
The XSB System
Version 4.0

Volume 2: Interfaces and Packages

March 29, 2021

Credits

Packages and interfaces have become an increasingly important part of XSB.
They are an important way to incorporate code from other systems into XSB,
and to interface XSB to databases and other stores. Most of the packages had
significant contributions by people other than the core XSB developers, for which
we are grateful. As a result most chapters have information about its authors.

Contents

1 XSB-ODBC Interface 1
1.1 Introduction . 1
1.2 Using the Interface . 2

1.2.1 Connecting to and Disconnecting from Data Sources 2
1.2.2 Accessing Tables in Data Sources Using SQL 3
1.2.3 Cursor Management . 5
1.2.4 Accessing Tables in Data Sources through the Relation Level 6
1.2.5 Using the Relation Level Interface . 6
1.2.6 Handling NULL values . 8
1.2.7 The View Level Interface . 10
1.2.8 Insertions and Deletions of Rows through the Relational Level 13
1.2.9 Access to Data Dictionaries . 14
1.2.10 Other Database Operations . 15
1.2.11 Transaction Management . 15
1.2.12 Interface Flags . 16
1.2.13 Datalog . 17

1.3 Error messages . 17
1.4 Notes on specific ODBC drivers . 18

2 The New XSB-Database Interface 19
2.1 Introduction . 19
2.2 Configuring the Interface . 19
2.3 Using the Interface . 22

i

CONTENTS ii

2.3.1 Connecting to and Disconnecting from Databases 22
2.3.2 Querying Databases . 24

2.4 Error Handling . 26
2.5 Notes on specific drivers . 28

3 Libraries from Other Prologs 30
3.1 AVL Trees . 30
3.2 Unweighted Graphs: ugraphs.P . 31
3.3 Heaps: heaps.P . 31

4 Introduction to XSB Packages 33

5 Wildcard Matching 34

6 pcre: Pattern Matching and Substitution Using PCRE 36
6.1 Introduction . 36
6.2 Pattern matching . 36
6.3 String Substitution . 37
6.4 Installation and configuration . 38

6.4.1 Configuring for Linux, Mac, and other Unices 38
6.4.2 Configuring for Windows . 39

7 POSIX Regular Expression and Wildcard Matching 40
7.1 regmatch: Regular Expression Matching and Substitution 40
7.2 wildmatch: Wildcard Matching and Globing 44

8 curl: The XSB Internet Access Package 46
8.1 Introduction . 46
8.2 Integration with File I/O . 47

8.2.1 Opening a Web Document . 47
8.2.2 Closing a Web Document . 48

8.3 Low Level Predicates . 48
8.3.1 Loading Web Documents . 48

CONTENTS iii

8.3.2 Retrieving Properties of a Web Document 49
8.3.3 Encoding URLs . 50

8.4 Installation and configuration . 50

9 Packages sgml and xpath: SGML/XML/HTML and XPath Parsers 51
9.1 Introduction . 51
9.2 Overview of the SGML Parser . 52
9.3 Predicate Reference . 54

9.3.1 Loading Structured Documents . 54
9.3.2 Handling of White Spaces . 56
9.3.3 XML documents . 57
9.3.4 DTD-Handling . 58
9.3.5 Low-level Parsing Primitives . 59
9.3.6 External Entities . 62
9.3.7 Exceptions . 62
9.3.8 Unsupported features . 63
9.3.9 Summary of Predicates . 64

9.4 XPath support . 64

10 rdf: The XSB RDF Parser 67
10.1 Introduction . 67
10.2 High-level API . 67

10.2.1 RDF Object representation . 69
10.2.2 Name spaces . 69
10.2.3 Low-level access . 70

10.3 Testing the RDF translator . 70

11 Constraint Packages 71
11.1 clpr: The CPL(R) package . 71

11.1.1 The CLP(R) API . 73
11.2 The bounds Package . 78

11.2.1 The bounds API . 80

CONTENTS iv

12 Constraint Handling Rules 84
12.1 Introduction . 84
12.2 Syntax and Semantics . 84

12.2.1 Syntax . 84
12.2.2 Semantics . 86

12.3 CHR in XSB Programs . 87
12.3.1 Embedding in XSB Programs . 87
12.3.2 Compilation . 88

12.4 Useful Predicates . 88
12.5 Examples . 88
12.6 CHR and Tabling . 89

12.6.1 General Issues and Principles . 90
12.6.2 Call Abstraction . 90
12.6.3 Answer Projection . 91
12.6.4 Answer Combination . 93
12.6.5 Overview of Tabling-related Predicates 95

12.7 Guidelines . 95
12.8 CHRd . 96

13 The viewsys Package 97
13.1 An Example . 98
13.2 The ViewSys Data Model . 99
13.3 View Instance Model . 101
13.4 Using ViewSys . 103

14 The persistent_tables Package 110
14.1 Using Persistent Tables with viewsys . 111
14.2 Methodology for Defining View Systems . 113
14.3 Using Timestamps (or version numbers) . 115
14.4 Predicates for Persistent Tabling . 115

15 PITA: Probabilistic Inference 121

CONTENTS v

15.1 Installation . 122
15.2 Syntax . 122
15.3 Using PITA . 123

15.3.1 Probabilistic Logic Programming . 123
15.3.2 Modeling Assumptions . 125
15.3.3 Possibilistic Logic Programming . 127

16 Interface to MiniZinc 128
16.1 Introduction . 128
16.2 Installation . 128
16.3 The API . 129

17 XASP: Answer Set Programming with XSB and Smodels 133
17.1 Installing the Interface . 134

17.1.1 Installing the Interface under Unix 134
17.1.2 Installing XASP under Windows using Cygwin 135

17.2 The Smodels Interface . 137
17.3 The xnmr_int Interface . 140

Chapter 1

XSB-ODBC Interface

By Baoqiu Cui, Lily Dong, and David S. Warren 1.

1.1 Introduction

The XSB-ODBC interface is subsystem that allows XSB users to access databases through
ODBC connections. This is mostly of interest to Microsoft Windows users. The interface
allows XSB users to access data in any ODBC compliant database management system
(DBMS). Using this uniform interface, information in different DBMS’s can be accessed as
though it existed as Prolog facts. The XSB-ODBC interface provides users with three levels
of interaction: an SQL level, a relation level and a view level. The SQL level allows users to
write explicit SQL statements to be passed to the interface to retrieve data from a connected
database. The relation level allows users to declare XSB predicates that connect to individual
tables in a connected database, and which when executed support tuple-at-a-time retrieval
from the base table. The view level allows users to use a complex XSB query, including
conjunction, negation and aggregates, to specify a database query. A listing of the features
that the XSB-ODBC interface provides is as follows:

• Concurrent access from multiple XSB processes to a single DBMS

• Access from a single XSB process to multiple ODBC DBMS’s

• Full data access and cursor transparency including support for

– Full data recursion through XSB’s tabling mechanism (depending on the capabil-
ities of the underlying ODBC driver.

1This interface was partly based on the XSB-Oracle Interface by Hassan Davulcu, Ernie Johnson and
Terrance Swift.

1

CHAPTER 1. XSB-ODBC INTERFACE 2

– Runtime type checking
– Automatic handling of NULL values for insertion, deletion and querying

• Full access to data source including

– Transaction support
– Cursor reuse for cached SQL statements with bind variables (thereby avoiding

re-parsing and re-optimizing).
– Caching compiler generated SQL statements with bind variables and efficient

cursor management for cached statements

• A powerful Prolog / SQL compiler based on [1].

• Full source code availability

• Independence from database schema by the relation level interface

• Performance as SQL by employing a view level

• No mode specification is required for optimized view compilation

We use the Hospital database as our example to illustrate the usage of XSB-ODBC
interface in this manual. We assume the basic knowledge of Microsoft ODBC interface and
its ODBC administrator throughout the text. Please refer to “Inside WindowsT M 95” (or
more recent documentation) for information on this topic.

1.2 Using the Interface

The XSB-ODBC module is a module and as such exports the predicates it supports. In order
to use any predicate defined below, it must be imported from odbc_call. For example,
before you can use the predicate to open a data source, you must include:

:- import odbc_open/3 from odbc_call.

1.2.1 Connecting to and Disconnecting from Data Sources

Assuming that the data source to be connected to is available, i.e. it has an entry in ODBC.INI
file which can be checked by running Microsoft ODBC Administrator, it can be connected
to in the following way:

| ?- odbc_open(data_source_name, username, passwd).

CHAPTER 1. XSB-ODBC INTERFACE 3

If the connection is successfully made, the predicate invocation will succeed. This step
is necessary before anything can be done with the data sources since it gives XSB the
opportunity to initialize system resources for the session.

This is an executable predicate, but you may want to put it as a query in a file that
declares a database interface and will be loaded.

To close the current session use:

| ?- odbc_close.

and XSB will give all the resources it allocated for this session back to the system.
If you are connecting to only one data source at a time, the predicates above are sufficient.

However, if you want to connect to multiple data sources at the same time, you must use
extended versions of the predicates above. When connecting to multiple sources, you must
give an atomic name to each source you want to connect to, and use that name whenever
referring to that source. The names may be chosen arbitrarily but must be used consistently.
The extended versions are:

| ?- odbc_open(data_source_name, username, passwd, connectionName).

and

| ?- odbc_close(connectionName).

A list of existing Data Source Names and descriptions can be obtained by backtracking
through odbc_data_sources/2. For example:

| ?- odbc_data_sources(DSN,DSNDescr).

DSN = mycdf
DSNDescr = MySQL driver;

DSN = mywincdf
DSNDescr = TDS driver (Sybase/MS SQL);

1.2.2 Accessing Tables in Data Sources Using SQL

There are several ways that can be used to extract information from or modify a table in a
data source. The most basic way is to use predicates that pass an SQL statement directly
to the ODBC driver. The basic call is:

CHAPTER 1. XSB-ODBC INTERFACE 4

| ?- odbc_sql(BindVals,SQLStmt,ResultRow).

where BindVals is a list of (ground) values that correspond to the parameter indicators
in the SQL statement (the ’?’s); SQLStmt is an atom containing an SQL statement; and
ResultRow is a returned list of values constituting a row from the result set returned by the
SQL query. Thus for a select SQL statement, this call is nondeterministic, returning each
retrieved row in turn.

The BindVals list should have a length corresponding to the number of parameters in
the query, in particular being the empty list ([]) if SQLStmt contains no ’?’s. If SQLStmt is
not a select statement returning a result set, then ResultRow will be the empty list, and
the call is deterministic. Thus this predicate can be used to do updates, DDL statements,
indeed any SQL statement.

SQLStmt need not be an atom, but can be a (nested) list of atoms which flattens (and
concatenates) to form an SQL statement.

BindVals is normally a list of values of primitive Prolog types: atoms, integers, or floats.
The values are converted to the types of the corresponding database fields. However, complex
Prolog values can also be stored in a database field. If a term of the form term(VAL) appears
in the BindVal list, then VAL (a Prolog term) will be written in canonical form (as produced
by write_canonical) to the corresponding database field (which must be CHAR or BYTE).
If a term of the form string(CODELIST) appears in BindVal, then CODELIST must be a list
of ascii-codes (as produced by atom_codes) and these codes will be converted to a CHAR
or BYTE database type.

ResultRow for a select statement is normally a list of variables that will nondeterministi-
cally be bound to the values of the fields of the tuples returned by the execution of the select
statement. The Prolog types of the values returned will be determined by the database types
of the corresponding fields. A CHAR or BYTE database type will be returned as a Prolog
atom; an INTEGER database field will be returned as a Prolog integer, and similarly for
floats. However, the user can request that CHAR and BYTE database fields be returned as
something other than an atom. If the term string(VAR) appears in ResultRow, then the
corresponding database field must be CHAR or BYTE, and in this case, the variable VAR
will be bound to the list of ascii-codes that make up the database field. This allows an XSB
programmer to avoid adding an atom to the atom table unnecessarily. If the term term(VAR)
appears in ResultRow, then the corresponding database field value is assumed to be a Prolog
term in canonical form, i.e., can be read by read_canonical/1. The corresponding value
will be converted into a Prolog term and bound to VAR. This allows a programmer to store
complex Prolog terms in a database. Variables in such a term are local only to that term.

When connecting to multiple data sources, you should use the form:

| ?- odbc_sql(ConnectionName,BindVals,SQLStmt,ResultRow).

CHAPTER 1. XSB-ODBC INTERFACE 5

For example, we can define a predicate, get_test_name_price, which given a test ID,
retrieves the name and price of that test from the test table in the hospital database:

get_test_name_price(Id,Nam,Pri) :-
odbc_sql([Id],’SELECT TName,Price FROM Test WHERE TId = ?’, [Nam,Pri]).

The interface uses a cursor to retrieve this result and caches the cursor, so that if the
same query is needed in the future, it does not need to be re-parsed, and re-optimized. Thus,
if this predicate were to be called several times, the above form is more efficient than the
following form, which must be parsed and optimized for each and every call:

get_test_name_price(Id,Nam,Pri) :-
odbc_sql([],[’SELECT TName,Price FROM Test WHERE TId = ’’’,Id,’’’’], [Nam,Pri]).

Note that to include a quote (’) in an atom, it must be represented by using two quotes.
There is also a predicate:

| ?- odbc_sql_cnt(ConnectionName,BindVals,SQLStmt,Count).

This predicate is very similar to odbc_slq/4 except that it can only be used for UP-
DATE, INSERT, and DELETE SQL statements. The first three arguments are just as in
odbc_slq/4; the fourth must be a variable in which is returned the integer count of the
number of rows affected by the SQL operation.

1.2.3 Cursor Management

The XSB-ODBC interface is limited to using 100 open cursors. When XSB systems use
database accesses in a complicated manner, management of open cursors can be a problem
due to the tuple-at-a-time access of databases from Prolog, and due to leakage of cursors
through cuts and throws. Often, it is more efficient to call the database through set-at-a-time
predicates such as findall/3, and then to backtrack through the returned information. For
instance, the predicate findall_odbc_sql/4 can be defined as:

findall_odbc_sql(ConnName,BindVals,SQLStmt,ResultRow):-
findall(Res,odbc_sql(ConnName,BindVals,SQLStmt,Res),Results),
member(ResultRow,Results).

As a convenience, therefore, the predicates findall_odbc_sql/3 and findall_odbc_sql/4
are defined in the ODBC interface.

CHAPTER 1. XSB-ODBC INTERFACE 6

1.2.4 Accessing Tables in Data Sources through the Relation Level

While all access to a database is possible using SQL as described above, the XSB-ODBC
interface supports higher-level interaction for which the user need not know or write SQL
statements; that is done as necessary by the interface. With the relation level interface,
users can simply declare a predicate to access a table and the system generates the necessary
underlying code, generating specialized code for each mode in which the predicate is called.

To declare a predicate to access a database table, a user must use the odbc_import/2
interface predicate.

The syntax of odbc_import/2 is as follows:

| ?- odbc_import(’TableName’(’FIELD1’, ’FIELD2’, ..., ’FIELDn’), ’PredicateName’).

where ’TableName’ is the name of the database table to be accessed and ’PredicateName’
is the name of the XSB predicate through which access will be made. ’FIELD1’, ’FIELD2’,
... , ’FIELDn’ are the exact attribute names(case sensitive) as defined in the database table
schema. The chosen columns define the view and the order of arguments for the database
predicate ’PredicateName’.

For example, to create a link to the Test table through the ’test’ predicate:

| ?- odbc_import(’Test’(’TId’,’TName’,’Length’,’Price’),test).

yes

When connecting to multiple data sources, you should use the form:

| ?- odbc_import(ConnectionName,
’TableName’(’FIELD1’, ’FIELD2’, ..., ’FIELDn’),
’PredicateName’).

1.2.5 Using the Relation Level Interface

Once the links between tables and predicates have been successfully established, information
can then be extracted from these tables using the corresponding predicates. Continuing from
the above example, now rows from the table Test can be obtained:

| ?- test(TId, TName, L, P).

TId = t001
TName = X-Ray
L = 5
P = 100

CHAPTER 1. XSB-ODBC INTERFACE 7

Backtracking can then be used to retrieve the next row of the table Test.
Records with particular field values may be selected in the same way as in Prolog; no

mode specification for database predicates is required. For example:

| ?- test(TId, ’X-Ray’, L, P).

will automatically generate the query:

SELECT rel1.TId, rel1.TName, rel1.Length, rel1.Price
FROM Test rel1
WHERE rel1.TName = ?

and

| ?- test(’NULL’(_), ’X-Ray’, L, P).

generates: (See Section 1.2.6)

SELECT NULL , rel1.TName, rel1.Length, rel1.Price
FROM Test rel1
WHERE rel1.TId IS NULL AND rel1.TName = ?

During the execution of this query the bind variable ? will be bound to the value ’X-Ray’.

Of course, the same considerations about cursors noted in Section 1.2.3 apply to the
relation-level interface. Accordingly, the ODBC interface also defines the predicate odbc_import/4
which allows the user to specify that rows are to be fetched through findall/3. For example,
the call

odbc_import(’Test’(’TId’,’TName’,’Length’,’Price’),test,[findall(true)]).

will behave as described above but will make all database calls through findall/3 and return
rows by backtracking through a list rather than maintaining open cursors.

Also as a courtesy to Quintus Prolog users we have provided compatibility support for
some PRODBI predicates which access tables at a relational level 2.

| ?- odbc_attach(PredicateName, table(TableName)).

eg. invoke
2This predicate is obsolescent and odbc_import/{2,3,4} should be used instead.

CHAPTER 1. XSB-ODBC INTERFACE 8

| ?- odbc_attach(test2, table(’Test’)).

and then execute

| ?- test2(TId, TName, L, P).

to retrieve the rows.

1.2.6 Handling NULL values

The interface treats NULL’s by introducing a single valued function ’NULL’/1 whose single
value is a unique (Skolem) constant. For example a NULL value may be represented by

’NULL’(null123245)

Under this representation, two distinct NULL values will not unify. On the other hand, the
search condition IS NULL Field can be represented in XSB as Field = ’NULL’(_)

Using this representation of NULL’s the following protocol for queries and updates is
established.

Queries

| ?- dept(’NULL’(_),_,_).

Generates the query:

SELECT NULL , rel1.DNAME , rel1.LOC
FROM DEPT rel1
WHERE rel1.DEPTNO IS NULL;

Hence, ’NULL’(_) can be used to retrieve rows with NULL values at any field.
’NULL’/1 fails the predicate whenever it is used with a bound argument.

| ?- dept(’NULL’(null2745),_,_). → fails always.

CHAPTER 1. XSB-ODBC INTERFACE 9

Query Results

When returning NULL’s as field values, the interface returns NULL/1 function with a unique
integer argument serving as a skolem constant.

Notice that the above guarantees the expected semantics for the join statements. In the
following example, even if Deptno is NULL for some rows in emp or dept tables, the query
still evaluates the join successfully.

| ?- emp(Ename,_,_,_,Deptno),dept(Deptno,Dname,Loc)..

Inserts

To insert rows with NULL values you can use Field = ’NULL’(_) or Field = ’NULL’(null2346).
For example:

| ?- emp_ins(’NULL’(_), ...). → inserts a NULL value for ENAME

| ?- emp_ins(’NULL’(’bound’), ...) → inserts a NULL value for ENAME.

Deletes

To delete rows with NULL values at any particular FIELD use Field = ’NULL’(_), ’NULL’/1
with a free argument. When ’NULL’/1 ’s argument is bound it fails the delete predicate
always. For example:

| ?- emp_del(’NULL’(_), ..). → adds ENAME IS NULL to the generated SQL
statement

| ?- emp_del(’NULL’(’bound’), ...). → fails always

The reason for the above protocol is to preserve the semantics of deletes, when some free
arguments of a delete predicate get bound by some preceding predicates. For example in the
following clause, the semantics is preserved even if the Deptno field is NULL for some rows.

| ?- emp(_,_,_,_,Deptno), dept_del(Deptno).

CHAPTER 1. XSB-ODBC INTERFACE 10

1.2.7 The View Level Interface

The view level interface can be used to define XSB queries which include only imported
database predicates (by using the relation level interface) described above and aggregate
predicates (defined below). When these queries are invoked, they are translated into complex
database queries, which are then executed taking advantage of the query processing ability
of the DBMS.

One can use the view level interface through the predicate odbc_query/2:

| ?- odbc_query(’QueryName’(ARG1, ..., ARGn), DatabaseGoal).

All arguments are standard XSB terms. ARG1, ARG2, ..., ARGn define the attributes to be
retrieved from the database, while DatabaseGoal is an XSB goal (i.e. a possible body of a
rule) that defines the selection restrictions and join conditions.

The compiler is a simple extension of [1] which generates SQL queries with bind variables
and handles NULL values as described in Section 1.2.6. It allows negation, the expression of
arithmetic functions, and higher-order constructs such as grouping, sorting, and aggregate
functions.

Database goals are translated according to the following rules from [1]:

• Disjunctive goals translate to distinct SQL queries connected through the UNION
operator.

• Goal conjunctions translate to joins.

• Negated goals translate to negated EXISTS subqueries.

• Variables with single occurrences in the body are not translated.

• Free variables translate to grouping attributes.

• Shared variables in goals translate to equi-join conditions.

• Constants translate to equality comparisons of an attribute and the constant value.

• Nulls are translated to IS NULL conditions.

For more examples and implementation details see [1].
In the following, we show the definition of a simple join view between the two database

predicates Room and Floor.
Assuming the declarations:

CHAPTER 1. XSB-ODBC INTERFACE 11

| ?- odbc_import(’Room’(’RoomNo’,’CostPerDay’,’Capacity’,’FId’),room).

| ?- odbc_import(’Floor’(’FId’,’’,’FName’),floor).

use

| ?- odbc_query(query1(RoomNo,FName),
(room(RoomNo,_,_,FId),floor(FId,_,FName))).

yes

| ?- query1(RoomNo,FloorName).

Prolog/SQL compiler generates the SQL statement:

SELECT rel1.RoomNo , rel2.FName FROM Room rel1 , Floor rel2
WHERE rel2.FId = rel1.FId;

Backtracking can then be used to retrieve the next row of the view.

| ?- query1(’101’,’NULL’(_)).

generates the SQL statement:

SELECT rel1.RoomNo, NULL
FROM Room rel1 , Floor rel2
WHERE rel1.RoomId = ? AND rel2.FId = rel1.FId AND rel2.FName IS NULL;

The view interface also supports aggregate functions such as sum, avg, count, min and
max. For example

| ?- odbc_import(’Doctor’(’DId’, ’FId’, ’DName’,’PhoneNo’,’ChargePerMin’),doctor).

yes
| ?- odbc_query(avgchargepermin(X),

(X is avg(ChargePerMin, A1 ^ A2 ^ A3 ^ A4 ^
doctor(A1,A2, A3,A4,ChargePerMin)))).

yes

CHAPTER 1. XSB-ODBC INTERFACE 12

| ?- avgchargepermin(X).

SELECT AVG(rel1.ChargePerMin)
FROM doctor rel1;

X = 1.64

yes

A more complicated example is the following:

| ?- odbc_query(nonsense(A,B,C,D,E),
(doctor(A, B, C, D, E),
not floor(’First Floor’, B),
not (A = ’d001’),
E > avg(ChargePerMin, A1 ^ A2 ^ A3 ^ A4 ^

(doctor(A1, A2, A3, A4, ChargePerMin))))).

| ?- nonsense(A,’4’,C,D,E).

SELECT rel1.DId , rel1.FId , rel1.DName , rel1.PhoneNo , rel1.ChargePerMin
FROM doctor rel1
WHERE rel1.FId = ? AND NOT EXISTS
(SELECT *
FROM Floor rel2
WHERE rel2.FName = ’First Floor’ and rel2.FId = rel1.FId
) AND rel1.Did <> ’d001’ AND rel1.ChargePerMin >
(SELECT AVG(rel3.ChargePerMin)
FROM Doctor rel3
);

A = d004
C = Tom Wilson
D = 516-252-100
E = 2.5

All database queries defined by odbc_query/{2,3} can be queried with any mode.
Note that at each call to a database relation or rule, the communication takes place

through bind variables. The corresponding restrictive SQL query is generated, and if this is
the first call with that adornment, it is cached. A second call with same adornment would

CHAPTER 1. XSB-ODBC INTERFACE 13

try to use the same database cursor if still available, without reparsing the respective SQL
statement. Otherwise, it would find an unused cursor and retrieve the results. In this way
efficient access methods for relations and database rules can be maintained throughout the
session.

If connecting to multiple data sources, use the form:

:- odbc_query(connectionName,’QueryName’(ARG1, ..., ARGn), DatabaseGoal).

1.2.8 Insertions and Deletions of Rows through the Relational
Level

Insertion and deletion operations can also be performed on an imported table. The two
predicates to accomplish these operations are odbc_insert/2 and odbc_delete/2. The
syntax of odbc_insert/2 is as follows: the first argument is the declared database predicate
for insertions and the second argument is some imported data source relation. The second
argument can be declared with some of its arguments bound to constants. For example after
Room is imported through odbc_import:

|?- odbc_import(’Room’(’RoomNo’,’CostPerDay’,’Capacity’,’FId’), room).
yes

Now we can do

| ?- odbc_insert(room_ins(A1,A2,A3),(room(A1,A2,A3,’3’))).

yes
| ?- room_ins(’306’,’NULL’(_),2).

yes

This will insert the row: (’306’,NULL, 2,’3’) into the table Room. Note that any call to
room_ins/7 should have all its arguments bound.

See Section 1.2.6) for information about NULL value handling.
The first argument of odbc_delete/2 predicate is the declared delete predicate and the

second argument is the imported data source relation with the condition for requested deletes,
if any. The condition is limited to simple comparisons. For example assuming Room/3 has
been imported as above:

CHAPTER 1. XSB-ODBC INTERFACE 14

| ?- odbc_delete(room_del(A), (room(’306’,A,B,C), A > 2)).

yes

After this declaration you can use:

| ?- room_del(3).

to generate the SQL statement:

DELETE From Room rel1
WHERE rel1.RoomNo = ’306’ AND rel1.CostPerDay = ? AND ? > 2
;

Note that you have to commit your inserts or deletes to tables to make them permanent.
(See section 1.2.11).

These predicates also have the form in which an additional first argument indicates a
connection, for use with multiple data sources.

Also, some ODBC drivers have been found that do not accept the form of SQL generated
for deletes. In these cases, you must use the lower-level interface: odbc_sql.

1.2.9 Access to Data Dictionaries

The following utility predicates provide users with tools to access data dictionaries 3. A brief
description of these predicates is as follows:

odbc_show_schema(accessible(Owner)) Shows the names of all accessible tables that
are owned by Owner. (This list can be long!) If Owner is a variable, all tables will be
shown, grouped by owner.

odbc_show_schema(user) Shows just those tables that belongs to user.

odbc_show_schema(tuples(’Table’)) Shows all rows of the database table named ’Table’.

odbc_show_schema(arity(’Table’)) The number of fields in the table ’Table’.

odbc_show_schema(columns(’Table’)) The field names of a table.
3Users of Quintus Prolog may note that these predicates are all PRODBI compatible.

CHAPTER 1. XSB-ODBC INTERFACE 15

For retrieving above information use:

• odbc_get_schema(accessible(Owner),List)

• odbc_get_schema(user,List)

• odbc_get_schema(arity(’Table’),List)

• odbc_get_schema(columns(’Table’),List)

The results of above are returned in List as a list.

1.2.10 Other Database Operations

odbc_create_table(’TableName’,’FIELDs’) FIELDS is the field specification as in SQL.

eg. odbc_create_table(’MyTable’, ’Col1 NUMBER,
Col2 TEXT(50),
Col3 TEXT(13)’).

odbc_create_index(’TableName’,’IndexName’, index(_,Fields)) Fields is the list
of columns for which an index is requested. For example:

odbc_create_index(’Doctor’, ’DocKey’, index(_,’DId’)).

odbc_delete_table(’TableName’) To delete a table named ’TableName’

odbc_delete_view(’ViewName’) To delete a view named ’ViewName’

odbc_delete_index(’IndexName’) To delete an index named ’IndexName’

1.2.11 Transaction Management

Depending on how the transaction options are set in ODBC.INI for data sources, changes
to the data source tables may not be committed (i.e., the changes become permanent) until
the user explicitly issues a commit statement. Some ODBC drivers support autocommit,
which, if on, means that every update operation is immediately committed upon execution.
If autocommit is off, then an explicit commit (or rollback) must be done by the program to
ensure the updates become permanent (or are ignored.).

The predicate odbc_transaction/1 supports these operations.

CHAPTER 1. XSB-ODBC INTERFACE 16

odbc_transaction(autocommit(on)) Turns on autocommit, so that all update opera-
tions will be immediately committed on completion.

odbc_transaction(autocommit(off)) Turns off autocommit, so that all update opera-
tions will not be committed until explicitly done so by the program (using one of the
following operations.)

odbc_transaction(commit) Commits all transactions up to this point. (Only has an
effect if autocommit is off).

odbc_transaction(rollback) Rolls back all update operations done since the last commit
point. (Only has an effect if autocommit is off).

1.2.12 Interface Flags

Users are given the option to monitor control aspects of the ODBC interface by setting
ODBC flags via the predicatesset_odbc_flag/2 and odbc_flag/2.

The first aspect that can be controlled is whether to display SQL statements for SQL
queries. This is done by the show_query flag. For example:

| ?- odbc_flag(show_query,Val).

Val = on

Indicates that SQL statements will now be displayed for all SQL queries, and is the default
value for the ODBC interface. To turn it off execute the command set_odbc_flag(show_query,on).

The second aspect that can be controlled is the action taken upon ODBC errors. Three
possible actions may be useful in different contexts and with different drivers. First, the
error may be ignored, so that a database call succeeds; second the error cause the predicate
to fail, and third the error may cause an exception to be thrown to be handled by a catcher
(or the default system error handler, see Volume 1).

| ?- odbc_flag(fail_on_error, ignore) Ignores all ODBC errors, apart from writing a
warning. In this case, it’s the users’ users’ responsibility to check each of their actions
and do error handling.

| ?- odbc_flag(fail_on_error, fail) Interface fails whenever error occurs.

| ?- odbc_flag(fail_on_error, throw) Throws an error-term of the form error(odbc_error,Message,Backtrace),
in which Message is a textual description of the ODBC error, and Backtrace is a list
of the continuations of the call. These continuations may be printed out by the error
handler.

The default value of fail_on_error is on.

CHAPTER 1. XSB-ODBC INTERFACE 17

1.2.13 Datalog

Users can write recursive Datalog queries with exactly the same semantics as in XSB using
imported database predicates or database rules. For example assuming odbc_parent/2 is an
imported database predicate, the following recursive query computes its transitive closure.

:- table(ancestor/2).
ancestor(X,Y) :- odbc_parent(X,Y).
ancestor(X,Z) :- ancestor(X,Y), odbc_parent(Y,Z).

This works with drivers that support multiple open cursors to the same connection at
the same time. (Sadly, some don’t.) In the case of drivers that don’t support multiple open
cursors, one can often replace each odbc_import-ed predicate call

...,predForTable(A,B,C),...

by

...,findall([A,B,C],predForTable(A,B,C),PredList),
member([A,B,C],PredList)...

and get the desired effect.

