
Persistent Tables
David S. Warren

Persistent Tables on Disk

Copyright 2017 David S. Warren, XSB, Inc.

i

Table of Contents

Summary . 1

persistent tables . 3
Methodology for Defining View Systems . 6
Using Timestamps (or version numbers) . 7
Usage and interface (persistent_tables) . 8
Documentation on exports (persistent_tables) . 8

Predicate Definition Index . 13

Operator Definition Index . 14

Concept Definition Index . 15

Global Index . 16

Summary 1

Summary

This package supports the generation and maintenance of persistent tables stored in data
files on disk (in a choice of formats.) Persistent tables store tuples that are computed answers
of subgoals, just as internal XSB tables do. Persistent tables allow tables to be shared among
concurrent processes or between related processes over time. XSB programmers can declare
a predicate to be persistently tabled, and the system will then, when a subgoal for the
predicate is called, look to see if the corresponding table exists on disk, and, if it does,
read the tuples that are answers for the subgoal on demand from the persistent table. If
the persistent table for the subgoal does not exist, the XSB subgoal will be called and
the tuples that are returned as answers will be stored on disk, and then returned to the
call. Persistent tables cannot be recursively self-dependent, unlike internal XSB tables.
Normally the tables are subsumptive tables and abstracted from the original call. They act
like (internal) subsumptive tables with call abstraction.

A persistent table can serve to communicate between two XSB processes: a process
that requests the evaluation of a subgoal and a sub-process that evaluates that subgoal.
This is done by declaring a persistently tabled predicate to have its subgoals be evaluated
by a subprocess. In this case, when a persistent table for a subgoal needs to be created,
a subprocess will be spawned to compute and save the subgoal answers in the persistent
table. The calling process will wait for the table to be computed and filled and, when the
table is completed, will continue by reading and returning the tuples from the generated
persistent table to the initial calling subgoal.

Persistent tables and internal tables (i.e., normal XSB tables) are independent: a pred-
icate may be persistently tabled but not (internally) tabled, tabled but not persistently
tabled, neither or both. In many cases one will want to (internally) table a persistently
tabled predicate, but not always.

Persistent tables provide a declarative mechanism for accessing data files. A data file
can be used to define a persistent table. I.e., a data file can be used to define a persistent
table for a desired goal. The data file format must conform to the format declared for the
persistent table for its goal. When this is done, simply invoking the goal will access the
persistent table, i.e., the data from the data file. One may, or may not, want to (internally)
table this goal. If it is (internally) tabled then this will act similarly to a load dyn of the
original data.

In a similar way, persistent tables can serve as a communications mechanism among
processes defined by different programming languages, with the tables accessed and/or
generated by the various processes.

This module supports using persistent tables in a "view generation framework." This is
done by:

1. Defining a module that contains persistent tabled predicates that correspond to the
desired (stored) views.

2. Using pt_need/1 declarations (see below) to declare table dependencies to support
concurrent table evaluation.

3. Running a view-generation process (pt_fill/1/2) to compute the desired views by
calling XSB processes. The view-generation process will "pre"-compute the requred
tables in a bottom-up order, using multiple concurrent processes as appropriate (and

Summary 2

declared.) Since no XSB persistently tabled predicate will be called until after all the
persistent tables that it depends on have been computed, all XSB predicates will run
using those precomputed persistent tables, without blocking and without having to
re-compute any of them.

persistent tables 3

persistent tables

The persistent_tables subsystem maintains persistent tables in directories and files in
a subdirectory of the directory containing the source code for a module that defines per-
sistently tabled predicates. The subdirectory is named xsb_persistent_tables/. Only
predicates defined in a (non-usermod) module can be persistently tabled. For each module
with declared persistent tables, there is a subdirectory (whose name is the module name) of
xsb_persistent_tables/ that contains the contents of its tables. In such a subdirectory
there is a file, named PT_Directory.P, that contains information on all existent persis-
tent tables (stored or proposed.) The subdirectory also contains all the files that store the
contents of persistent tables for the given module.

