr 12 18:47:58 2022 0% Output: Tue Apr 12 18:47:58 2022 100% PLINK PED/MAP to GDS Format: Import 9088 variants from 'tmp.map' Chromosome: 1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 3 4 5 6 7 716 483 447 427 344 282 262 278 207 266 120 742 229 126 116 609 562 566 565 472 8 9 X 488 416 365 Reading 'tmp.ped' Output: 'test.gds' Import 279 samples Transpose the genotypic matrix ... Done. Optimize the access efficiency ... Clean up the fragments of GDS file: open the file 'test.gds' (1.3M) # of fragments: 50 save to 'test.gds.tmp' rename 'test.gds.tmp' (711.4K, reduced: 618.7K) # of fragments: 26 FUNCTION: snpgdsPairIBD SNP pruning based on LD: Excluding 365 SNPs on non-autosomes Excluding 1,646 SNPs (monomorphic: TRUE, MAF: 0.05, missing rate: 0.05) # of samples: 93 # of SNPs: 7,077 using 1 thread sliding window: 500,000 basepairs, Inf SNPs |LD| threshold: 0.2 method: composite Chromosome 1: 62.29%, 446/716 Chromosome 2: 62.67%, 465/742 Chromosome 3: 59.93%, 365/609 Chromosome 4: 64.23%, 361/562 Chromosome 5: 62.37%, 353/566 Chromosome 6: 59.82%, 338/565 Chromosome 7: 63.14%, 298/472 Chromosome 8: 57.58%, 281/488 Chromosome 9: 62.98%, 262/416 Chromosome 10: 60.46%, 292/483 Chromosome 11: 63.09%, 282/447 Chromosome 12: 62.76%, 268/427 Chromosome 13: 63.08%, 217/344 Chromosome 14: 63.83%, 180/282 Chromosome 15: 63.74%, 167/262 Chromosome 16: 62.23%, 173/278 Chromosome 17: 65.70%, 136/207 Chromosome 18: 59.40%, 158/266 Chromosome 19: 68.33%, 82/120 Chromosome 20: 66.38%, 152/229 Chromosome 21: 61.11%, 77/126 Chromosome 22: 57.76%, 67/116 5,420 markers are selected in total. Identity-By-Descent analysis (MLE) on genotypes: Excluding 8,838 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 25 # of SNPs: 250 using 1 thread Specifying allele frequencies, mean: 0.486, sd: 0.284 MLE IBD: the sum of all selected genotypes (0,1,2) = 6112 MLE IBD: Tue Apr 12 18:48:00 2022 0% MLE IBD: Tue Apr 12 18:48:00 2022 100% IBD analysis (PLINK method of moment) on genotypes: Excluding 8,838 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 25 # of SNPs: 250 using 1 thread Specifying allele frequencies, mean: 0.486, sd: 0.284 *** A correction factor based on allele count is not used, since the allele frequencies are specified. PLINK IBD: the sum of all selected genotypes (0,1,2) = 6112 Tue Apr 12 18:48:00 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:48:00 2022 Done. Identity-By-Descent analysis (MLE) on genotypes: Excluding 8,838 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 25 # of SNPs: 250 using 1 thread Specifying allele frequencies, mean: 0.486, sd: 0.284 MLE IBD: the sum of all selected genotypes (0,1,2) = 6112 MLE IBD: Tue Apr 12 18:48:00 2022 0% MLE IBD: Tue Apr 12 18:48:01 2022 100% Genotype matrix: 250 SNPs X 25 samples [1] -370.7482 [1] -402.2141 [1] -383.7897 [1] -377.9084 [1] -381.3139 [1] -397.5581 [1] -378.3344 [1] -370.703 [1] -376.103 [1] -377.7911 [1] -375.5425 [1] -373.13 [1] -383.6992 [1] -393.5194 [1] -371.9843 [1] -369.6468 [1] -374.5139 [1] -377.841 [1] -387.5622 [1] -377.1646 [1] -377.4659 [1] -375.2204 [1] -372.0639 [1] -379.816 FUNCTION: snpgdsPairIBDMLELogLik SNP pruning based on LD: Excluding 365 SNPs on non-autosomes Excluding 1,646 SNPs (monomorphic: TRUE, MAF: 0.05, missing rate: 0.05) # of samples: 93 # of SNPs: 7,077 using 1 thread sliding window: 500,000 basepairs, Inf SNPs |LD| threshold: 0.2 method: composite Chromosome 1: 62.29%, 446/716 Chromosome 2: 62.67%, 465/742 Chromosome 3: 59.93%, 365/609 Chromosome 4: 64.23%, 361/562 Chromosome 5: 62.37%, 353/566 Chromosome 6: 59.82%, 338/565 Chromosome 7: 