1.3 Error messages

ERR - DB: Connection failed For some reason the attempt to connect to data source
failed.

• Diagnosis: Try to see if the data source has been registered with Microsoft ODBC
Administrator, the username and password are correct and MAXCURSORNUM
is not set to a very large number.

ERR - DB: Parse error The SQL statement generated by the Interface or the first ar-
gument to odbc_sql/1 or odbc_sql_select/2 can not be parsed by the data source
driver.

• Diagnosis: Check the SQL statement. If our interface generated the erroneous
statement please contact us at xsb-contact@cs.sunysb.edu.

ERR - DB: No more cursors left Interface run out of non-active cursors either because
of a leak or no more free cursors left.

CHAPTER 1. XSB-ODBC INTERFACE 18

• Diagnosis: System fails always with this error. odbc_transaction(rollback) or
odbc_transaction(commit) should resolve this by freeing all cursors.

ERR - DB: FETCH failed Normally this error should not occur if the interface running
properly.

• Diagnosis: Please contact us at xsb-contact@cs.sunysb.edu

1.4 Notes on specific ODBC drivers
MyODBC The ODBC driver for MySQL is called MyODBC, and it presents some

particularities that should be noted.
First, MySQL, as of version 3.23.55, does not support strings of length greater
than 255 characters. XSB’s ODBC interface has been updated to allow the use
of the BLOB datatype to encode larger strings.
More importantly, MyODBC implements SQLDescribeCol such that, by default,
it returns actual lengths of columns in the result table, instead of the formal
lengths in the tables. For example, suppose you have, in table A, a field f declared
as “VARCHAR (200)”. Now, you create a query of the form “SELECT f FROM
A WHERE ...” If, in the result set, the largest size of f is 52, that’s the length
that SQLDescribeCol will return. This breaks XSB’s caching of query-related
data-structures. In order to prevent this behavior, you should configure your
DSN setup so that you pass “Option=1” to MyODBC.

Chapter 2

The New XSB-Database Interface

By Saikat Mukherjee, Michael Kifer and Hui Wan

2.1 Introduction

The XSB-DB interface is a package that allows XSB users to access databases through
various drivers. Using this interface, information in different DBMSs can be accessed by SQL
queries. The interface defines Prolog predicates which makes it easy to connect to databases,
query them, and disconnect from the databases. Central to the concept of a connection to
a database is the notion of a connection handle. A connection handle describes a particular
connection to a database. Similar to a connection handle is the notion of a query handle
which describes a particular query statement. As a consequence of the handles, it is possible
to open multiple database connections (to the same or different databases) and keep alive
multiple queries (again from the same or different connections). The interface also supports
dynamic loading of drivers. As a result, it is possible to query databases using different
drivers concurrently 1.

Currently, this package provides drivers for ODBC, a native MySQL driver, and a driver
for the embedded MySQL server.

2.2 Configuring the Interface

Generally, each driver has to be configured separately, but if the database packages such as
ODBC, MySql, etc., are installed in standard places then the XSB configuration mechanism
will do the job automatically.

1In Version 4.0, this package has not been ported to the multi-threaded engine.

19

CHAPTER 2. THE NEW XSB-DATABASE INTERFACE 20

Under Windows, first make sure that XSB is configured and built correctly for Windows,
and that it runs. As part of that building process, the command

makexsb_wind

must have been executed in the directory XSB\build. It will normally configure the ODBC
driver without problems. For the MySQL driver one has to edit the file

packages\dbdrivers\mysql\cc\NMakefile.mak

to indicate where MySQL is installed. To build the embedded MySQL driver under Windows,
the file

packages\dbdrivers\mysqlenbedded\cc\NMakefile.mak

might need to be edited. Then you should either rebuild XSB using the makexsb_wind
command or by running

nmake /f NMakefile.mak

in the appropriate directories (dbdrivers\mysql\cc or dbdrivers\mysqlenbedded\cc).
Note that you need a C++ compiler and nmake installed on your system for this to work.2

Under Unix, the configure script will build the drivers automatically if the –with-dbdrivers
option is specified. If, however, ODBC and MySQL are not installed in their standard places,
you will have to provide the following parameters to the configure script:

• –with-odbc-libdir=LibDIR – LibDIR is the directory where the library libodbc.so
lives on your system.

• –with-odbc-incdir=IncludeDIR – IncludeDIR is the directory where the ODBC
header files, such as sql.h live.

• –with-mysql-libdir=MySQLlibdir – MySQLlibdir is the directory where MySQL’s
shared libraries live on your system.

• –with-mysql-incdir=MySQLincludeDir – MySQLincludeDir is the directory where
MySQL’s header files live.

If you are also using the embedded MySQL server and want to take advantage of the cor-
responding XSB driver, you need to provide the following directories to tell XSB where the
copy of MySQL that supports the embedded server is installed. This has to be done only if
that copy is not in a standard place, like /usr/lib/mysql.

2 http://www.microsoft.com/express/vc/
http://download.microsoft.com/download/vc15/Patch/1.52/W95/EN-US/Nmake15.exe

CHAPTER 2. THE NEW XSB-DATABASE INTERFACE 21

• –with-mysqlembedded-libdir=MySQLlibdir – MySQLlibdir is the directory where
MySQL’s shared libraries live on your system. This copy of MySQL must be configured
with support for the embedded server.

• –with-mysqlembedded-incdir=MySQLincludeDir – MySQLincludeDir is the direc-
tory where MySQL’s header files live.

Under Cygwin, the ODBC libraries come with the distribution; they are located in the
directory /cygdrive/c/cygwin/lib/w32api/ and are called odbc32.a and odbccp32.a.
(Check if your installation is complete and has these libraries!) Otherwise, the configuration
of the interface under Cygwin is same as in unix (you do not need to provide any ODBC-
specific parameters to the configure script under Cygwin).

If at the time of configuring XSB some database packages (e.g., MySQL) are not installed
on your system, you can install them later and configure the XSB interface to them then.
For instance, to configure the ODBC interface separately, you can type

cd packages/dbdrivers/odbc
configure

Again, if ODBC is installed in a non-standard location, you might need to supply the options
–with-odbc-libdir and –with-odbc-incdir to the configure script. Under Cygwin ODBC
is always installed in a standard place, and configure needs no additional parameters.

Under Windows, separate configuration of the XSB-DB interfaces is also possible, but
you need Visual Studio installed. For instance, to configure the MySQL interface, type

cd packages\dbdrivers\mysql\cc
nmake /f NMakefile.mak

As before, you might need to edit the NMakefile.mak script to tell the compiler where the re-
quired MySQL’s libraries are. You also need the file packages\dbdrivers\mysql\mysql_init.P
with the following content:

:- export mysql_info/2.
mysql_info(support, ’yes’).
mysql_info(libdir, ’’).
mysql_info(ccflags, ’’).
mysql_info(ldflags, ’’).

Similarly, to configure the ODBC interface, do

cd packages\dbdrivers\odbc\cc
nmake /f NMakefile.mak

CHAPTER 2. THE NEW XSB-DATABASE INTERFACE 22

You will also need to create the file packages\dbdrivers\odbc\odbc_init.P with the fol-
lowing contents:

:- export odbc_info/2.
odbc_info(support, ’yes’).
odbc_info(libdir, ’’).
odbc_info(ccflags, ’’).
odbc_info(ldflags, ’’).

2.3 Using the Interface

We use the student database as our example to illustrate the usage of the XSB-DB interface
in this manual. The schema of the student database contains three columns viz. the student
name, the student id, and the name of the advisor of the student.

The XSB-DB package has to be first loaded before using any of the predicates. This is
done by the call:

| ?- [dbdrivers].

Next, the driver to be used for connecting to the database has to be loaded. Currently,
the interface has support for a native MySQL driver (using the MySQL C API), and an
ODBC driver. For example, to load the ODBC driver call:

| ?- load_driver(odbc).

Similarly, to load the mysql driver call:

| ?- load_driver(mysql).

or

| ?- load_driver(mysqlembedded).

2.3.1 Connecting to and Disconnecting from Databases

There are two predicates for connecting to databases, db_connect/5 and db_connect/6.
The db_connect/5 predicate is for ODBC connections, while db_connect/6 is for other
(non-ODBC) database drivers.

CHAPTER 2. THE NEW XSB-DATABASE INTERFACE 23

| ?- db_connect(+Handle, +Driver, +DSN, +User, +Password).
| ?- db_connect(+Handle, +Driver, +Server, +Database, +User, +Password).

The db_connect/5 predicate assumes that an entry for a data source name (DSN) exists
in the odbc.ini file. The Handle is the connection handle name used for the connection.
The Driver is the driver being used for the connection. The User and Password are the
user name and password being used for the connection. The user is responsible for giving
the name to the handle. To connect to the data source mydb using the user name xsb and
password xsb with the odbc driver, the call is as follows:

| ?- db_connect(ha, odbc, mydb, xsb, xsb).

where ha is the user-chosen handle name (a Prolog atom) for the connection.
The db_connect/6 predicate is used for drivers other than ODBC. The arguments

Handle, Driver, User, and Password are the same as for db_connect/5. The Server
and Database arguments specify the server and database to connect to. For example, for a
connection to a database called test located on the server wolfe with the user name xsb,
the password foo, and using the mysql driver, the call is:

| ?- db_connect(ha, mysql, wolfe, test, xsb, foo).

where ha is the handle name the user chose for the connection.
If the connection is successfully made, the predicate invocation will succeed. This step

is necessary before anything can be done with the data sources since it gives XSB the
opportunity to initialize system resources for the session.

To close a database connection use:

| ?- db_disconnect(Handle).

where handle is the connection handle name. For example, to close the connection to above
mysql database call:

| ?- db_disconnect(ha).

and XSB will give all the resources it allocated for this session back to the system.

CHAPTER 2. THE NEW XSB-DATABASE INTERFACE 24

2.3.2 Querying Databases

The interface supports two types of querying. In direct querying, the query statement is not
prepared while in prepared querying the query statement is prepared before being executed.
The results from both types of querying are retrieved tuple at a time. Direct querying is
done by the predicate:

| ?- db_query(ConnectionHandle, QueryHandle, SQLQueryList, ReturnList).

ConnectionHandle is the name of the handle used for the database connection. Query-
Handle is the name of the query handle for this particular query. For prepared queries, the
query handle is used both in order to execute the query and to close it and free up space.
For direct querying, the query handle is used only for closing query statements (see below).
The SQLQueryList is a list of terms which is used to build the SQL query. The terms in
this list can have variables, which can be instantiated by the preceding queries. The query
list is scanned for terms, which are encoded into Prolog atoms and the result is then con-
catenated; it must form a valid SQL query. (The treatment of terms is further discussed
below.) ReturnList is a list of variables each of which correspond to a return value in the
query. It is upto the user to specify the correct number of return variables corresponding to
the query. Also, as in the case of a connection handle, the user is responsible for giving the
name to the query handle. For example, a query on the student database to select all the
students for a given advisor is accomplished by the call:

| ?- X = adv,
db_query(ha,qa,[’select T.name from student T where T.advisor=’,X],[P]),
fail.

where ha and qa are respectively the connection handle and query handle name the user
chose.

Observe that the query list is composed of the SQL string and a ground value for the
advisor. The return list is made of one variable corresponding to the student name. The
failure drive loop retrieves all the tuples.

Preparing a query is done by calling the following predicate:

| ?- db_prepare(ConnectionHandle, QueryHandle, SQLQueryList).

As before, ConnectionHandle and QueryHandle specify the handles for the connection
and the query. The SQLQueryList is a list of terms which build up the query string. The
placeholder ‘?’ is used for values which have to be bound during the execution of the
statement. For example, to prepare a query for selecting the advisor name for a student
name using our student database:

CHAPTER 2. THE NEW XSB-DATABASE INTERFACE 25

| ?- db_prepare(ha,qa,[’select T.advisor from student T where T.name = ?’]).

A prepared statement is executed using the predicate:

| ?- db_prepare_execute(QueryHandle, BindList, ReturnList).

The BindList contains the ground values corresponding to the ‘?’ in the prepared state-
ment. The ReturnList is a list of variables for each argument in a tuple of the result set.
For instance,

| ?- db_prepare_execute(qa,[’Bob’],[?Advisor]).

For direct querying, the query handle is closed automatically when all the tuples in the
result set have been retrieved. In order to explicitly close a query handle, and free all the
resources associated with the handle, a call is made to the predicate:

| ?- db_statement_close(QueryHandle).

where QueryHandle is the query handle for the statement to be closed.

Storing and retrieving terms and NULL values. The interface is also able to trans-
parently handle Prolog terms. Users can both save and retrieve terms in string fields of the
tables by passing the term as a separate element in the query list and making sure that it is
enclosed in quotes in the concatenated result. For instance,

?- db_query(handle,qh,[’insert into mytbl values(11,22,’,p(a),’)’],[]).

The above statement inserts p(a) as a term into the third column of the table mytbl. Under
the hood, it is inserted as a special string, but when retrieved, this term is decoded back into
a Prolog term. For this to work, the third column of mytbl must be declared as a character
string (e.g., CHAR(50)). Important to note is that p(a) has to appear as a list element above
and not be quoted so that Prolog will recognize it as a term.

The NULL value is represented using the special 0-ary term ’NULL’(_) when retrieved.
When you need to store a null value, you can use either the above special term or just place
NULL in the appropriate place in the SQL INSERT statement. For instance,

?- db_query(handle,qh1,[’insert into mytbl values(11,22,NULL)’],[]).
?- db_query(handle,qh2,[’insert into mytbl values(111,222,’,’NULL’(),’)’],[]).

However, when retrieved from a database, a NULL is always represented by the term ’NULL’(_)
(and not by the atom ’NULL’).

CHAPTER 2. THE NEW XSB-DATABASE INTERFACE 26

2.4 Error Handling

Each predicate in the XSB-DB interface throws an exception with the functor

dbdrivers_error(Number, Message)

where Number is a string with the error number and Message is a string with a slightly
detailed error message. It is upto the user to catch this exception and proceed with error
handling. This is done by the throw-catch error handling mechanism in XSB. For example,
in order to catch the error which will be thrown when the user attempts to close a database
connection for a handle (ha) which does not exist:

| ?- catch(db_disconnect(ha),
dbdrivers_error(Number, Message), handler(Number, Message)).

It is the user’s responsibility to define the handler predicate which can be as simple as
printing out the error number and message or may involve more complicated processing.

A list of error numbers and messages that are thrown by the XSB-DB interface is given
below:

• XSB_DBI_001: Driver already registered
This error is thrown when the user tries to load a driver, using the load_driver
predicate, which has already been loaded previously.

• XSB_DBI_002: Driver does not exist
This error is thrown when the user tries to connect to a database, using db_connect,
with a driver which has not been loaded.

• XSB_DBI_003: Function does not exist in this driver
This error is thrown when the user tries to use a function support for which does not
exist in the corresponding driver. For example, this error is generated if the user tries
to use db_prepare for a connection established with the mysql driver.

• XSB_DBI_004: No such connection handle
This error is thrown when the user tries to use a connection handle which has not been
created.

• XSB_DBI_005: No such query handle
This error is thrown when the user tries to use a query handle which has not been
created.

• XSB_DBI_006: Connection handle already exists
This error is thrown when the user tries to create a connection handle in db_connect
using a name which already exists as a connection handle.

CHAPTER 2. THE NEW XSB-DATABASE INTERFACE 27

• XSB_DBI_007: Query handle already exists
This error is thrown when the user tries to create a query handle, in db_query or
db_prepare, using a name which already exists as a query handle for a different query.

• XSB_DBI_008: Not all parameters supplied
This error is thrown when the user tries to execute a prepared statement, using
db_prepare_execute, without supplying values for all the parameters in the state-
ment.

• XSB_DBI_009: Unbound variable in parameter list
This error is thrown when the user tries to execute a prepared statement, using
db_prepare_execute, without binding all the parameters of the statement.

• XSB_DBI_010: Same query handle used for different queries
This error is thrown when the user issues a prepare statement (db_prepare) using a
query handle that has been in use by another prepared statement and which has not
been closed. Query handles must be closed before reuse.

• XSB_DBI_011: Number of requested columns exceeds the number of
columns in the query
This error is thrown when the user db_query specifies more items to be returned in the
last argument than the number of items in the SELECT statement in the corresponding
query.

• XSB_DBI_012: Number of requested columns is less than the number of
columns in the query
This error is thrown when the user db_query specifies fewer items to be returned in the
last argument than the number of items in the SELECT statement in the corresponding
query.

• XSB_DBI_013: Invalid return list in query
Something else is wrong with the return list of the query.

• XSB_DBI_014: Too many open connections
There is a limit (200) on the number of open connections.

• XSB_DBI_015: Too many registered drivers
There is a limit (100) on the number of database drivers that can be registered at the
same time.

• XSB_DBI_016: Too many active queries
There is a limit (2000) on the number of queries that can remain open at any given
time.

CHAPTER 2. THE NEW XSB-DATABASE INTERFACE 28

2.5 Notes on specific drivers

Note: in most distributions of Linux, with all of these drivers you need to install both
the runtime version of the corresponding packages as well as the development version. For
instance, for the unixodbc driver, these packages will typically have the names unixodbc and
unixodbc-dev. For the MySQL driver, the packages would typically be named libmysqlclient
and libmysqlclient-dev. For the embedded MySQL driver, the relevant package would
be libmysqld-pic and libmysqld-dev.

ODBC Driver

The ODBC driver has been tested in Linux using the unixodbc driver manager. It currently
supports the following functionality: (a) connecting to a database using a DSN, (b) direct
querying of the database, (c) using prepared statements to query the database, (d) closing
a statement handle, and (d) disconnecting from the database. The ODBC driver has also
been tested under Windows and Cygwin.

MySQL Driver

The MySQL driver provides access to the native MySQL C API. Currently, it has support
for the following functionality: (a) connecting to a database using db_connect, (b) direct
querying of the database, (c) using prepared statements to query the database, (d) closing
a statement handle, and (e) disconnecting from the database.

The MySQL driver has been tested under Linux and Windows.

Driver for the Embedded MySQL Server

This driver provides access to the Embedded MySQL Server Library libmysqld. Currently,
it has support for the following functionality: (a) connecting to a database db_connect, (b)
direct querying of the database, (c) using prepared statements to query the database, (d)
closing a statement handle, and (e) disconnecting from the database.

The MySQL driver for Embedded MySQL Server has been tested under Linux.
In order to use this driver, you will need:

• MySQL with Embedded Server installed on your machine. If your don’t have a precom-
piled binary distribution of MySQL, which was configured with libmysqld support (the
embedded server library), you will need to build MySQL from sources and configure it
with the –with-embedded-server option.

CHAPTER 2. THE NEW XSB-DATABASE INTERFACE 29

• append to /etc/my.cnf (or /etc/mysql/my.cnf – whichever is used on your machine)
or ∼/.my.cnf:

[mysqlembedded_driver_SERVER]
language = /usr/share/mysql/english
datadir =

You will probably need to replace /usr/share/mysql/english with a directory ap-
propriate for your MySQL installation.
You might also need to set the datadir option to specify the directory where the
databases managed by the embedded server are to be kept. This has to be done if
there is a possibility of running the embedded MySQL server alongside the regular
MySQL server. In that case, the datadir directory of the embedded server must
be different from the datadir directory of the regular server (which is likely to be
specified using the datadir option in /etc/my.cnf or /etc/mysql/my.cnf. This is
because specifying the same directory might lead to a corruption of your databases. See
http://dev.mysql.com/doc/refman/5.1/en/multiple-servers.html for further de-
tails on running multiple servers.

Please note that loading the embedded MySQL driver increases the memory footprint
of XSB. This additional memory is released automatically when XSB exits. If you need to
release the memory before exiting XSB, you can call driverMySQLEmbedded_lib_end after
disconnecting from MySQL. Note that once driverMySQLEmbedded_lib_end is called, no
further connections to MySQL are allowed from the currently running session of XSB (or
else XSB will exit abnormally).

Chapter 3

Libraries from Other Prologs

XSB is distributed with some libraries that have been provided from other Prologs.

3.1 AVL Trees

By Mats Carlsson
AVL trees (i.e., triees subject to the Adelson-Velskii-Landis balance criterion) provide

a mechanism to maintain key value pairs so that loop up, insertion, and deletion all have
complexity O(log n). This library contains predicates to transform a sorted list to an AVL
tree and back, along with predicates to manipulate the AVL trees 1

list_to_assoc(+List, ?Assoc) module: list_to_assoc/2
is true when List is a proper list of Key-Val pairs (in any order) and Assoc is an
association tree specifying the same finite function from Keys to Values.

assoc_to_list(+Assoc, ?List) module: assoc_to_list/2
assoc assumes that Assoc is a proper AVL tree, and is true when List is a list of
Key-Value pairs in ascending order with no duplicate keys specifying the same finite
function as Assoc. Use this to convert an Assoc to a list.

assoc_vals_to_list(+Assoc, ?List) module: assoc_vals_to_list/2
assoc assumes that Assoc is a proper AVL tree, and is true when List is a list of Values
in ascending order of Key with no duplicate keys specifying the same finite function
as Assoc. Use this to extract the list of Values from Assoc.

is_assoc(+Assoc) module: is_assoc/1
assoc is true when Assoc is a (proper) AVL tree. It checks both that the keys are in
ascending order and that Assoc is properly balanced.

1This library contains functionality not documented here: see the code file for further documentation.

30

CHAPTER 3. LIBRARIES FROM OTHER PROLOGS 31

gen_assoc(?Key, +Assoc, ?Value) module: gen_assoc/3
assoc assumes that Assoc is a proper AVL tree, and is true when Key is associated
with Value in Assoc. Can be used to enumerate all Values by ascending Keys.

get_assoc(+Key, +OldAssoc,?OldValue,?NewAssoc,?NewValue) module: get_assoc/5
assoc is true when OldAssoc and NewAssoc are AVL trees of the same shape having
the same elements except that the value for Key in OldAssoc is OldValue and the value
for Key in NewAssoc is NewValue.

put_assoc(+Key,+OldAssoc,+Val,-NewAssoc) module: put_assoc/4
assoc is true when OldAssoc and NewAssoc define the same finite function except that
NewAssoc associates Val with Key. OldAssoc need not have associated any value at
all with Key.

del_assoc(+Key,+OldAssoc,?Val,-NewAssoc) module: del_assoc/4
assoc is true when OldAssoc and NewAssoc define the same finite function except that
OldAssoc associates Key with Val and NewAssoc doesn’t associate Key with any value.

3.2 Unweighted Graphs: ugraphs.P

By Mats Carlsson
XSB also includes a library for unweighted graphs. This library allows for the representa-

tion and manipulation of directed and non-directed unlabelled graphs, including predicates
to find the transitive closure of a graph, maximal paths, minimal paths, and other features.
This library represents graphs as an ordered set of their edges and does not use tabling.
As a result, it may be slower for large graphs than similar predicates based on a datalog
representatoin of edges.

3.3 Heaps: heaps.P

By Richard O’Keefe
(Summary from code documentation). A heap is a labelled binary tree where the key

of each node is less than or equal to the keys of its sons. The point of a heap is that we
can keep on adding new elements to the heap and we can keep on taking out the minimum
element. If there are N elements total, the total time is O(Nlg(N)). If you know all the
elements in advance, you are better off doing a merge-sort, but this file is for when you want
to do say a best-first search, and have no idea when you start how many elements there will
be, let alone what they are.

A heap is represented as a triple t(N, Free, Tree) where N is the number of elements
in the tree, Free is a list of integers which specifies unused positions in the tree, and Tree is

CHAPTER 3. LIBRARIES FROM OTHER PROLOGS 32

a tree made of t terms for empty subtrees and t(Key,Datum,Lson,Rson) terms for the rest
The nodes of the tree are notionally numbered like this:

1
2 3

4 6 5 7
8 12 10 14 9 13 11 15

..

The idea is that if the maximum number of elements that have been in the heap so far is
M , and the tree currently has K elements, the tree is some subtreee of the tree of this form
having exactly M elements, and the Free list is a list of K −M integers saying which of the
positions in the M -element tree are currently unoccupied. This free list is needed to ensure
that the cost of passing N elements through the heap is O(Nlg(M)) instead of O(NlgN).
For M say 100 and N say 104 this means a factor of two.

Chapter 4

Introduction to XSB Packages

An XSB package is a piece of software that extends XSB functionality but is not critical
to programming in XSB. Around a dozen packages are distributed with XSB, ranging from
simple meta-interpreters to complex software systems. Some packages provide interfaces
from XSB to other software systems, such as Perl, SModels or Web interfaces (as in the
libwww package). Others, such as the CHR and Flora packages, extend XSB to different
programming paradigms.

Each package is distributed in the $XSB_DIR/packages subdirectory, and has two parts:
an initialization file, and a subdirectory in which package source code files and executables are
kept. For example, the xsbdoc package has files xsbdoc.P, xsbdoc.xwam, and a subdirectory,
xsbdoc. If a user doesn’t want to retain xsbdoc (or any other package) he or she may simply
remove the initialization files and the associated subdirectory without affecting the core parts
of the XSB system.

33

Chapter 5

Wildcard Matching

By Michael Kifer

XSB has an efficient interface to POSIX wildcard matching functions. To take advantage
of this feature, you must build XSB using a C compiler that supports POSIX 2.0 (for wildcard
matching). This includes GCC and probably most other compilers. This also works under
Windows, provided you install CygWin and use GCC to compile 1.

The wildmatch package provides the following functionality:

1. Telling whether a wildcard, like the ones used in Unix shells, match against a given
string. Wildcards supported are of the kind available in tcsh or bash. Alternating
characters (e.g., “[abc]” or “[^abc]”) are supported.

2. Finding the list of all file names in a given directory that match a given wildcard. This
facility generalizes directory/2 (in module directory), and it is much more efficient.

3. String conversion to lower and upper case.

To use this package, you need to type:

| ?- [wildmatch].

If you are planning to use it in an XSB program, you need this directive:

:- import glob_directory/4, wildmatch/3, convert_string/3 from wildmatch.

The calling sequence for glob_directory/4 is:
1This package has not yet been ported to the multi-threaded engine.

34

CHAPTER 5. WILDCARD MATCHING 35

glob_directory(+Wildcard, +Directory, ?MarkDirs, -FileList)

The parameter Wildcard can be either a Prolog atom or a Prolog string. Directory is also
an atom or a string; it specifies the directory to be globbed. MarkDirs indicates whether
directory names should be decorated with a trailing slash: if MarkDirs is bound, then
directories will be so decorated. If MarkDirs is an unbound variable, then trailing slashes
will not be added.

FileList gets the list of files in Directory that match Wildcard. If Directory is bound
to an atom, then FileList gets bound to a list of atoms; if Directory is a Prolog string,
then FileList will be bound to a list of strings as well.

This predicate succeeds is at least one match is found. If no matches are found or if
Directory does not exist or cannot be read, then the predicate fails.

The calling sequence for wildmatch/3 is as follows:

wildmatch(+Wildcard, +String, ?IgnoreCase)

Wildcard is the same as before. String represents the string to be matched against
Wildcard. Like Wildcard, String can be an atom or a string. IgnoreCase indicates
whether case of letters should be ignored during matching. Namely, if this argument is
bound to a non-variable, then the case of letters is ignored. Otherwise, if IgnoreCase is a
variable, then the case of letters is preserved.

This predicate succeeds when Wildcard matches String and fails otherwise.
The calling sequence for convert_string/3 is as follows:

convert_string(+InputString, +OutputString, +ConversionFlag)

The input string must be an atom or a character list. The output string must be unbound.
Its type will be “atom” if so was the input and it will be a character list if so was the input
string. The conversion flag must be the atom tolower or toupper.

This predicate always succeeds, unless there was an error, such as wrong type argument
passed as a parameter.

Chapter 6

pcre: Pattern Matching and
Substitution Using PCRE

By Mandar Pathak

6.1 Introduction

This package employs the PCRE library to enable XSB perform pattern matching and string
substitution based on Perl regular expressions.

6.2 Pattern matching

The pcre package provides two ways of doing pattern matching: first-match mode and
bulk-match mode. The syntax of the pcre:match/4 predicate is:

?- pcre:match(+Pattern, +Subject, -MatchList, +Mode).

To find only the first match, the Mode parameter must be set to the atom one. To find all
matches, the Mode parameter is set to the atom bulk. The result of the matching is returned
as a list of terms of the form

match(Match,Prematch,Postmatch,[Subpattern1, Subpattern2,. . .])

The Pattern and the Subject arguments of pcre:match must be XSB atoms. If there is
a match in the subject, then the result is returned as a list of the match(...)-elements shown
above. Match refers to the substring that matched the entire pattern. Prematch contains

36

CHAPTER 6. PCRE: PATTERN MATCHING AND SUBSTITUTION USING PCRE 37

part of the subject-string that precedes the matched substring. Postmatch contains part
of the subject following the matched substring. The list of subpatterns (the 4-th argument
of the match data structure) corresponds to the substrings that matched the parenthesized
expressions in the given pattern. For example:

?- pcre:match(’(\d{5}-\d{4})\ [A-Z]{2}’,
’Hello12345-6789 NYwalk’, X, one).
X = [match(12345-6789 NY,Hello,walk,[12345-6789])]

In this example, the mode argument is one so only one match is returned, the match
found for the substring ‘12345-6789 NY’. The prematch is ‘Hello’ and the postmatch is ‘walk’.
The substring ‘12345-6789’ matched the parenthesized expression (\d{5}−\d{4}) and hence
it is returned as part of the subpatterns list.

Consider another example, one where all matches are returned:

?- pcre:match(’[a-z]+@[a-z]+\.(com|net|edu)’,
’a@b.com@c.net@d.edu’, X, bulk).

X = [match(a@b.com,,@c.net@d.edu,[com]),
match(com@c.net,a@b.,@d.edu,[net]),
match(om@c.net,a@b.c,@d.edu,[net]),
match(m@c.net,a@b.co,@d.edu,[net]),
match(net@d.edu,a@b.com@c.,,[edu]),
match(et@d.edu,a@b.com@c.n,,[edu]),
match(t@d.edu,a@b.com@c.ne,,[edu])]

This example uses the bulk match mode of the pcre_match/4 predicate to find all possible
matches that resemble a very basic email address. In case there is no prematch or postmatch
to a matched substring, an empty string is returned.

In general, there can be any number of parenthesized sub-patterns in a given pattern and
the subpattern match-list in the 4-th argument of the match data structure can have 0, 1,
2, or more elements.

6.3 String Substitution

The pcre package also provides a way to perform string substitution via the pcre:substitute/4
predicate. It has the following syntax:

?- pcre:substitute(+Pattern, +Subject, +Substitution, -Result).