Currently the way a predicate is declared to be persistently tabled is somewhat verbose
and redundant. This is because, at this time, there is no XSB compiler (or preprocessor)
support for persistent tables, and therefore the user must define explicitly all the predicates
necessary for the implementation. In the future, if this facility proves to be useful, and used,
we will extend the compiler (or add a preprocessor) to simplify the necessary declarations.

The following packaging and import statements, and predicate definition, are needed
once in any module that uses persistent tables:

:- packaging:bootstrap_package(’persistent_tables’,’persistent_tables’).

:- import table_persistent/5, pt_call/1 from persistent_tables.

:- export ensure_<Module>_loaded/0.

ensure_<Module>_loaded.

The specific ensure <Module> loaded/0 predicate (where <Module> is the actual name
of the module) is called by the system when it is required that the module be loaded.

A persistent table for predicate Pred/K is declared and defined as follows:
:- export Pred/K, Pred_ptdef/K.

:- table_persistent(PredSkel,ModeList,TableInfo,ProcessSpec,DemandGoal).

PredSkel :- pt_call(PredSkel).

Pred_ptdef(....) :- ... definition of Pred/K

PredSkel indicates a most-general goal for the predicate Pred/K.

As can be seen, the user must define an auxiliary predicate of the same arity as the
persistently tabled predicate, whose name is the original predicate name with "_ptdef"

appended. This predicate is defined using the clauses intended to define Pred/K. Pred/K

itself is defined by the single clause that calls the persistent-tabling meta-predicate pt_

call/1. This meta-predicate will generate subgoals for Pred_undef/K and call them as is
required.

The arguments of the table_persistent/5 declaration are as follows:

• PredSkel : is the goal whose instances are to be persistently tabled. Its arguments
must be distinct variables.

• ModeList : a list of mode-lists (or a single mode-list.) A mode-list is a list of constants,
+, t, -, and -+ with a length equal to the arity of Goal. The mode indicates constraints
on the state of its corresponding argument in a subgoal call. A "-" mode indicates
that the corresponding position of a call to this goal may be bound or free and is to
be abstracted when filling the persistent table; a "+" mode indicates that the corre-
sponding position must be bound and is not abstracted, and so a separate persistent

persistent tables 4

table will be kept for each call bound to any specific constant in this argument posi-
tion; a "t" mode indicates that this argument must be bound to a "timestamp" value.
I.e., it must be bound to an integer obtained from the persistent tabling system that
indicates the snapshot of this table to use. (See add_new_table/2 for details on using
timestamps.) A "-+" mode indicates that the corresponding argument may be bound
or free, but on first call, it will be abstracted and a separate table will be constructed
for each value that this argument may take on. So it is similar to a "-" mode in that
it is abstracted, but differs in that it generates multiple tables, one for each distinct
value this argument takes on. This can be used to split data into separate files to be
processed concurrently.

There may be multiple such mode-lists and the first one that a particular call of Goal
matches will be used to determine the table to be generated and persistently stored.
A call does not match a mode-list if the call has a variable in a position that is a "+"

in that mode-list. If a call does not match any mode-list, an error is thrown. Clearly
if any mode list contains a t mode, all must contain one in the same position. (Note:
I have not as yet found much need for multiple mode lists.)

• TableInfo : a term that describes the type and format of the persistent tables for this
predicate. It currently has only the following possibilities:

• canonical : indicates that the persistent table will be stored in a file as lists
of field values in XSB canonical form. These files support answers that contain
variables. (Except, answers to goals with modes of -+ must be ground.)

• delimited(OPTS) : indicates that the persistent table will be stored in a file as
delimited fields, where OPTS is a list of options specifying the separator (and
other properties) as described as options for the predicate read_dsv/3 defined
in the XSB lib module proc_files. Goal answers stored in these files must be
ground.