63.14%, 298/472 Chromosome 8: 57.58%, 281/488 Chromosome 9: 62.98%, 262/416 Chromosome 10: 60.46%, 292/483 Chromosome 11: 63.09%, 282/447 Chromosome 12: 62.76%, 268/427 Chromosome 13: 63.08%, 217/344 Chromosome 14: 63.83%, 180/282 Chromosome 15: 63.74%, 167/262 Chromosome 16: 62.23%, 173/278 Chromosome 17: 65.70%, 136/207 Chromosome 18: 59.40%, 158/266 Chromosome 19: 68.33%, 82/120 Chromosome 20: 66.38%, 152/229 Chromosome 21: 61.11%, 77/126 Chromosome 22: 57.76%, 67/116 5,420 markers are selected in total. Identity-By-Descent analysis (MLE) on genotypes: Excluding 8,838 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 25 # of SNPs: 250 using 1 thread Specifying allele frequencies, mean: 0.486, sd: 0.284 MLE IBD: the sum of all selected genotypes (0,1,2) = 6112 MLE IBD: Tue Apr 12 18:48:01 2022 0% MLE IBD: Tue Apr 12 18:48:01 2022 100% IBD analysis (PLINK method of moment) on genotypes: Excluding 8,838 SNPs (non-autosomes or non-selection) Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 25 # of SNPs: 250 using 1 thread Specifying allele frequencies, mean: 0.486, sd: 0.284 *** A correction factor based on allele count is not used, since the allele frequencies are specified. PLINK IBD: the sum of all selected genotypes (0,1,2) = 6112 Tue Apr 12 18:48:01 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:48:01 2022 Done. Genotype matrix: 250 SNPs X 25 samples [1] -370.7482 [1] -402.2141 [1] -383.7897 [1] -377.9084 [1] -381.3139 [1] -397.5581 [1] -378.3344 [1] -370.703 [1] -376.103 [1] -377.7911 [1] -375.5425 [1] -373.13 [1] -383.6992 [1] -393.5194 [1] -371.9843 [1] -369.6468 [1] -374.5139 [1] -377.841 [1] -387.5622 [1] -377.1646 [1] -377.4659 [1] -375.2204 [1] -372.0639 [1] -379.816 FUNCTION: snpgdsPairScore Excluding 365 SNPs on non-autosomes Pair Score Calculation: # of samples: 120 # of SNPs: 8,723 Method: IBS Genotype Score: the sum of all selected genotypes (0,1,2) = 1050236 List of 3 $ sample.id: chr [1:120] "NA19139" "NA19160" "NA07034" "NA12814" ... $ snp.id : int [1:8723] 1 2 3 4 5 6 7 8 9 10 ... $ score :'data.frame': 60 obs. of 5 variables: ..$ Avg : num [1:60] 1.72 1.73 1.71 1.72 1.73 ... ..$ SD : num [1:60] 0.452 0.443 0.457 0.45 0.443 ... ..$ Num : int [1:60] 8684 8627 8669 8637 8682 8634 8654 8678 8680 8679 ... ..$ Sample1: chr [1:60] "NA19139" "NA10847" "NA18515" "NA19129" ... ..$ Sample2: chr [1:60] "NA19138" "NA12146" "NA18516" "NA19128" ... Pair Score Calculation: # of samples: 120 # of SNPs: 8,723 Method: IBS Genotype Score: the sum of all selected genotypes (0,1,2) = 1050236 List of 3 $ sample.id: chr [1:120] "NA19139" "NA19160" "NA07034" "NA12814" ... $ snp.id : int [1:8723] 1 2 3 4 5 6 7 8 9 10 ... $ score :'data.frame': 60 obs. of 5 variables: ..$ Avg : num [1:60] 0.999 1 1 1 1 ... ..$ SD : num [1:60] 0.024 0 0.0186 0.0215 0.0215 ... ..$ Num : int [1:60] 8684 8627 8669 8637 8682 8634 8654 8678 8680 8679 ... ..$ Sample1: chr [1:60] "NA19139" "NA10847" "NA18515" "NA19129" ... ..$ Sample2: chr [1:60] "NA19138" "NA12146" "NA18516" "NA19128" ... Pair Score Calculation: # of samples: 120 # of SNPs: 8,723 Method: IBS Genotype Score: the sum of all selected genotypes (0,1,2) = 1050236 List of 3 $ sample.id: chr [1:120] "NA19139" "NA19160" "NA07034" "NA12814" ... $ snp.id : int [1:8723] 1 2 3 4 5 6 7 8 9 10 ... $ score : num [1:3, 1:8723] 1.75 0.437 60 1.583 0.497 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:3] "Avg" "SD" "Num" .. ..