CHAPTER 6. PCRE: PATTERN MATCHING AND SUBSTITUTION USING PCRE 38

Pattern is the regular expression against which Subject is matched. Each match found
is then replaced by the Substitution, and the result is returned in the variable Result. Here,
Pattern, Subject and Substitution have to be XSB atoms whereas Result must be an unbound
variable. The following example illustrates the use of this predicate:

?- pcre:substitute(is,’This is a Mississippi issue’, was, X).
X = Thwas was a Mwasswassippi wassue

Note that the predicate pcre:substitute/4 always works in the bulk mode. If one needs
to substitute only one occurrence of a pattern, this is easy to do using the pcre:match/4
predicate. For instance, if one wants to replace the third occurrence of “is” in the above
string, we could issue the query

?- pcre:match(is,’This is a Mississippi issue’,X,bulk).

take the third element in the returned list, i.e.,

match(is,’This is a M’,’sissippi issue’,[])

and then concatenate the Prematch in the above match(...) (i.e., ’This is a M’) with
the substitute string (i.e., ’was’) and the Postmatch (i.e., ’sissippi issue’).

Additional examples of the use of the pcre package can be found in the XSB distribution,
in the file $XSBDIR/examples/pcretest.P.

6.4 Installation and configuration

XSB’s pcre package requires that the PCRE library is installed. For Windows, the PCRE
library files are included with the XSB installation. For Linux and Mac, the PCRE and the
PCRE-development packages must be installed using the distribution’s package manager.
The names of these packages might differ from one Linux distribution to the next. For
instance, in Ubuntu, these libraries might be called libpcre3 and libpcre3-dev. In contrast,
Fedora uses the names pcre and pcre-devel. On the Mac, these packages live in the
Homebrew add-on, which must be installed separately.

6.4.1 Configuring for Linux, Mac, and other Unices

In the unlikely case that your Linux distribution does not include PCRE as a package they
must be downloaded and built manually. Please visit

http://www.pcre.org/

CHAPTER 6. PCRE: PATTERN MATCHING AND SUBSTITUTION USING PCRE 39

to download the latest distribution and follow the instructions given with the package.
To configure pcre on Linux, Mac, or on some other Unix variant, switch to the XSB/build

directory and type:

cd ../packages/pcre
./configure
./makexsb

6.4.2 Configuring for Windows

If your installation of XSB is not configured with PCRE, you will need Microsoft nmake
installed. Change to the top XSB directory and type:

cd packages\pcre\cc
nmake /f NMakefile.mak <-- if you have the 32 bit version of XSB
nmake /f NMakefile64.mak <-- if you have the 64 bit version of XSB

This builds the DLL required by XSB’s pcre package on Windows. To make sure that the
build went ahead smoothly, open the directory

{XSB_DIR}\config\x86-pc-windows\bin <-- if using the 32 bit XSB
{XSB_DIR}\config\x64-pc-windows\bin <-- if using the 64 bit XSB

and verify that the file pcre4pl.dll exists there.
Once the package has been configured, it must be loaded before it can be used:

?- [pcre].

Chapter 7

POSIX Regular Expression and
Wildcard Matching

By Michael Kifer

XSB has an efficient interface to POSIX pattern regular expression and wildcard matching
functions. To take advantage of these features, you must build XSB using a C compiler that
supports POSIX 1.0 (for regular expression matching) and the forthcoming POSIX 2.0 (for
wildcard matching). The recent versions of GCC and SunPro compiler will do, as probably
will many other compilers. This also works under Windows, provided you install CygWin
and use GCC to compile 1.

7.1 regmatch: Regular Expression Matching and Sub-
stitution

The following discussion assumes that you are familiar with the syntax of regular expressions
and have a reasonably good idea about their capabilities. One easily accessible description
of POSIX regular expressions is found in the on-line Emacs manual.

The regular expression matching functionality is provided by the package called Regmatch.
To use it interactively, type:

:- [regmatch].

If you are planning to use pattern matching from within an XSB program, then you need
to include the following directive:

1This package has not yet been ported to the multi-threaded engine.

40

CHAPTER 7. POSIX REGULAR EXPRESSION AND WILDCARD MATCHING 41

:- import re_match/5, re_bulkmatch/5,
re_substitute/4, re_substring/4

from regmatch.

Matching. The predicates re_match/5 and re_bulkmatch/5 perform regular expression
matching. The predicate re_substitute/4 replaces substrings in a list with strings from
another list and returns the resulting new string.

The re_match/5 predicate has the following calling sequence:

re_match(+Regexp, +InputStr, +Offset, ?IgnoreCase, -MatchList)

Regexp is a regular expression, e.g., “abc([^;,]*); (dd|ee)*;”. It can be a Prolog atom
or string (i.e., a list of characters). The above expression matches any substring that has
“abc” followed by a sequence of characters none of which is a “;” or a “,”, followed by a “; ”,
followed by a sequence that consists of zero or more of “dd” or “ee” segments, followed by a
“;”. An example of a string where such a match can be found is “123abc&*^; ddeedd;poi”.

InputStr is the string to be matched against. It can be a Prolog atom or a string (list
of characters). Offset is an integer offset into the string. The matching process starts at
this offset. IgnoreCase indicates whether the case of the letters is to be ignored. If this
argument is an uninstantiated variable, then the case is not ignored. If this argument is
bound to an integer then the case is ignored.

The last argument, MatchList, is used to return the results. It must unify with a list of
the form:

[match(beg_off0,end_off0), match(beg_off1,end_off1), ...]

The term match(beg_off0,end_off0) represents the substring that matches the entire reg-
ular expression, and the terms match(beg_off1,end_off1), ..., represent the matches corre-
sponding to the parenthesized subexpressions of the regular expression. The terms beg_off
and end_off above are integers that specify beginning and ending offsets of the various
matches. Thus, beg_off0 is the offset into InputStr that points to the start of the maximal
substring that matches the entire regular expression; end_off0 points to the end of such a
substring. In our case, the maximal matching substring is “abc&*^; ddeedd;” and the first
term in the list returned by

| ?- re_match(’abc([^;,]*); (dd|ee)*;’, ’123abc&*^; ddeedd;poi’, 0, _,L).

is match(3,18).
The most powerful feature of POSIX pattern matching is the ability to remember and

return substrings matched by parenthesized subexpressions. When the above predicate suc-
ceeds, the terms 2,3, etc., in the above list represent the offsets for the matches correspond-
ing to the parenthesized expressions 1,2,etc. For instance, our earlier regular expression

CHAPTER 7. POSIX REGULAR EXPRESSION AND WILDCARD MATCHING 42

“abc([^;,]*); (dd|ee)*;” has two parenthetical subexpressions, which match “&*^” and
“dd, respectively. So, the complete output from the above call is:

L = [match(3,18),match(6,9),match(15,17)]

The maximal number of parenthetical expressions supported by the Regmatch package
is 30. Partial matches to parenthetical expressions 31 and over are discarded.

The match-terms corresponding to parenthetical expressions can sometimes report “no-
use.” This is possible when the regular expression specifies that zero or more occurrences
of the parenthesized subexpression must be matched, and the match was made using zero
subexpressions. In this case, the corresponding match term is match(-1,-1). For instance,

| ?- re_match(’ab(de)*’, ’abcd’,0,_,L).
L = [match(0,2),match(-1,-1)]
yes

Here the match that was found is the substring “ab” and the parenthesized subexpression
“de” was not used. This fact is reported using the special match term match(-1,-1).

Here is one more example of the power of POSIX regular expression matching:

| ?- re_match("a(b*|e*)cd\\1",’abbbcdbbbbbo’, 0, _, M).

Here the result is:

M = [match(0,9),match(1,4)]

The interesting features here are the positional parameter \\1 and the alternating paren-
thetical expression a(b*|e*). The alternating parenthetical expression here can match any
sequence of b’s or any sequence of e’s. Note that if the string to be matched is not known
when we write the program, we will not know a priori which sequence will be matched: a
sequence of b’s or a sequence of e’s. Moreover, we do not even know the length of that
sequence.

Now, suppose, we want to make sure that the matching substrings look like this:

abbbcdbbb
aeeeecdeeee
abbbbbbcdbbbbbb

How can we make sure that the suffix that follows “cd” is exactly the same string that is
stuck between “a” and “cd”? This is what \\1 precisely does: it represents the substring
matched by the first parenthetical expression. Similarly, you can use \\2, etc., if the regular
expression contains more than one parenthetical expression.

The following example illustrates the use of the offset argument:

CHAPTER 7. POSIX REGULAR EXPRESSION AND WILDCARD MATCHING 43

| ?- re_match("a(b*|e*)cd\\1",’abbbcdbbbbboabbbcdbbbbbo’,2,_,M).

M = [match(12,21),match(13,16)]

Here, the string to be matched is double the string from the previous example. However,
because we said that matching should start at offset 2, the first half of the string is not
matched.

The re_match/5 predicate fails if Regexp does not match InputStr or if the term specified
in MatchList does not unify with the result produced by the match. Otherwise, it succeeds.

We should also note that parenthetical expressions can be represented using the \(...\)
notation. What if you want to match a “(” then? You must escape it with a “\\” then:

| ?- re_match("a(b*)cd\\(",’abbbcd(bbo’, 0, _, M).

M = [match(0,7),match(1,4)]

Now, what about matching the backslash itself? Try harder: you need four backslashes:

| ?- re_match("a(b*)cd\\\\",’abbbcd\bbo’, 0, _, M).

M = [match(0,7),match(1,4)]

The predicate re_bulkmatch/5 has the same calling sequence as re_match/5, and the
meaning of the arguments is the same, except the last (output) argument. The difference
is that re_bulkmatch/5 ignores parenthesized subexpressions in the regular expression and
instead of returning the matches corresponding to these parenthesized subexpressions it
returns the list of all matches for the top-level regular expression. For instance,

| ?- re_bulkmatch(’[^a-zA-Z0-9]+’, ’123&*-456)7890% 123’, 0, 1, X).

X = [match(3,6),match(9,11),match(15,17)]

Extracting the matches. The predicate re_match/5 provides us with the offsets. How
can we actually get the matched substrings? This is done with the help of the predicate
re_substring/4:

re_substring(+String, +BeginOffset, +EndOffset, -Result).

This predicate works exactly like substring/4 in XSB module string described in Part
I of this manual.

Here is a complete example that shows matching followed by a subsequent extraction of
the matches:

CHAPTER 7. POSIX REGULAR EXPRESSION AND WILDCARD MATCHING 44

| ?- Str = ’abbbcd\bbo’,
re_match("a(b*)cd\\\\",Str,0,_,[match(X,Y), match(V,W)|L]),
re_substring(Str,X,Y,Match),
re_substring(Str,V,W,Paren1).

Str = abbbcd\bbo
X = 0
Y = 7
V = 1
W = 4
L = []
Match = abbbcd\
Paren1 = bbb

Substitution. The predicate re_substitute/4 has the following invocation:

re_substitute(+InputStr, +SubstrList, +SubstitutionList, -OutStr)

This predicate works exactly like string_substitute/4 in XSB module string described
in Part I of this manual.

| ?- re_bulkmatch(’[^a-zA-Z0-9]+’, ’123&*-456)7890| 123’, 0, _, X),
re_substitute(’123&*-456)7890| 123’, X, [’+++’], Y).

X = [match(3,6),match(9,11),match(15,17)]
Y = 123+++456+++7890+++123

7.2 wildmatch: Wildcard Matching and Globing

These interfaces are implemented using the Wildmatch package of XSB. This package pro-
vides the following functionality:

1. Telling whether a wildcard, like the ones used in Unix shells, match against a given
string. Wildcards supported are of the kind available in tcsh or bash. Alternating
characters (e.g., “[abc]” or “[^abc]”) are supported.

2. Finding the list of all file names in a given directory that match a given wildcard. This
facility generalizes directory/2 (in module directory), and it is much more efficient.

3. String conversion to lower and upper case.

CHAPTER 7. POSIX REGULAR EXPRESSION AND WILDCARD MATCHING 45

To use this package, you need to type:

| ?- [wildmatch].

If you are planning to use it in an XSB program, you need this directive:

:- import glob_directory/4, wildmatch/3, convert_string/3 from wildmatch.

The calling sequence for glob_directory/4 is:

glob_directory(+Wildcard, +Directory, ?MarkDirs, -FileList)

The parameter Wildcard can be either a Prolog atom or a Prolog string. Directory is also
an atom or a string; it specifies the directory to be globbed. MarkDirs indicates whether
directory names should be decorated with a trailing slash: if MarkDirs is bound, then
directories will be so decorated. If MarkDirs is an unbound variable, then trailing slashes
will not be added.

FileList gets the list of files in Directory that match Wildcard. If Directory is bound
to an atom, then FileList gets bound to a list of atoms; if Directory is a Prolog string,
then FileList will be bound to a list of strings as well.

This predicate succeeds is at least one match is found. If no matches are found or if
Directory does not exist or cannot be read, then the predicate fails.

The calling sequence for wildmatch/3 is as follows:

wildmatch(+Wildcard, +String, ?IgnoreCase)

Wildcard is the same as before. String represents the string to be matched against
Wildcard. Like Wildcard, String can be an atom or a string. IgnoreCase indicates
whether case of letters should be ignored during matching. Namely, if this argument is
bound to a non-variable, then the case of letters is ignored. Otherwise, if IgnoreCase is a
variable, then the case of letters is preserved.

This predicate succeeds when Wildcard matches String and fails otherwise.
The calling sequence for convert_string/3 is as follows:

convert_string(+InputString, +OutputString, +ConversionFlag)

The input string must be an atom or a character list. The output string must be unbound.
Its type will be “atom” if so was the input and it will be a character list if so was the input
string. The conversion flag must be the atom tolower or toupper.

This predicate always succeeds, unless there was an error, such as wrong type argument
passed as a parameter.

Chapter 8

curl: The XSB Internet Access
Package

By Aneesh Ali

8.1 Introduction

The curl package is an interface to the libcurl library, which provides access to most of
the standard Web protocols. The supported protocols include FTP, FTPS, HTTP, HTTPS,
SCP, SFTP, TFTP, TELNET, DICT, LDAP, LDAPS, FILE, IMAP, SMTP, POP3 and
RTSP. Libcurl supports SSL certificates, HTTP GET/POST/PUT/DELETE, FTP upload-
ing, HTTP form based upload, proxies, cookies, user+password authentication (Basic, Di-
gest, NTLM, Negotiate, Kerberos4), file transfer resume, HTTP proxy tunneling etc. The
curl package of XSB supports a subset of that functionality, as described below.

The curl package accepts input in the form of URLs and Prolog atoms. To load the
curl package, execute the following query in the XSB shell or loaded file:

?- [curl].

The curl package is integrated with file I/O of XSB in a transparent fashion and for many
purposes Web pages can be treated just as yet another kind of a file. We first explain
how Web pages can be accessed using the standard file I/O feature and then describe other
predicates, which provide a lower-level interface.

46

CHAPTER 8. CURL: THE XSB INTERNET ACCESS PACKAGE 47

8.2 Integration with File I/O

The curl package is integrated with XSB File I/O so that a web page can be opened as any
other file.Once a Web page is opened, it can be read or written just like the a normal file.

8.2.1 Opening a Web Document

Web documents are opened by the usual predicates see/1, open/3, open/4.

see(url(+Url))

see(url(+Url,Options))

open(url(+Url), +Mode, -Stream)

open(url(+Url), +Mode, -Stream, +Options)

Url is an atom that specifies a URL. Stream is the file stream of the open file. Mode
can be read, to create an input stream, or write, to create an output stream. For
reading, the contents of the Web page are cached in a temporary file. For writing,
a temporary empty file is created. This file is posted to the corresponding URL at
closing.
The Options parameter is a list that controls loading. Members of that list can be of
the following form:

redirect(Bool)
Specifies the redirection option. The supported values are true and false. If true,
any number of redirects is allowed. If false, redirections are ignored. The default
is true.

secure(CrtName)
Specifies the secure connections (https) option. CrtName is the name of the file
holding one or more certificates to verify the peer with.

auth(UserName, Password)
Sets the username and password basic authentication.

timeout(Seconds)
Sets the maximum time in seconds that is allowed for the transfer operation.

user_agent(Agent)
Sets the User-Agent: header in the http request sent to the remote server.

header(String)
This allows one to specify an HTTP header. Several header(...) options can
be specified in the same list. Specifying the headers is useful mostly when closing
Web pages that are open for writing, which corresponds to POST HTTP requests.

CHAPTER 8. CURL: THE XSB INTERNET ACCESS PACKAGE 48

8.2.2 Closing a Web Document

Web documents opened by the predicates see/1, open/3, and open/4 above must be closed
by the predicates close/2 or close/4. The stream corresponding to the URL is closed. If the
stream was open for writing, the data written to the stream is POSTed to the URL, which
corresponds to HTTP POST. If writing is unsuccessful for some reason, a list of warnings is
returned.

close(+Source, +Options)

close(+Source, +Options, -Response, -Warnings)
These versions of close are typically used for sources that are open for writing. URL-
streams open for reading can be closed using the usual close/1 predicate. Source
is of the form url(url-string), where url-string must be an atom. Options is a list
of options like those for the open predicate of Section 8.2.1. If the HTTP server
returns a response, the Response variable is bound to that string. Warnings is a list
of possible warnings. If everything is fine, this list is empty. Closing often requires the
header(...) option because it is often necessary to specify Content-Type and other
header attributes when posting to a Web site.

8.3 Low Level Predicates

This section describes additional predicates provided by the curl packages, which extend
the functionality provided by the file I/O integration.

8.3.1 Loading Web Documents

Web documents are loaded by the predicate load_page/5, which has many options. The
parameters of this predicate are described below.

load_page(+Source, +Options, -Properties, -Content, -Warn)
Source is of the form url(url). The document is returned in Content. Warn is bound
to a (possibly empty) list of warnings generated during the process.
Properties is bound to a list of properties of the document. They are Page size, Page
last modification time, and Redirection URL. The load_page/5 predicate caches a copy
of the Web page that it fetched from the Web in a local file, which is identified by the
URL’s directory, file name portion, and its file extension. The first two parameters
indicate the size and the last modification time of the fetched Web page. The last
parameter, Redirection URL, is the source URL, if no redirection happened or, if the

CHAPTER 8. CURL: THE XSB INTERNET ACCESS PACKAGE 49

original URL was redirected then this parameter shows the final URL. The directory
and the file name The Options parameter is the same as in Section 8.2.1.
load_page has additional options that can appear in the Options list:

post_data(String)
This allows one to post data (HTTP POST) to a web page and is an alternative
to posting by opening-writing-closing URLs, which was described above.
If several post_data(...) options are given, only the last one is used. This
option often goes with the header(...) option because it is often necessary to
specify Content-Type and other header attributes.
If this option is specified with an open/4 predicate, it is ignored. If it is specified
in the close/2 or close/4 predicate, String is posted instead of what was written
to the closed stream. This goes to say that the post_data option in open and
close predicates makes little sense.

put_data(String)
This allows one to put data (HTTP PUT) to a web page.
If several put_data(...) options are given, only the last one is used. This option
often goes with the header(...) option because it is often necessary to specify
Content-Type and other header attributes.
If this option is specified with an open/4, close/2, or close/4 predicate, it is
ignored.

delete
This sends a DELETE HTTP request to the server.

8.3.2 Retrieving Properties of a Web Document

The properties of a web document are loaded by the predicates url_properties/3 and
url_properties/2.

url_properties(+Url, +Options, -Properties)
The Options and Properties are same as in load_page/5: a list of properties of the
document, which are Page size, Page last modification time, RedirectionURL in that
order. If the original page has no redirection then RedirectionURL is the same as Url.
Some Web servers will not report page sizes or modification times (or both) in which
case they appear as -1.

url_properties(+Url, -Properties)
This uses the default options (secure(false), redirect(true)).

CHAPTER 8. CURL: THE XSB INTERNET ACCESS PACKAGE 50

8.3.3 Encoding URLs

Sometimes it is necessary to convert a URL string into something that can be used, for
example, as a file name. This is done by the following predicate.

encode_url(+Source, -Result)
Source has the form url(url-string), where url-string is an atom. Result is bound to a
list of components of the URL: the URL-encoded Directory Name, the URL-encoded
File Name, and the Extension of the URL.

8.4 Installation and configuration

The curl package of XSB requires that the libcurl package is installed. For Windows, the
libcurl library files are included with the installation. For Linux and Mac, the libcurl
and libcurl-dev packages need to be installed using a suitable package manager (e.g.,
deb or rpm in Linux, Homebrew in Mac). In some systems, libcurl-dev might be called
libcurl-gnutls-dev or libcurl-openssl-dev. In addition, the release number might be
attached, as in libcurl4 and libcurl4-openssl-dev.

The libcurl package can also be downloaded and built manually from

http://curl.haxx.se/download.html

To configure curl on Linux, Mac, or on some other Unix variant, switch to the XSB/build
directory and type

cd XSB/packages/curl
./configure
./makexsb

http://curl.haxx.se/download.html

Chapter 9

Packages sgml and xpath:
SGML/XML/HTML and XPath
Parsers

By Rohan Shirwaikar

9.1 Introduction

This suite of packages consists of the sgml package, which can parse XML, HTML, XHTML,
and even SGML documents and the xpath package, which supports XPath queries on XML
documents. The sgml package is an adaptation of a similar package in SWI Prolog and a
port of SWI’s codebase with some minor changes. The xpath package provides an interface
to the popular libxml2 library, which supports XPath and XML parsing, and is used in
Mozilla based browsers. At present, the XML parsing capabilities of libxml2 are not utilized
explicitly in XSB, but such support might be provided in the future. The sgml package does
not rely on libxml2 1.

Installation and configuration. The sgml package does not require any installation
steps under Unix-based systems or under Cygwin. Under native Windows, if you downloaded
XSB from SVN, you need to compile the package as follows:

cd XSB\packages\sgml\cc
nmake /f NMakefile.mak

1This package has not yet been tested for thread-safety

51

CHAPTER 9. PACKAGES SGML AND XPATH: SGML/XML/HTML AND XPATH PARSERS52

You need MS Visual Studio for that. If you downloaded a prebuilt version of XSB, then the
sgml package should have already been compiled for you and no installation is required.

The details of the xpath package and the corresponding configuration instructions appear
in Section 9.4.

9.2 Overview of the SGML Parser

The sgml package accepts input in the form of files, URLs and Prolog atoms. To load the
sgml parser, the user should type

?- [sgml].

at the prompt. If test.html is a file with the following contents

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">

<html>
<head>
<title>Demo</title>
</head>
<body>

<h1 align=center>This is a demo</h1>

<p>Paragraphs in HTML need not be closed.

<p>This is called ‘omitted-tag’ handling.
</body>
</html>

then the following call

?- load_html_structure(file(’test.html’), Term, Warn).

will parse the document and bind Term to the following Prolog term:

[element(html,
[],
[element(head,

[],

CHAPTER 9. PACKAGES SGML AND XPATH: SGML/XML/HTML AND XPATH PARSERS53

[element(title,
[],
[’Demo’
])

]),
element(body,

[],
[’\n’,

element(h1,
[align = center
],
[’This is a demo’
]),

’\n\n’,
element(p,

[],
[’Paragraphs in HTML need not be closed.\n’
]),

element(p,
[],
[’This is called ‘omitted-tag\’ handling.’
])

])
])

].

The XML document is converted into a list of Prolog terms of the form
element(Name,Attributes,Content).

Each term corresponds to an XML element. Name represents the name of the element.
Attributes is a list of attribute-value pairs of the element. Content is a list of child-elements
and CDATA (general character data). For instance,

<aaa>fooo<bbb>foo1</bbb></aaa>

will be parsed as

element(aaa,[],[fooo, element(bbb,[],[foo1])])

Entities (e.g. <) are returned as part of CDATA, unless they cannot be represented.
Each entity is clothed in the term entity/1. See load_sgml_structure/3 for details.

CHAPTER 9. PACKAGES SGML AND XPATH: SGML/XML/HTML AND XPATH PARSERS54

9.3 Predicate Reference

9.3.1 Loading Structured Documents

SGML, HTML, and XML documents are parsed by the predicate load_structure/4, which
has many options. For convenience, a number of commonly used shorthands are provided
to parse SGML, XML, HTML, and XHTML documents respectively.

load_sgml_structure(+Source, -Content, -Warn)

load_xml_structure(+Source, -Content, -Warn)

load_html_structure(+Source, -Content, -Warn)

load_xhtml_structure(+Source, -Content, -Warn)

The parameters of these predicates have the same meaning as those in load_structure/4,
and are described below.

The above predicates (in fact, just load_xml_structure/3 and load_html_structure/3)
are the most commonly used predicates of the sgml package. The other predicates described
in this section are needed only for advanced uses of the package.

load_structure(+Source, -Content, +Options, -Warn)
Source can have one of the following forms: url(url), file(file name), string(’document
as a Prolog atom’). The parsed document is returned in Content. Warn is bound to
a (possibly empty) list of warnings generated during the parsing process. Options is a
list of parameters that control parsing, which are described later.
The list Content can have the following members:

A Prolog atom
Atoms are used to represent character strings, i.e., CDATA.

element(Name, Attributes, Content)
Name is the name of the element tag. Since SGML is case-insensitive, all element
names are returned as lowercase atoms.
Attributes is a list of pairs the form Name=Value, where Name is the name of
an attribute and Value is its value. Values of type CDATA are represented as
atoms. The values of multi-valued attributes (NAMES, etc.) are represented as a
lists of atoms. Handling of the attributes of types NUMBER and NUMBERS depends
on the setting of the number(+NumberMode) option of set_sgml_parser/2 or
load_structure/3 (see later). By default the values of such attributes are rep-
resented as atoms, but the number(...) option can also specify that these values
must be converted to Prolog integers.
Content is a list that represents the content for the element.

CHAPTER 9. PACKAGES SGML AND XPATH: SGML/XML/HTML AND XPATH PARSERS55

entity(Code)
If a character entity (e.g., Α) is encountered that cannot be represented
in the Prolog character set, this term is returned. It represents the code of the
encountered character (e.g., entity(913)).

entity(Name)
This is a special case of entity(Code), intended to handle special symbols by
their name rather than character code. If an entity refers to a character entity
holding a single character, but this character cannot be represented in the Prolog
character set, this term is returned. For example, if the contents of an element is
Α < Β then it will be represented as follows:

[entity(’Alpha’), ’ < ’, entity(’Beta’)]

Note that entity names are case sensitive in both SGML and XML.
sdata(Text)

If an entity with declared content-type SDATA is encountered, this term is used.
The data of the entity instantiates Text.

ndata(Text)
If an entity with declared content-type NDATA is encountered, this term is used.
The data instantiates Text.

pi(Text)
If a processing instruction is encountered (<?...?>), Text holds the text of the
processing instruction. Please note that the <?xml ...?> instruction is ignored
and is not treated as a processing instruction.

The Options parameter is a list that controls parsing. Members of that list can be of
the following form:

dtd(?DTD)
Reference to a DTD object. If specified, the <!DOCTYPE ...> declaration supplied
with the document is ignored and the document is parsed and validated against the
provided DTD. If the DTD argument is a variable, then a the variable DTD gets
bound to the DTD object created out of the DTD supplied with the document.

dialect(+Dialect)
Specify the parsing dialect. The supported dialects are sgml (default), xml and
xmlns.

space(+SpaceMode)
Sets the space handling mode for the initial environment. This mode is inherited
by the other environments, which can override the inherited value using the XML
reserved attribute xml:space. See Section 9.3.2 for details.

number(+NumberMode)
Determines how attributes of type NUMBER and NUMBERS are handled. If token

CHAPTER 9. PACKAGES SGML AND XPATH: SGML/XML/HTML AND XPATH PARSERS56

is specified (the default) they are passed as an atom. If integer is specified the
parser attempts to convert the value to an integer. If conversion is successful, the
attribute is represented as a Prolog integer. Otherwise the value is represented as
an atom. Note that SGML defines a numeric attribute to be a sequence of digits.
The - (minus) sign is not allowed and 1 is different from 01. For this reason
the default is to handle numeric attributes as tokens. If conversion to integer is
enabled, negative values are silently accepted and the minus sign is ignored.

defaults(+Bool)
Determines how default and fixed attributes from the DTD are used. By default,
defaults are included in the output if they do not appear in the source. If false,
only the attributes occurring in the source are emitted.

file(+Name)
Sets the name of the input file for error reporting. This is useful if the input is a
stream that is not coming from a file. In this case, errors and warnings will not
have the file name in them, and this option allows one to force inclusion of a file
name in such messages.

line(+Line)
Sets the starting line-number for reporting errors. For instance, if line(10) is
specified and an error is found at line X then the error message will say that the
error occurred at line X+10. This option is used when the input stream does not
start with the first line of a file.

max_errors(+Max)
Sets the maximum number of errors. The default is 50. If this number is reached,
the following exception is raised:

error(limit_exceeded(max_errors, Max), _)

9.3.2 Handling of White Spaces

Four modes for handling white-spaces are provided. The initial mode can be switched using
the space(SpaceMode) option to load_structure/3 or set_sgml_parser/2. In XML
mode, the mode is further controlled by the xml:space attribute, which may be specified
both in the DTD and in the document. The defined modes are:

space(sgml)
Newlines at the start and end of an element are removed. This is the default mode for
the SGML dialect.

space(preserve)
White space is passed literally to the application. This mode leaves all white space
handling to the application. This is the default mode for the XML dialect.

CHAPTER 9. PACKAGES SGML AND XPATH: SGML/XML/HTML AND XPATH PARSERS57

space(default)
In addition to sgml space-mode, all consecutive whitespace is reduced to a single space-
character.

space(remove)
In addition to default, all leading and trailing white-space is removed from CDATA
objects. If, as a result, the CDATA becomes empty, nothing is passed to the application.
This mode is especially handy for processing data-oriented documents, such as RDF. It
is not suitable for normal text documents. Consider the HTML fragment below. When
processed in this mode, the spaces surrounding the three elements in the example below
are lost. This mode is not part of any standard: XML 1.0 allows only default and
preserve.

Consider adjacent bold and <it>italic</it> words.

The parsed term will be [’Consider adjacent’,element(b,[],[bold]),element(ul,[],
[and]),element(it,[],[italics]),words].

9.3.3 XML documents

The parser can operate in two modes: the sgml mode and the xml mode, as defined by the
dialect(Dialect) option. HTML is a special case of the SGML mode with a particular
DTD. Regardless of this option, if the first line of the document reads as below, the parser
is switched automatically to the XML mode.

<?xml ... ?>

Switching to XML mode implies:

• XML empty elements
The construct <element attribute ... attribute/> is recognized as an empty el-
ement.

• Predefined entities
The following entities are predefined: < (<), > (>), & (&), ' (’) and
" (").

• Case sensitivity
In XML mode, names of tags and attributes are case-sensitive, except for the DTD
reserved names (i.e. ELEMENT, etc.).

• Character classes
In XML mode, underscore (_) and colon (:) are allowed in names.

CHAPTER 9. PACKAGES SGML AND XPATH: SGML/XML/HTML AND XPATH PARSERS58

• White-space handling
White space mode is set to preserve. In addition, the XML reserved attribute
xml:space is honored; it may appear both in the document and the DTD. The remove
extension (see space(remove) earlier) is allowed as a value of the xml:space attribute.
For example, the DTD statement below ensures that the pre element preserves space,
regardless of the default processing mode.