• ProcessSpec : a term that describes how the table is to be computed. It can be one
of the following forms:

• xsb : indicating that the persistent table will be filled by calling the goal in the
current xsb process.

• spawn_xsb : indicating that the persistent table will be filled by spawning an xsb
process to evaluate the goal and fill the table.

• DemandGoal : a goal that will be called just before the main persistently tabled goal
is called to compute and fill a persistent table. The main use of this goal is to in-
voke pt_need/1 commands (see below) to indicate to the system that the persistent
tables that this goal depends on are needed. This allows tables that will be needed
by this computation to be computed by other processes. This is the way that parallel
computation of a complex query is supported.

[Note: A future extension may try to automatically generate these goals from the
source program, or from a previous execution of the program. The details remain to
be designed and implemented...]

The file named PT_Directory.P is maintained by the subsystem to keep track of the
state of persistent tables for its associated module. It contains facts for two predicates:
table_instance/8 and table_instance_cnt/2.

persistent tables 5

The predicate table_instance(TId, Goal, Module, Status, GoalArgs, AnsVars,

TableInfo, FileName) contains information on a particular persistent table, as follows:

• TId : a unique id for the persistent table. It is unique for the module. It is generated
by concatenating the predicate name and a unique number (generated using the fact
in table_instance_cnt/2.) (The predicate name is actually unnecessary, since the
number uniquely identifies the table. The name is included to make it easier for a user
to see the goal a table file is associated with.)

• Goal : the goal of the persistently tabled predicate that generates this table.

• Module : the module of the persistently tabled predicate. (Maybe should eliminate
this field, since it is not necessary, the super-directory is now the module, so we need
to know it to get here...)

• Status : the status of this persistent table. It can be:

• generated(DateTimeGen,DateTimeUsed) : indicating that the table is completed
and available for use. DateTimeGen is the date and time it was generated.
DateTimeUsed is the date and time it was most recently used. (Updating this
date means writing the PT Directory.P file more often. Is it worth that overhead
to keep this value?)

• group_generated(DateTimeGen,DateTimeUsed) : indicating that this goal gen-
erated a group of files, based on a -+ mode. This fact does not describe a single
table but stands for group of tables.

• being_generated(Pid,DateTime) : indicating that the table is in the process
of being generated by process with process ID Pid, and started generation at
DateTime.

• invalid(DateTime) : indicating that the generation of this table failed or aborted
in some way, at time DateTime, and so is not valid. (There is work to do to
maintained this field, by catching errors, associating them with the correct Tid,
and updating this value to allow propagation of failure.)

• needs_generation(DateTime) : indicating that the table was requested to be
generated (at DateTime), but no process is currently in the process of generating
it. This status is set by pt_need/1 and is used to support concurrent generaton
of persistent tables.

• GoalArgs : a list, Arity long, of arguments to Goal, that generates this persistent
table. These are exactly the arguments of Goal.

• GoalVars : the list of variables in Goal. These generate the answer tuples and corre-
spond to the fields in the persistent table.

• TableInfo : the table info for this table, as described above for table_persistent/5.

• FileName : the name of the file containing the table data.

The predicate table_instance_cnt/2 has one fact that defines two system values: 1)
the last number used to name a unique table file, when generating a TId for a persistent
table. This is incremented every time a new persistent table file is created and used in
the name of that file. And 2) a non-negative integer represeting the most-recent version
time-stamp used. (See the predicates below for how time-stamps can be used.)

The contents of the persistent tables that are described in table_instance/8 are
stored in files in the same directory as its PT_Directory.P file. The files are named "ta-

persistent tables 6

ble <TId>.P" (for files containing canonical terms, and .txt for delimited files containing
separated values.)

