
Prototype reimplementation of LATEX2ε’s block
environments using templates

LATEX Project∗

v0.9m 2026-01-26

Abstract

Contents
1 Introduction 4

2 Template types and templates for blocks and lists 4
2.1 Template types . 4

2.1.1 The template type ‘blockenv’ . 4
2.1.2 The template type ‘block’ . 5
2.1.3 The template type ‘para’ . 5
2.1.4 The template type ‘list’ . 5
2.1.5 The template type ‘captionedtext’ 6
2.1.6 The template type ‘item’ . 6
2.1.7 The template type ‘thmstyle’ . 6

2.2 Templates . 7
2.2.1 The blockenv template ‘std’ . 7
2.2.2 The block template ‘std’ . 9
2.2.3 The para template ‘std’ . 10
2.2.4 The list template ‘std’ . 11
2.2.5 The item template ‘std’ . 11
2.2.6 The captionedtext template ‘thmlike’ 12
2.2.7 The captionedtext template ‘proof’ 12
2.2.8 The thmstyle template ‘std’ . 13

∗Initial reimplementation of lists done by Bruno Le Floch, generalized second version with tagging
support by Frank Mittelbach.

1

3 Declaring standard display block environments and their instances 14
3.1 The display and displayflattened environments 15

3.1.1 Their blockenv instances . 15
3.1.2 Their block instances . 16

3.2 The center, flushleft, and flushright environments 16
3.2.1 Their blockenv instances . 17
3.2.2 Their block instances . 18
3.2.3 Their para instances . 18

3.3 The quote and quotation environments 18
3.3.1 Their blockenv instances . 18
3.3.2 Their block instances . 19

3.4 The verse environment . 19
3.4.1 Their blockenv instances . 19

3.5 The verbatim, verbatim* and alltt environments 20
3.5.1 Their blockenv instances . 20
3.5.2 Their block instances . 22

3.6 The trivlist environment . 22
3.7 The standard lists: itemize, enumerate, and description 22

3.7.1 Their blockenv instances . 23
3.7.2 Their block instances . 24
3.7.3 Their list instances . 24
3.7.4 Their item instances . 25

3.8 The legacy list and trivlist environments 25
3.8.1 Its blockenv instance . 26
3.8.2 Its list instance . 26

3.9 Theorem-like environments declared through \newtheorem 27
3.9.1 The blockenv instances they use 27
3.9.2 The captionedtext instances they use 28
3.9.3 The thmstyle instances they use 28
3.9.4 The block instances they use . 29

3.10 The proof environment (from amsthm) 30
3.10.1 Block instances for the proofs . 31

4 Declaring para instances 31

5 Advice on adjusting the layout of standard block environments 33

6 Tagging support 33
6.1 Paragraph tags . 33

6.1.1 Tagging recipes . 35

7 Tracing and debugging 36

8 New and redefined kernel command 37

2

9 The Implementation 38
9.1 Candidates for kernel changes . 39

9.1.1 Augmented \SetKnownTemplateKeys 39
9.1.2 Tracing templates and instances 40
9.1.3 Handling \par after the end of the list 40
9.1.4 Other useful expl3 commands . 42

9.2 Tracing and debugging interfaces . 42
9.3 Template types and template interfaces 44
9.4 Implementation of templates . 46

9.4.1 Some notes on the LATEX2ε legacy switches 46
9.4.1.1 Original usage: . 47
9.4.1.2 Repurpose: . 47

9.4.2 Implementation of blockenv templates 48
9.4.3 Implementation of para templates 53
9.4.4 Implementation of block templates 55
9.4.5 Implementation of list templates 59
9.4.6 Implementation of item templates 62
9.4.7 Implementation of captionedtext and thmstyle templates 69

9.5 Tagging support commands . 75
9.5.1 List tags . 79
9.5.2 Tagging recipes . 81

10 Support code for document-level block environments 83
10.1 Verbatim-like environments . 83

10.1.1 Helper commands for verbatim and verbatim* 83
10.1.2 Helper commands for alltt and alltt* 84
10.1.3 Helper command for legacy list environment 85