<!ATTLIST pre xml:space nmtoken #fixed preserve>

XML Namespaces

Using the dialect xmlns, the parser will recognize XML namespace prefixes. In this case, the
names of elements are returned as a term of the format

URL:LocalName

If an identifier has no namespace prefix and there is no default namespace, it is returned
as a simple atom. If an identifier has a namespace prefix but this prefix is undeclared, the
namespace prefix rather than the related URL is returned.

Attributes declaring namespaces (xmlns:ns=url) are represented in the translation as
regular attributes.

9.3.4 DTD-Handling

The DTD (Document Type Definition) are internally represented as objects that can be
created, freed, defined, and inspected. Like the parser itself, it is filled by opening it as a
Prolog output stream and sending data to it. This section summarizes the predicates for
handling the DTD.

new_dtd(+DocType, -DTD, -Warn)
Creates an empty DTD for the named DocType. The returned DTD-reference is an
opaque term that can be used in the other predicates of this package. Warn is the list
of warnings generated.

free_dtd(+DTD, -Warn)
Deallocate all resources associated to the DTD. Further use of DTD is invalid. Warn
is the list of warnings generated.

open_dtd(+DTD, +Options, -Warn)
This opens and loads a DTD from a specified location (given in the Options parameter

CHAPTER 9. PACKAGES SGML AND XPATH: SGML/XML/HTML AND XPATH PARSERS59

(see next). DTD represents the created DTD object after the source is loaded. Options
is a list options. Currently the only option supported is source(location), where location
can be of one of these forms:

url(url)
file(fileName)
string(’document as a Prolog atom’).

dtd(+DocType, -DTD, -Warn)
Certain DTDs are part of the system and have known doctypes. Currently, ’HTML’
and ’XHTML’ are the only recognized built-in doctypes. Such a DTD can be used for
parsing simply by specifying the doctype. Thus, the dtd/3 predicate takes the doctype
name, finds the DTD associated with the given doctype, and creates a dtd object for
it. Warn is the list of warnings generated.

dtd(+DocType, -DTD, +DtdFile -Warn)

The predicate parses the DTD present at the location DtdFile and creates the cor-
responding DTD object. DtdFile can have one of the following forms: url(url),
file(fileName), string(’document as a Prolog atom’).

9.3.5 Low-level Parsing Primitives

The following primitives are used only for more complex types of parsing, which might not
be covered by the load_structure/4 predicate.

new_sgml_parser(-Parser, +Options, -Warn)
Creates a new parser. Warn is the list of warnings generated. A parser can be used one
or multiple times for parsing documents or parts thereof. It may be bound to a DTD
or the DTD may be left implicit. In this case the DTD is created from the document
prologue or (if it is not in the prologue) parsing is performed without a DTD. The
Options list can contain the following parameters:

dtd(?DTD)
If DTD is bound to a DTD object, this DTD is used for parsing the document
and the document’s prologue is ignored. If DTD is a variable, the variable gets
bound to a created DTD. This DTD may be created from the document prologue
or build implicitly from the document’s content.

free_sgml_parser(+Parser, -Warn)
Destroy all resources related to the parser. This does not destroy the DTD if the parser
was created using the dtd(DTD) option. Warn is the list of warnings generated during
parsing (can be empty).

CHAPTER 9. PACKAGES SGML AND XPATH: SGML/XML/HTML AND XPATH PARSERS60

set_sgml_parser(+Parser, +Option, -Warn)
Sets attributes to the parser. Warn is the list of warnings generated. Options is a list
that can contain the following members:

file(File)
Sets the file for reporting errors and warnings. Sets the linenumber to 1.

line(Line)
Sets the starting line for error reporting. Useful if the stream is not at the start
of the (file) object for generating proper line-numbers. This option has the same
meaning as in the load_structure/4 predicate.

charpos(Offset)
Sets the starting character location. See also the file(File) option. Used when
the stream does not start from the beginning of a document.

dialect(Dialect)
Set the markup dialect. Known dialects:
sgml

The default dialect. This implies markup is case-insensitive and standard
SGML abbreviation is allowed (abbreviated attributes and omitted tags).

xml
This dialect is selected automatically if the processing instruction <?xml ...>
is encountered.

xmlns
Process file as XML file with namespace support.

qualify_attributes(Boolean)
Specifies how to handle unqualified attributes (i.e., without an explicit namespace)
in XML namespace (xmlns) dialect. By default, such attributes are not qualified
with namespace prefixes. If true, such attributes are qualified with the namespace
of the element they appear in.

space(SpaceMode)
Define the initial handling of white-space in PCDATA. This attribute is described
in Section 9.3.2.

number(NumberMode)
If token is specified (the default), attributes of type number are represented as a
Prolog atom. If integer is specified, such attributes are translated into Prolog
integers. If the conversion fails (e.g., due to an overflow) a warning is issued and
the value is represented as an atom.

doctype(Element)
Defines the top-level element of the document. If a <!DOCTYPE ...> declaration
has been parsed, this declaration is used. If there is no DOCTYPE declaration then

CHAPTER 9. PACKAGES SGML AND XPATH: SGML/XML/HTML AND XPATH PARSERS61

the parser can be instructed to use the element given in doctype(_) as the top
level element. This feature is useful when parsing part of a document (see the
parse option to sgml_parse/3).

sgml_parse(+Parser, +Options, -Warn)
Parse an XML file. The parser can operate in two input and two output modes. Output
is a structured term as described with load_structure/4.
Warn is the list of warnings generated. A full description of Options is given below.

document(+Term)
A variable that will be unified with a list describing the content of the document
(see load_structure/4).

source(+Source)
Source can have one of the following forms: url(url), file(fileName), string(’document
as a Prolog atom’). This option must be given.

content_length(+Characters)
Stop parsing after the given number of Characters. This option is useful for
parsing input embedded in envelopes, such as HTTP envelopes.

parse(Unit)
Defines how much of the input is parsed. This option is used to parse only parts
of a file.
file

Default. Parse everything upto the end of the input.
element

The parser stops after reading the first element. Using source(Stream), this
implies reading is stopped as soon as the element is complete, and another
call may be issued on the same stream to read the next element.

declaration
This may be used to stop the parser after reading the first declaration. This
is useful if we want to parse only the doctype declaration.

max_errors(+MaxErrors)
Sets the maximum number of errors. If this number is exceeded, further writes
to the stream will yield an I/O error exception. Printing of errors is suppressed
after reaching this value. The default is 100.

syntax_errors(+ErrorMode)
Defines how syntax errors are handled.
quiet

Suppress all messages.
print

Default. Print messages.

CHAPTER 9. PACKAGES SGML AND XPATH: SGML/XML/HTML AND XPATH PARSERS62

9.3.6 External Entities

While processing an SGML document the document may refer to external data. This occurs
in three places: external parameter entities, normal external entities and the DOCTYPE decla-
ration. The current version of this tool deals rather primitively with external data. External
entities can only be loaded from a file.

Two types of lines are recognized by this package:

DOCTYPE doctype file

PUBLIC "Id " file

The parser loads the entity from the file specified as file. The file can be local or a URL.

9.3.7 Exceptions

Exceptions are generated by the parser in two cases. The first case is when the user specifies
wrong input. For example when specifying

load_structure(string(’<m></m>’), Document, [line(xyz)], Warn)

The string xyz is not in the domain of line. Hence in this case a domain error exception
will be thrown.

Exceptions are generated when XML being parsed is not well formed. For example if the
input XML contains

’<m></m1>’

exceptions will be thrown.
In both cases the format of the exception is

error(sgml(error term), error message)
warning(sgml(warning term), warning message)

where error term or warning term can be of the form

• pointer to the parser instance,

• line at which error occurred,

CHAPTER 9. PACKAGES SGML AND XPATH: SGML/XML/HTML AND XPATH PARSERS63

• error code.

• functor(argument), where functor and argument depend on the type of exception
raised. For example,

resource-error(no-memory) — if memory is unavailable
permission-error(file-name) — no permission to read a file
A system-error(description) –- internal system error
type-error(expected,actual) — data type error
domain-error(functor,offending-value) — the offending value is not in the
domain of the functor. For instance, in load_structure(string(’<m></m>’),
Document, [line(xyz)], Warn), xyz is not in the domain of line.
existence-error(resource) — resource does not exist
limit-exceeded(limit,maxval) — value exceeds the limit.

9.3.8 Unsupported features

The current parser is rather limited. While it is able to deal with many serious documents, it
omits several less-used features of SGML and XML. Known missing SGML features include

• NOTATION on entities
Though notation is parsed, notation attributes on external entity declarations are not
represented in the output.

• NOTATION attributes
SGML notations may have attributes, declared using <!ATTLIST #NOT name attrib>.
Those data attributes are provided when you declare an external CDATA, NDATA, or
SDATA entity. XML does not support external CDATA, NDATA, or SDATA entities,
nor any of the other uses to which data attributes are put in SGML.

• SGML declaration
The ‘SGML declaration’ is fixed, though most of the parameters are handled through
indirections in the implementation.

• The RANK feature
It is regarded as obsolete.

• The LINK feature
It is regarded as too complicated.

• The CONCUR feature
Concurrent markup allows a document to be tagged according to more than one DTD
at the same time. It is not supported.

CHAPTER 9. PACKAGES SGML AND XPATH: SGML/XML/HTML AND XPATH PARSERS64

• The Catalog files
Catalog files are not supported.

In the XML mode, the parser recognizes SGML constructs that are not allowed in XML.
Also various extensions of XML over SGML are not yet realized. In particular, XInclude is
not implemented.

9.3.9 Summary of Predicates

dtd/2 Find or build a DTD for a document type
free_dtd/1 Free a DTD object
free_sgml_parser/1 Destroy a parser
load_dtd/2 Read DTD information from a file
load_structure/4 Parse XML/SGML/HTML data into Prolog term
load_sgml_structure/3 Parse SGML file into Prolog term
load_html_structure/3 Parse HTML file into Prolog term
load_xml_structure/3 Parse XML file into Prolog term
load_xhtml_structure/3 Parse XHTML file into Prolog term
new_dtd/2 Create a DTD object
new_sgml_parser/2 Create a new parser
open_dtd/3 Open a DTD object as an output stream
set_sgml_parser/2 Set parser options (dialect, source, etc.)
sgml_parse/2 Parse the input
xml_name/1 Test atom for valid XML name
xml_quote_attribute/2 Quote text for use as an attribute
xml_quote_cdata/2 Quote text for use as PCDATA

9.4 XPath support

XPath is a query language for addressing parts of an XML document. In XSB, this support
is provided by the xpath package. To use this package the libxml2 XML parsing library
must be installed on the machine. It comes with most Linux distributions, since it is part
of the Gnome desktop, or one can download it from http://xmlsoft.org/. It is available for
Linux, Solaris, Windows, and MacOS. Note that both the library itself and the .h files of
that library must be installed. In some Linux distributions, the .h files might reside in
a separate package from the package that contains the actual library. For instance, the
library (libxml2.so) might be in the package called libxml2 (which is usually installed by
default), while the .h files might be in the package libxml2-dev (which is usually not in
default installations).

On Unix-based systems (and MacOS), the package might need to be configured at the

CHAPTER 9. PACKAGES SGML AND XPATH: SGML/XML/HTML AND XPATH PARSERS65

time XSB is configured using XSB’s configure script found in the XSB’s build directory.
Normally, if libxml2 is installed by a Linux package manager, nothing special is required:
the package will be configured by default. If the library is in a non-standard place, then the
configure option –with-xpath-dir=directory-of-libxml2 must be given. It must specify the
directory where lib/*/libxml2.so (or libxml2.dylib in Mac) and include/libxml2 can be
found.

Examples: If libxml2 is in a default location, then XSB can be configured simply like
this:

./configure

Otherwise, use

./configure --with-xpath-dir=/usr/local

if, for example, libxml2.so is in /usr/local/lib/i386-linux-gnu/libxml2.so and the
included .h files are in /usr/local/include/libxml2/*.

On Windows and under Cygwin, the libxml2 library is already included in the XSB
distribution and does not need to be downloaded. If you are using a prebuilt XSB distribution
for Windows, then you do not need to do anything—the package has already been built for
you.

For Cygwin, you only need to run the ./configure script without any options. This
needs to be done regardless of whether you downloaded XSB from CVS or a released prebuilt
version.

If you downloaded XSB from CVS and want to use it under native Windows (not Cygwin),
then you would need to compile the XPath package, and you need Microsoft’s Visual Studio.
To compile the package one should do the following:

cd packages\xpath\cc
nmake /f NMakefile.mak

The following section assumes that the reader is familiar with the syntax of XPath and
its capabilities. To load the xpath package, type

:-[xpath].

The program needs to include the following directive:

:- import parse_xpath/4 from xpath.

XPath query evaluation is done by using the parse_xpath predicate.

CHAPTER 9. PACKAGES SGML AND XPATH: SGML/XML/HTML AND XPATH PARSERS66

parse_xpath(+Source, +XPathQuery, -Output, +NamespacePrefixList)
Source is a term of the format url(url), file(filename) or string(’XML-document-
as-a-string’). It specifies that the input XML document is contained in a file, can be
fetched from a URL, or is given directly as a Prolog atom.
XPathQuery is a standard XPath query which is to be evaluated on the XML document
in Source.
Output gets bound to the output term. It represents the XML element returned after
the XPath query is evaluated on the XML document in Source. The output term is
of the form string(’XML-document’). It can then be parsed using the sgml package
described earlier.
NamespacePrefixList is a space separated list of pairs of the form prefix = namespace.
This specifies the namespace prefixes that are used in the XPath query.
For example if the xpath expression is ’/x:html/x:head/x:meta’ where x is a prefix
that stands for ’http://www.w3.org/1999/xhtml’, then x would have to be defined
as follows:

?- parse_xpath(url(’http://w3.org’), ’/x:html/x:head/x:meta’, O4,
’x=http://www.w3.org/1999/xhtml’).

In the above, the xpath query is ’/x:html/x:head/x:meta’ and the prefix has been
defined as ’x=http://www.w3.org/1999/xhtml’.

Chapter 10

rdf: The XSB RDF Parser

By Aneesh Ali

10.1 Introduction

RDF is a W3C standard for representing meta-data about documents on the Web as well
as exchanging frame-based data (e.g. ontologies). RDF has a formal data model defined
in terms of triples. In addition, a graph model is defined for visualization and an XML
serialization for exchange. This chapter describes the API provided by the XSB RDF parsing
package. The package and its documentation are adaptations from SWI Prolog.

10.2 High-level API

The RDF translator is built in Prolog on top of the sgml2pl package, which provides XML
parsing. The transformation is realized in two passes. It is designed to operate in various
environments and therefore provides interfaces at various levels. First we describe the top
level, which parses RDF-XML file into a list of triples. These triples are not asserted into
the Prolog database because it is not necessarily the final format the user wishes to use and
it is not clear how the user might want to deal with multiple RDF documents. Some options
are using global URI’s in one pool, in Prolog modules, or using an additional argument.

load_rdf(+File, -Triples)
Same as load_rdf(+File, -Triples, []).

load_rdf(+File, -Triples, +Options)
Read the RDF-XML file File and return a list of Triples. Options is a list of additional
processing options. Currently defined options are:

67

CHAPTER 10. RDF: THE XSB RDF PARSER 68

base_uri(BaseURI)
If provided, local identifiers and identifier-references are globalized using this URI.
If omitted, local identifiers are not tagged.

blank_nodes(Mode)
If Mode is share (default), blank-node properties (i.e. complex properties without
identifier) are reused if they result in exactly the same triple-set. Two descriptions
are shared if their intermediate description is the same. This means they should
produce the same set of triples in the same order. The value noshare creates a
new resource for each blank node.

expand_foreach(Boolean)
If Boolean is true, expand rdf:aboutEach into a set of triples. By default the
parser generates rdf(each(Container), Predicate, Subject).

lang(Lang)
Define the initial language (i.e. pretend there is an xml:lang declaration in an
enclosing element).

ignore_lang(Bool)
If true, xml:lang declarations in the document are ignored. This is mostly for
compatibility with older versions of this library that did not support language
identifiers.

convert_typed_literal(:ConvertPred)
If the parser finds a literal with the rdf:datatype=Type attribute, call Convert-
Pred(+Type, +Content, -Literal). Content is the XML element contents returned
by the XML parser (a list). The predicate must unify Literal with a Prolog rep-
resentation of Content according to Type or throw an exception if the conversion
cannot be made.
This option serves two purposes. First of all it can be used to ignore type dec-
larations for backward compatibility of this library. Second it can be used to
convert typed literals to a meaningful Prolog representation (e.g., convert ’42’ to
the Prolog integer 42 if the type is xsd:int or a related type).

namespaces(-List)
Unify List with a list of NS=URL for each encountered xmlns:NS=URL declara-
tion found in the source.

entity(+Name, +Value)
Overrule entity declaration in file. As it is common practice to declare namespaces
using entities in RDF/XML, this option allows changing the namespace without
changing the file. Multiple such options are allowed.

The Triples list is a list of the form rdf(Subject, Predicate, Object) triples. Subject
is either a plain resource (an atom), or one of the terms each(URI) or prefix(URI)
with the usual meaning. Predicate is either a plain atom for explicitly non-qualified

CHAPTER 10. RDF: THE XSB RDF PARSER 69

names or a term NameSpace:Name. If NameSpace is the defined RDF name space
it is returned as the atom rdf. Object is a URI, a Predicate or a term of the form
literal(Value) for literal values. Value is either a plain atom or a parsed XML term
(list of atoms and elements).

10.2.1 RDF Object representation

The Object (3rd) part of a triple can have several different types. If the object is a resource it
is returned as either a plain atom or a term NameSpace:Name. If it is a literal it is returned
as literal(Value), where Value can have one of the form below.

• An atom
If the literal Value is a plain atom is a literal value not subject to a datatype or
xml:lang qualifier.

• lang(LanguageID, Atom)
If the literal is subject to an xml:lang qualifier LanguageID specifies the language and
Atom the actual text.

• A list
If the literal is an XML literal as created by parseType="Literal", the raw output
of the XML parser for the content of the element is returned. This content is a list of
element(Name, Attributes, Content) and atoms for CDATA parts as described with
the sgml package.

• type(Type, StringValue)
If the literal has an rdf:datatype=Type a term of this format is returned.

10.2.2 Name spaces

RDF name spaces are identified using URIs. Unfortunately various URI’s are in common
use to refer to RDF. The RDF parser therefore defines the rdf_name_space/1 predicate as
multifile, which can be extended by the user. For example, to parse Netscape OpenDi-
rectory (http://www.mozilla.org/rdf/doc/inference.html) given in the structure.rdf
file (http://rdf.dmoz.org/rdf/structure.rdf.u8.gz), the following declarations are used:

:- multifile
rdf_parser:rdf_name_space/1.

rdf_parser:rdf_name_space(’http://www.w3.org/TR/RDF/’).
rdf_parser:rdf_name_space(’http://directory.mozilla.org/rdf’).
rdf_parser:rdf_name_space(’http://dmoz.org/rdf’).

http://www.mozilla.org/rdf/doc/inference.html
http://rdf.dmoz.org/rdf/structure.rdf.u8.gz

CHAPTER 10. RDF: THE XSB RDF PARSER 70

The above statements will then extend the initial definition of this predicate provided by
the parser:

rdf_name_space(’http://www.w3.org/1999/02/22-rdf-syntax-ns#’).
rdf_name_space(’http://www.w3.org/TR/REC-rdf-syntax’).

10.2.3 Low-level access

The predicates load_rdf/2 and load_rdf/3 described earlier are not always sufficient. For
example, they cannot deal with documents where the RDF statement is embedded in an XML
document. It also cannot deal with really large documents (e.g. the Netscape OpenDirectory
project, currently about 90 MBytes), without requiring huge amounts of memory.

For really large documents, the sgml2pl parser can be instructed to handle the content
of a specific element (i.e. <rdf:RDF>) element-by-element. The parsing primitives defined
in this section can be used to process these one-by-one.

xml_to_rdf(+XML, +BaseURI, -Triples)
Process an XML term produced by sgml’s load_structure/4 using the dialect(xmlns)
output option. XML is either a complete <rdf:RDF> element, a list of RDF-objects
(container or description), or a single description of container.

10.3 Testing the RDF translator

A test-suite and a driver program are provided by rdf_test.P in the XSB/examples/rdf
directory. To run these tests, load this file into Prolog and execute test_all. The test files
found in the directory examples/rdf/suite are then converted into triples. The expected
output is in examples/rdf/expectedoutput. One can also run the tests selectively, using
the following predicates:

suite(+N)
Run test N using the file suite/tN.rdf and display its RDF representation and the
triples.

test_file(+File)
Process File and display its RDF representation and the triples.

Chapter 11

Constraint Packages

Constraint packages are an important part of modern logic programming, but approaches to
constraints differ both in their semantics and in their implementation. At a semantic level,
Constraint Logic Programming associates constraints with logical variables, and attempts
to determine solutions that are inconsistent with or entailed by those constaints. At an
implementational level, the constraints can either be manipulated by accessing attributed
variables or by adding constraint handling rules to a program. The former approach of
attributed variables can be much more efficient than constraint handling rules (which are
themselves implemented through attributed variables) but are much more difficult to use
than constraint handling rules. These variable-based approaches differ from that of Answer
Set Programming in which a constraint problem is formulated as a set of rules, which are
consistent if a stable model can be constructed for them.

XSB supports all of these approaches. Two packages based on attributed variables are
presented in this chapter: CLP(R) and the bounds package, which provides a simple library
for handling finite domains. XSB’s CHR package is described in Chapter 12, and XSB’s
Answer Set Programming Package, XASP is described in Chapter 17.

Before describing the individual packages, we note that these packages can be freely used
with variant tabling, the mechanisms for which handle attributed variables. However in
Version 4.0, calling a predicate P that is tabled using call subsumption will raise an error if
the call to P contains any constrained variables (attributed variables).

11.1 clpr: The CPL(R) package

The CLP(R) library supports solutions of linear equations and inequalities over the real
numbers and the lazy treatment of nonlinear equations 1. In displaying sets of equations and

1The CLP(R) package is based on the clpqr package included in SWI Prolog version 5.6.49. This package
was originally written by Christian Holzbaur and ported to SWI by Leslie De Konick. Terrance Swift ported

71

CHAPTER 11. CONSTRAINT PACKAGES 72

disequations, the library removes redundancies, performs projections, and provides for linear
optimization. The goal of the XSB port is to provide the same CLP(R) functionality as in
other platforms, but also to allow constraints to be used by tabled predicates. This section
provides a general introduction to the CLP(R) functionality available in XSB, for further in-
formation on the API described in Section 11.1.1 see http://www.ai.univie.ac.at/clpqr,
or the Sicstus Prolog manual (the CLP(R) library should behave similarly on XSB and Sic-
stus at the level of this API).

The clpr package may be loaded by the command [clpr]. Loading the package imports
exported predicates from the various files in the clpr package into usermod (see Volume 1,
Section 3.3) so that they may be used in the interpreter. Modules that use the exported
predicates need to explicitly import them from the files in which they are defined (e.g. bv,
as shown below).

XSB’s tabling engine supports the use of attributed variables (cf. Volume I: Library
Utilities), which in turn have been used to port real constraints to XSB under the CLP(R)
library of Christian Holzbauer [6]. Constraint equations are represented using the Prolog
syntax for evaluable functions (Volume 1, Section 6.2.1). Formally:

ConstraintSet –> C | C , C

C –> Expr =:= Expr equation
| Expr = Expr equation
| Expr < Expr strict inequation
| Expr > Expr strict inequation
| Expr =< Expr nonstrict inequation
| Expr >= Expr nonstrict inequation
| Expr =/= Expr disequation

Expr –> variable Prolog variable
| number floating point number
| + Expr
| - Expr
| Expr + Expr
| Expr - Expr
| Expr * Expr
| Expr / Expr
| abs(Expr)

‘ | sin(Expr)
| cos(Expr)
| tan(Expr)
| pow(Expr,Expr) raise to the power

the package to XSB and and wrote this XSB manual section.

CHAPTER 11. CONSTRAINT PACKAGES 73

:- import {}/1 from clpr.

root(N, R) :-
root(N, 1, R).
root(0, S, R) :- !, S=R.
root(N, S, R) :-

N1 is N-1,
{ S1 = S/2 + 1/S },
root(N1, S1, R).

Figure 11.1: Example of a file with a CLP(R) predicate

| exp(Expr,Expr) raise to the power
| min(Expr,Expr) minimum of two expressions
| max(Expr,Expr) maximum of two expressions
| #(Expr) symbolic numerical constants

11.1.1 The CLP(R) API

From the command line, it is usually easiest to load the clpr package and call the predicates
below directly from usermod (the module implicitly used by the command line). However,
when calling any of these predicates from compiled code, they must be explicitly imported
from their modules (e.g. {} must be explicitly imported from clpr). Figure 11.1.1 shows an
example of how this is done. ‘

{+Constraints} module: clpr
When the CLP(R) package is loaded, inclusion of equations in braces ({}) adds
Constraints to the constraint store where they are checked for satisfiability.
Example:

| ?- [clpr].
[clpr loaded]
[itf loaded]
[dump loaded]
[bv_r loaded]
[nf_r loaded]

yes

| ?- {X = Y+1, Y = 3*X}.

X = -0.5000

CHAPTER 11. CONSTRAINT PACKAGES 74

Y = -1.5000;

yes

Error Cases

• Constraints is not instantiated
– instantiation_error

• Constraints is not an equation, an inequation or a disequation
– domain_error(’constraint relation’,Rel)

• Constraints contains an expression Expr that is not a numeric expression
– domain_error(’numeric expression’,Expr)

entailed(+Constraint) module: clpr
Succeeds if Constraint is logically implied by the current constraint store. entailed/1
does not change the constraint store.
Example:

| ?- {A =< 4},entailed(A =\= 5).
{ A =< 4.0000 }

yes

Error Cases

• Constraints is not instantiated
– instantiation_error

• Constraints is not an equation, an inequation or a disequation
– domain_error(’constraint relation’,Rel)

inf(+Expr,-Val) clpr
sup(+Expr,-Val) clpr
minimize(Expr) clpr
maximize(Expr) module: clpr

These four related predicates provide various mechanisms to compute the maximum
and minimum of expressions over variables in a constraint store. In the case where the
expression is not bounded from above over the reals sup/2 and maximize/1 will fail;
similarly if the expression is not bounded from below inf/2 and minimize/1 will fail.
Examples:

CHAPTER 11. CONSTRAINT PACKAGES 75

| ?- {X = 2*Y,Y >= 7},inf(X,F).
{ X >= 14.0000 }
{ Y = 0.5000 * X }

X = _h8841
Y = _h9506
F = 14.0000

| ?- {X = 2*Y,Y >= 7},minimize(X).
X = 14.0000
Y = 7.0000

| ?- {X = 2*Y,Y =< 7},maximize(X-2).

X = 14.0000
Y = 7.0000

| ?- {X = 2*Y,Y =< 7},sup(X-2,Z).
{ X =< 14.0000 }
{ Y = 0.5000 * X }

X = _h8975
Y = _h9640
Z = 12.0000

yes
| ?- {X = 2*Y,Y =< 7},maximize(X-2).

X = 14.0000
Y = 7.0000

yes

inf(+Expr,-Val, +Vector, -Vertex) clpr
sup(+Expr,-Val, +Vector, -Vertex) module: clpr

These predicates work like inf/2 and sup/2 with the following addition. Vector is
a list of Variables, and for each variable V in Vector, the value of V at the extremal
point Val is returned in corresponding position in the list Vertex.
Example:

| ?= { 2*X+Y =< 16, X+2*Y =< 11,X+3*Y =< 15, Z = 30*X+50*Y},
sup(Z, Sup, [X,Y], Vertex).

{ X + 3.0000 * Y =< 15.0000 }
{ X + 0.5000 * Y =< 8.0000 }

CHAPTER 11. CONSTRAINT PACKAGES 76

{ X + 2.0000 * Y =< 11.0000 }
{ Z = 30.0000 * X + 50.0000 * Y }

X = _h816
Y = _h869
Z = _h2588
Sup = 310.0000
Vertex = [7.0000,2.0000]

bb_inf(+IntegerList,+Expr,-Inf,-Vertex, +Eps) module: clpr
Works like inf/2 in Expr but assumes that all the variables in IntegerList have
integral values. Eps is a positive number between 0 and 0.5 that specifies how close
an element of IntegerList must be to an integer to be considered integral – i.e. for
such an X, abs(round(X) - X) < Eps. Upon success, Vertex is instantiated to the
integral values of all variables in IntegerList. bb_inf/5 works properly for non-strict
inequalities only.
Example:

| ?- {X > Y + Z,Y > 1, Z > 1},bb_inf([Y,Z],X,Inf,Vertex,0).
{ Z > 1.0000 }
{ Y > 1.0000 }
{ X - Y - Z > 0.0000 }

X = _h14286
Y = _h10914
Z = _h13553
Inf = 4.0000
Vertex = [2.0000,2.0000]

yes

Error Cases

• IntegerList is not instantiated
– instantiation_error

bb_inf(+IntegerList,+Expr,-Inf) module: clpr
Works like bb_inf/5, but with the neighborhood, Eps, set to 0.001.
Example

|?- {X >= Y+Z, Y > 1, Z > 1}, bb_inf([Y,Z],X,Inf)
{ Z > 1.0000 }
{ Y > 1.0000 }

CHAPTER 11. CONSTRAINT PACKAGES 77

{ X - Y - Z >= 0.0000 }

X = _h14289
Y = _h10913
Z = _h13556
Inf = 4.

yes

dump(+Variables,+NewVars,-CodedVars module: dump
For a list of variables Variables and a list of variable names NewVars, returns in
CodedVars the constraints on the variables, without affecting the constraint store.
Example:

| ?- {X > Y+1, Y > 2},
dump([X,Y], [x,y], CS).

{ Y > 2.0000 }
{ X - Y > 1.0000 }

X = _h17748
Y = _h17139
CS = [y > 2.0000,x - y > 1.0000];

Error Cases

• Variables is not instantiated to a list of variables
– instantiation_error

projecting_assert(+Clause) module: dump
In XSB, when a subgoal is tabled, the tabling system automatically determines the
relevant projected constraints for an answer and copies them into and out of a table.
However, when a clause with constrained variables is asserted, this predicate must be
used rather than assert/1 in order to project the relevant constraints. This predicate
works with either standard or trie-indexed dynamic code.
Example:

| ?- {X > 3},projecting_assert(q(X)).
{ X > 3.0000 }

X = _h396

yes
| ?- listing(q/1).