$ : NULL Pair Score Calculation: # of samples: 120 # of SNPs: 8,723 Method: IBS Genotype Score: the sum of all selected genotypes (0,1,2) = 1050236 List of 3 $ sample.id: chr [1:120] "NA19139" "NA19160" "NA07034" "NA12814" ... $ snp.id : int [1:8723] 1 2 3 4 5 6 7 8 9 10 ... $ score : int [1:60, 1:8723] 1 1 2 2 2 2 2 1 2 2 ... Pair Score Calculation: # of samples: 120 # of SNPs: 8,723 Method: IBS Output: /Users/biocbuild/bbs-3.14-bioc/meat/SNPRelate.Rcheck/tests/tmp.gds Genotype Score: the sum of all selected genotypes (0,1,2) = 1050236 FUNCTION: snpgdsSNPList FUNCTION: snpgdsSNPListClass FUNCTION: snpgdsSNPListIntersect FUNCTION: snpgdsSNPRateFreq FUNCTION: snpgdsSampMissRate FUNCTION: snpgdsSelectSNP Excluding 365 SNPs on non-autosomes Excluding 1,221 SNPs (monomorphic: TRUE, MAF: 0.05, missing rate: 0.95) FUNCTION: snpgdsSlidingWindow Sliding Window Analysis: Excluding 8 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN) # of samples: 279 # of SNPs: 9,080 using 1 thread window size: 500000, shift: 100000 (basepair) Chromosome Set: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 Tue Apr 12 18:48:02 2022, Chromosome 1 (716 SNPs), 2448 windows Tue Apr 12 18:48:03 2022, Chromosome 2 (742 SNPs), 2416 windows Tue Apr 12 18:48:03 2022, Chromosome 3 (609 SNPs), 1985 windows Tue Apr 12 18:48:03 2022, Chromosome 4 (562 SNPs), 1894 windows Tue Apr 12 18:48:03 2022, Chromosome 5 (566 SNPs), 1797 windows Tue Apr 12 18:48:03 2022, Chromosome 6 (565 SNPs), 1694 windows Tue Apr 12 18:48:03 2022, Chromosome 7 (472 SNPs), 1573 windows Tue Apr 12 18:48:03 2022, Chromosome 8 (488 SNPs), 1445 windows Tue Apr 12 18:48:03 2022, Chromosome 9 (416 SNPs), 1393 windows Tue Apr 12 18:48:03 2022, Chromosome 10 (483 SNPs), 1343 windows Tue Apr 12 18:48:04 2022, Chromosome 11 (447 SNPs), 1338 windows Tue Apr 12 18:48:04 2022, Chromosome 12 (427 SNPs), 1316 windows Tue Apr 12 18:48:04 2022, Chromosome 13 (344 SNPs), 948 windows Tue Apr 12 18:48:04 2022, Chromosome 14 (281 SNPs), 847 windows Tue Apr 12 18:48:04 2022, Chromosome 15 (262 SNPs), 774 windows Tue Apr 12 18:48:04 2022, Chromosome 16 (278 SNPs), 873 windows Tue Apr 12 18:48:04 2022, Chromosome 17 (207 SNPs), 773 windows Tue Apr 12 18:48:04 2022, Chromosome 18 (266 SNPs), 753 windows Tue Apr 12 18:48:04 2022, Chromosome 19 (120 SNPs), 627 windows Tue Apr 12 18:48:04 2022, Chromosome 20 (229 SNPs), 602 windows Tue Apr 12 18:48:04 2022, Chromosome 21 (126 SNPs), 311 windows Tue Apr 12 18:48:04 2022, Chromosome 22 (116 SNPs), 312 windows Tue Apr 12 18:48:04 2022, Chromosome 23 (358 SNPs), 1507 windows Tue Apr 12 18:48:04 2022 Done. FUNCTION: snpgdsSummary The file name: /Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/hapmap_geno.gds The total number of samples: 279 The total number of SNPs: 9088 SNP genotypes are stored in SNP-major mode (Sample X SNP). FUNCTION: snpgdsTranspose The file name: /Users/biocbuild/bbs-3.14-bioc/meat/SNPRelate.Rcheck/tests/test.gds The total number of samples: 279 The total number of SNPs: 9088 SNP genotypes are stored in SNP-major mode (Sample X SNP). SNP genotypes: 279 samples, 9088 SNPs Genotype matrix is being transposed ... Clean up the fragments of GDS file: open the file 'test.gds' (1.3M) # of fragments: 28 save to 'test.gds.tmp' rename 'test.gds.tmp' (709.6K, reduced: 619.1K) # of fragments: 26 The file name: /Users/biocbuild/bbs-3.14-bioc/meat/SNPRelate.Rcheck/tests/test.gds The total number of samples: 279 The total number of SNPs: 9088 SNP genotypes are stored in individual-major mode (SNP X Sample). FUNCTION: snpgdsVCF2GDS ##fileformat=VCFv4.1 ##fileDate=20090805 ##source=myImputationProgramV3.1 ##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta ##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x> ##phasing=partial ##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data"> ##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth"> ##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency"> ##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele"> ##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129"> ##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership"> ##FILTER=<ID=q10,Description="Quality below 10"> ##FILTER=<ID=s50,Description="Less than 50% of samples have data"> ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> ##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality"> ##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth"> ##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality"> #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001 NA00002 NA00003 20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,. 20 17330 . T A 3 q10 NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3 20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4 20 1230237 . T . 47 PASS NS=3;DP=13;AA=T GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2 20 1234567 microsat1 GTC G,GTCT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3 Start file conversion from VCF to SNP GDS ... Method: extracting biallelic SNPs Number of samples: 3 Parsing "/Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/sequence.vcf" ... import 2 variants. + genotype { Bit2 3x2, 2B } * Optimize the access efficiency ... Clean up the fragments of GDS file: open the file 'test1.gds' (2.9K) # of fragments: 46 save to 'test1.gds.tmp' rename 'test1.gds.tmp' (2.6K, reduced: 312B) # of fragments: 20 The file name: /Users/biocbuild/bbs-3.14-bioc/meat/SNPRelate.Rcheck/tests/test1.gds The total number of samples: 3 The total number of SNPs: 2 SNP genotypes are stored in SNP-major mode (Sample X SNP). Start file conversion from VCF to SNP GDS ... Method: extracting biallelic SNPs Number of samples: 3 Parsing "/Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/sequence.vcf" ... import 2 variants. + genotype { Bit2 3x2, 2B } * SNP genotypes: 3 samples, 2 SNPs Genotype matrix is being transposed ... Optimize the access efficiency ... Clean up the fragments of GDS file: open the file 'test2.gds' (3.0K) # of fragments: 48 save to 'test2.gds.tmp' rename 'test2.gds.tmp' (2.6K, reduced: 417B) # of fragments: 20 The file name: /Users/biocbuild/bbs-3.14-bioc/meat/SNPRelate.Rcheck/tests/test2.gds The total number of samples: 3 The total number of SNPs: 2 SNP genotypes are stored in individual-major mode (SNP X Sample). Start file conversion from VCF to SNP GDS ... Method: dosage (0,1,2) of reference allele for all variant sites Number of samples: 3 Parsing "/Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/sequence.vcf" ... import 5 variants. + genotype { Bit2 3x5, 4B } * SNP genotypes: 3 samples, 5 SNPs Genotype matrix is being transposed ... Optimize the access efficiency ... Clean up the fragments of GDS file: open the file 'test3.gds' (3.1K) # of fragments: 48 save to 'test3.gds.tmp' rename 'test3.gds.tmp' (2.7K, reduced: 419B) # of fragments: 20 Some of 'snp.allele' are not standard (e.g., A/G,T). The file name: /Users/biocbuild/bbs-3.14-bioc/meat/SNPRelate.Rcheck/tests/test3.gds The total number of samples: 3 The total number of SNPs: 5 SNP genotypes are stored in individual-major mode (SNP X Sample). The number of valid samples: 3 The number of biallelic unique SNPs: 2 Start file conversion from VCF to SNP GDS ... Method: dosage (0,1,2) of reference allele for all variant sites Number of samples: 3 Parsing "/Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/sequence.vcf" ... import 