Methodology for Defining View Systems

As mentioned above, persistent tables can be used to construct view systems, i.e., DAGs
representing expressions over functions on relations. A relational function is a basic view
definition. An expression over such functions is a view system. The leaf relations in the ex-
pression are the base relations, and every sub-expression defines a view. A view expression
can be evaluated bottom up, given values for every base relation. Independent subexpres-
sions can be evaluated in parallel. Failing computations can be corrected, and only those
views depending on a failed computation need to be re-computed.

Sometimes view systems are required to be "incremental". That is, given a completely
computed view system, in which the base relations are given and all derived relations have
been computed, we are given tuples to add to (and maybe delete from) the given base
relations, and we want to compute all the new derived view contents. In many systems
such incremental changes to the base relations result in incremental changes to the derived
relations, and those new derived relations can be computed in much less time than would be
required to recompute all the derived relations starting from scratch with the new (updated)
base relations.

To implement a view system in XSB using persistent tables, each view definition is
provided by the definition of a persistently tabled predicate. Then given table instances for
the base relations, each view goal can be called to create a persistent table representing the
contents of the corresponding derived view.

The following describes, at a high level, a methodology for implementing a given view
system in XSB using persistent tables.

1. Define the top-level view relations, just thinking Prolog, in a single XSB module. A
top-level relation is the ultimate desired output of a view system, i.e., a relation that
is normally not used in the definition of another view. Define supporting relations
as seems reasonable. Don’t worry about efficiency. Use Prolog intuitions for defining
relations. Don’t worry about incrementality; just get the semantics defined correctly.

2. Now think about bottom-up evaluation. I.e., we use subsumptive tables, so goals will
be called (mostly) open, with variables as arguments. Decide what relations will be
stored intermediate views. Restructure if necessary to get reasonable stored views.

3. Now make it so the stored views can be correctly evaluated bottom-up, i.e., with an
open call. This will mean that the Prolog intuition of passing bound values downward
into called predicates needs to be rethought. For bottom-up evalution, all head variables
have to be bound by some call in the body. So some definitions may need new body
calls, to provide a binding for variables whose values had been assumed to be passed
in by the caller.

4. Declare the stored views as table persistent, and test on relatively small input data. For
each table persistent, decide initially whether to compute it in the given environment
or to spawn a process to evaluate in a new process environment.

5. If you don’t need incrementality (i.e., given relatively small additions/deletions to the
base relations, compute the new derived relations without recomputing results for old

persistent tables 7

unchanged data): then tune (maybe adding split-compute-join concurrency, using the
-+ mode, as appropriate.) And you’re done.

6. If you *do* need incrementality: In principle, the system ought to be able automatically
to transform the program given thus far into an incremental version. (See Annie Liu’s
research.) But at this point, I don’t know how to do this ensuring that the reslting
performance is close to optimal. (Maybe Annie does, but...) So we will transform the
existing program by hand, and we will give "rules-of-thumb" to help in this process.

7. To begin, we will assume that we are only adding new contents to the existing views.
Now, for every stored view predicate P in the existing definition, we make two predi-
cates: old P and delta P. The predicate old P will contain the tuples of the existing
... (to be continued...)

Using Timestamps (or version numbers)

The persistent table package provides some support for integer timestamps for versioning
of tables. The programmer can define view predicates with an argument whose value is a
version number. The version number must be bound on all calls to persistently tabled goals
that contan them. Normally a subgoal of a persistently tabled predicate with a given version
number will depend on other subgoals with the same version. This allows the programmer
to keep earlier versions of tables for view systems, in order to back out changes or to keep
a history of uses of the view system. So normally a new set of base tables will get a new
version number, and then all subgoals depending of those base tables will have that same
version number.

The pt_add_table/3 predicate will add base tables and give them a new version number,
returning that new version number. This allows the programmer to use that version number
in subsequent calls to pt_fill to fill the tables with the correct version. Also, when calling
the predicate pt_eval_viewsys/5 the Time variable can be used in the subgoals in the
FillList to invoke the correctly versioned subgoals.