CHAPTER 11. CONSTRAINT PACKAGES 78

q(A) :-
clpr : {A > 3.0000}.

yes
| ?- q(X),entailed(X > 2).
{ X > 3.0000 }

X = _h358

yes
| ?- q(X),entailed(X > 4).

no

11.2 The bounds Package

Version 4.0 of XSB does not support a full-fledged CLP(FD) package. However it does
support a simplified package that maintains an upper and lower bound for logical variables.
bounds can thus be used for simple constraint problems in the style of finite domains, as
long as these problems that do not rely on too heavily on propagation of information about
constraint domains 2

Perhaps the simplest way to explain the functionality of bounds is by example. The
query

|?- X in 1..2,X #> 1.

first indicates via X in 1..2 that the lower bound of X is 1 and the higher bound 2, and then
constrains X, which is not yet bound, to be greater than 1. Applying this latter constraint
to X forces the lower bound to equal the upper bound, instantiating X, so that the answer to
this query is X = 2.

Next, consider the slightly more complex query

|?- X in 1..3,Y in 1..3,Z in 1..3,all_different([X,Y,Z]),X = 1, Y = 2.

all_different/3 constraints X, Y and Z each to be different, whatever their values may be.
Accordingly, this constraint together with the bound restrictions, implies that instantiating
X and Y also causes the instantiation of Z. In a similar manner, the query

|?- X in 1..3,Y in 1..3,Z in 1..3,sum([X,Y,Z],#=,9),

2The bounds package was written by Tom Schrijvers, and ported to XSB from SWI Prolog version 5.6.49
by Terrance Swift, who also wrote this manual section.

CHAPTER 11. CONSTRAINT PACKAGES 79

onstrains the sum of the three variables to equal 9 – and in this case assigns them a concrete
value due to their domain restrictions.

In many constraint problems, it does not suffice to know whether a set of constraints is
satisfiable; rather, concrete values may be needed that satisfy all constraints. One way to
produce such values is through the predicate labelling/2

|?- X in 1..5,Y in 1..5,X #< Y,labeling([max(X)],[X,Y]))

In this query, it is specified that X and Y are both to be instantiated not just by any element
of their domains, but by a value that assigns X to be the maximal element consistent with
the constraints. Accordingly X is instantiated to 4 and Y to 5.

Because constraints in bounds are based on attributed variables which are handled by
XSB’s variant tabling mechanisms, constrained variables can be freely used with variant
tabling as the folowing fragment shows:

table_test(X):- X in 2..3,p(X).

:- table p/1.
p(X):- X in 1..2.

?- table_test(Y).

Y = 2

For a more elaborate example, we turn to the SEND MORE MONEY example, , in which
the problem is to assign numbers to each of the letters S,E,N,D,M,O,R,Y so that the number
SEND plus the number MORE equals the number MONEY. Borrowing a solution from the
SWI manual [21], the bounds package solves this problem as:

send([[S,E,N,D], [M,O,R,E], [M,O,N,E,Y]]) :-
Digits = [S,E,N,D,M,O,R,Y],
Carries = [C1,C2,C3,C4],
Digits in 0..9,
Carries in 0..1,
M #= C4,
O + 10 * C4 #= M + S + C3,
N + 10 * C3 #= O + E + C2,
E + 10 * C2 #= R + N + C1,
Y + 10 * C1 #= E + D,
M #>= 1,
S #>= 1,
all_different(Digits),
label(Digits).

CHAPTER 11. CONSTRAINT PACKAGES 80

In many cases, it may be useful to test whether a given constraint is true or false. This
can be done by unifying a variable with the truth value of a given constraint – i.e. by reifying
the constraint. As an example, the query

|?- X in 1..10, Y in 1..10,Z in 0..1,X #< Y, X #= Y #<=> Z,label([Z]).

sets the bounded variable Z to the truth value of X #= Y, or 0 3.
A reader familiar with the finite domain library of Sicstus [7] will have noticed that the

syntax of bounds is consistent with that library. It is important to note however, bounds
maintains only the upper and lower bounds of a variables as its attributes, (along, of course
with constraints on those variables) rather than an explicit vector of permissable values. As
a result, bounds may not be suitable for large or complex constraint problems.

11.2.1 The bounds API

Note that bounds does not perform error checking, but instead relies on the error checking
of lower-level comparison and arithmetic operators.

in(-Variable,+Bound) bounds
Adds the constraint Bound to Variable, where Bound should be of the form Low..High,
with Low and High instantiated to integers. This constraint ensures that any value of
Variable must be greater than or equal to Low and less than or equal to High. Unlike
some finite-domain constraint systems, it does not materialize a vector of currently
allowable values for Variable.
Variables that have not had their domains explicitly constrained are considered to be
in the range min_integer..max_integer.

#>(Expr1,Expr2) bounds
#<(Expr1,Expr2) bounds
#>=(Expr1,Expr2) bounds
#=<(Expr1,Expr2) bounds
#=(Expr1,Expr2) bounds
#=(Expr1,Expr2) bounds

Ensures that a given relation holds between Expr1 and Expr2. Within these con-
straints, expressions may contain the functions +/2, -/2, */2, +/2, +/2, +/2, mod/2,
and abs/1 in addition to integers and variables.

#<=>(Const1,Const2) bounds
3The current version of the bounds package does not always seem to propagate entailment into the values

of reified variables.

CHAPTER 11. CONSTRAINT PACKAGES 81

#=>(Const1,Const2) bounds
#<=(Const1,Const2) bounds

Constrains the truth-value of Const1 to have the speficied logical relation (“iff”, “only-
if” or “if”) to Const2, where Const1 and Const2 have one of the six relational operators
above.

all_different(+VarList) bounds
VarListmust be a list of variables: constrains all variables in VarList to have different
values.

sum(VarList,Op,?Value) bounds
VarList must be a list of variables and Value an integer or variable: constrains
the sum of all variables in VarList to have the relation Op to Value (see preceding
example).

labeling(+Opts,+VarList bounds
This predicate succeeds if it can assign a value to each variable in VarList such that
no constraint is violated. Note that assigning a value to each constrained variable is
equivalent to deriving a solution that satisfies all constraints on the variables, which
may be intractible depending on the constraints. Opts allows some control over how
value assignment is performed in deriving the solution.

• leftmost Assigns values to variables in the order in which they occur. For ex-
ample the query:

|?- X in 1..4,Y in 1..3,X #< Y,labeling([leftmost],[X,Y]),writeln([X,Y]),fail.
[1,2]
[1,3]
[2,3]

no

instantiates X and Y to all values that satisfy their constraints, and does so by
considering each value in the domain of X, checking whether it violates any con-
straints, then considering each value of Y and checking whether it violates any
constraints.
• ff This “first-fail” strategy assignes values to variables based on the size of their

domains, from smallest to largest. By adopting this strategy, it is possible to
perform a smaller search for a satisfiable solution because the most constrained
variables may be considered first (though the bounds of the variable are checked
rather than a vector of allowable values).
• min and max This strategy labels variables in the order of their minimal lower

bound or maximal upper bound.

CHAPTER 11. CONSTRAINT PACKAGES 82

• min(Expr) and max(Expr) This strategy labels the variables so that their assign-
ment causes Expr to have a minimal or maximal value. Consider for example how
these strategies would affect the labelling of the preceding query:
|?- X in 1..4,Y in 1..3,X #< Y,labeling([min(Y)],[X,Y]),writeln([X,Y]),fail.
[1,2]

no
|?- X in 1..4,Y in 1..3,X #< Y,labeling([max(X)],[X,Y]),writeln([X,Y]),fail.
[2,3]

no

label(+VarList) bounds
Shorthand for labeling([leftmost],+VarList).

indomain(?Var) bounds
Unifies Var with an element of its domain, and upon sucessive backttrakcing, with all
other elements of its domain.

serialized(+BeginList,+Durations bounds
serialized/2 can be useful for scheduling problems. As input it takes a list of
variables or integers representing the beginnings of temporal events, along with a list
of non-negative intergers indicating the duration of each event in BeginList. The
effect of this predicate is to constrain each of the events in BeginList to have a start
time such that their durations do not overlap. As an example, consier the query

|?- X in 1..10, Y in 1..10, serialized([X,Y],[8,1]),label([X,Y]),writeln((X,Y)),fail.

In this query event X is taken to have duration of 8 units, while event Y is taken to
have duration of 1 unit. Executing this query will instantiate X and Y to many different
values, such as (1,9), (1,10), and (2,10) where X is less than Y, but also (10,1),
(10,2) and many others where Y is less than X. Refining the query as

X in 1..10, Y in 1..10, serialized([X,Y],[8,1]),X #< Y,label([X,Y]),writeln((X,Y)),fail.

removes all solutions where Y is less than X.

lex_chain(+List) bounds
lex_chain/1 takes as input a list of lists of variables and integers, and enforces the
constraint that each element in a given list is less than or equal to the elements in all
succeeding lists. As an example, consider the query

|?- X in 1..3,Y in 1..3,lex_chain([[X],[2],[Y]]),label([X,Y]),writeln([X,Y]),fail.
[1,2]
[1,3]
[2,2]
[2,3]

CHAPTER 11. CONSTRAINT PACKAGES 83

lex_chain/1 ensures that X is less than or equal to 2 which is less than or equal to Y.

Chapter 12

Constraint Handling Rules

12.1 Introduction

Constraint Handling Rules (CHR) is a committed-choice bottom-up language embedded in
XSB. It is designed for writing constraint solvers and is particularly useful for providing
application-specific constraints. It has been used in many kinds of applications, like schedul-
ing, model checking, abduction, type checking among many others.

CHR has previously been implemented in other Prolog systems (SICStus, Eclipse, Yap,
hProlog), Haskell and Java. The XSB CHR system is based on the hProlog CHR system.

In this documentation we restrict ourselves to giving a short overview of CHR in general
and mainly focus on XSB-specific elements. For a more thorough review of CHR we refer
the reader to [5]. More background on CHR can be found at [4].

In Section 12.2 we present the syntax of CHR in XSB and explain informally its oper-
ational semantics. Next, Section 12.3 deals with practical issues of writing and compiling
XSB programs containing CHR. Section 12.4 provides a few useful predicates to inspect the
constraint store and Section 12.5 illustrates CHR with two example programs. How to com-
bine CHR with tabled predicates is covered in Section 12.6. Finally, Section 12.7 concludes
with a few practical guidelines for using CHR.

12.2 Syntax and Semantics

12.2.1 Syntax

The syntax of CHR rules in XSB is the following:

rules --> rule, rules.

84

CHAPTER 12. CONSTRAINT HANDLING RULES 85

rules --> [].

rule --> name, actual_rule, pragma, [atom(’.’)].

name --> xsb_atom, [atom(’@’)].
name --> [].

actual_rule --> simplification_rule.
actual_rule --> propagation_rule.
actual_rule --> simpagation_rule.

simplification_rule --> constraints, [atom(’<=>’)], guard, body.
propagation_rule --> constraints, [atom(’==>’)], guard, body.
simpagation_rule --> constraints, [atom(’\’)], constraints, [atom(’<=>’)],

guard, body.

constraints --> constraint, constraint_id.
constraints --> constraint, [atom(’,’)], constraints.

constraint --> xsb_compound_term.

constraint_id --> [].
constraint_id --> [atom(’#’)], xsb_variable.

guard --> [].
guard --> xsb_goal, [atom(’|’)].

body --> xsb_goal.

pragma --> [].
pragma --> [atom(’pragma’)], actual_pragmas.

actual_pragmas --> actual_pragma.
actual_pragmas --> actual_pragma, [atom(’,’)], actual_pragmas.

actual_pragma --> [atom(’passive(’)], xsb_variable, [atom(’)’)].

Additional syntax-related terminology:

• head: the constraints in an actual_rule before the arrow (either <=> or ==>)

CHAPTER 12. CONSTRAINT HANDLING RULES 86

12.2.2 Semantics

In this subsection the operational semantics of CHR in XSB are presented informally. They
do not differ essentially from other CHR systems.

When a constraint is called, it is considered an active constraint and the system will try
to apply the rules to it. Rules are tried and executed sequentially in the order they are
written.

A rule is conceptually tried for an active constraint in the following way. The active
constraint is matched with a constraint in the head of the rule. If more constraints appear
in the head they are looked for among the suspended constraints, which are called passive
constraints in this context. If the necessary passive constraints can be found and all match
with the head of the rule and the guard of the rule succeeds, then the rule is committed and
the body of the rule executed. If not all the necessary passive constraint can be found, the
matching fails or the guard fails, then the body is not executed and the process of trying
and executing simply continues with the following rules. If for a rule, there are multiple
constraints in the head, the active constraint will try the rule sequentially multiple times,
each time trying to match with another constraint.

This process ends either when the active constraint disappears, i.e. it is removed by
some rule, or after the last rule has been processed. In the latter case the active constraint
becomes suspended.

A suspended constraint is eligible as a passive constraint for an active constraint. The
other way it may interact again with the rules, is when a variable appearing in the con-
straint becomes bound to either a non-variable or another variable involved in one or more
constraints. In that case the constraint is triggered, i.e. it becomes an active constraint and
all the rules are tried.

Rule Types There are three different kinds of rules, each with their specific semantics:

• simplification:

The simplification rule removes the constraints in its head and calls its body.

• propagation:

The propagation rule calls its body exactly once for the constraints in its head.

• simpagation:

The simpagation rule removes the constraints in its head after the \ and then calls its
body. It is an optimization of simplification rules of the form:

constraints1, constraints2 <=> constraints1, body

CHAPTER 12. CONSTRAINT HANDLING RULES 87

Namely, in the simpagation form:

constraints1\constraints2 <=> body

The constraints1 constraints are not called in the body.

Rule Names Naming a rule is optional and has no semantical meaning. It only functions
as documentation for the programmer.

Pragmas The semantics of the pragmas are:

• passive/1: the constraint in the head of a rule with the identifier specified by the
passive/1 pragma can only act as a passive constraint in that rule.

Additional pragmas may be released in the future.

12.3 CHR in XSB Programs

12.3.1 Embedding in XSB Programs

Since chr is an XSB package, it must be explicitly loaded before being used.

?- [chr].

CHR rules are written in a tt .chr file. They should be preceded by a declaration of the
constraints used:

:- constraints ConstraintSpec1, ConstraintSpec2, ...

where each ConstraintSpec is a functor description of the form name/arity pair. Ordinary
code may be freely written between the CHR rules.

The CHR constraints defined in a particular .chr file are associated with a CHR module.
The CHR module name can be any atom. The default module is user. A different module
name can be declared as follows:

:- chr_module(modulename).

One should never load different files with the same CHR module name.

CHAPTER 12. CONSTRAINT HANDLING RULES 88

12.3.2 Compilation

Files containing CHR rules are required to have a .chr extension, and their compilation has
two steps. First the .chr file is preprocessed into a .P file containing XSB code. This .P
file can then be loaded in the XSB emulator and used normally.

load_chr(File) chr_pp
load_chr/1 takes as input a file name whose extension is either .chr or that has no
extension. It preprocesses File if the times of the CHR rule file is newer than that of
the corresponding Prolog file, and then consults the Prolog file.

preprocess(File,PFile) chr_pp
preprocess/2 takes as input a file name whose extension is either .chr or that has
no extension. It preprocesses File if the times of the CHR rule file is newer than that
of the corresponding Prolog file, but does not consult the Prolog file.

12.4 Useful Predicates

The chr module contains several useful predicates that allow inspecting and printing the
content of the constraint store.

show_store(+Mod) chr
Prints all suspended constraints of module Mod to the standard output.

suspended_chr_constraints(+Mod,-List) chr
Returns the list of all suspended CHR constraints of the given module.

12.5 Examples

Here are two example constraint solvers written in CHR.

• The program below defines a solver with one constraint, leq/2, which is a less-than-
or-equal constraint.

:- chr_module(leq).

:- export cycle/3.

:- import length/2 from basics.

CHAPTER 12. CONSTRAINT HANDLING RULES 89

:- constraints leq/2.
reflexivity @ leq(X,X) <=> true.
antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y.
idempotence @ leq(X,Y) \ leq(X,Y) <=> true.
transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

cycle(X,Y,Z):-
leq(X,Y),
leq(Y,Z),
leq(Z,X).

• The program below implements a simple finite domain constraint solver.

:- chr_module(dom).

:- import member/2 from basics.

:- constraints dom/2.

dom(X,[]) <=> fail.
dom(X,[Y]) <=> X = Y.
dom(X,L1), dom(X,L2) <=> intersection(L1,L2,L3), dom(X,L3).

intersection([],_,[]).
intersection([H|T],L2,[H|L3]) :-

member(H,L2), !,
intersection(T,L2,L3).

intersection([_|T],L2,L3) :-
intersection(T,L2,L3).

These and more examples can be found in the examples/chr/ folder accompanying this
XSB release.

12.6 CHR and Tabling

The advantage of CHR in XSB over other Prolog systems, is that CHR can be combined with
tabling. Hence part of the constraint solving can be performed once and reused many times.
This has already shown to be useful for applications of model checking with constraints.

However the use of CHR constraints is slightly more complicated for tabled predicates.
This section covers how exactly to write a tabled predicate that has one or more arguments

CHAPTER 12. CONSTRAINT HANDLING RULES 90

that also appear as arguments in suspended constraints. In the current release the CHR-
related parts of the tabled predicates have to be written by hand. In a future release this
may be substituted by an automatic transformation.

12.6.1 General Issues and Principles

The general issue is how call constraints should be passed in to the tabled predicate and how
answer constraints are passed out of the predicate. Additionally, in some cases care has to
be taken not to generate infinite programs.

The recommended approach is to write the desired tabled predicate as if no additional
code is required to integrate it with CHR. Next transform the tabled predicate to take
into account the combination of tabling and CHR. Currently this transformation step has
to be done by hand. In the future we hope to replace this hand coding with programmer
declarations that guide automated transformations.

Hence we depart from an ordinary tabled predicate, say p/1:

:- table p/1.

p(X) :-
... /* original body of p/1 */.

In the following we will present several transformations or extensions of this code to
achieve a particular behavior. At least the transformation discussed in subsection 12.6.2
should be applied to obtain a working integration of CHR and tabling. Further extensions
are optional.

12.6.2 Call Abstraction

Currently only one type of call abstraction is supported: full constraint abstraction, i.e. all
constraints on variables in the call should be removed. The technique to accomplish this is
to replace all variables in the call that have constraints on them with fresh variables. After
the call, the original variables should be unified with the new ones.

In addition, the call environment constraint store should be replaced with an empty
constraint store before the call and on return the answer store should be merged back into
the call environment constraint store.

The previously mentioned tabled predicate p/1 should be transformed to:

:- import merge_answer_store/1,
get_chr_store/1,

CHAPTER 12. CONSTRAINT HANDLING RULES 91

set_chr_store/1,
get_chr_answer_store/2

from chr.

:- table tabled_p/2.

p(X) :-
tabled_p(X1,AnswerStore),
merge_answer_store(AnswerStore),
X1 = X.

tabled_p(X,AnswerStore) :-
get_chr_store(CallStore),
set_chr_store(_EmptyStore)
orig_p(X),
get_chr_answer_store(chrmod,AnswerStore),
set_chr_store(CallStore).

orig_p(X) :-
... /* original body of p/1 */.

This example shows how to table the CHR constraints of a single CHR module chrmod. If
multiple CHR modules are involved, one should add similar arguments for the other modules.

12.6.3 Answer Projection

To get rid of irrelevant constraints, most notably on local variables, the answer constraint
store should in some cases be projected on the variables in the call. This is particularly
important for programs where otherwise an infinite number of answers with ever growing
answer constraint stores could be generated.

The current technique of projection is to provide an additional project/1 constraint
to the CHR solver definition. The argument of this constraint is the list of variables to
project on. Appropriate CHR rules should be written to describe the interaction of this
project/1 constraint with other constraints in the store. An additional rule should take
care of removing the project/1 constraint after all such interaction.

The project/1 constraint should be posed before returning from the tabled predicate.
If this approach is not satisfactory or powerful enough to implement the desired projection

operation, you should resort to manipulating the underlying constraint store representation.
Contact the maintainer of XSB’s CHR system for assistance.

CHAPTER 12. CONSTRAINT HANDLING RULES 92

Example Take for example a predicate p/1 with a less than or equal constraint leq/2 on
variables and integers. The predicate p/1 has local variables, but when p returns we are not
interested in any constraints involving local variables. Hence we project on the argument of
p/1 with a project constraint as follows:

:- import memberchk/2 from lists.

:- import merge_answer_store/1,
get_chr_store/1,
set_chr_store/1,
get_chr_answer_store/2

from chr.

:- table tabled_p/2.

:- constraints leq/2, project/1.

... /* other CHR rules */
project(L) \ leq(X,Y) <=>

(var(X), \+ memberchk(X,L)
; var(Y), \+ memberchk(Y,L)
) | true.

project(_) <=> true.

p(X) :-
tabled_p(X1,AnswerStore),
merge_answer_store(AnswerStore),
X1 = X.

tabled_p(X,AnswerStore) :-
get_chr_store(CallStore),
set_chr_store(_EmptyStore)
orig_p(X),
project([X]),
get_chr_answer_store(chrmod,AnswerStore),
set_chr_store(CallStore).

orig_p(X) :-
... /* original body of p/1 */.

The example in the following subsection shows projection in a full application.

CHAPTER 12. CONSTRAINT HANDLING RULES 93

12.6.4 Answer Combination

Sometimes it is desirable to combine different answers to a tabled predicate into one single
answer or a subset of answers. Especially when otherwise there would be an infinite number
of answers. If the answers are expressed as constraints on some arguments and the logic
of combining is encoded as CHR rules, answers can be combined by merging the respective
answer constraint stores.

Another case where this is useful is when optimization is desired. If the answer to a
predicate represents a valid solution, but an optimal solution is desired, the answer should
be represented as constraints on arguments. By combining the answer constraints, only the
most constrained, or optimal, answer is kept.

Example An example of a program that combines answers for both termination and op-
timisation is the shortest path program below:

:- chr_module(path).

:- import length/2 from lists.

:- import merge_chr_answer_store/1,
get_chr_store/1,
set_chr_store/1,
get_chr_answer_store/2

from chr.

breg_retskel(A,B,C,D) :- ’_$builtin’(154).

:- constraints geq/2, plus/3, project/1.

geq(X,N) \ geq(X,M) <=> number(N), number(M), N =< M | true.

reflexivity @ geq(X,X) <=> true.
antisymmetry @ geq(X,Y), geq(Y,X) <=> X = Y.
idempotence @ geq(X,Y) \ geq(X,Y) <=> true.
transitivity @ geq(X,Y), geq(Y,Z) ==> var(Y) | geq(X,Z).

plus(A,B,C) <=> number(A), number(B) | C is A + B.
plus(A,B,C), geq(A,A1) ==> plus(A1,B,C1), geq(C,C1).
plus(A,B,C), geq(B,B1) ==> plus(A,B1,C1), geq(C,C1).

project(X) \ plus(_,_,_) # ID <=> true pragma passive(ID).
project(X) \ geq(Y,Z) # ID <=> (Y \== X ; var(Z))| true pragma passive(ID).
project(_) <=> true.

CHAPTER 12. CONSTRAINT HANDLING RULES 94

path(X,Y,C) :-
tabled_path(X,Y,C1,AS),
merge_chr_answer_store(AS),
C = C1.

:- table tabled_path/4.

tabled_path(X,Y,C,AS) :-
’_$savecp’(Breg),
breg_retskel(Breg,4,Skel,Cs),
copy_term(p(X,Y,C,AS,Skel),p(OldX,OldY,OldC,OldAS,OldSkel)),

get_chr_store(GS),
set_chr_store(_GS1),
orig_path(X,Y,C),

project(C),
(get_returns(Cs,OldSkel,Leaf),

OldX == X, OldY == Y ->
merge_chr_answer_store(OldAS),
C = OldC,
get_chr_answer_store(path,MergedAS),
sort(MergedAS,AS),
(AS = OldAs ->

fail
;

delete_return(Cs,Leaf)
)

;
get_chr_answer_store(path,UnsortedAS),
sort(UnsortedAS,AS)

),
set_chr_store(GS).

orig_path(X,Y,C) :- edge(X,Y,C1), geq(C,C1).
orig_path(X,Y,C) :- path(X,Z,C2), edge(Z,Y,C1), plus(C1,C2,C0), geq(C,C0).

edge(a,b,1).
edge(b,a,1).
edge(b,c,1).
edge(a,c,3).
edge(c,a,1).

The predicate orig_path/3 specifies a possible path between two nodes in a graph. In
tabled_path/4 multiple possible paths are combined together into a single path with the
shortest distance. Hence the tabling of the predicate will reject new answers that have a

CHAPTER 12. CONSTRAINT HANDLING RULES 95

worse distance and will replace the old answer when a better answer is found. The final
answer gives the optimal solution, the shortest path. It is also necessary for termination to
keep only the best answer. When cycles appear in the graph, paths with longer and longer
distance could otherwise be put in the table, contributing to the generation of even longer
paths. Failing for worse answers avoids this infinite build-up.

The predicate also includes a projection to remove constraints on local variables and only
retain the bounds on the distance.

The sorting canonicalizes the answer stores, so that they can be compared.

12.6.5 Overview of Tabling-related Predicates

merge_answer_store(+AnswerStore) chr
Merges the given CHR answer store into the current global CHR constraint store.

get_chr_store(-ConstraintStore) chr
Returns the current global CHR constraint store.

set_chr_store(?ConstraintStore) chr
Set the current global CHR constraint store. If the argument is a fresh variable, the
current global CHR constaint store is set to be an empty store.

get_chr_answer_store(+Mod,-AnswerStore) chr
Returns the part of the current global CHR constraint store of constraints in the
specified CHR module, in the format of an answer store usable as a return argument
of a tabled predicate.

12.7 Guidelines

In this section we cover several guidelines on how to use CHR to write constraint solvers and
how to do so efficiently.

• Set semantics: The CHR system allows the presence of identical constraints, i.e.
multiple constraints with the same functor, arity and arguments. For most constraint
solvers, this is not desirable: it affects efficiency and possibly termination. Hence
appropriate simpagation rules should be added of the form:

constraint\constraint <=> true

• Multi-headed rules: Multi-headed rules are executed more efficiently when the con-
straints share one or more variables.

CHAPTER 12. CONSTRAINT HANDLING RULES 96

12.8 CHRd

An alternate implementation of CHR can be found in the CHRd package. The main objec-
tive of the CHRd package is to optimize processing of constraints in the environment where
termination is guaranteed by the tabling engine, (and where termination benefits provided
by the existing solver are not critical). CHRd takes advantage of XSB’s tabling to sim-
plify CHR’s underlying storage structures and solvers. Specifically, we entirely eliminate the
thread-global constraint store in favor of a distributed one, realized as a collection of sets of
constraints entirely associated with program variables. This decision limits the applicability
of CHRd to a restricted class of CHR programs, refered to as direct-indexed CHR,in which
all constraints in the head of a rule are connected by shared variables. Most CHR programs
are direct-indexed, and other programs may be easily converted to fall into this class. An-
other advance of CHRd is its set-based semantics which removes the need to maintain the
propagation history, thus allowing further simplicity in the representation of the constraints.
The CHRd package itself is described in [12], and both the semantics of CHRd and the class
of direct-indexed CHR are formally defined in [13].

Chapter 13

The viewsys Package

chapter:viewsys

By David S Warren

The viewsys package provides a powerful mechanism to support tasks information is
combined from different sources. Views can be constructed either from external data or
from other views. In this way, a View System supports a DAG of views.

More precisely we can think of a view as an abstracted data source – say a web query
or database query. Base views are data sources from outside the system. A non-base view
is a data source that is determined (and computed) by its process applied to its input data
sources. An example of a non-base view might consist of data from two sources where
information from one source may override that of another source under certain conditions.

A view system workflow (ViewSys for short) describes the names of the views, their input
views, the command to be run to generate a view from its inputs, etc. A particular instance
of a ViewSys is determined by the specific external data sources associated with the base
views of the ViewSys. An instance of a Viewsys designates the set of views constructed
from a given set of (external) base views at a given time. It is useful to give names to such
instances, usually indicating the external source of the base data sources.

Another useful component of a view system is what is called a consistency view. The
purpose of a consistency view is to check to see whether a regular view is ’consistent’. The
command for a consistency view should return non-zero if the view instance is not deemed
to be consistent. The view system will run consistency views where applicable and will not
use a view as input to another view that it supports if it is deemed not consistemt. A single
view may have zero or more consistency views associated with it.

97

CHAPTER 13. THE VIEWSYS PACKAGE 98

13.1 An Example

Consider a situation in which we are collecting data from four institutions of higher education
and want to integrate that data into a dataset that allows us to make coherent queries across
the data from all institutions. We might want to answer questions about the possibility of
transferring classes between the schools, or perhaps whether a student might take a class
scheduled at one that would be equivalent to one at another, if schedules don’t conflict.

Say we have two community colleges, AJC and ACC, and two 4-year colleges, UC and
UD. And we collect information from each of them concerning, say, currently scheduled
classes at their institutions.

To integrate data from all four institutions, we might create the following view system:

clnajc
ajc ------> ajc-cleaned--+

| comb2
clnacc |------>2-year-info--+

acc ------> acc-cleaned--+ |
| comb24

clnuc |--------> 2-4-info
UC -------> uc-cleaned--+ |

| comb4 |
clnud |------>4-year-info---+

UD -------> ud-cleaned--+

For each raw-data input from an institution, we have a process to “clean” that data
(indicated in the diagram by a name cln<inst>), that generates a file (view) containing
“cleaned”and “standardized” data (indicated in the diagram by <inst>-cleaned.) Then we
have a process, comb2, that combines the two cleaned community college datasets to create a
view, 2-year-info; and another, comb4, that combines the two cleaned 4-year college datasets
to create the view, 4-year-info. And finally, we have a process, comb24, that takes those two
views and generates a fully combined dataset (i.e., view), 2-4-info.

This viewsys system has 11 views, 4 of which are base views and 7 derived views. And
it has 7 processes, one to generate each derived view.

We can imagine what these processes might do: the cleaning processes would do institution-
specific transformations of the input data, maybe standardizing names of equivalent classes;
inferring a new variable of the level of the classe (intro, intermediate, advanced) from the
class naming/numbering conventions of the particular institution; standardizing class-time
representations given different scheduling conventions; etc. The comb<?> processes might
simply project and union their inputs, but in the real world, they are more likely to perform
other more complex inferences and transformations.

CHAPTER 13. THE VIEWSYS PACKAGE 99

We could easily imagine having other (mostly static) data inputs (not shown here) to
these cleaning processes that provide institution-specific information necessary to do such
transformations. We can also imagine that we have another process that uses, say, the 2-
year-info view, to combine it with other information we’ve gleaned from 2-year colleges to
provide another view that can answer other questions of interest.

We can imagine that the datasets we get from the source institutions arrive at different
times but we want the best data in the coherent eviews to be available to any query. So if a
new file from, say, UC, shows up, we need only run the processes clnuc, comb4, and comb24
to be sure that all data is up to date.

13.2 The ViewSys Data Model

A ViewSys workflow is specified by a set of facts of the following predicates. Users should
put the appropriate facts for these predicates that define their view system into a file named
viewsys_view_info.P.