10.2 Theorem-like environments . 86
10.2.1 Declarations for theorem-like environments 86
10.2.2 Supporting QED in proofs . 92

11 Support for other packages and classes 94
11.1 Replacement for alltt . 94
11.2 Replacement for amsthm . 94
11.3 Support for amsart and amsbook classes 94
11.4 Support for the enumitem interfaces . 96
11.5 Support for the doc package . 96

Index 97

3

1 Introduction
The list implementation in LATEX2ε serves a dual purpose: it implements real lists such
as itemize or enumerate, but it is also used as the basis for vertical blocks, i.e., to specify
the vertical spacing and paragraph handling after such block, e.g., in environments like
center, quote, verbatim, or in the theorem environments. They are all implemented as
“ trivial” lists with a single (hidden) item.

While this was convenient to get a consistent layout using a single implementation
it is not adequate if it comes to interpreting the structure of a document, because envi­
ronments based on trivlist should not advertise themselves as being a “ list” — after
all, from a semantic point of view they aren’t lists.

The approach taking here is therefore to offer separate template types: block (hor­
izontally or vertically oriented data that needs some handling at the start and the end),
para (that deals with different paragraph layouts), list (that handles list related pa­
rameters, and item (for item layouts and handling).

To address the independent aspects we have the template type blockenv that ties
them together as necessary when we build document level environments.

For example, a quote environment would make use of a (display) block and some
para instance while a standard enumerate would make use of a display block, a list,
and an item and a para instance. An inline list (like enumerate* from the enumitem
package) would be using the same list instance but a different (horizontally oriented)
block instance build from a different template.

Instead of a list instance to handle the inner structure of the environment one can
use an instance of the type captionedtext to produce a display environment with an
associated heading/caption, such as a theorem-like environment or a proof environment.
Further possibilities (not yet implemented) are templates for producing boxed text or
formal quotes like those produced by the csquotes package.

2 Template types and templates for blocks and lists
2.1 Template types
2.1.1 The template type ‘blockenv’

Arg: 1 key/value list to alter the default parameters of the template instances used by
the particular blockenv environment

Arg: 2 Boolean to suppress a number in case this environment normally produces a
numbered caption

Arg: 3 Caption/heading text in case this environment supports a caption (most don’t),
otherwise \NoValue

Arg: 4 Sub-caption/heading text in case this environment supports a caption (most
don’t), otherwise \NoValue

Semantics:

This template type is used to implement document-level environments. It defines a
block instance to handle the layout at the “ edge” of the environment data, possibly
some paragraph setup through a para instance, potentially an “ inner” instance for more

4

complicated environments (such as lists), and possibly some additional setup code for
certain environments.

Arguments 2–4 are passed to the instance handling the inner structure, e.g., list
or captionedtext which may or may not make use of it.

It also defines how the blockenv behaves with respect to nesting, e.g., does it change
when nested and if so how many levels of nesting are supported, etc.

Finally, the template type defines how it appears in a tagged PDF document, what
tag names are used, how they are role-mapped and whether it adds additional attributes,
etc.

2.1.2 The template type ‘block’

Arg: 1 key/value list to alter the default block parameters

Semantics:

Handle the layout aspects of a block of data. In case of a “ display” block (i.e., vertically
oriented) the spacing and page breaking as well as the handling if the block starts a
paragraph or ends one, that is, if text is immediately following the block without being
separated by an empty line, then this text is considered to be in the same paragraph as
the block.

In case of a horizontally oriented block it covers any special handling at the start
and end of the block, e.g, extra spacing, prohibiting or encouraging line breaks, and so
forth.

2.1.3 The template type ‘para’

Arg: 1 key/value list to alter the default item parameters

Semantics:

Sets up paragraph-specific parameters for H&J, e.g., to implement justification variations,
the behavior of \\ etc. The instances are used in higher-level templates, e.g., in a block.