A particularly interestng use of versions is in the implementation of incremental view
systems. Recall that in an incremental view system, one has a table that contains the
accumulated records named, say, old records/5, and receives a base table of new records
to process named, say, new records/5. The incremental view system will define an up-
dated record file named, say, all records/5, which will contain the updated records after
processing and includng the new records. It is natural to use versions here, and make each
predicate old record/5, new record/5, and old record/5 have a version argument, say the
first argument. Then note that we can define old records in terms of the previous version
of all records, as follows:

old_records(Time,....) :-

Time > 1,

PrevTime is Time - 1,

all_records(PrevTime,...).

Note that the version numbers, being always bound on call (and treated according to a
+ mode), will not appear in any stored table. The numbers will appear only in the called
subgoals that are stored in the table_instance/8 predicate in the PT_Directory.P file.
So using version numbers does not make the persistent tables any larger.

persistent tables 8

Usage and interface (persistent_tables)
☛ ✟

• Exports:

− Predicates:

pt_abolish_subgoals/1, pt_add_table/2, pt_add_table/3, pt_add_tables/2,
pt_add_tables/3, pt_call/1, pt_delete_earlier/2, pt_delete_later/2, pt_
eval_viewsys/5, pt_fill/1, pt_fill/2, pt_generate_table/10, pt_move_

tables/1, pt_need/1, pt_remove_unused_tables/1, pt_reset/1, pt_spawn_

call/1, table_persistent/5.

• Other modules used:

− Application modules:

basics, consult, error_handler, gensym, machine, proc_files, pt_grouper,
pt_utilities, setof, shell, standard, string, xsb_configuration.

✡ ✠

Documentation on exports (persistent_tables)

[PREDICATE]table_persistent/5:
This predicate (used as a directive) declares a predicate to be persis-
tently tabled. The form is table_persistent(+Goal, +Modes, +TableInfo,

+ProcessSpec, +DemandGoal), where:

• Goal : is the goal whose instances are to be persistently tabled. Its arguments
must be distinct variables. Goal must be defined by the single clause:

Goal :- pt_fill(Goal).

Clauses to define the tuples of Goal must be associated with another predicate
(of the same arity), whose name is obtained from Goal’s predicate name by
appending _ptdef.

• ModeList : a list of mode-lists (or a single mode-list.) A mode-list is a list of
constants, +, t, -, and -+ with a length equal to the arity of Goal. The mode
indicates puts constraints on the state of corresponding argument in a subgoal
call. A "-" mode indicates that the corresponding position of the goal is to be
abstracted for the persistent table; a "+" mode indicates that the corresponding
position is not abstracted and a separate persistent table will be kept for each call
bound to any specific constant in this argument position; a "t" mode indicates
that this argument will have a "timestamp". I.e., it will be bound to an integer
obtained from the persistent tabling system that indicates the snapshot of this
table to use. (See add_new_table/2 for details on using timestamps.) A mode
of "-+" is similar to a "-" mode in that the associated argument is abstracted.
The difference is that instead of all the answers being stored in a single table,
there are multiple tables, one for each value of this argument for which there are
answers.

There may be multiple such mode-lists and the first one that a particular call of
Goalmatches will be used to determine the table to be generated and persistently
stored. A call does not match a mode-list if the call has a variable in a position

persistent tables 9

that is a "+" in that mode-list. If a call does not match any mode-list, an error
is thrown. If any mode list contains a t mode, all must contain one in the same
position.

• TableInfo is a term that describes the type and format of the persistent tables
for this predicate. It may have the following forms, with the described meanings:

• file(canonical) : indicates that the persistent table will be stored in a file
as lists of field values in XSB canonical form.

• file(delimited(OPTS)) : indicates that the persistent table will be stored
in a file as delimited fields, where OPTS is a list of options specifying the
separator (and other properties) as described as options for the predicate
read_dsv/3 in the XSB lib module proc_files.

• ProcessSpec is a term that describes how the table is to be computed. It can
be one of the following forms:

• xsb : indicating that the persistent table will be filled by calling the goal in
the current xsb process.