View Framework Model

For each view (base or derived), there is a view/6 fact that describes it:
view(View,Type,ViewNameTemplate,[InputViews],[Opts],ShCmd) where:

• View is the name of the view;

• Type is file, dir(<FileNames>), or table. <If it is file, the view is stored in a file
(that is generated by the ShCmd). It dir(<FileNames>) the view is stored in multiple
files in a directory. <FileNames> are the (relative) names of the files that store the
view in that directory (instance). Finally, if the type is table, the view is a database
table.

• ViewNameTemplate is the path template for where instance versions are stored. This
template string normally contains the pattern variable $INSTANCE$ which will be
replaced by the instance name to obtain the name of an instance of this view. (If the
viewsys will have only one instance, the $INSTANCE$ variable is not required.)
A template may also contain user-defined pattern variables of the form $USERVAR-
NAME$ where $USERVARNAME$ is any upper-case letter sequence (except those
reserved for viewsys system variables.) User-defined pattern variable values are de-
fined in facts of the form
viewsys_uservar($USERVARNAME$,VarValueString).
When instantiated by an instance name and user-variable values, the template identifies
the instance of the given view (e.g., a file, table or directory).

CHAPTER 13. THE VIEWSYS PACKAGE 100

• [InputViews] is a list of the names of views that this view directly depends on, i.e., the
inputs needed to generate this view. This is an empty list for base views. Normally
these input view indicators are atoms for which there is another view/6 fact that
describes it. However, if that view generates a directory and the input to this view
is a file in that directory, then that filename should be put as an argument to the
view atom. E.g., if the view, m_view, generates a directory and several files in it and
this view needs to use the file ’first_file.P’ from that directory, then the input view
indicator in this list should be the term m_view(’first_file.P’).

• [Opts] is a list of options. The possible options are:

– split(N) where N is a positive integer. This tells viewsys to split the first input
view file into N subfiles; to run this command on each of those subfiles; and
to concatenate all the resulting subfiles back together to get the output file for
this view. Of course, this is only appropriate for view commands for which this
process gives the same answer as running it on the large unsplit file. When the
command satisfies this property, this option can allow the records in a large file
to be processed in parallel.
If this option is used, the user must first run expand_views(ViewDir) to generate
a viewsys file that implements the splitting. It will move the viewsys_view_info.P
file to viewsys_view_orig_info.P replace it with a modified version of the file
that will drive the viewsys processing. (If the file viewsys_view_orig_info.P
exists, the operation will indicate an error, in order to protect against inadver-
tantly overwriting the original viewsys_view_info.P file.)

• ShCmd is the shell command to execute to generate the view instance from its input
view instances. (Ignored for base views.) The shell command can be in one of two
forms:

1. a string containing metavariables of the form $INP1$, $INP2$, ..., and OUT,
which will be replaced by the filenames of the input view instance files/directories
and the output view instance file/directory, respectively; or

2. a string containing the metavariables $INPUTFILES$ and $OUTPUTFILE$,
which will be replaces with the sequence of input filenames and the output file-
name, respectively, where each filename is enclosed in double-quotes. This is
often appropreate for shell commands. If the shell string doesn’t contain any of
the metavariables, then it is treated as if it were: <ShCmd> $INPUTFILES$
$OUTPUTFILE$’.

User-defined syntactic variables can be used in filename templates and in shell command
templates to make it easier to define filenames and commands. The predicate viewsys_uservar/2
is used to define user variables, and facts for this predicate should be placed in the viewsys_view_info.P
file. For example, assume the user adds the following facts to that file:

CHAPTER 13. THE VIEWSYS PACKAGE 101

viewsys_uservar(’$DATA_DIR$’,’C:/userfiles/project1/data’).
viewsys_uservar(’$SCRIPT_LIB$’,’c:/userfiles/project1/scripts’).

With these declarations in viewsys_view_info.P, a file template string could be of the
form $DATA_DIR$/data_file_13, which after replacement of the syntactic variable by its
value would refer to the file ’C:/userfiles/project1/data/data_file_13’. A shell command
string could be sh $SCRIPT_LIB$/script_cc.sh, which after replacements would cause the
command sh c:/userfiles/project1/scripts/script_cc.sh to be run. User variables
are normally defined at the beginning of the view file and can be used to allow locations to
be easily changed. The value of a user variable may contain another user variable, but, of
course, cycles are not permitted.

The user must define a uservar of $STDOUTFILE$ which is the filename into which the
stdout streams from the execution of a view generation will be put. The user should use the
$INSTANCE$ and $VIEW$ variables to make it unique for each output stream.

Consistency Views For each consistency view, there is a consView/5 fact:
consView(ConsViewName, CheckedViewName, FileTemplate, [Inputs], ShCmd)

where

• ConsViewName is the name of the consistency view.

• ViewName is the name of the view this view checks.

• FileTemplate is the template for the output file for this consistency check. This file
may be used to provide information as to why the consistency check failed (or passed.)

• [InputViews] is a list of parameter input views (maybe empty)

• ShCmd is the shell command the executes the consistency check. The inputs are the
the filename containing the view instance to be checked followd by the input view file
instances. The output is the output file instance. These parameters are processed
similarly to the processing for shell-commands for regular views.

13.3 View Instance Model

A ViewSys Instance is a particular instantiation of a ViewSys workflow that is identified by
a name, usually indicating the source of the base views. Of course, the files (directories) that
contain instances of views must all be distinct.

View instances are described by another set of facts, which are stored in a file named
viewsys_instance_info.P. Whereas the user is responsible for creating the viewsys_view_info.P

CHAPTER 13. THE VIEWSYS PACKAGE 102

file, viewsys creates and maintains the viewsys_instance_info.P file in response to viewsys
commands entered by the user.

For each view instance (base or derived), there is a viewInst/5 fact:
viewInst(View,InstName,Status,Date,Began) where:

• View is the name of a view;

• InstName is the name of the instance;

• Status is the status of this view instance not_generated, being_generated(ProcName),
generated, generation_failed. (For base view instances this is always generated.)

• Date is the date-time the view instance was generated.

• Began is the date-time at which the generation of this view began. (This is the same
as Date above for base view instances.) It is used to estimate how long it will take to
generate this view output given its inputs.

For each consistency view instance, there is a consViewInst/5 fact:
consViewInst(ConsViewName, InstName, Status, Date, Began)
where;

• ConsViewName is the name of the consistency view.

• Status is this consistency view, same as for viewInst status.

• Date is the date-time the check was generated.

• Began is the date-time at which the generation of this view began.

The ViewSys relations, view/6, consView/5, and viewOrig/6, are stored in the file
named viewsys_view_info.P. It is read for most commands, but not updated. (Only
expand_views/1 generates this file from the file namsd viewsys_view_orig_info.P.) viewInst/5,
and consViewInst/5 are stored in the file named vieewsys_instance_info.P, and the di-
rectory containing these files is explicitly provided to predicates that need to operate on it.
The contents of the files are Prolog terms in canonical form.

A lockfile (named lock_view in the viewsys directory) is obtained whenever these files
are read, and it is kept until reading and rewriting (if necessary) is completed.

CHAPTER 13. THE VIEWSYS PACKAGE 103

13.4 Using ViewSys

The viewsys system is normally used as follows. The user creates a directory to hold the
viewsys information. She creates a file viewsys_view_info.P in this directory containing the
desired view/6, and consView/5 facts that describe the desired view system. Then the user
consults the viewsys.P package, and runs check_viewsys/1 to report any obvious inconsis-
tencies in the view system specified in the file viewsys_view_info.P. After the check passes,
if any views have the split(N) option, the user should copy the viewsys_view_info.P file to
a file named viewsys_orig_view_info.P and then run expand_views/1 to generate the ap-
propriate file viewsys_view_info.P to contain the views necessary to split, execute and com-
bine the results. This will overwrite the viewsys_view_info.P file. (From then on, should
the viewsys need to be modified, the user should edit the viewsys_orig_view_info.P file,
and rerun expand_views/1 to regenerate the viewsys_view_info.P file.) The user will then
run generate_view_instance/2 to generate an instance (or instances) of the view system
into the file viewsys_instance_info.P. After that the user will run update_views/4 to run
the workflow to generate all the view contents. Then the user checks the generated logging to
determine if there were any errors. If so, the user corrects the programs (the viewsys specifi-
cation, whatever), executes reset_failed/2 and reruns update_views/4. The user can also
use viewsys_status/1 to determine what the state of the view system is, and to determine
what needs to be fixed and what needs to be rerun. If the execution of update_views/4
is aborted or somehow does not complete, the user can run reset_unfinished/2 to reset
the views that were in process, so that a subsequent update_views/4 will try to recompute
those unfinished computations.

generate_new_instance(ViewSys,VInst) module: view_sys
generate_new_instance(+ViewSys,+VInst) creates a brand new instance of the view
system ViewSys named VInst. It generates new viewInst/5 facts for every view (base
and derived) according to the file templates defined in the baseView/4, and view/6
facts of the ViewSys. VInst may be a list of instance names, in which case initial
instances are created for each one.

update_instance(ViewSys,VInst) module: view_sys
update_instance(+ViewSys,+VInst) updates an instance of the view system ViewSys
named VInst. It is similar to generate_new_instance/2 but doesn’t change existing
instance records. It generates a new viewInst/5 (or consViewInst/5) fact for every
view (base and derived) that does not already exist in the
viewsys_instance_info.P file. It doesn’t change instances that already exisit, thus
preserving their statuses and process times.

delete_instance(ViewSys,VInst) module: view_sys
delete_instance(+ViewSys,+VInst) removes an entire instance from the view sys-
tem. Any files of view contents that have been generated remain; only information

CHAPTER 13. THE VIEWSYS PACKAGE 104

concerning this instance in the viewsys_instance_info.P file is removed, so these
view instances are no longer maintained.

update_views(ViewSys,ViewInstList,ProcName,NProcs) module: view_sys
update_views(+ViewSys, +ViewInstList, +ProcName, +NProcs) is the predicate
that runs the shell commands of view instances to create view instance contents. It
ensures that most recent versions of the view instances in ViewInstList (and all in-
stances required for those views, recursively) are up to date by executing the commands
as necessary. A view instance is represented in this list by a term View:InstName. If
ViewInstList is the atom ’all’, all view instances will be processed. This predicate
will determine what computations can be done concurrently and will use up to NProcs
concurrent processes (using spawn_process on the current machine) to compute them.
ProcName is a user-provided process namde that used to identify this (perhaps very
long-running) process; it is used to indicate, in Ststus=being_updated(ProcName)
that a view instance is in the process of being computing by this update_views in-
vocation. reset_unfinished/2 uses the name to identify the view instances that a
particular invocation of this process is responsible for.

start_available_procs(ViewSys,ViewInstList,ExecutingPids,ProcName,NProcs,Slp,OStr)
module: view_sys

start_available_procs(+ViewSys, +ViewInstList, +ExecutingPids, +ProcName,
+NProcs, +Slp, +OStr) is an internal predicate that supports the view_update/4
processing. It finds all views that can be generated (or checked), starts processes
to compute NProcs of them, and then calls monitor_running_procs/7 to moni-
tor their progress and start more processes as these terminate. This is an inter-
nal predicate, not available for call from outside the module. The parameters to
start_available_procs/7 are:

1. ViewSys is the directory containing the viewsys_info.P file describing the view
system.

2. ViewInstList is a) an explicit list of records of the form View:Inst identifying the
(derived) views, normally ’root’ views, that are intended to be generated by the
currently running update_view/4 invocation; or b) the constant ’all’ indicating
that all view instances of the view system are intended to be generated.

3. ExecutingPids are pid records of the currently running processes that have been
spawned. A pid record is of the form: pid(Pid,ShCmd,SStr,FileOut,Datime,
View,File,Inst), where
• Pid is the process ID of the process (as returned by spawn_process/5.)
• ShCmd is the shell command that was used to start the process.
• SStr is the output stream of the process’s stdout and stderr file.
• FileOut is the name of the file connected to the stdout/stderr stream.

CHAPTER 13. THE VIEWSYS PACKAGE 105

• Datime is the datime that the process was started.
• View is the view the process is generating.
• @var(File) is the name of the output file to contain the contents of the view

instance.
• Inst is the instance of the view the process is generating.

4. ProcName is the user-provided name of this entire update process, and is used
to mark views (in the viewsys_instance_info.P file) during processing so they
can be identified as associated to this view-update process if some error occurs.

5. NProcs is the number of ’processors’ available for a process to be scheduled on.
The ’processors’ are virtual, and this is used to control the maximum number of
concurrently running processes.

6. Slp is the number of seconds to sleep if no subprocess is available for starting
before checking again to see if some subprocess has completed in the interim.

7. OStr is the output stream used to write progress messages when processes start
and complete.

monitor_running_procs(Pids,NProcs,ViewSys,VInstList,ProcName,Slp,OStr) module: view_sys
monitor_running_procs(+Pids, +NProcs, +ViewSys, +VInstList, +ProcName, +Slp,
+OStr) is an internal predicate that monitors previously spawned running processes,
calling start_available_procs/7 to spawn new ones when running processes finish.

1. Pids is the list of process IDs of running processes. Each entry is a record of the
form pid(Pid,Cmd,StdStr,FileOut,Datime,View,File,Inst) where:
• Pid is the process ID of the process (as returned by spawn_process/5.)
• ShCmd is the shell command that was used to start the process.
• SStr is the output stream of the process’s stdout and stderr file.
• FileOut is the name of the file connected to the stdout/stderr stream.
• Datime is the datime that the process was started.
• View is the view the process is generating.
• @var(File) is the name of the output file to contain the contents of the view

instance.
• Inst is the instance of the view the process is generating.

2. NProcs is the number of ’processors’ that are currently available for use. starrt_available_procs
can start up to this number of new processes.

3. ViewSys is the viewsys directory;
4. VInstList is the list of view instances (or ’all’) that are being updated by this

execution of update_views/4.;

CHAPTER 13. THE VIEWSYS PACKAGE 106

5. ProcName is the caller-provided name of this update processor used to mark views
that are being updated by this update process; and

6. Slp is the number of seconds to sleep if no process is available for starting.
7. OStr is the output stream for writing status messages;

generate_file_from_template(+FileTempl,+View,+Inst,-FileName) module: view_sys
generate_file_from_template(+FileTempl,+View,+Inst,-FileName) takes a file
template string (with embedded $$ variable names), a view name, View, an instance
name, Inst, and replaces the variable names with their values, returnning FileName.

invalidate_all_instances(ViewSys) module: view_sys
invalidate_all_instances(+ViewSys) invalidates all views, so a subsequent invoca-
tion of update_views/4 would recompute them all.).

invalidate_view_instances(ViewSys,ViewInstList) module: view_sys
invalidate_view_instances(+ViewSys,+ViewInstList) invalidates a set of view in-
stances indicated by ViewInstList. If ViewInstList is the atom ’all’, this invalidates
all instances (exactly as invalidate_all_instances/1) does.) If ViewInstList is
a list of terms of the form View:VInst then these indicated view instances (and all
views that depend on them) will be invalidated. If ViewInstList is the atom ’filetime’,
then the times of the instance files will be used to invalidate view instances where the
filetime of some view instance input file is later than the filetime of the view instance
output file. Note this does not account for the time it takes to run the shell command
that generates the view output, so for it to work, no view instance input file should be
changed while a view instance is in the process of being generated.
This predicate can be used if a base instance file is replaced with a new instance. It
can be used if the contents of a view instance are found not to be correct, and the
generating process has been modified to fix it.

reset_unfinished(ViewSys,ProcName) module: view_sys
reset_unfinished(+ViewSys,+ProcName) resets view instances that are unfinished
due to some abort, i.e., that are marked as being_generated(ProcName) after the
view_update process named ProcName is no longer running scripts to generate view
instances. This should only be called when the ProcName view_update process is not
running. The statuses of these view instances will be reset to not_generated. After
this, the next applicable update_views/4 will try to recreate these view instances.

show_failed(VSDir,VInst) module: view_sys
show_failed(+VSDir,+VInst) displays each failed view instance and consistency view
instance, with file information to help a user track down why the generation, or check,
of the view failed.

CHAPTER 13. THE VIEWSYS PACKAGE 107

reset_failed(ViewSys,VInst) module: view_sys
reset_failed(+ViewSys,+VInst) resets view instances with name VInst that had
failed, i.e., that are marked as generation_failed. Their status will be reset to
not_generated, so after this, the next applicable call to update_views/4 will try to
regenerate the view. If VInst is ’all’, then views of all instances will be reset.).

check_viewsys(ViewDir) module: view_sys
check_viewsys(+ViewDir) checks the contents of the viewsys_view_info.P file of
the ViewDir viewsys directory for consistency and completeness.

viewsys_view_status(+ViewDir,+View:Inst,-Status) module: view_sys
viewsys_view_status(+ViewDir,+View:Inst,-Status) returns the Status of the in-
dicated view in the indicated view instance.

viewsys_status(+ViewDir) module: view_sys
viewsys_status(+ViewDir) prints out the status of the view system indicated in
ViewDir for all the options in viewsys_status/2.

viewsys_status(+ViewDir,+Option) module: view_sys
viewsys_status(+ViewDir,+Option) prints out a particular list of view instance sta-
tuses as indicated by the value of option as follows:

active: View instances currently in the process of being generated.
roots: Root View instances and their current statuses. A root view instance is one

that no other view depends on.
failed: View instances whose generation has failed
waiting: View instances whose computations are waiting until views they depend on

are successfully update.
checks_waiting: View instances that are waiting for consistency checks to be executed.
checks_failed: View instances whose checks have executed and failed.

expand_views(ViewSys) module: expand_views/1
view_sys expand_views(+ViewSys) processes view/6 definitions that have a split(N)
option, generates the necessary new view/6 facts to do the split, component processing,
and rejoin. It overwrites the viewsys_view_info.P file, putting the original view/6 facts
into viewOrig/6 facts. This must be called (if necessary) when creating a new viewsys
system and before calling generate_view_instance/2.).

generate_required_dirs(+SubstList,+LogFiles) module: generate_required_dirs/2
view_sys This predicate can be used to help the user generate viewsys_required_file/1
facts that may help in configuration and deployment of view systems. It is not needed
to create and run normal view systems, only help configure the viewsys_view_info.P

CHAPTER 13. THE VIEWSYS PACKAGE 108

file to support using copy_required_files/2 to move them for deployment, when
that is necessary.
generate_required_dirs(+SubstList,+LogFiles) takes an XSB_LOGFILE (or list
of XSB_LOGFILEs), normally generated by running a step in the view system, and
generates (to userout) viewsys_required_file/1 facts. These can be edited and the
copied into the viewsys_view_info.P file to document what directories (XSB code and
general data files) are required for running this view system. The viewsys_required_file/1
facts are used by copy_required_files/2 to generate a new set of files that can run the
view system.
This predicate can be called in one shell when update_views/4 is running in an-
other shell. This allows the user to monitor the status a long-running invocation of
update_views/4.
SubstList is a list of substitutions of the form s(VarString,RootDir) that are ap-
plied to @emgeneralize each directory name. For example if we have a large library
file structure, in subdirectories of C:/XSBSYS/XSBLIB, the many loaded files (in an
XSB_LOGFILE) will start with this prefix, for example,
C:/XSBSYS/XSBLIB/apps/app_1/proc_code.xwam.
By using the substitution, s(’DIR’,’C:/XSBCVS/XSBLIB’), that file name will be
abstracted to: ’DIR/apps/app_1’ in the viewsys_required_file/1 fact. Then
copy_required_files/2 can replace this variable DIR with different roots to deter-
mine the source and target of the copying.
LogFiles is an XSB_LOGFILE, that is generated by running xsb and initially calling
machine:stat_set_flag(99,1). This will generate a file named XSB_LOGFILE.txt (in
the current directory) that contains the names of all files loaded during that execution
of xsb. (If the flag is set to @ttK > 1, then the name of the generated file will be
XSB_LOGFILE_<K>.txt where <K> is the number K.)
So, for example, after running three steps in a workflow, setting flag 99 to 2, 3, and 4
for each step respectively, one could execute:

| ?- generate_required_dirs([s(’DIR’,’C:/XSBCVS/XSBLIB’)],
[’XSB_LOGFILE_2.txt’,
’XSB_LOGFILE_3.txt’,
’XSB_LOGFILE_4.txt’]).

which would print out facts for all directories for files in those LOGFILEs, each with
the root directory abstracted.

copy_required_files(+VSDir,+FromToSubs) module: view_sys
This predicate can be used (perhaps with configuration help from generate_required_dirs/2)
to copy and deploy view systems and the files they need to run. This predicate is not
needed for normal execution of view systems.

CHAPTER 13. THE VIEWSYS PACKAGE 109

copy_required_files(+VSDir,+FromToSubs) uses the viewsys_required_file/1 facts
in the viewsys_view_info.P file in the VSDir viewsys directory to copy all directories
(and files) in those facts. FromToSubs are terms of the form s(USERVAR,FROMVAL,TOVAL),
where USERVAR is a variable in the file templates in the viewsys_required_file/1
facts. A recusrive cp shell command will be generated and executed for each tem-
plate in viewsys_required_file/1, the source file being the template with USERVAR
replaced by FROMVAL and the target File being the template with USERVAR replaced by
TOVAL.
All necessary intermediate directories will be automatically created.
E.g.,

copy_required_files(’.’,[s(’DIR’,’C:/XSBSYS/XSBLIB’,’C:/XSBSYS/XSBTEST/XSBLIB’)]).

would copy all files/directories indicated in the viewsys_required_file/1 facts in
the local viewsys_view_info.P file from under C:/XSB/XSBLIB to a (possibly) new
directory C:/XSBSYS/XSBTEST/XSBLIB (assuming all file templates were rooted with
DIR

Chapter 14

The persistent_tables Package

By David S Warren

This package supports the generation and maintenance of persistent tables stored in data
files on disk (in a choice of formats.) Persistent tables store tuples that are computed answers
of subgoals, just as internal XSB tables do. Persistent tables allow tables to be shared among
concurrent processes or between related processes over time. XSB programmers can declare
a predicate to be persistently tabled, and the system will then, when a subgoal for the
predicate is called, look to see if the corresponding table exists on disk, and, if it does, read
the tuples that are answers for the subgoal on demand from the data file. If the persistent
table for the subgoal does not exist, the XSB subgoal will be called and the tuples that are
returned as answers will be stored on disk, and then returned to the call. Persistent tables
cannot be recursively self-dependent, unlike internal XSB tables. Normally the tables use
call subsumption and abstracted from the original call. They act like (internal) subsumptive
tables with call abstraction.

A persistent table can serve to communicate between two XSB processes: a process that
requests the evaluation of a subgoal and a sub-process that evaluates that subgoal. This
is done by declaring a persistently tabled predicate to have its subgoals be evaluated by
a subprocess. In this case, when a persistent table for a subgoal needs to be created, a
subprocess will be spawned to compute and save the subgoal answers in the persistent table.
The calling process will wait for the table to be computed and filled and, when the table is
completed, will continue by reading and returning the tuples from the generated persistent
table to the initial calling subgoal.

Persistent tables and internal tables (i.e., normal XSB tables) are independent: a pred-
icate may be persistently tabled but not (internally) tabled, tabled but not persistently
tabled, neither or both. In many cases one will want to (internally) table a persistently
tabled predicate, but not always.

Persistent tables provide a declarative mechanism for accessing data files, which could

110

CHAPTER 14. THE PERSISTENT_TABLES PACKAGE 111

be generated by other mechanisms such as the viewsys package, or by other programming
languages or organizations. When this is done, simply invoking the goal will access the
persistent table, i.e., the data from the data file. In such a case, the data file format must
conform to the format declared for the persistent table for its goal.

14.1 Using Persistent Tables with viewsys

Persistent tables can be used as views in the viewsys package.This is done by:

1. Defining a module that contains persistent tabled predicates that correspond to the
desired (stored) views.

2. Using pt_need/1 declarations (see below) to declare table dependencies to support
concurrent table evaluation.

3. Running a view-generation process (pt_fill/1/2) to compute the desired views by
calling XSB processes. The view-generation process will ""pre""-compute the requred
tables in a bottom-up order, using multiple concurrent processes as specified. Since no
XSB persistently tabled predicate will be called until after all the persistent tables that
it depends on have been computed, all XSB predicates will run using those precomputed
persistent tables, without blocking and without having to re-compute any of them.

The persistent_tables subsystem maintains persistent tables in directories and files
in a subdirectory of the directory containing the source code for a module that defines
persistently tabled predicates. The subdirectory is named xsb_persistent_tables. Only
predicates defined in a (non-usermod) module can be persistently tabled. For each module
with declared persistent tables, there is a subdirectory (whose name is the module name)
of xsb_persistent_tables that contains the contents of its tables. In such a subdirectory
there is a file, named PT_Directory.P, that contains information on all existent persistent
tables (stored or proposed.) The subdirectory also contains all the files that store the contents
of persistent tables for the given module.

Currently the way a predicate is declared to be persistently tabled is somewhat verbose.
This is because, at this time, there is no XSB compiler support for persistent tables, and
therefore the user must define explicitly all the predicates necessary for the implementation. 1

The following declarations are needed in any module <Module> that uses persistent tables:

:- packaging:bootstrap_package(’persistent_tables’,’persistent_tables’).
:- import table_persistent/5, pt_call/1 from persistent_tables.

1In the future, if this facility proves to be useful, we will extend the compiler to simplify the necessary
declarations.

CHAPTER 14. THE PERSISTENT_TABLES PACKAGE 112

:- export ensure_<Module>_loaded/0.
ensure_<Module>_loaded.

The ensure_<Module>_loaded/0 predicate is called by the system when it is required
that the module be loaded.

A persistent table for predicate Pred/K is declared and defined as follows:

:- export <Pred>/K, <Pred>_ptdef/K.
:- table_persistent(PredSkel,ModeList,TableInfo,ProcessSpec,DemandGoal).
PredSkel :- pt_call(PredSkel).
Pred_ptdef(....) :- ... definition of Pred/K

PredSkel indicates a most-general goal for the predicate Pred/K.
As can be seen, the user must define an auxiliary predicate, in this case <Pred>_ptdef/K.

This predicate is defined using the clauses intended to define Pred/K. Pred/K itself is defined
by the single clause that calls the persistent-tabling meta-predicate pt_call/1. This meta-
predicate will generate subgoals for Pred_undef/K and call them as is required.

The arguments of the table_persistent/5 declaration are as follows:

• PredSkel: is the goal whose instances are to be persistently tabled. Its arguments
must be distinct variables.

• ModeList: a list of mode-lists (or a single mode-list.) A mode-list is a list of constants,
+, t, -, and -+ with a length equal to the arity of Goal. A - mode indicates that
the corresponding position of a call to this goal may be bound or free and is to be
abstracted when filling the persistent table; a + mode indicates that the corresponding
position must be bound and is not abstracted, and so a separate persistent table will
be kept for each call bound to any specific constant in this argument position; a t
mode indicates that this argument must be bound to a timestamp value. I.e., it must
be bound to an integer obtained from the persistent tabling system that indicates the
snapshot of this table to use. (See add_new_table/2 for details on using timestamps.)
A -+ mode indicates that the corresponding argument may be bound or free, but on
first call, it will be abstracted and a separate table will be constructed for each value
that this argument may take on. So it is similar to a - mode in that it is abstracted,
but differs in that it generates multiple tables, one for each distinct value this argument
takes on. This can be used to split data into separate files to be processed concurrently.
There may be multiple such mode-lists and the first one that a particular call of Goal
matches will be used to determine the table to be generated and persistently stored.
A call does not match a mode-list if the call has a variable in a position that is a + in
that mode-list. If a call does not match any mode-list, an error is thrown. Clearly if
any mode list contains a t mode, all must contain one in the same position.

CHAPTER 14. THE PERSISTENT_TABLES PACKAGE 113

• TableInfo: a term that describes the type and format of the persistent tables for this
predicate. It currently has only the following possibilities:

– canonical: indicates that the persistent table will be stored in a file as lists
of field values in XSB canonical form. These files support answers that contain
variables. (Except, answers to goals with modes of -+ must be ground.)

– delimited(OPTS): indicates that the persistent table will be stored in a file as
delimited fields, where OPTS is a list of options specifying the separator (and
other properties) as described as options for the predicate read_dsv/3 defined
in the XSB lib module proc_files. Goal answers stored in these files must be
ground.

• ProcessSpec: a term that describes how the table is to be computed. It can be one
of the following forms:

– xsb: indicating that the persistent table will be filled by calling the goal in the
current xsb process.

– spawn_xsb: indicating that the persistent table will be filled by spawning an xsb
process to evaluate the goal and fill the table.

• DemandGoal: a goal that will be called just before the main persistently tabled goal
is called to compute and fill a persistent table. The main use of this goal is to invoke
pt_need/1 commands (see below) to indiate that the persistent tables that this goal
depends on are needed. This allows tables that will be needed by this computation to
be computed concurrently by other processes.

14.2 Methodology for Defining View Systems

As mentioned above, persistent tables can be used to construct view systems, i.e., DAGs
representing expressions over functions on relations. A relational function is a basic view
definition. An expression over such functions is a view system. The leaf relations in the
expression are the base relations, and every sub-expression defines a view. A view expression
can be evaluated bottom up, given values for every base relation. Independent subexpressions
can be evaluated in parallel. Failing computations can be corrected, and only those views
depending on a failed computation need to be re-computed.

Sometimes view systems are required to be ""incremental"". That is, given a completely
computed view system, in which the base relations are given and all derived relations have
been computed, we are given tuples to add to (and maybe delete from) the given base
relations, and we want to compute all the new derived view contents. In many systems
such incremental changes to the base relations result in incremental changes to the derived

CHAPTER 14. THE PERSISTENT_TABLES PACKAGE 114

relations, and those new derived relations can be computed in much less time than would be
required to recompute all the derived relations starting from scratch with the new (updated)
base relations.

To implement a view system in XSB using persistent tables, each view definition is
provided by the definition of a persistently tabled predicate. Then given table instances for
the base relations, each view goal can be called to create a persistent table representing the
contents of the corresponding derived view.

The following describes, at a high level, a methodology for implementing a given view
system in XSB using persistent tables.

1. Define the top-level view relations, just thinking Prolog, in a single XSB module. A
top-level relation is the ultimate desired output of a view system, i.e., a relation that
is normally not used in the definition of another view. Define supporting relations
as seems reasonable. Don’t worry about efficiency. Use Prolog intuitions for defining
relations. Don’t worry about incrementality; just get the semantics defined correctly.

2. Now think about bottom-up evaluation. I.e., we use subsumptive tables, so goals will
be called (mostly) open, with variables as arguments. Decide what relations will be
stored intermediate views. Restructure if necessary to get reasonable stored views.

3. Now make it so the stored views can be correctly evaluated bottom-up, i.e., with an
open call. This will mean that the Prolog intuition of passing bound values downward
into called predicates needs to be rethought. For bottom-up evalution, all head vari-
ables have to be bound by some call in the body. So some definitions may need new
body calls, to provide a binding for variables whose values had been assumed to be
passed in by the caller.

4. Declare the stored views as table_persistent, and test on relatively small input data.
For each table_persistent, decide initially whether to compute it in the given environ-
ment or to spawn a process to evaluate in a new process environment.