5 variants. + genotype { Bit2 3x5, 4B } * Optimize the access efficiency ... Clean up the fragments of GDS file: open the file 'test4.gds' (3.0K) # of fragments: 46 save to 'test4.gds.tmp' rename 'test4.gds.tmp' (2.7K, reduced: 312B) # of fragments: 20 Some of 'snp.allele' are not standard (e.g., A/G,T). The file name: /Users/biocbuild/bbs-3.14-bioc/meat/SNPRelate.Rcheck/tests/test4.gds The total number of samples: 3 The total number of SNPs: 5 SNP genotypes are stored in SNP-major mode (Sample X SNP). The number of valid samples: 3 The number of biallelic unique SNPs: 2 Start file conversion from VCF to SNP GDS ... Method: dosage (0,1,2) of reference allele for all variant sites Number of samples: 3 Parsing "/Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/sequence.vcf" ... import 5 variants. + genotype { Bit2 3x5, 4B } * Optimize the access efficiency ... Clean up the fragments of GDS file: open the file 'test5.gds' (3.0K) # of fragments: 46 save to 'test5.gds.tmp' rename 'test5.gds.tmp' (2.7K, reduced: 312B) # of fragments: 20 Some of 'snp.allele' are not standard (e.g., T/A,G). The file name: /Users/biocbuild/bbs-3.14-bioc/meat/SNPRelate.Rcheck/tests/test5.gds The total number of samples: 3 The total number of SNPs: 5 SNP genotypes are stored in SNP-major mode (Sample X SNP). The number of valid samples: 3 The number of biallelic unique SNPs: 2 FUNCTION: snpgdsVCF2GDS_R ##fileformat=VCFv4.1 ##fileDate=20090805 ##source=myImputationProgramV3.1 ##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta ##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x> ##phasing=partial ##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data"> ##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth"> ##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency"> ##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele"> ##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129"> ##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership"> ##FILTER=<ID=q10,Description="Quality below 10"> ##FILTER=<ID=s50,Description="Less than 50% of samples have data"> ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> ##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality"> ##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth"> ##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality"> #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001 NA00002 NA00003 20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,. 20 17330 . T A 3 q10 NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3 20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4 20 1230237 . T . 47 PASS NS=3;DP=13;AA=T GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2 20 1234567 microsat1 GTC G,GTCT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3 Start snpgdsVCF2GDS ... Extracting bi-allelic and polymorhpic SNPs. Scanning ... file: /Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/sequence.vcf content: 5 rows x 12 columns Tue Apr 12 18:48:05 2022 store sample id, snp id, position, and chromosome. start writing: 3 samples, 2 SNPs ... file: /Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/sequence.vcf [1] 1 Tue Apr 12 18:48:05 2022 Done. The file name: /Users/biocbuild/bbs-3.14-bioc/meat/SNPRelate.Rcheck/tests/test1.gds The total number of samples: 3 The total number of SNPs: 2 SNP genotypes are stored in SNP-major mode (Sample X SNP). Start snpgdsVCF2GDS ... Extracting bi-allelic and polymorhpic SNPs. Scanning ... file: /Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/sequence.vcf content: 5 rows x 12 