2.1.4 The template type ‘list’

Arg: 1 key/value list to alter the default item parameters

Arg: 2 Boolean to suppress a number in case this list environment also produces a
numbered heading/caption

Arg: 3 Caption/heading text in case this environment supports a caption (lists normally
don’t), otherwise \NoValue

Arg: 4 Sub-caption/heading text in case this environment supports a caption, otherwise
\NoValue

5

Semantics:

Handle the aspects related to list design, e.g., the use and formatting of counters, etc.
Standard LATEX2ε lists have no heading/caption, so arguments 2–4 are ignored in

the standard list template. But special lists, such as a list of ingredients for a cookbook,
might so there might be other templates that make use of them in the future.

Note that this template type does not cover block-related aspects, i.e., a list instance
could be used both for a display list or for an inline list.

2.1.5 The template type ‘captionedtext’

Arg: 1 key/value list to alter the default item parameters

Arg: 2 Boolean to suppress a number in case this environment also produces a numbered
heading/caption

Arg: 3 Caption/heading text for this text block; if not given then \NoValue

Arg: 4 Sub-caption/heading text in case this environment supports a caption, otherwise
\NoValue

Semantics:

Produces a text block with an associated caption/heading, e.g., a theorem-like environ­
ment. There may not be a user-supplied caption text—the caption may consist of a fixed
text only like “Lemma”.

Handles the aspects related to the caption design and typically supports keys for
adjusting the layout of the body text, e.g., its font, etc.

Note that this template type does not cover block-related aspects, e.g., the dimen­
sions of the display block are handled there.

2.1.6 The template type ‘item’

Arg: 1 key/value list to alter the default item parameters

Semantics:

A sub-type used as part of list to easily cover alternative layout for list items.

2.1.7 The template type ‘thmstyle’

Arg: 1 key/value list to alter the default item parameters

Arg: 2 Boolean to suppress a number in case this environment also produces a numbered
heading/caption

Arg: 3 Caption/heading text for this text block; if not given then \NoValue

Arg: 4 Sub-caption/heading text in case this environment supports a caption, otherwise
\NoValue

6

Semantics:

A sub-type used as part of captionedtext when producing theorem-like environments.
It does the bulk of the work and sets up most of the formatting. It has been separated
out because many theorem-like environments use the same theorem layout and only differ
in the fixed caption text they generate.

Not all templates of type captionedtext use thmstyle as an inner instance, e.g.,
proofs are implemented with a template that does everything necessary directly.

2.2 Templates
2.2.1 The blockenv template ‘std’

Attributes:

name (tokenlist) Name of the environment used in tracing and error messages.

tag-name (tokenlist) Name of the tag used for the block inside the PDF. If not explicitly
given the name is defined by the tagging-recipe. Note that in case of tagging-
recipe=basic no tag for the block is produced, so any key settings are ignored.

 Default: ⟨empty⟩

tag-attr-class (tokenlist) An explicit tag class attribute. Default: ⟨empty⟩

tagging-recipe (tokenlist) Defines the way tagging is done. Currently the values
basic, standard, and list are supported. Default: standard

transparent-level (boolean) Is this blockenv transparent for any blocks nested inside?
 Default: false

legacy-code (tokenlist) Legacy setup code. This is executed after legacy defaults (from
\@listi, \@listii, etc.) are used but before the block instance is called.

 Default: ⟨empty⟩

block-instance (tokenlist) Part of the name of the block instance that is called. The
full name has a -⟨level⟩ appended. Default: std-display

para-instance (tokenlist) Paragraph settings to use within the environment. If ⟨empty⟩
then the current (outer) values are retained. However, the inner-instance tem­
plate might reset/overwrite some of the para values, e.g., list makes used of
\listparindent to explicitly set the paragraph indentation for compatibility.

 Default: ⟨empty⟩

inner-level-counter (tokenlist) Name of an existing (!) counter that is incremented
and used to determine final name of the inner-instance or empty if always the
same inner instance should be used.

max-inner-levels (tokenlist) Maximum number of nested environments of this kind.
Only relevant if there is a inner-level-counter specified. Default: 4

inner-instance-type (tokenlist) Template type of the inner instance. Currently sup­
ported types are list and captionedtext. Default: ⟨empty⟩

7

inner-instance (tokenlist) Name of the inner instance (if any). If there is an inner-
level-counter then the instance name gets -⟨counter value⟩ appended.