5. If you don’t need incrementality (i.e., given relatively small additions/deletions to the
base relations, compute the new derived relations without recomputing results for old
unchanged data): then tune (maybe adding split-compute-join concurrency, using the
-+ mode, as appropriate.) And you’re done.

6. If you *do* need incrementality: In principle, the system ought to be able automatically
to transform the program given thus far into an incremental version. (See Annie Liu’s
research.) But at this point, I don’t know how to do this ensuring that the reslting
performance is close to optimal. (Maybe Annie does, but...) So we will transform the
existing program by hand, and we will give ""rules-of-thumb"" to help in this process.

CHAPTER 14. THE PERSISTENT_TABLES PACKAGE 115

14.3 Using Timestamps (or version numbers)

The persistent table package provides some support for integer timestamps for versioning
of tables. The programmer can define view predicates with an argument whose value is a
version number. The version number must be bound on all calls to persistently tabled goals
that contan them. Normally a subgoal of a persistently tabled predicate with a given version
number will depend on other subgoals with the same version. This allows the programmer
to keep earlier versions of tables for view systems, in order to back out changes or to keep
a history of uses of the view system. So normally a new set of base tables will get a new
version number, and then all subgoals depending of those base tables will have that same
version number.

The pt_add_table/3 predicate will add base tables and give them a new version number,
returning that new version number. This allows the programmer to use that version number
in subsequent calls to pt_fill to fill the tables with the correct version. Also, when calling
the predicate pt_eval_viewsys/5 the Time variable can be used in the subgoals in the
FillList to invoke the correctly versioned subgoals.

A particularly interestng use of versions is in the implementation of incremental view
systems. Recall that in an incremental view system, one has a table that contains the ac-
cumulated records named, say, old_records/5, and receives a base table of new records to
process named, say, new_records/5. The incremental view system will define an updated
record file named, say, all_records/5, which will contain the updated records after pro-
cessing and includng the new_records. It is natural to use versions here, and make each
predicate old_record/5, new_record/5, and old_record/5 have a version argument, say the
first argument. Then note that we can define old_records in terms of the previous version
of all_records, as follows:

old_records(Time,....) :-
Time > 1,
PrevTime is Time - 1,
all_records(PrevTime,...).

Note that the version numbers, being always bound on call (and treated according to a
+ mode), will not appear in any stored table. The numbers will appear only in the called
subgoals that are stored in the table_instance/8 predicate in the PT_Directory.P file. So
using version numbers does not make the persistent tables any larger.

14.4 Predicates for Persistent Tabling

pt_call(+Goal) module: pt_call/1
persistent_tables This predicate assumes that Goal is persistently tabled and calls it.

CHAPTER 14. THE PERSISTENT_TABLES PACKAGE 116

This predicate is normally used only in the definition of the _ptdef version of the
persistently tabled predicate, as described above.
If the table for Goal exists, it reads the table file and returns its answers. If the table
file is being generated, it waits until it is generated and then reads and returns its
answers. If the table file doesn’t exist and is not in the process of being generated,
it generates the table and then returns its results. If the persistent table process
declaration indicates spawn_xsb, it spawns a process to generate the table and reads
and returns those answers when the process is completed. If the process indication is
xsb, it calls the goal and fills the table if necessary, and returns the answers.

pt_fill(+GoalList) module: pt_fill/1
persistent_tables The predicate pt_fill(+GoalList) checks if the persistent table
for each persistently tabled Goal in GoalList exists and creates it if not. It should
always succeed (once, unless it throws an error) and the table will then exist. If the
desired table is already generated, it immediately succeeds. If the desired table is being
generated, it looks to see if there is another table that is marked as needs_generating
and, if so, invokes the pt_fill/1 operation for that table. It continues this until it
finds that Goal is marked as generated, at which time it returns successfully. If no
table for Goal exists or is being generated, it generates it.

pt_fill(+Goal,+NumProcs) module: pt_fill/2
persistent_tables pt_fill(+Goal,+NumProcs) is similar to pt_fill/1 except that
it starts NumProcs processes to ensure that the table for Goal is generated. Note
that filling the table for Goal may require filling many other tables. And those table
may become marked as needs_generation, in which case multiple processes can work
concurrently to fill the required tables.

pt_need(+Goals) module: pt_need/1
persistent_tables pt_need(+Goals) creates table entries in the PT_Directory.P file
for each persistently tabled Goal in the list of goals Goals. (Goals alternatively may
be a single persistently tabled goal. The new entry is given status needs_generation.
This predicate is intended to be used in a goal that appears as the 5th argument of a
table_persistent/5 declaration. It is used to indicate other goals that are required
for the computation of the goal in the first argument of its table_persistent/5 decla-
ration. By marking them as ""needed"", other processes (started by a call to pt_fill/2)
can begin computing them concurrently. Note that these Goals can share variables
with the main Goal of the declaration, and thus appropriate instances of the subgoals
can be generated. For example, if time stamps are used, the needed subgoals should
have the same variable as the main goal in the corresponding ""time"" positions.
Note that a call to pt_need/1 should appear only in the final argument of a table_persistent/5
declaration. Its correct execution requires a lock to be held and predicates to be loaded,
which are ensured when that goal is called, but cannot be correctly ensured by any
other call(s) to the persistent_tables subsystem.

CHAPTER 14. THE PERSISTENT_TABLES PACKAGE 117

table_persistent(+Goal,+Modes,+TableInfo,+ProcessSpec,+DemandGoal) module: table_persistent/5
persistent_tables This predicate (used as a directive) declares a predicate to be persis-
tently tabled. The form is table_persistent(+Goal, +Modes, +TableInfo, +ProcessSpec,
+DemandGoal), where:

• Goal: is the goal whose instances are to be persistently tabled. Its arguments
must be distinct variables. Goal must be defined by the single clause:

Goal :- pt_fill(Goal).

Clauses to define the tuples of Goal must be associated with another predicate (of
the same arity), whose name is obtained from Goal’s predicate name by appending
_ptdef.
• ModeList: a list of mode-lists (or a single mode-list.) A mode-list is a list of

constants, +, t, -, and -+ with a length equal to the arity of Goal. The mode
indicates puts constraints on the state of corresponding argument in a subgoal
call. A ""-"" mode indicates that the corresponding position of the goal is to be
abstracted for the persistent table; a ""+"" mode indicates that the corresponding
position is not abstracted and a separate persistent table will be kept for each call
bound to any specific constant in this argument position; a ""t"" mode indicates
that this argument will have a ""timestamp"". I.e., it will be bound to an integer
obtained from the persistent tabling system that indicates the snapshot of this
table to use. (See add_new_table/2 for details on using timestamps.) A mode
of ""-+"" is similar to a ""-"" mode in that the associated argument is abstracted.
The difference is that instead of all the answers being stored in a single table,
there are multiple tables, one for each value of this argument for which there are
answers.
There may be multiple such mode-lists and the first one that a particular call of
Goal matches will be used to determine the table to be generated and persistently
stored. A call does not match a mode-list if the call has a variable in a position
that is a ""+"" in that mode-list. If a call does not match any mode-list, an error
is thrown. If any mode list contains a t mode, all must contain one in the same
position.
• TableInfo is a term that describes the type and format of the persistent tables

for this predicate. It may have the following forms, with the described meanings:
– file(canonical): indicates that the persistent table will be stored in a file

as lists of field values in XSB canonical form.
– file(delimited(OPTS)): indicates that the persistent table will be stored

in a file as delimited fields, where OPTS is a list of options specifying the
separator (and other properties) as described as options for the predicate
read_dsv/3 in the XSB lib module proc_files.

CHAPTER 14. THE PERSISTENT_TABLES PACKAGE 118

• ProcessSpec is a term that describes how the table is to be computed. It can be
one of the following forms:
– xsb: indicating that the persistent table will be filled by calling the goal in

the current xsb process.
– spawn_xsb: indicating that the persistent table will be filled by spawning an

xsb process to evaluate the goal and fill the table.
• DemandGoal: a goal that will be called just before the main persistently tabled

goal is called to compute and fill a persistent table. The main use of this goal
is to invoke pt_need/1 commands (see below) to indicate to the system that the
persistent tables that this goal depends on are indeed needed. This allows tables
that will be needed by this computation to be computed by other processes. This
is the way that parallel computation of a complex query is supported.

pt_abolish_subgoals(+GoalList) module: pt_abolish_subgoals/1
persistent_tables pt_abolish_subgoals(+GoalList) abolishes the persistent tables
for all goals in GoalList by removing the corresponding facts in table_instance. The
table files containing the data remain, and can be cleaned up using pt_remove_unused_tables/1.

pt_move_tables(+MoveList) module: pt_move_tables/1
persistent_tables pt_move_tables(+MoveList) moves persistent tables. MoveList is
a list of pairs of goals of the form FromGoal > ToGoal, where FromGoal and ToGoal
are persistently tabled goals and their persistent tables have been filled. For each such
pair the table file for ToGoal is set to the file containing the table for FromGoal. The
table files must be of the same format. FromGoal has its table_instance fact removed.
This predicate may be useful for updating new and old tables when implementing
incremental view systems.

pt_remove_unused_tables(+Module) module: pt_remove_unused_tables/1
persistent_tables This predicate cleans up unused files from the directory that stores
persistent tables. pt_remove_unused_tables(+Module) looks through the PT_Directory.P
file for the indicated module and removes all files with names of the form (table_<Tid>.P)
(or .txt) for which there is no table id of <Tid>. So a user may delete (or abolish)
a persistent table by simply editing the PT_Directory.P file (when no one is using
it!) and deleting its table_instance fact. Then periodically running this predicate will
clean up the storage for unnecessary tables.

pt_reset(+Module) module: pt_reset/1
persistent_tables pt_reset(+Module) processes the PT_Directory.P file and deletes
all table_instance records for tables that have status being_generated. This will
cause them to be re-evaluated when necessary. This is appropriate to call if all processes
computing these tables have been aborted and were not able to update the directory.
It may also be useful if for some reason all processes are waiting for something to be
done and no progress is being made.

CHAPTER 14. THE PERSISTENT_TABLES PACKAGE 119

pt_delete_later(Module,TimeStamp) module: pt_delete_later/2
persistent_tables pt_delete_later(Module,TimeStamp) delete all tables that have a
timestamp larger than Timestamp. It keeps the tables of the TimeStamp snapshot.
It deletes the corresponding table records from the PT_Directory, and removes the
corresponding files that store the tuples.

pt_delete_earlier(Module,TimeStamp) module: pt_delete_earlier/2
persistent_tables pt_delete_earlier(Module,TimeStamp) delete all tables that have
a timestamp smaller than Timestamp. It keeps the tables of the TimeStamp snapshot.
It deletes the corresponding table records from the PT_Directory, and removes the
corresponding files that store the tuples.

pt_delete_table(+Goal) module: pt_delete_table/1
persistent_tables pt_delete_table(+Goal) deletes the table for Goal in its PT_Directory.P
file, so it will need to be regenerated when next invoked. The actual file containing
the table data is not removed. (It may be a file in another directory that defines the
table via a call to pt_add_table/2 or friend.) To remove a local file that contains the
tabled data, use pt_remove_unused_tables/1.

pt_add_table(+Goal,+FileName) module: pt_add_table/2
persistent_tables pt_add_table(+Goal,+FileName) uses the file FileName to create
a persistent table for Goal. Goal must be persistently tabled. It creates a new ta-
ble_instance record in the PT_Directory.P file and points it to the given file. The file
is not checked for having a format consistent with that declared for the persistently
tabled predicate, i.e., that it is correctly formated to represent the desired tuples. The
user is responsible for ensuring this.
pt_add_table(Goal0,FileName) :- pt_add_table(Goal0,FileName,none).

pt_add_table(+Goal,+FileName,?TimeStamp) module: pt_add_table/3
persistent_tables pt_add_table(+Goal,+FileName,?TimeStamp) uses the file FileName
to create a persistent table for Goal, which must be persistently tabled. It returns in
TimeStamp a new (the next) time stamp for this module (obtained from the fact for
predicate table_instance_cnt/2 in the ET Directory.) It is assumed that Goal has
a time argument and the returned value will be used in its eventual call.
This predicate creates a new table_instance record in the PT_Directory.P file and sets
its defining file to be the value of FileName. The file is not checked for consistency,
that it is correctly formated to represent the desired tuples. The user is responsible
for insuring this.

pt_add_tables/2 module: pt_add_tables(+GoalList,+FileList)
persistent_tables pt_add_tables(+GoalList,+FileList) is similar to pt_add_table/2
but takes a list of goals and a corresponding list of files, and defines the tables of the
goals using the files.

CHAPTER 14. THE PERSISTENT_TABLES PACKAGE 120

pt_add_tables(+GoalList,+FileList,-Time) module: pt_add_tables/3
persistent_tables pt_add_tables(+GoalList,+FileList,-Time) is similar to pt_add_table/3
but takes a list of goals and a corresponding list of files, and defines the tables of the
goals using the files, returning the snapshot time in Time.

pt_eval_viewsys(+GoalList,+FileList,-Time,+FillList,+NProcs) module: pt_eval_viewsys/5
persistent_tables The predicate pt_eval_viewsys(+GoalList, +FileList, -Time,
+FillList, +NProcs) adds user files containing base tables to a persistent tabling
system and invokes the computing and filling of dependent tables. GoalList is a list
of subgoals that correspond to the base tables of the view system. FileList is the
corresponding list of files that contain the data for the base tables. They must be for-
mated as the table_persistent declarations of their corresponding subgoals specify.
Time is a variable that will be set to the timestamp, if the base goals of GoalList
contain time stamp arguments. FillList is a list of persistently tabled subgoals to be
filled (using pt_fill/1/2.) NProcs is an integer indicating the maximum number of
processes to use to evaluate the view system. This predicate provides a simple interface
to pt_add_tables/3 and pt_fill/2.

Chapter 15

PITA: Probabilistic Inference

By Fabrizio Riguzzi

Probabilistic Inference with Tabling and Answer subsumption (PITA) [10, 9] is a package
for reasoning under uncertainty. In particular, PITA supports various forms zof Probabilistic
Logic Programming (PLP) and Possibilistic Logic Programming (PossLP). It accepts the
language of Logic Programs with Annotated Disjunctions (LPADs)[19, 20] and CP-logic
programs [17, 18].

An example of LPAD/CP-logic program is as follows (the syntax in the PITA implemen-
tation is slightly different, as explained in Section 15.2)

(heads(Coin) : 0.5) ∨ (tails(Coin) : 0.5) ← toss(Coin),¬biased(Coin).
(heads(Coin) : 0.6) ∨ (tails(Coin) : 0.4) ← toss(Coin), biased(Coin).

(fair(Coin) : 0.9) ∨ (biased(Coin) : 0.1).
toss(Coin).

The first clause states that if we toss a coin that is not biased it has equal probability of
landing heads and tails. The second states that if the coin is biased it has a slightly higher
probability of landing heads. The third states that the coin is fair with probability 0.9 and
biased with probability 0.1 and the last clause states that we toss a coin with certainty.

PITA computes the probability of queries by tranforming the input program into a normal
logic program and then calling a modified version of the query on the transformed program.
In order to combine probabilities or possibilities from different derivations of a goal, PITA
makes use of tabled answer subsumption. For PLPs, PITA’s answer subsumption makes
use of the BDD package CUDD to combine the possibly non-independent probabilities of
different derivations. CUDD is included in the XSB distribution.

121

CHAPTER 15. PITA: PROBABILISTIC INFERENCE 122

15.1 Installation

To install PITA with XSB, run XSB configure in the build directory with option –with-pita
and then run makexsb as usual. On most Linux systems, this is all that is needed.

• Windows When compiling in cygwin, also build the cygwin dll with makexsb cygdll.

• MacOS When compiling on MacOS, it should be noted that recent versions of xcode
do not include autoconf and automake, both of which are needed for the PITA instal-
lation. If your these tools are not installed on your system, they can be easily installed
by
(sudo) brew install autoconf
(sudo) brew install automake

or
sudo port autoconf
sudo port automake

15.2 Syntax

Disjunction in the head is represented with a semicolon and atoms in the head are separated
from probabilities by a colon. For the rest, the usual syntax of Prolog is used. For example,
the CP-logic clause

h1 : p1 ∨ . . . ∨ hn : pn ← b1, . . . , bm,¬c1, . . . ,¬cl

is represented by

h1:p1 ; ... ; hn:pn :- b1,...,bm,\+ c1,....,\+ cl

No parentheses are necessary. The pi are numeric expressions. It is up to the user to ensure
that the numeric expressions are legal, i.e. that they sum up to less than one. Other points
about pita syntax are:

• If the clause has an empty body, it can be represented as:

h1:p1 ; ... ;hn:pn.

• If the clause has a single head with probability 1, the annotation can be omitted and
the clause takes the form of a normal prolog clause, i.e.

CHAPTER 15. PITA: PROBABILISTIC INFERENCE 123

h1:- b1,...,bm,\+ c1,...,\+ cl.

stands for

h1:1 :- b1,...,bm,\+ c1,...,\+ cl.

• The probabilities in the heads may sum to a number less than 1. For instance, the
LPAD clause

h1 : p1 ∨ null : (1− p1)← b1, . . . , bm,¬c1, . . . ,¬cl

is represented in pita by dropping the null conjunct, i.e.,

h_1:p_1 :- b_1,\dots,b_m ,\+ c_1,\ldots,\+ c_l.

• Finally, the body of clauses can contain a number of built-in predicates including:

is/2 >/2 </2 >=/2 =</2 =:=/2 =\=/2 true/0 false/0
=/2 ==/2 \=/2 \==/2 length/2 member/2

The directory $XSB_DIR/packages/pita/examples contains several examples of LPADs,
including the program coin.cpl above, which is written in PITA’s syntax as:

heads(Coin):1/2 ; tails(Coin):1/2:-
toss(Coin),\+biased(Coin).

heads(Coin):0.6 ; tails(Coin):0.4:-
toss(Coin),biased(Coin).

fair(Coin):0.9 ; biased(Coin):0.1.
toss(coin).

15.3 Using PITA

15.3.1 Probabilistic Logic Programming

PITA accepts input programs in two formats: .cpl and .pl. In both cases they are trans-
lated into an internal form that has extension .P. In the .cpl format, files consist of a
sequence of LPAD clauses. In the .pl format, files use the syntax of cplint for SWI-
Prolog, see http://friguzzi.github.io/cplint/_build/html/index.html. In the .pl
format, the same file can be used for PITA in XSB and PITA in cplint for SWI-Prolog.

If you want to use inference on LPADs load PITA in XSB with

http://friguzzi.github.io/cplint/_build/html/index.html

CHAPTER 15. PITA: PROBABILISTIC INFERENCE 124

?- [pita].

Then you have different commands for loading the input file.
If the input file is in the .cpl format, you can translate it into the internal representation

and load it with

?- load_cpl(coin).

Note that coin.cpl, which is not in Prolog syntax cannot be loaded via the normal com-
mand to compile and load a Prolog file (?- [coin]).

This commands reads coin.cpl, translates it into coin.cpl.P and loads coin.cpl.P.
For files in the .pl format, the command is

?- load_pl(coin).

that reads coin.pl, translates it into coin.pl.P and loads coin.pl.P.
You can also use command

?- load(’coin.pl’).

that requires the full file name, including the extension, compiles it into a file with the same
name with the added extension .P and loads it.

You can also load directly the translated (compiled) version of a file with the command

?- load_comp(’coin.cpl.P’).

of

?- load_comp(’coin.pl.P’).

that loads directly the compiled file.
Next, the probability of query atom heads(coin) can be computed by

?- prob(heads(coin),P).

PITA, which is based on the distribution semantics (cf. [14]) will give the answer P = 0.51
to this query.

The package also includes a test file that can be run to check that the installation was
successful. The file is testpita.pl and it can be loaded and run with

CHAPTER 15. PITA: PROBABILISTIC INFERENCE 125

?- [testpita].
?- test_pita.

The package also includes MCINTYRE, which performs approximate inference with Monte
Carlo algorithms. MCINTYRE accepts the same input formats as PITA and the same
commands for loading input files. See http://friguzzi.github.io/cplint/_build/html/
index.html for a description of the available commands.

For loading MCINTYRE use

?- [mcintyre].

File testmc.pl can be used for testing MCINTYRE. The command to run the tests is

?- [testmc].
?- test_mc.

The examples folder contains various examples of use of MCINTYRE. You can also look at
the file test_mc.pl for a list of example and queries over them.

The package also includes SLIPCOVER, an algorithm for learning LPADs. Input files
should follow the syntax specified in http://friguzzi.github.io/cplint/_build/html/
index.html and should have the .pl extension. They can loaded for example with

?- load_pl(bongard).

for bongard.pl.
File testsc.pl can be used for testing SLIPCOVER. The command to run the tests is

?- [testsc].
?- test_sc.

The examples/learning folder contains various examples of use of SLIPCOVER. You can
also look at the file test_sc.pl for a list of example and goals.

15.3.2 Modeling Assumptions

The probability of heads(coin) above is calculated by adding the probability of the com-
posite choices

head(coin), fair(coin) = 0.45

http://friguzzi.github.io/cplint/_build/html/index.html
http://friguzzi.github.io/cplint/_build/html/index.html
http://friguzzi.github.io/cplint/_build/html/index.html
http://friguzzi.github.io/cplint/_build/html/index.html

CHAPTER 15. PITA: PROBABILISTIC INFERENCE 126

and
head(coin), biased(coin) = 0.06

These two composite choices are mutually exclusive since they differ in their atomic
choices (in this case, the atoms fair(coin) and biased(coin)). Accordingly, their prob-
abilities can be added leading the total 0.51. More about the theory that underlies the
distribution semantics can be found in the survey article [11].

In the above discussion of the coin example, we combined probabilities according to
the full distribution semantics. However, some programs may satisfy a set of modeling
assumptions that allows programs to be evaluated much more efficiently.

• The independence assumption: The assumption that different calls to a probabilistic
atom can we be evaluated independently. This leads to the ability to compute the
probability of a conjunction (A, B) as the product of the probabilities of A and B;

• The exclusiveness assumption The assumption that different derivations of an atom
A depend on exclusive composite choices. This leads to the ability to compute the
probability of an atom as the sum of the probabilities of its derivations.

While these assumptions are in fact satisfied by the coin program, they may be fairly strong
for larger programs.

These assumptions are fairly strong – note that the coin program discussed above does
not satisfy the exclusiveness assumption, since the two derivations of head(coins) share the
probabilistic atom , as used for instance in the PRISM system [15], i.e.:

Example 15.3.1 An example of a program that does not satisfy the exclusiveness assump-
tion is $XSB_DIR/packages/pita/examples/flu.cpl

sneezing(X):0.7 :- flu(X).
sneezing(X):0.8 :- hay_fever(X).
flu(bob).
hay_fever(bob).

Given the query sneezing(bob), four possible total composite choices or worlds must be
considered.

Clause 1 sneezing(bob) sneezing(bob) null null
Clause 2 sneezing(bob) null sneezing(bob) null
Probability 0.56 0.14 0.24 0.06

CHAPTER 15. PITA: PROBABILISTIC INFERENCE 127

Note that unlike in the coin program, the derivations of sneezing(bob) in the first two
clauses are not mutually exclusive; rather they need to be expanded into mutually exclusive
worlds, and the probabilities of those worlds in which sneezing(bob) is true can then be
summed. In this case, probability of sneezing(bob) is the probability of all worlds in which
sneezing(bob) is true, which is 0.56 + 0.14 + 0.24 = 0.94.

If you know that your program satisfies the independence and exclusion axioms, you
can perform faster inference with the PITA package pitaindexc.P, which accepts the same
commands of pita.P. Due to its assumptions, it does not need to maintain information
about composite choices in the CUDD BDD system 1

If you want to compute the Viterbi path and probability of a query (the Viterbi path is
the explanation with the highest probability) as with the predicate viterbif/3 of PRISM,
you can use package pitavitind.P.

The package pitacount.P can be used to count the explanations for a query, provided
that the independence assumption holds. To count the number of explanations for a query
use

:- count(heads(coin),C).

pitacount.P does not need to maintain composite choices as BDDs in Cudd, and so can be
much faster than computing the full distribution semantics, or the Viturbi path.

15.3.3 Possibilistic Logic Programming

PITA can be used also for answering queries to possibilistic logic program [2], a form of logic
progamming based on possibilistic logic [3]. The package pitaposs.P provides possibilistic
inference. You have to write the possibilistic program as an LPAD in which the rules have a
single head whose annotation is the lower bound on the necessity of the clauses. To compute
the highest lower bound on the necessity of a query use

:- poss(heads(coin),P).

Like pitaindexc and pitacount, pitaposs does not require maintenance of composite
choices through BDDs in CUDD.

1Computing the full distribution semantics for a ground program P is #P -complete, while computing
the restricted distribution semantics has the same low polynomial complexity as computing the well-founded
semantics: O(size(P)× atoms(P)).

Chapter 16

minizinc: The XSB Interface to
MiniZinc-based Constraint Solving

By Michael Kifer

16.1 Introduction

MiniZinc is a uniform declarative constraint language that is understood by most modern
solvers for constraint and optimization problems. It comes bundled with a few such solvers,
one of which, gecode, is top-notch: very powerful and fast. Other solvers, including most of
the newest ones, can be downloaded separately and installed as plugins.

The MiniZinc language is described in https://www.minizinc.org/doc-2.2.3/en/index.
html; see, especially, the tutorial. The XSB interface to MiniZinc comes with several sample
problems from that tutorial, which are found in .../XSB/packages/minizinc/examples/.
The file .../XSB/packages/minizinc/examples.P contains examples of XSB invocations
of those problems. After the installation, all examples can be run by simply starting XSB
and then

| ?- [minizinc]. %% load the package
| ?- [examples]. %% run all examples

16.2 Installation

Some Linux distributions (e.g., Ubuntu) come with ready-made MiniZinc .deb or .rpm pack-
ages. However, one must make sure that the command minizinc is provided by those
packages (some provide only the IDE). Mac packages are also available.

128

https://www.minizinc.org/doc-2.2.3/en/index.html
https://www.minizinc.org/doc-2.2.3/en/index.html
minizinc

CHAPTER 16. INTERFACE TO MINIZINC 129

In case a Linux or a Mac package is incomplete (or if one uses Windows), MiniZinc can
be downloaded from https://www.minizinc.org/software.html.

Once installed, make sure that the command minizinc is understood when typed in a
command window. If not, add folder-to-where-/bin/minizinc is sitting to the environment
variable PATH. In Windows, this is best done in Control Panel; in Linux and Mac, add the
command

export PATH=$PATH:path-to-minizinc

to .bashrc or an equivalent place. For instance,

PATH=$PATH:$HOME/minizinc/MiniZincIDE-2.2.3-bundle-linux/bin

16.3 The API

Constraint and optimization problems are specified using the MiniZinc language in model
files, which have the suffix .mzn. Such problems usually have a number of input variables
and several output (or decision) variables. In principle, input values can be specified in the
model file itself, but this is generally not a good idea because typically one wants to solve the
same problem with different inputs. For this reason, MiniZinc allows one to use models (that
have no input) with one or more input files, which have the extension .dzn. In addition,
XSB’s API to MiniZinc lets one pass parameters in-line, as part of a Prolog call.
Important: the MiniZinc model files (.mzn) must not have output statements in them.
Otherwise, errors and wrong answers may result. (These output statements will be added
automatically based on output templates described below.)

The API itself mainly consists of the following calls, which live in XSB’s module minizinc:

• solve(+MznF,+DatFs,+InPars,+Solver,+Solns,+OutTempl,-Rslt,-Xceptns): The
meaning of the arguments is as follows:

– MznF: should be bound to a path to the desired model file (.mzn file) that con-
tains a specification of a constraint or optimization problem. The path must
be represented as a Prolog atom and can be absolute or relative to the current
directory.

– DatFs: a list of paths (relative or absolute) to the data files that describe all or
some of the input parameters for the model in MznF. All paths must be atoms. If
no data files are needed, just use the empty list [].

– InPars: a list of the in-line input parameters to the model. These are supported
for flexibility, to allow initialization of some or all input parameters directly in

https://www.minizinc.org/software.html

CHAPTER 16. INTERFACE TO MINIZINC 130

Prolog. Each parameter in InPars must have the form id = value, where id
must be the Id of an input variable used in the model file MznF and value must
be a term understood by MiniZinc. Typically, such a term would be a number,
an atom, or a function term. For instance, foo=’[|1, 0|3, 4|8, 9|]’ would
initialize the input variable foo with a 2-dimensional array of numbers; ’Item’ =
anon_enum(8) would initialize the MiniZinc variable Item of an enumerated type
to a set {Item_1,Item_2,...,Item_8}. Note that Item must be quoted on the
Prolog side, since otherwise it would be interpreted as a variable.

– Solver: the name of the solver to use. If this is a variable, the default solver
gecode is used.

– Solns: the number of solutions to show. Could be all or a positive integer.
Note: for optimization problems where a function is maximized or minimized,
Solns must be bound to 1. Otherwise, solvers would return also non-optimal
solutions, and the desired optimal one may not be the first.

– OutTempl: the template showing how the output should look like. It has the form
predname(OutSpec1, ...,OutSpecn) where predname is the name of a predicate
where the results will be stored (see below) and each OutSpec can have one of
these forms:
∗ An atom representing an output (“decision”) variable defined in the model

file MznF or an atom representing an arithmetic expression (in the syntax of
MiniZinc, which is close to XSB) involving one or more decision variables.
In the result, this atom will be replaced with the value of that variable or
expression. Example: ’P*100’.
∗ A simple arithmetic expression involving decision variables, numbers, and

+, −, *, /. Example: p*100+9. The difference with the above is that the
single quotes are omitted, for convenience. Note that if the MiniZinc variable
name were P then it would have to be quoted—to protect it from Prolog:
’P’*100+9.
∗ A term of the form +(atom) or str(atom). In the result, this will be replaced

with atom verbatim. Note: if atom is not alphanumerical or if it starts with
a capital letter, it must be quoted.
∗ A list of the form [OutSpec1, ...,OutSpecn]. Each OutSpec in the list has the

form described here.
∗ A term of the form OutSpec1 = OutSpec2. Each OutSpec has the form de-

scribed here.
The template predicate cannot be solve/8, solve_flex/8, show/1, delete/1,
and the arity must be greater than 0.

– Rslt: must be a term that matches the output template—typically just a variable.
Solutions to the constraint and optimization problems will be returned as bind-
ings to variables in this term. The term cannot match the predicates solve/8,

CHAPTER 16. INTERFACE TO MINIZINC 131

solve_flex/8, show/1, or delete/1 (e.g., cannot be solve(_,_,_,_,_,_,_,_)),
and the arity must be greater than 0 (i.e., the predicate cannot be foo/0 and the
like).
Note: solutions are also asserted in the predicate minizinc:SolutionPred/Arity,
where SolutionPred/Arity is the predicate name and arity used in the afore-
mentioned OutTempl. Thus, solution predicates from different runs of MiniZinc
are accumulated in module minizinc and can be used at a later analysis stage.
If any of these predicates are no longer needed, they can be emptied out with
retractall/1 or abolish/1. For instance, abolish(minizinc:somepred/5).