columns Tue Apr 12 18:48:05 2022 store sample id, snp id, position, and chromosome. start writing: 3 samples, 2 SNPs ... file: /Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/sequence.vcf [1] 1 Tue Apr 12 18:48:05 2022 Done. The file name: /Users/biocbuild/bbs-3.14-bioc/meat/SNPRelate.Rcheck/tests/test2.gds The total number of samples: 3 The total number of SNPs: 2 SNP genotypes are stored in SNP-major mode (Sample X SNP). Start snpgdsVCF2GDS ... Storing dosage of the reference allele for all variant sites, including bi-allelic SNPs, multi-allelic SNPs, indels and structural variants. Scanning ... file: /Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/sequence.vcf content: 5 rows x 12 columns Tue Apr 12 18:48:05 2022 store sample id, snp id, position, and chromosome. start writing: 3 samples, 5 SNPs ... file: /Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/sequence.vcf Tue Apr 12 18:48:05 2022 Done. Some of 'snp.allele' are not standard (e.g., A/G,T). The file name: /Users/biocbuild/bbs-3.14-bioc/meat/SNPRelate.Rcheck/tests/test3.gds The total number of samples: 3 The total number of SNPs: 5 SNP genotypes are stored in SNP-major mode (Sample X SNP). The number of valid samples: 3 The number of biallelic unique SNPs: 2 Start snpgdsVCF2GDS ... Storing dosage of the reference allele for all variant sites, including bi-allelic SNPs, multi-allelic SNPs, indels and structural variants. Scanning ... file: /Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/sequence.vcf content: 5 rows x 12 columns Tue Apr 12 18:48:05 2022 store sample id, snp id, position, and chromosome. start writing: 3 samples, 5 SNPs ... file: /Library/Frameworks/R.framework/Versions/4.1/Resources/library/SNPRelate/extdata/sequence.vcf Tue Apr 12 18:48:05 2022 Done. Some of 'snp.allele' are not standard (e.g., A/G,T). The file name: /Users/biocbuild/bbs-3.14-bioc/meat/SNPRelate.Rcheck/tests/test4.gds The total number of samples: 3 The total number of SNPs: 5 SNP genotypes are stored in SNP-major mode (Sample X SNP). The number of valid samples: 3 The number of biallelic unique SNPs: 2 SNP Correlation: # of samples: 90 # of SNPs: 9,088 using 1 thread Correlation: the sum of all selected genotypes (0,1,2) = 824424 Tue Apr 12 18:48:07 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:48:07 2022 Done. SNP Correlation: # of samples: 90 # of SNPs: 9,088 using 1 thread Creating 'test.gds' ... Correlation: the sum of all selected genotypes (0,1,2) = 824424 Tue Apr 12 18:48:07 2022 [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:48:07 2022 Done. SNP Loading: # of samples: 90 # of SNPs: 8,695 using 1 thread using the top 8 eigenvectors SNP Loading: the sum of all selected genotypes (0,1,2) = 787449 Tue Apr 12 18:48:07 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:48:07 2022 Done. Sample Loading: # of samples: 100 # of SNPs: 8,695 using 1 thread using the top 8 eigenvectors Sample Loading: the sum of all selected genotypes (0,1,2) = 875255 Tue Apr 12 18:48:07 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:48:07 2022 Done. SNP Correlation: # of samples: 90 # of SNPs: 9,088 using 2 threads Correlation: the sum of all selected genotypes (0,1,2) = 824424 Tue Apr 12 18:48:07 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:48:07 2022 Done. SNP Correlation: # of samples: 90 # of SNPs: 9,088 using 2 threads Creating 'test.gds' ... Correlation: the sum of all selected genotypes (0,1,2) = 824424 Tue Apr 12 18:48:07 2022 [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:48:07 2022 Done. SNP Loading: # of samples: 90 # of SNPs: 8,695 using 1 thread using the top 8 eigenvectors SNP Loading: the sum of all selected genotypes (0,1,2) = 787449 Tue Apr 12 18:48:07 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:48:07 2022 Done. Sample Loading: # of samples: 100 # of SNPs: 8,695 using 1 thread using the top 8 eigenvectors Sample Loading: the sum of all selected genotypes (0,1,2) = 875255 Tue Apr 12 18:48:07 2022 (internal increment: 65536) [..................................................] 