 Default: ⟨empty⟩

tagging-suppress-paras (boolean) describe Default: false

final-code (tokenlist) Final setup code Default: \ignorespaces

Semantics & Comments: The blockenv type handles the overall setup for the
document-level environments.

This blockenv template supports the legacy list setting that are found in many
document classes in the macros \@listi, \@listii, up to \@listvi. It also uses the
counter \@listdepth to track nesting of block, again mainly to support legacy setups
(internally it gives it a more appropriate name but it remains accessible through the
LATEX2ε name).

The internal block nesting level is stored (for historical reasons) in the \@listdepth
counter and incremented by each block by one. The starting value at top-level (outside
any block) is zero. A block environment with transparent-level=true also increments
the level before it evaluates and sets its parameters but then decrements it again, just
before it starts processing its body.

The template first checks that the block is not too deeply nested.
After the level was increased then corresponding \@list... macro to update the

legacy defaults is called.
It then sets up the tagging via the tagging-recipe setting and executes any code

in legacy-code.
Afterwards it calls the appropriate block instance based on block-instance and

current level, e.g., std-display-1.
Then it sets up paragraph parameters if a para-instance was specified (otherwise

they stay as they are).
If a inner-instance was specified this is called next, or more precisely: if no inner-

level-counter was specified the instance inner-instance is called.
Otherwise, the inner-level-counter is incremented and the instance with the name

inner-instance-inner-level-counter is called.
Finally, the final-code is executed (by default \ignorespaces).

The maximum number of blockenvs that can be nested into each other is restricted
by the LATEX counter maxblocklevels with a default value of 6. If this value is increased
then it is necessary to provide additional instances, e.g., std-display-7, etc. Decreasing
is, of course, always possible, then some of the instances defined are not used and instead
the user gets an error that there is too much nesting going on.

If the key transparent-level is set to true then such an environment alters
the nesting level only temporarily (while processing the blockenv template) and you
can therefore nest those environments as often as you like (a typical example would
be flushleft anywhere in the nesting hierarchy) as long as the level isn’t already at
maxblocklevels).

8

2.2.2 The block template ‘std’

Attributes:

begin-vspace (skip) Vertical space before the block. Default: \topsep

begin-extra-vspace (skip) Extra vertical space before the block if the block forms its
own paragraph. Default: \partopsep

begin-unchained-vspace (skip) Vertical space before the block to use if this is a nested
block, both blocks have items or captions, and these should not be chained; see
description below. Default: .5\topsep

para-vspace (skip) The default for ordinary blocks is to use the \parskip from the
outer galley. In lists and some other special blocks this is then changed.

 Default: \parskip

end-vspace (skip) Vertical space after the block. Default: value from begin-vspace

end-extra-vspace (skip) Extra vertical space after the block if the block forms its own
paragraph. Default: value from begin-extra-vspace

item-vspace (skip) The space in front of an item if the block is a list; if not, the setting
has no effect. Default: \itemsep

begin-penalty (integer) Penalty for breaking before the block.
 Default: \@beginparpenalty

end-penalty (integer) Penalty for breaking after the block. Default: \@endparpenalty

item-penalty (integer) Penalty for breaking before an item in the list (except the first).
 Default: \@itempenalty

left-margin (length) Space on the left of the block. Default: \leftmargin

right-margin (length) Space on the right of the block. Default: \rightmargin

para-indent (length) Paragraph indention for paragraphs within the block. Default: 0pt

Semantics & Comments: Sets up the main block parameters, e.g. its spacing before
and after and the indentation on either side.

It also sets up some parameter defaults for the inner level, e.g., item-penalty,
item-vspace and para-indent, which may get overwritten by inner instances that are
called.