– Xceptns: a list of exceptions returned by the solver. If the constraint/optimization
problem was solved successfully, this variable will be bound to an empty list [].
Otherwise, each exception has the form (reason=...,model_file=...) and the
following reasons might be returned:
∗ unsatisfiable — the optimization problem is unsatisfiable.
∗ unbounded— the optimization problem has an unbounded objective function.

For example, if the problem is to maximize the function and the function has
no maximum (under the given constraints); or the problem is to minimize the
function, and there is no minimum.
∗ unsatisfiable_or_unbounded — one of the above.
∗ unknown — could not find a solution within the limits (e.g., timeout).
∗ error — search resulted in an error.

Note: exceptions are separate from other kinds of errors, such as a syntax errors in a
model or data file or using a solver with a feature or option it does not support. Errors
are explained later.

• solve_flex(+MznF,+DatFs,+InPars,+Solver,+Solns,+OutTempl,-Rslt,-Xceptns):
The meaning of the parameters is the same as for solve/8. The difference is that if
InPars or OutTempl is non-ground, the call to MiniZinc is delayed until they both
groun. If the top query finishes and InPars or OutTempl is still not ground, MiniZinc
will not be called at all. This is used in cases when it is hard to estimate when InPars
or OutTempl may become ground, so calls to solve_flex can be placed early. But, of
course, one must ensure that InPars/OutTempl will get bound at some point.

How does MiniZinc return complex structures back to Prolog? MiniZinc has a
number of data structures that do not have direct equivalence in Prolog, so they are mapped
to Prolog terms when results are returned as bindings for the Rslt variable. Here is the
correspondence:

• Numbers are passed back to Prolog as integers and floats.

• MiniZinc strings and identifiers are passed to Prolog as atoms.

CHAPTER 16. INTERFACE TO MINIZINC 132

• Arrays are returned as lists. Multi-dimensional arrays are flattened and passed as lists
as well. For instance, a 2-dimensional array [|1, 2|3, 4|5, 6|] will be returned as
[1,2,3,4,5,6].

• Sets are returned as terms of the form {elt1,elt2,elt3,...}. For example, the set
{a,b,c} comes back as the term {a,b,c}. Note that in Prolog this term is really
’{}’((a,b,c)). Observe the double parentheses, which indicate that the functor
symbol here is {}/1, not {}/3.

• A MiniZinc range expressions of the form N1..N2 is returned as ’..’(N1,N2). For
instance, the range 3..17 comes back to Prolog as ’..’(3,17).

Errors vs. exceptions. If a model or data file contains a syntax error or a feature that
the chosen solver does not support, the solve/8 and solve_flex/8 calls will fail and a
message will be printed to standard output:

+++ xsb2mzn: syntax or type errors found; details insome file...

The user will then be able to find the details about the problem.
Note: errors are different from exceptions. If only exceptions are returned (and no errors),

the calls solve/8 and solve_flex/8 will succeed. In contrast, they will fail in case of errors.

Debugging API. For further development and bug reporting, the following calls are use-
ful. They are all 0-ary predicates that take no arguments; they all reside in the XSB module
minizinc.

• keep_tmpfiles: The MiniZinc interface creates a number of temporary files, which
are deleted, if MiniZinc finished normally and without an error. However, if a bug is
suspected, it is desirable to preserve these files and send them to the developers. This
can be achieved by executing the keep_tmpfiles predicate as a query, before the call
to solve/8.

• show_mzn_cmd: Executing this as a query will cause the solve/8 predicate, described
earlier, to print the shell command that was used to invoke MiniZinc in each call. This
is useful if one suspects a bug in the API.

• dbg_clear: Executing this clears out the flags set by the above debugging calls. As a
result, the temporary files will again be deleted after each invocation of MiniZinc and
shell commands will not be shown.

Chapter 17

XASP: Answer Set Programming
with XSB and Smodels

By Luis Castro, Theresa Swift, David S. Warren 1

The term Answer Set Programming (ASP) describes a paradigm in which logic programs
are interpreted using the (extended) stable model semantics. While the stable model seman-
tics is quite elegant, it has radical differences from traditional program semantics based on
Prolog. First, stable model semantics applies only to ground programs; second stable model
semantics is not goal-oriented – determining whether a stable model is true in a program
involves examining each clause in a program, regardless of whether the goal would depends
on the clause in a traditional evaluation.

Despite (or perhaps because of) these differences, ASP has proven to be a useful paradigm
for solving a variety of combinatorial programs. Indeed, determining a stable model for a
logic program can be seen as an extension of the NP-complete problem of propositional sat-
isfiability, so that satisfiability problems that can be naturally represented as logic programs
can be solved using ASP.

The current generation of ASP systems are very efficient for determining whether a
program has a stable model (analogous to whether the program, taken as a set of propo-
sitional axioms, is satisfiable). However, ASP systems have somewhat primitive file-based
interfaces. XSB is a natural complement to ASP systems. Its basis in Prolog provides a
procedural counterpart for ASP, as described in Chapter 5 of Volume 1 of this manual; and
XSB’s computation of the Well-founded semantics has a well-defined relationship to stable
model semantics. Furthermore, deductive-database-like capabilities of XSB allow it to be an
efficient and flexible grounder for many ASP problems.

The XASP package provides various mechanisms that allow tight linkage of XSB pro-
1 Thanks to Barry Evans for helping resuscitate the XASP installation procedure, and to Gonçalo Lopes

for the installation procedure on Windows.

133

CHAPTER 17. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS134

grams to the Smodels [8] stable model generator. The main interface is based on a store of
clauses that can be incrementally asserted or deleted by an XSB program. Clauses in this
store can make use of all of the cardinality and weight constraint syntax supported by Smod-
els, in addition to default negation. When the user decides that the clauses in a store are a
complete representation of a program whose stable model should be generated, the clauses
are copied into Smodels buffers. Using the Smodels API, the generator is invoked, and in-
formation about any stable models generated are returned. This use of XASP is roughly
analogous to building up a constraint store in CLP, and periodically evaluating that store,
but integration with the store is less transparent in XASP than in CLP. In XASP, clauses
must be explicitly added to a store and evaluated; furthermore clauses are not removed from
the store upon backtracking, unlike constraints in CLP.

The XNMR interpreter provides a second, somewhat more implicit use of XASP. In the
XNMR interface a query Q is evaluated as is any other query in XSB. However, conditional
answers produced for Q and for its subgoals, upon user request, can be considered as clauses
and sent to Smodels for evaluation. In backtracking through answers for Q, the user back-
tracks not only through answer substitutions for variables of Q, but also through the stable
models produced for the various bindings.

17.1 Installing the Interface

Installing the Smodels interface of XASP sometimes can be tricky for two reasons. First,
XSB must dynamically load the Smodels library, and dynamic loading introduces platform
dependencies. Second since Smodels is written in C++ and XSB is written in C, the load
must ensure that names are properly resolved and that C++ libraries are loaded, steps that
may addressed differently by different compilers 2. However, by following the steps outlined
below in the section for Unix or Windows, XASP should be running in a matter of minutes.

17.1.1 Installing the Interface under Unix

In order to use the Smodels interface, several steps must be performed.

1. Creating a library for Smodels. Smodels itself must be compiled as a library. Unlike
previous versions of XSB, which required a special configuration step for Smodels,
Version 4.0 requires no special confiuration, since XSB includes source code for Smodels
2.33 as a subdirectory of the $XSBDIR/packages/xasp directory (denoted $XASPDIR).

2XSB’s compiler can automatically call foreign compilers to compile modules written in C, but in Version
4.0 of XSB C++ modules must be compiled with external commands, such as the make command shown
below.

CHAPTER 17. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS135

We suggest making Smodels out of this directory 3. Thus, to make the Smodels library

(a) Change directory to $XASPDIR/smodels

(b) On systems other than OS X, type

make lib

on OS X, type 4

make -f Makefile.osx lib

If the compilation step ran successfully, there should be a file libsmodels.so
(or libsomodels.dylib on MacOS X or libsmodels.dll on Windows...) in
$XASPDIR/smodels/.libs

(c) Change directory back to $XASPDIR

2. Compiling the XASP files Next, platform-specific compilation of XASP files needs to
be performed. This can be done by consulting prologMake.P and executing the goal

?- make.

3. Checking the Installation To see if the installation is working properly, cd to the sub-
directory tests and type:
sh testsuite.sh <$XSBDIR>

If the test suite succeeded it will print out a message along the lines of
PASSED testsuite for /Users/terranceswift/XSBNEW/XSB/config/powerpc-apple-darwin7.5.1/bin/xsb

17.1.2 Installing XASP under Windows using Cygwin

To install XASP under Windows, you must use Version 4.0 of XSB or later and Version 2.31 or
later of Smodels 5. You should also have a recent version of Cygwin (e.g. 1.5.20 or later) with
all the relevant development packages installed, such as devel, make, automake, patchtools,
and possibly x11 (for makedepend) Without an appropriate Cygwin build environment many
of these steps will simply fail, sometimes with quite cryptic error messages.

3Although distributed with XSB, Smodels is distributed under the GNU General Public License, a license
that is slightly stricter than the license XSB uses. Users distributing applications based on XASP should be
aware of any restrictions imposed by GNU General Public License.

4A special makefile is needed for OS X since the GNU libtool is called glibtool on this platform.
5This section was written by Goncalo Lopes.

CHAPTER 17. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS136

1. Patch and Compile Smodels First, uncompress smodels-2.31.tar.gz in some di-
rectory, (for presentation purposes we use /cygdrive/c/smodels-2.31 — that is,
c:\smodels-2.31). After that, you must apply the patch provided with this package.
This patch enables the creation of a DLL from Smodels. Below is a sample session
(system output omitted) with the required commands:

$ cd /cygdrive/c/smodels-2.31
$ cat $XSB/packages/xasp/patch-smodels-2.31 | patch -p1
$ make lib

After that, you should have a file called smodels.dll in the current directory, as well as
a file called smodels.a. You should make the former "visible" to Windows. Two alter-
natives are either (a) change the PATH environment variable to contain c:\smodels-2.31,
or (b) copy smodels.dll to some other directory in your PATH (such as c:\windows,
for instance). One simple way to do this is to copy smodels.dll to $XSB/config/i686-pc-cygwin/bin,
after the configure XSB step (step 2), since that directory has to be in your path in
order to make XSB fully functional.

2. Configure XSB. In order to properly configure XSB, you must tell it where the Smodels
sources and library (the smodels.a file) are. In addition, you must compile XSB such
that it doesn’t use the Cygwin DLL (using the -mno-cygwin option for gcc). The
following is a sample command:

$ cd $XSB/build
$./configure --enable-no-cygwin -with-smodels="/cygdrive/c/smodels-2.31’’

You can optionally include the extended Cygwin w32 API using the configuration
option --with-includes=<PATH_TO_API>, (this allows XSB’s build procedure to find
makedepend for instance), but you’ll probably do fine with just the standard Cygwin
apps.
There are some compiler variables which may not be automatically set by the configure
script in xsb_config.h, namely the configuration names and some activation flags. To
correct this, do the following:

(a) cd to $XSB/config/i686-pc-cygwin

(b) open the file xsb_config.h and add the following lines:

#define CONFIGURATION "i686-pc-cygwin"
#define FULL_CONFIG_NAME "i686-pc-cygwin"
#define SLG_GC

(Still more flags may be needed depending on Cygwin configuration)
After applying these changes, cd back to the $XSB/build directory and compile XSB:

CHAPTER 17. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS137

$./makexsb

Now you should have in $XSB/config/i686-pc-cygwin/bin directory both a xsb.exe
and a xsb.dll.

3. Compiling XASP. First, go to the XASP directory and execute the makelinks.sh
script in order to make the headers and libraries in Smodels be accessible to XSB, i.e.:

$ cd $XSB/packages/xasp
$ sh makelinks.sh /cygdrive/c/smodels-2.31

Now you must copy the smoMakefile from the config directory to the xasp directory
and run both its directives:

$ cp $XSB/config/i686-pc-cygwin/smoMakefile .
$ make -f smoMakefile module
$ make -f smoMakefile all

At this point, you can consult xnmr as you can with any other package, or xsb with
the xnmr command line parameter, like this: (don’t forget to add XSB bin directory
to the $PATH environment variable)

$ xsb xnmr

Lots of error messages will probably appear because of some runtime load compiler, but
if everything goes well you can ignore all of them since your xasppkg will be correctly
loaded and everything will be functioning smoothly from there on out.

17.2 The Smodels Interface

The Smodels interface contains two levels: the cooked level and the raw level. The cooked
level interns rules in an XSB clause store, and translates general weight constraint rules
[16] into a normal form that the Smodels engine can evaluate. When the programmer has
determined that enough clauses have been added to the store to form a semantically complete
sub-program, the program is committed. This means that information in the clauses is copied
to Smodels and interned using Smodels data structures so that stable models of the clauses
can be computed and examined. By convention, the cooked interface ensures that the atom
true is present in all stable models, and the atom false is false in all stable models. The
raw level models closely the Smodels API, and demands, among other things, that each atom
in a stable sub-program has been translated into a unique integer. The raw level also does
not provide translation of arbitrary weight constraint rules into the normal form required by

CHAPTER 17. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS138

the Smodels engine. As a result, the raw level is significantly more difficult to directly use
than the cooked level. While we make public the APIs for both the raw and cooked level,
we provide support only for users of the cooked interface.

As mentioned above Smodels extends normal programs to allow weight constraints, which
can be useful for combinatorial problems. However, the syntax used by Smodels for weight
constraints does not follow ISO Prolog syntax so that the XSB syntax for weight constraints
differs in some respects from that of Smodels. Our syntax is defined as follows, where A is
a Prolog atom, N a non-negative integer, and I an arbitrary integer.

• GeneralLiteral ::= WeightConstraint | Literal

• WeightConstraint ::= weightConst(Bound,WeightList,Bound)

• WeightList ::= List of WeightLiterals

• WeightLiteral ::= Literal | weight(Literal,N)

• Literal ::= A | not(A)

• Bound ::== I | undef

Thus an example of a weight constraint might be:

• weightConst(1,[weight(a,1),weight(not(b),1)],2)

We note that if a user does not wish to put an upper or lower bound on a weight constraint,
she may simply set the bound to undef or to an integer less than 0.

The intuitive semantics of a weight constraint weightConst(Lower,WeightList,Upper),
in which List is is list of WeightLiterals that it is true in a model M whenever the sum of
the weights of the literals in the constraint that are true in M is between the lower Lower
and Upper. Any literal in a WeightList that does not have a weight explicitly attached to it
is taken to have a weight of 1.

In a typical session, a user will initialize the Smodels interface, add rules to the clause
store until it contains a semantically meaningful sub-problem. He can then specify a com-
pute statement if needed, commit the rules, and compute and examine stable models via
backtracking. If desired, the user can then re-initialize the interface, and add rules to or
retract rules from the clause store until another semantically meaningful sub-program is
defined; and then commit, compute and examine another stable model 6.

The process of adding information to a store and periodically evaluating it is vaguely
reminiscent of the Constraint Logic Programming (CLP) paradigm, but there are impor-
tant differences. In CLP, constraints are part of the object language of a Prolog program:

6Currently, only normal rules can be retracted.

CHAPTER 17. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS139

constraints are added to or projected out of a constraint store upon forward execution, re-
moved upon backwards execution, and iteratively checked. When using this interface, on
the other hand, an XSB program essentially acts as a compiler for the clause store, which is
treated as a target language. Clauses must be explicitly added or removed from the store,
and stable model computation cannot occur incrementally – it must wait until all clauses
have been added to the store. We note in passing that the xnmr module provides an elegant
but specialized alternative. xnmr integrates stable models into the object language of XSB,
by computing ""relevant"" stable models from the the residual answers produced by query
evaluation. It does not however, support the weighted constraint rules, compute statements
and so on that this module supports.

Neither the raw nor the cooked interface currently supports explicit negation.
Examples of use of the various interfaces can be found in the subdirectory intf_examples

smcInit
Initializes the XSB clause store and the Smodels API. This predicate must be executed
before building up a clause store for the first time. The corresponding raw predicate,
smrInit(Num), initializes the Smodels API assuming that it will require at most Num
atoms.

smcReInit
Reinitializes the Smodels API, but does not affect the XSB clause store. This predicate
is provided so that a user can reuse rules in a clause store in the context of more than
one sub-program.

smcAddRule(+Head,+Body)
Interns a ground rule into the XSB clause store. Head must be a GeneralLiteral as
defined at the beginning of this section, and Body must be a list of GeneralLiterals.
Upon interning, the rule is translated into a normal form, if necessary, and atoms are
translated to unique integers. The corresponding raw predicates, smrAddBasicRule/3,
smrAddChoiceRule/3, smrAddConstraintRule/4, and smrAddWeightRule/3 can be
used to add raw predicates immediately into the SModels API.

smcRetractRule(+Head,+Body)
Retracts a ground (basic) rule from the XSB clause store. Currently, this predicate
cannot retract rules with weight constraints: Head must be a Literal as defined at the
beginning of this section, and Body must be a list of GeneralLiterals.

smcSetCompute(+List)
Requires that List be a list of literals – i.e. atoms or the default negation of atoms).
This predicate ensures that each literal in List is present in the stable models returned
by Smodels. By convention the cooked interface ensures that true is present and
false absent in all stable models. After translating a literal it calls the raw interface
predicates smrSetPosCompute/1 and smrSetNegCompute/1

CHAPTER 17. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS140

smcCommitProgram
This predicate translates all of the clauses from the XSB clause store into the data
structures of the Smodels API. It then signals to the API that all clauses have been
added, and initializes the Smodels computation. The corresponding raw predicate,
smrCommitProgram, performs only the last two of these features.

smComputeModel
This predicate calls Smodels to compute a stable model, and succeeds if a stable model
can be computed. Upon backtracking, the predicate will continue to succeed until all
stable models for a given program cache have been computed. smComputeModel/0 is
used by both the raw and the cooked levels.

smcExamineModel(+List,-Atoms)
smcExamineModel/(+List,-Atoms) filters the literals in List to determine which are
true in the most recently computed stable model. These true literals are returned in the
list Atoms. smrExamineModel(+N,-Atoms) provides the corresponding raw interface
in which integers from 0 to N, true in the most recently computed stable model, are
input and output.

smEnd
Reclaims all resources consumed by Smodels and the various APIs. This predicate is
used by both the cooked and the raw interfaces.

print_cache
This predicate can be used to examine the XSB clause store, and may be useful for
debugging.

17.3 The xnmr_int Interface

. This module provides the interface from the xnmr module to Smodels. It does not use the
sm_int interface, but rather directly calls the Smodels C interface, and can be thought of as
a special-purpose alternative to sm_int.

init_smodels(+Query)
Initializes smodels with the residual program produced by evaluating Query. Query
must be a call to a tabled predicate that is currently completely evaluated (and should
have a delay list)

atom_handle(?Atom,?AtomHandle)
The handle of an atom is set by init_smodels/1 to be an integer uniquely identifying
each atoms in the residual program (and thus each atom in the Herbrand base of the
program for which the stable models are to be derived). The initial query given to
init_smodels has the atom-handle of 1.

CHAPTER 17. XASP: ANSWER SET PROGRAMMING WITH XSB AND SMODELS141

in_all_stable_models(+AtomHandle,+Neg)
in_all_stable_models/2 returns true if Neg is 0 and the atom numbered AtomHandle
returns true in all stable models (of the residual program set by the previous call to
init_smodels/1). If Neg is nonzero, then it is true if the atom is in NO stable model.

pstable_model(+Query,-Model,+Flag)
returns nondeterministically a list of atoms true in the partial stable model total on
the atoms relevant to instances of Query, if Flag is 0. If Flag is 1, it only returns
models in which the instance of Query is true.

a_stable_model
This predicate invokes Smodels to find a (new) stable model (of the program set by
the previous invocation of init_smodels/1.) It will compute all stable models through
backtracking. If there are no (more) stable models, it fails. Atoms true in a stable
model can be examined by in_current_stable_model/1.

in_current_stable_model(?AtomHandle)
This predicate is true of handles of atoms true in the current stable model (set by an
invocation of a_stable_model/0.)

current_stable_model(-AtomList)
returns the list of atoms true in the current stable model.

print_current_stable_model
prints the current stable model to the stream to which answers are sent (i.e stdfbk)

Bibliography

[1] C. Draxler. Prolog to SQL compiler, Version 1.0. Technical report, CIS Centre for
Information and Speech Processing Ludwig-Maximilians-University, Munich, 1992.

[2] D. Dubois, J. Lang, and H. Prade. Towards possibilistic logic programming. In ICLP,
pages 581–595, 1991.

[3] D. Dubois, J. Lang, and H. Prade. Possibilistic logic. In D. M. Gabbay, C. J. Hog-
ger, and J. A. Robinson, editors, Handbook of logic in artificial intelligence and logic
programming,vol. 3, pages 439–514. Oxford University Press, 1994.

[4] T. Fruehwirth. Thom Fruehwirth’s Constraint Handling Rules website. http://www.
informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/chr-intro.html.

[5] T. Frühwirth. Theory and Practice of Constraint Handling Rules. In P. Stuckey and
K. Marriot, editors, Special Issue on Constraint Logic Programming, volume 37, October
1998.

[6] C. Holzbaur. Ofai clp(q,r) manual, edition 1.3.3. Technical report, Austrian Research
Institute for Artificial Intelligence, 1995.

[7] T. I. S. Laboratory. SICStus Prolog User’s Manual Version 3.12.5. Swedish Institute
of Computer Science, 2006.

[8] I. Niemelä and P. Simons. Smodels: An implementation of the stable model and well-
founded semantics for normal LP. In J. Dix, U. Furbach, and A. Nerode, editors,
Proceedings of the 4th International Conference on Logic Programing and Nonmonotonic
Reasoning, volume 1265 of LNAI, pages 420–429, Berlin, July 28–31 1997. Springer.

[9] F. Riguzzi and T. Swift. The PITA system: Tabling and answer subsumption for
reasoning under uncertainty. Theory and Practice of Logic Programming, 11(4-5):433–
449, 2011.

[10] F. Riguzzi and T. Swift. Well-definedness and efficient inference for probabilistic logic
programming under the distribution semantics. Theory and Practice of Logic Program-
ming, 13(2):279–302, 2013.

142

http://www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/chr-intro.html
http://www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/chr-intro.html

BIBLIOGRAPHY 143

[11] F. Riguzzi and T. Swift. A survey of probabilistic logic programming. In Declarative
Logic Programming: Theory, Systems, and Applications, volume 20 of ACM Books,
pages 185–233, 2018.

[12] B. Sanna-Starosta. Chrd: A set-based solver for constraint hanlding rules. available at
www.cs.msu.edu/˜bss/chr-d, 2006.

[13] B. Sanna-Starosta and C. Ramakrishnan. Compiling constraint handling rules for effi-
cient tabled evaluation. available at www.cs.msu.edu/˜bss/chr-d, 2006.

[14] T. Sato. A statistical learning method for logic programs with distribution semantics.
In International Conference on Logic Programming, pages 715–729. MIT Press, 1995.

[15] T. Sato and Y. Kameya. Prism: A language for symbolic-statistical modeling. In
International Joint Conference on Artificial Intelligence, pages 1330–1339, 1997.

[16] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model
semantics. Artificial Intelligence, 138:181–234, 2002.

[17] J. Vennekens, M. Denecker, and M. Bruynooghe. Representing causal information about
a probabilistic process. In Proceedings of the 10th European Conference on Logics in
Artificial Intelligence, LNAI. Springer, September 2006.

[18] J. Vennekens, M. Denecker, and M. Bruynooghe. CP-logic: A language of causal prob-
abilistic events and its relation to logic programming. Theory Pract. Log. Program.,
9(3):245–308, 2009.

[19] J. Vennekens and S. Verbaeten. Logic programs with annotated disjunctions. Technical
Report CW386, K. U. Leuven, 2003.

[20] J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with annotated dis-
junctions. In International Conference on Logic Programming, volume 3131 of LNCS,
pages 195–209. Springer, 2004.

[21] J. Wielemaker. SWI Prolog version 5.6: Reference Manual. University of Amsterdam,
2007.

Index

CDATA, 53, 54
DOCTYPE declaration, 62
NAMES, 54
NDATA, 55
NUMBER, 54
SDATA, 55
#</2, 80
#=/2, 80
#=</2, 80
#>/2, 80, 81
#>=/2, 80
{}/1, 73
a_stable_model/0, 141
all_different/1, 81
atom_handle/2, 140
bb_inf/3, 76
bb_inf/4, 76
close/2, 48
close/4, 48
current_stable_model/1, 141
declaration, 61
default space mode, 57
doctype, 59
dtd/3, 59
dump/3, 77
element, 61
encode_url/2, 50
entailed/1, 74
false, 56
file, 61
findall_odbc_sql/3, 5
findall_odbc_sql/4, 5
free_dtd/1, 58
free_sgml_parser/1, 59
get_chr_answer_store/1, 95

get_chr_store/1, 95
in/2, 80
in_all_stable_models/2, 141
in_current_stable_model/1, 141
indomain/1, 82
inf/2, 74
inf/4, 75
informational, 61
init_smodels/1, 140
integer, 55
label/1, 82
labelling/2, 81
lex_chain/1, 82
load_chr/1, 88
load_html_structure/3, 54
load_page/5, 48
load_sgml_structure/3, 54
load_structure/4, 54
load_xhtml_structure/3, 54
load_xml_structure/3, 54
maximize/1, 74
merge_answer_store/1, 95
minimize/1, 74
new_dtd/2, 58
new_sgml_parser/2, 59
odbc_close/0, 3
odbc_close/1, 3
odbc_create_index/3, 15
odbc_create_table/2, 15
odbc_data_sources/2, 3
odbc_delete/{2,3}, 14
odbc_delete_index/1, 15
odbc_delete_table/1, 15
odbc_delete_view/1, 15
odbc_flag/2, 16

144

INDEX 145

odbc_get_schema/2, 14
odbc_import/2, 6
odbc_import/4, 7
odbc_insert/{2,3}, 13
odbc_open/3, 3
odbc_open/4, 3
odbc_query/2, 10
odbc_query/3, 13
odbc_show_schema/1, 14
odbc_sql/3, 4
odbc_sql/4, 4
odbc_sql_cnt/4, 5
odbc_transaction/1, 15
open/3, 47
open/4, 47
open_dtd/3, 58
parse_xpath/4, 65
preprocess/2, 88
preserve space mode, 57
print_cache/0, 140
print_current_stable_model/0, 141
pstable_model/3, 141
remove space mode, 57
see/1, 47
serialized/2, 82
set_chr_store/1, 95
set_odbc_flag/2, 16
set_sgml_parser/2, 59
sgml_parse/3, 61
sgml, 55, 57, 60
sgml space mode, 56
show_store/1, 88
smcAddRule/2, 139
smcCommitProgram/0, 140
smcCompute/1, 139
smcComputeModel/0, 140
smcEnd/0, 140
smcExamineModel/2, 140
smcInit/0, 139
smcReInit, 139
smcRetractRule/2, 139
sum/3, 81

sup/2, 74
sup/4, 75
suspended_constraints/2, 88
token, 55
url_properties/2, 49
url_properties/3, 49
xmlns, 55, 60
xmlns dialect, 58
xml, 55, 57, 60

Code authors
Carlsson, Mats, 30, 31
O’Keefe, Richard, 31

constraints
asserting dynamic code with, 77

CP-logic, 121

files
(, 118

Logic Programs with Annotated Disjunction,
121

LPADs, 121

PITA, 121
Possibilistic Logic Programming, 121
PRISM, 121
Probabilistic Logic Programming, 121
projecting_assert/1, 77
Prologs

Sicstus, 78
SWI, 71, 78

	XSB-ODBC Interface
	Introduction
	Using the Interface
	Connecting to and Disconnecting from Data Sources
	Accessing Tables in Data Sources Using SQL
	Cursor Management
	Accessing Tables in Data Sources through the Relation Level
	Using the Relation Level Interface
	Handling NULL values
	The View Level Interface
	Insertions and Deletions of Rows through the Relational Level
	Access to Data Dictionaries
	Other Database Operations
	Transaction Management
	Interface Flags
	Datalog

	Error messages
	Notes on specific ODBC drivers

	The New XSB-Database Interface
	Introduction
	Configuring the Interface
	Using the Interface
	Connecting to and Disconnecting from Databases
	Querying Databases

	Error Handling
	Notes on specific drivers

	Libraries from Other Prologs
	AVL Trees
	Unweighted Graphs: ugraphs.P
	Heaps: heaps.P

	Introduction to XSB Packages
	Wildcard Matching
	pcre: Pattern Matching and Substitution Using PCRE
	Introduction
	Pattern matching
	String Substitution
	Installation and configuration
	Configuring for Linux, Mac, and other Unices
	Configuring for Windows

	POSIX Regular Expression and Wildcard Matching
	regmatch: Regular Expression Matching and Substitution
	wildmatch: Wildcard Matching and Globing

	curl: The XSB Internet Access Package
	Introduction
	Integration with File I/O
	Opening a Web Document
	Closing a Web Document

	Low Level Predicates
	Loading Web Documents
	Retrieving Properties of a Web Document
	Encoding URLs

	Installation and configuration

	Packages sgml and xpath: SGML/XML/HTML and XPath Parsers
	Introduction
	Overview of the SGML Parser
	Predicate Reference
	Loading Structured Documents
	Handling of White Spaces
	XML documents
	DTD-Handling
	Low-level Parsing Primitives
	External Entities
	Exceptions
	Unsupported features
	Summary of Predicates

	XPath support

	rdf: The XSB RDF Parser
	Introduction
	High-level API
	RDF Object representation
	Name spaces
	Low-level access

	Testing the RDF translator

	Constraint Packages
	clpr: The CPL(R) package
	The CLP(R) API

	The bounds Package
	The bounds API

	Constraint Handling Rules
	Introduction
	Syntax and Semantics
	Syntax
	Semantics

	CHR in XSB Programs
	Embedding in XSB Programs
	Compilation

	Useful Predicates
	Examples
	CHR and Tabling
	General Issues and Principles
	Call Abstraction
	Answer Projection
	Answer Combination
	Overview of Tabling-related Predicates

	Guidelines
	CHRd

	The viewsys Package
	An Example
	The ViewSys Data Model
	View Instance Model
	Using ViewSys

	The persistent_tables Package
	Using Persistent Tables with viewsys
	Methodology for Defining View Systems
	Using Timestamps (or version numbers)
	Predicates for Persistent Tabling

	 PITA: Probabilistic Inference
	Installation
	Syntax
	Using PITA
	Probabilistic Logic Programming
	Modeling Assumptions
	Possibilistic Logic Programming

	Interface to MiniZinc
	Introduction
	Installation
	The API

	XASP: Answer Set Programming with XSB and Smodels
	Installing the Interface
	Installing the Interface under Unix
	Installing XASP under Windows using Cygwin

	The Smodels Interface
	The xnmr_int Interface