0%, ETC: --- [==================================================] 100%, completed, 0s Tue Apr 12 18:48:07 2022 Done. RUNIT TEST PROTOCOL -- Tue Apr 12 18:48:08 2022 *********************************************** Number of test functions: 13 Number of errors: 0 Number of failures: 0 1 Test Suite : SNPRelate RUnit Tests - 13 test functions, 0 errors, 0 failures Number of test functions: 13 Number of errors: 0 Number of failures: 0 > > proc.time() user system elapsed 52.171 3.169 55.255
SNPRelate.Rcheck/SNPRelate-Ex.timings
name | user | system | elapsed | |
SNPGDSFileClass-class | 0.038 | 0.002 | 0.040 | |
SNPRelate-package | 1.887 | 0.179 | 2.075 | |
snpgdsAdmixPlot | 0.714 | 0.015 | 0.733 | |
snpgdsAdmixProp | 0.709 | 0.014 | 0.723 | |
snpgdsAlleleSwitch | 0.137 | 0.013 | 0.150 | |
snpgdsApartSelection | 0.154 | 0.018 | 0.173 | |
snpgdsBED2GDS | 0.166 | 0.036 | 0.202 | |
snpgdsClose | 0.044 | 0.001 | 0.045 | |
snpgdsCombineGeno | 0.156 | 0.042 | 0.198 | |
snpgdsCreateGeno | 0.649 | 0.018 | 0.669 | |
snpgdsCreateGenoSet | 0.224 | 0.018 | 0.243 | |
snpgdsCutTree | 2.944 | 0.133 | 3.086 | |
snpgdsDiss | 2.295 | 0.013 | 2.310 | |
snpgdsDrawTree | 1.940 | 0.014 | 1.957 | |
snpgdsEIGMIX | 0.602 | 0.009 | 0.612 | |
snpgdsErrMsg | 0 | 0 | 0 | |
snpgdsExampleFileName | 0.001 | 0.001 | 0.001 | |
snpgdsFst | 0.031 | 0.004 | 0.036 | |
snpgdsGDS2BED | 0.098 | 0.015 | 0.113 | |
snpgdsGDS2Eigen | 0.764 | 0.102 | 0.867 | |
snpgdsGDS2PED | 0.560 | 0.074 | 0.642 | |
snpgdsGEN2GDS | 0 | 0 | 0 | |
snpgdsGRM | 1.563 | 0.036 | 1.600 | |
snpgdsGetGeno | 0.101 | 0.028 | 0.129 | |
snpgdsHCluster | 2.427 | 0.057 | 2.489 | |
snpgdsHWE | 0.028 | 0.004 | 0.032 | |
snpgdsIBDKING | 2.576 | 0.078 | 2.703 | |
snpgdsIBDMLE | 0.857 | 0.018 | 0.877 | |
snpgdsIBDMLELogLik | 0.856 | 0.018 | 0.874 | |
snpgdsIBDMoM | 0.442 | 0.045 | 0.490 | |
snpgdsIBDSelection | 0.169 | 0.017 | 0.188 | |
snpgdsIBS | 0.375 | 0.011 | 0.388 | |
snpgdsIBSNum | 0.357 | 0.021 | 0.380 | |
snpgdsIndInb | 0.037 | 0.003 | 0.040 | |
snpgdsIndInbCoef | 0.010 | 0.002 | 0.012 | |
snpgdsIndivBeta | 0.307 | 0.008 | 0.315 | |
snpgdsLDMat | 0.385 | 0.034 | 0.422 | |
snpgdsLDpair | 0.005 | 0.003 | 0.008 | |
snpgdsLDpruning | 0.066 | 0.011 | 0.077 | |
snpgdsMergeGRM | 2.779 | 0.090 | 2.870 | |
snpgdsOpen | 0.043 | 0.003 | 0.046 | |
snpgdsOption | 0.003 | 0.003 | 0.006 | |
snpgdsPCA | 0.870 | 0.033 | 0.906 | |
snpgdsPCACorr | 0.830 | 0.039 | 0.871 | |
snpgdsPCASNPLoading | 0.927 | 0.012 | 0.942 | |
snpgdsPCASampLoading | 0.675 | 0.012 | 0.687 | |
snpgdsPED2GDS | 1.781 | 0.105 | 1.899 | |
snpgdsPairIBD | 1.387 | 0.026 | 1.416 | |
snpgdsPairIBDMLELogLik | 0.658 | 0.017 | 0.675 | |
snpgdsPairScore | 0.513 | 0.102 | 0.617 | |
snpgdsSNPList | 0.011 | 0.002 | 0.012 | |
snpgdsSNPListIntersect | 0.074 | 0.005 | 0.079 | |
snpgdsSNPRateFreq | 0.215 | 0.009 | 0.225 | |
snpgdsSampMissRate | 0.008 | 0.002 | 0.010 | |
snpgdsSelectSNP | 0.009 | 0.002 | 0.010 | |
snpgdsSlidingWindow | 1.165 | 0.135 | 1.302 | |
snpgdsSummary | 0.077 | 0.002 | 0.079 | |
snpgdsTranspose | 0.203 | 0.020 | 0.224 | |
snpgdsVCF2GDS | 0.397 | 0.318 | 0.720 | |
snpgdsVCF2GDS_R | 0.181 | 0.158 | 0.341 | |