• spawn_xsb : indicating that the persistent table will be filled by spawning
an xsb process to evaluate the goal and fill the table.

• DemandGoal : a goal that will be called just before the main persistently tabled
goal is called to compute and fill a persistent table. The main use of this goal is
to invoke pt_need/1 commands (see below) to indicate to the system that the
persistent tables that this goal depends on are indeed needed. This allows tables
that will be needed by this computation to be computed by other processes. This
is the way that parallel computation of a complex query is supported.

[PREDICATE]pt_call/1:
pt_call(+Goal) assumes that Goal is persistently tabled and calls it. This predicate
is normally used only in the definition of the _ptdef version of the persistently tabled
predicate, as described above.

If the table for Goal exists, it reads the table file and returns its answers. If the table
file is being generated, it waits until it is generated and then reads and returns its
answers. If the table file doesn’t exist and is not in the process of being generated,
it generates the table and then returns its results. If the persistent table process
declaration indicates spawn_xsb, it spawns a process to generate the table and reads
and returns those answers when the process is completed. If the process indication is
xsb, it calls the goal and fills the table if necessary, and returns the answers.

[PREDICATE]pt_fill/1:
The predicate pt_fill(+GoalList) checks if the persistent table for each persistently
tabled Goal in GoalList exists and creates it if not. It should always succeed (once,
unless it throws an error) and the table will then exist. If the desired table is already
generated, it immediately succeeds. If the desired table is being generated, it looks to
see if there is another table that is marked as needs_generating and, if so, invokes
the pt_fill/1 operation for that table. It continues this until it finds that Goal is

persistent tables 10

marked as generated, at which time it returns successfully. If no table for Goal exists
or is being generated, it generates it.

[PREDICATE]pt_fill/2:
pt_fill(+Goal,+NumProcs) is similar to pt_fill/1 except that it starts NumProcs
processes to ensure that the table for Goal is generated. Note that filling the table
for Goal may require filling many other tables. And those table may become marked
as needs_generation, in which case multiple processes can work concurrently to fill
the required tables.

[PREDICATE]pt_need/1:
pt_need(+Goals) creates table entries in the PT_Directory.P file for each persis-
tently tabled Goal in the list of goals Goals. (Goals alternatively may be a single
persistently tabled goal.} The new entry is given status needs_generation. This
predicate is intended to be used in a goal that appears as the 5th argument of a
table_persistent/5 declaration. It is used to indicate other goals that are required
for the computation of the goal in the first argument of its table_persistent/5

declaration. By marking them as "needed", other processes (started by a call to pt_

fill/2) can begin computing them concurrently. Note that these Goals can share
variables with the main Goal of the declaration, and thus appropriate instances of
the subgoals can be generated. For example, if time stamps are used, the needed
subgoals should have the same variable as the main goal in the corresponding "time"
positions.

Note that a call to pt_need/1 should appear only in the final argument of a table_

persistent/5 declaration. Its correct execution requires a lock to be held and predi-
cates to be loaded, which are ensured when that goal is called, but cannot be correctly
ensured by any other call(s) to the persistent_tables subsystem.

[PREDICATE]pt_eval_viewsys/5:
The predicate pt_eval_viewsys(+GoalList, +FileList, -Time, +FillList,

+NProcs) adds user files containing base tables to a persistent tabling system and
invokes the computing and filling of dependent tables. GoalList is a list of subgoals
that correspond to the base tables of the view system. FileList is the corresponding
list of files that contain the data for the base tables. They must be formated as the
table_persistent declarations of their corresponding subgoals specify. Time is a
variable that will be set to the timestamp, if the base goals of GoalList contain time
stamp arguments. FillList is a list of persistently tabled subgoals to be filled (using
pt_fill/1/2.) NProcs is an integer indicating the maximum number of processes
to use to evaluate the view system. This predicate provides a simple interface to
pt_add_tables/3 and pt_fill/2.