The vertical spacing before the block covers four different use cases: If there is a
caption or an item waiting to be placed, and this item allows for “ chaining”, and the new
block also wants to place an item then no space is added (spacing was already added by
the outer block). Instead, the items are chained and placed that the start of the block,
i.e., producing a layout like the two nested itemize environments here:

• – A second-level item
– Another …

More text for the first-level item

• Another first-level item

9

In that case there is also no vertical space after the block. If the items should not be
chained (as specified by the setup of the outer block), then one gets a result like this one
(using itemize environments inside description with different treatment of individual
description \items):

An normal label • A second-level item
• Another …

More text for the first-level item

An unchained label
• A second-level item
• Another …

More text for the first-level item

A normal label Another first-level item

If “ unchaining” happens, as in the second item, then vertical spacing with the value of
begin-unchained-vspace is used and at the end you get end-vertical-space.

Otherwise, if there is no item or caption waiting to be placed you get a vertical space
of begin-vspace before the block and if the block is its own paragraph you additionally
get begin-extra-vspace added to this.

Note that LATEX2ε always chained the list items, so the ability to prohibit this is
new functionality.

2.2.3 The para template ‘std’

Attributes:

para-indent (length) Default: \parindent

begin-hspace (skip) Horizontal skip added just in front of the indentation box if non-
zero Default: 0pt

left-hspace (skip) Default: 0pt

right-hspace (skip) Default: 0pt

end-hspace (skip) Default: \@flushglue

fixed-word-spaces (boolean) Default: false

final-hyphen-demerits (integer) Default: 5000

newline-cmd (function(0)) This defines the meaning of \\ Default: \@normalcr

para-attr-class (tokenlist) Default: justify

Semantics & Comments: The begin-hspace (normally 0pt) is the counterpart of
end-hspace (which is normally 0pt plus 1fil). It can be useful in special paragraph
shapes. The skip is only inserted into the paragraph if it is non-zero. If it is made non-zero
then paragraphs are always at least one line including a construct like \noindent\par!

TODO: to be further documented

10

2.2.4 The list template ‘std’

Attributes:

counter (tokenlist) Counter name to be used in a numbered list or empty, if the list is
unnumbered. Default: ⟨empty⟩

item-label (tokenlist) Label “ string” for a fixed label or as generated from the current
counter value. Default: ⟨empty⟩

start (integer) Start value for the counter if the list is numbered, otherwise irrelevant.
 Default: 1

resume (boolean) Should a numbered list be resumed from the last instance?.
 Default: false

item-instance (instance) Instance of type item to be used to format the label string.
 Default: basic

item-vspace (skip) The space in front of an item in the list. If not specified the value
specified in the block template instance is used.

item-penalty (integer) Penalty for breaking before an item (except the first). If not
specified the value specified in the block template instance is used.

item-indent (length) Horizontal displacement of the item. Default: 0pt

label-width (length) Width reserved for the formatted item label.
 Default: \labelwidth

label-sep (length) Horizontal separation between label and following text.
 Default: \labelsep

legacy-support (boolean) Is formatting the label via \makelabel supported?
 Default: false

Semantics & Comments: Sets up handling of list material, e.g., numbering (if any),
layout of items and list elements, and tagging, if requested.

2.2.5 The item template ‘std’

Attributes:

counter-label (function1) unused. Default: \arabic{#1}

counter-ref (function1) unused. Default: value from counter-label

label-ref (function1) unused. Default: #1

label-autoref (function1) unused. Default: item #1

label-format (function1) Formatting of the label, questionable the way it is used.
 Default: #1

label-strut (boolean) Add a \strut to the label? Default: false

11

label-align (choice) Supported values left,center, right, and parleft. Only partly
implemented. Default: right

label-placement (choice) Placement of the label in relation to a directly following la­
bel (of a following inner list). Supported values are chained, unchained, and
standalone. Default: chained

label-boxed (boolean) Should the label be boxed? Default: true

next-line (boolean) Default: false

text-font (tokenlist) unused.

compatibility (boolean) Default: true

Semantics & Comments: This template is only rudimentary implemented at the mo­
ment. It probably needs other keys and the existing ones need a proper implementation!fix

2.2.6 The captionedtext template ‘thmlike’

Attributes:

counter (tokenlist) Counter name to be used if the caption is numbered, otherwise
empty. Default: ⟨empty⟩

title (tokenlist) Fixed part of the caption, e.g., a theorem-like environment may want
to specify “ Lemma” here. Default: ⟨empty⟩

style (instance) Instance of type thmstyle that actually implements the theorem-like
environment. Default: plain

Semantics & Comments: The template combines the fixed title and a number (if
present) with the caption text as specified on the document element, if one is given, e.g.,
“ Theorem 1. (Fermat)”. See also the proof template, which handles this differently.