[PREDICATE]pt_move_tables/1:
pt_move_tables(+MoveList) moves persistent tables. MoveList is a list of pairs of
goals of the form FromGoal > ToGoal, where FromGoal and ToGoal are persistently

persistent tables 11

tabled goals and their persistent tables have been filled. For each such pair the table
file for ToGoal is set to the file containing the table for FromGoal. The table files must
be of the same format. FromGoal has its table instance fact removed. This predicate
may be useful for updating new and old tables when implementing incremental view
systems.

[PREDICATE]pt_reset/1:
pt_reset(+Module) processes the PT_Directory.P file and deletes all table instance
records for tables that have status being_generated. This will cause them to be
re-evaluated when necessary. This is appropriate to call if all processes computing
these tables have been aborted and were not able to update the directory. It may
also be useful if for some reason all processes are waiting for something to be done
and no progress is being made.

[PREDICATE]pt_remove_unused_tables/1:
This predicate cleans up unused files from the directory that stores persistent tables.
pt_remove_unused_tables(+Module) looks through the PT_Directory.P file for the
indicated module and removes all files with names of the form (table <Tid>.P)(or
.txt) for which there is no table id of <Tid>. So a user may delete (or abolish) a
persistent table by simply editing the PT_Directory.P file (when no one is using it!)
and deleting its table instance fact. Then periodically running this predicate will
clean up the storage for unnecessary tables.

[PREDICATE]pt_abolish_subgoals/1:
This predicate pt_abolish_subgoals(+GoalList) abolishes the persistent tables for
all goals in GoalList by removing the corresponding facts in table instance. The table
files containing the data remain, and can be cleaned up using pt_remove_unused_

tables/1.

[PREDICATE]pt_add_table/2:
pt_add_table(+Goal,+FileName) uses the file FileName to create a persistent table
for Goal. Goal must be persistently tabled. It creates a new table instance record
in the PT_Directory.P file and points it to the given file. The file is not checked for
having a format consistent with that declared for the persistently tabled predicate, i.e.,
that it is correctly formated to represent the desired tuples. The user is responsible
for ensuring this.

[PREDICATE]pt_add_table/3:
pt_add_table(+Goal,+FileName,?TimeStamp) uses the file FileName to create a
persistent table for Goal, which must be persistently tabled. It returns in TimeStamp

a new (the next) time stamp for this module (obtained from the fact for predicate
table_instance_cnt/2} in the ET Directory.) It is assumed that Goal has a time
argument and the returned value will be used in its eventual call.

persistent tables 12

This predicate creates a new table instance record in the PT_Directory.P file and
sets its defining file to be the value of FileName. The file is not checked for consistency,
that it is correctly formated to represent the desired tuples. The user is responsible
for insuring this.

[PREDICATE]pt_add_tables/2:
pt_add_tables(+GoalList,+FileList) is similar to pt_add_table/2 but takes a
list of goals and a corresponding list of files, and defines the tables of the goals using
the files.

[PREDICATE]pt_add_tables/3:
pt_add_tables(+GoalList,+FileList,-Time) is similar to pt_add_table/3 but
takes a list of goals and a corresponding list of files, and defines the tables of the
goals using the files, returning the snapshot time in Time.

[PREDICATE]pt_spawn_call/1:
This is an internal predicate used by the persistent_tables system. It needs to be
exported because it is used across process boundaries.

[PREDICATE]pt_delete_later/2:
pt_delete_later(Module,TimeStamp) delete all tables that have a timestamp larger
than Timestamp. It keeps the tables of the TimeStamp snapshot. It deletes the
corresponding table records from the PT Directory, and removes the corresponding
files that store the tuples.

[PREDICATE]pt_delete_earlier/2:
pt_delete_earlier(Module,TimeStamp) delete all tables that have a timestamp
smaller than Timestamp. It keeps the tables of the TimeStamp snapshot. It deletes the
corresponding table records from the PT Directory, and removes the corresponding
files that store the tuples.