The bulk of the work is then outsourced to an instance of type thmstyle. As many
such theorem-like environments share the same layout and only differ in the first caption
string they use, there is this split for convenience.

2.2.7 The captionedtext template ‘proof’

Attributes:

title (tokenlist) Heading for the environment unless overwritten on document level.
 Default: Proof

punct (tokenlist) Punctuation following the heading. Default: .

caption-placement (choice) Supported values chained,unchained, and standalone
 Default: unchained

before-hspace (skip) Horizontal displacement of the heading. Default: 0pt

12

after-hspace (skip) Space following the heading, only relevant if text follows on the
same line. Default: 5pt

caption-decls (tokenlist) Declarations that are applied to the whole caption, e.g., some
font settings. Default: ⟨empty⟩

title-format (function1) Formatting applied to the title value. Default: #1

punct-format (function1) Formatting applied to the punct value. Default: #1

body-decls (tokenlist) Declarations that are applied to body of the environment, e.g.,
font settings. Default: ⟨empty⟩

Semantics & Comments: The “ unnumbered?” argument (#2) is ignored, as proofs
aren’t numbered. The template makes use of the caption argument (#3) but in contrast
to theorem-like environments this template replaces the title key value with the content
of this argument (if not \NoValue).

Typically there is only one layout for proofs so that there is no need to split the
formatting over two templates as done for theorem-like environment. That’s the reason
why the template has several layout customization parameters.

2.2.8 The thmstyle template ‘std’

Attributes:

numbered (boolean) Is this kind of environment numbered? Default: true

space (tokenlist) Space to be applied between elements of the heading Default: \␣

punct (tokenlist) Punctuation following the heading. Default: .

caption-placement (choice) Supported values chained,unchained, and standalone
 Default: unchained

before-hspace (skip) Horizontal displacement of the heading. Default: 0pt

after-hspace (skip) Space following the heading, only relevant if text follows on the
same line. Default: 5pt

order (commalist) Order of elements in the environment caption/heading. Supported
values are title, number, punct, space, and note.

 Default: title,space,number,space,note

caption-decls (tokenlist) Declarations that are applied to the whole caption, e.g., some
font settings. Default: ⟨empty⟩

title-format (function1) Formatting applied to the title value. Default: #1

number-format (function1) Formatting applied to the number value. Default: #1

punct-format (tokenlist) Formatting applied to the punct value. Default: #1

note-format (function1) Formatting applied to the note value. Default: (#1)

body-decls (tokenlist) Declarations that are applied to body of the environment, e.g.,
font settings. Default: ⟨empty⟩

13

Semantics & Comments: Numbering of the environment is suppressed uncondition­
ally if the numbered is set to false. Otherwise the environment is numbered except
when #2 is \BooleanTrue, i.e., if the star form of the environment was used.

The caption of the environment can consist of a title, a number, a punctuation,
some spaces and a note. Their order is defined by the key order. If a component is
specified but has no value, e.g., no note or the numbering suppressed on an individual
environment, then the component and any preceding spaces are ignored.

Spaces between elements are uniform (as one can only specify space in the order key,
but it is possible to use this several times in a row and adjust the space key accordingly.

Alternatively, one can omit using space in the order key and instead put all neces­
sary spacing into the individual ...-format keys. This approach is used, for example,
if a theorem style is set up with \newtheoremstyle and its ninth argument contains a
declaration such as

 \thmname{#1}\thmnumber{ #2}\thmnote{ (#3)}

This is then translated to

 order = {title,number,punct,note} ,
 title-format = {#1} ,
 number-format = { #2} ,
 note-format = { (#3)} ,

when \newtheoremstyle sets up a new instance. The downside of this approach is that
\swapnumbers would not work with such styles (because it would be necessary to transfer
the space inside value for the number-format key to the value of title-format).