[PREDICATE]pt_generate_table/10:
This is an internal predicate used by the persistent_tables system. It needs to be
exported because it is used across process boundaries.

Predicate Definition Index 13

Predicate Definition Index

P
pt_abolish_subgoals/1 . 11
pt_add_table/2 . 11
pt_add_table/3 . 11
pt_add_tables/2 . 12
pt_add_tables/3 . 12
pt_call/1 . 9
pt_delete_earlier/2 . 12
pt_delete_later/2. 12
pt_eval_viewsys/5. 10
pt_fill/1 . 9

pt_fill/2 . 10
pt_generate_table/10 . 12
pt_move_tables/1 . 10
pt_need/1 . 10
pt_remove_unused_tables/1 11
pt_reset/1 . 11
pt_spawn_call/1 . 12

T
table_persistent/5 . 8

Operator Definition Index 14

Operator Definition Index

(Index is empty)

Concept Definition Index 15

Concept Definition Index

(Index is empty)

Global Index 16

Global Index

This is a global index containing pointers to places where concepts, predicates, modes,
properties, types, applications, etc., are referred to in the text of the document. Note that
due to limitations of the info format unfortunately only the first reference will appear in
online versions of the document.

A
add_new_table/2 . 4, 8

B
basics . 8

C
consult . 8

E
error_handler . 8

G
gensym . 8

M
machine . 8

P
Pred/K . 3
Pred_undef/K . 3
proc_files . 8
pt_abolish_subgoals(+GoalList) 11
pt_abolish_subgoals/1 . 8, 11
pt_add_table(+Goal,+FileName) 11
pt_add_table(+Goal,+FileName,?TimeStamp)

. 11
pt_add_table/2 . 8, 11, 12
pt_add_table/3 . 7, 8, 11, 12
pt_add_tables(+GoalList,+FileList) 12
pt_add_tables(+GoalList,+FileList,-Time)

. 12
pt_add_tables/2 . 8, 12
pt_add_tables/3 . 8, 10, 12
pt_call(+Goal) . 9
pt_call/1 . 3, 8, 9
pt_delete_earlier(Module,TimeStamp) 12
pt_delete_earlier/2 . 8, 12
pt_delete_later(Module,TimeStamp) 12
pt_delete_later/2 . 8, 12
PT_Directory.P 3, 4, 5, 7, 10, 11, 12

pt_eval_viewsys(+GoalList, +FileList, -Time,

+FillList, +NProcs) . 10
pt_eval_viewsys/5. 7, 8, 10
pt_fill . 7
pt_fill(+Goal,+NumProcs) 10
pt_fill(+GoalList) . 9
pt_fill/1 . 8, 9, 10
pt_fill/1/2 . 1, 10
pt_fill/2 . 8, 10
pt_generate_table/10 . 8, 12
pt_grouper . 8
pt_move_tables(+MoveList) 10
pt_move_tables/1 . 8, 10
pt_need(+Goals) . 10
pt_need/1 . 1, 4, 5, 8, 9, 10
pt_remove_unused_tables(+Module) 11
pt_remove_unused_tables/1 8, 11
pt_reset(+Module). 11
pt_reset/1 . 8, 11
pt_spawn_call/1 . 8, 12
pt_utilities . 8

R
read_dsv/3 . 4, 9

S
setof . 8
shell . 8
standard . 8
string . 8

T
table_instance(TId, Goal, Module, Status,

GoalArgs, AnsVars, TableInfo, FileName)

. 5
table_instance/8 . 4, 5, 7
table_instance_cnt/2 4, 5, 11
table_persistent(+Goal, +Modes, +TableInfo,

+ProcessSpec, +DemandGoal) 8
table_persistent/5 3, 5, 8, 10

X
xsb_configuration . 8
xsb_persistent_tables/ . 3