If you look closely you also see that in the order key a punct was added in the list
even though it was not present originally. This is they way \newtheoremstyle worked
and so we mimic that.

3 Declaring standard display block environments and
their instances

Historically the LATEX kernel has defined a number of block environments directly, e.g.,
center or lists like itemize, but left others to be set up by document classes. For now
we declare all of them here, but in the future, some (or even all) might get moved to new
class files.
Most of the standard block environments have no need for a caption, so to sim­\SimpleBlockEnv
plify the setup we have added the command \SimpleBlockEnv that hides the ar­
guments 2–4 required by a blockenv instance and gives them suitable values, i.e.,
\BooleanFalse\NoValue\Novalue. This way, a document level definition for the center
environment will look like this:

\NewDocumentEnvironment{center} { !O{} }
 { \SimpleBlockEnv{center}{#1} } { \BlockEnvEnd }

instead of the more verbose

\NewDocumentEnvironment{center} { !O{} }
 { \UseInstance{blockenv}{center}{#1} \BooleanFalse \NoValue \NoValue }
 { \BlockEnvEnd }

14

We use !O{} for the optional argument so that it is only recognized if it immediately
follows \begin{center} without any spaces to avoid that a [at the start of the body
text is misinterpreted as the opening bracket of the optional argument. This is only done
for environments where this could be a problem.

This will then call the center instance of type blockenv that handles the rest.
For the environments that make use of the other arguments, we offer \BlockEnv as syntac­\BlockEnv

\BlockEnvEnd tic sugar so that most environment declarations look similar. And we use \BlockEnvEnd
in both cases to finish off.
 1 ⟨∗class-code⟩

In the following sections we provide for all block environments the top-level definition
and all instances that are used by it. Instances of type block are often reused across the
environments, in which case we just provide cross-references. Note that this is a design
decision, different classes my want to have adjusted settings for individual environments,
in which case they would provide special block instances instead of reusing, say, the
std-display-⟨level⟩ instances.

3.1 The display and displayflattened environments
displayblock (env.)

displayblockflattened (env.)
 There are two basic block environments (displayblock and displayblockflattened)
which are similar to LATEX2ε’s trivlist except that they aren’t degenerated lists and
thus have no hidden \item inside.
 2 \NewDocumentEnvironment{displayblock}{ !O{} }
 3 { \SimpleBlockEnv{displayblock} {#1} } { \BlockEnvEnd }

 4 \NewDocumentEnvironment{displayblockflattened}{ !O{} }
 5 { \SimpleBlockEnv{displayblockflattened} {#1} } { \BlockEnvEnd }

3.1.1 Their blockenv instances

blockenv displayblock (inst.) This is like LATEX2ε’s trivlist, i.e., it produces a vertical block with default setting,
but doesn’t put a list inside but uses a <Div> structure.
We list all keys, those with default values, commented out.
 6 \DeclareInstance{blockenv}{displayblock}{std}
 7 {
 8 name = displayblock
 9 % ,tagging-recipe = standard
 10 % ,tag-name =
 11 % ,tag-attr-class =
 12 ,transparent-level = true
 13 % ,legacy-code =
 14 % ,block-instance = std-display
 15 % ,para-instance =
 16 % ,tagging-suppress-paras = false
 17 % ,inner-instance =
 18 % ,inner-instance-type = % not relevant as there is no inner instance
 19 % ,inner-level-counter = % not relevant as there is no inner instance
 20 % ,max-inner-levels = 4 % not relevant as there is no inner instance
 21 % ,final-code = \ignorespaces
 22 }

The block uses the instance std-display which is shown below.

15

blockenv displayblockflattened (inst.) This flattens inner paragraphs without any surrounding tag structure by using the basic
tagging recipe.
 23 \DeclareInstance{blockenv}{displayblockflattened}{std}
 24 {
 25 name = displayblockflattened
 26 ,tagging-recipe = basic
 27 ,tagging-suppress-paras = true
 28 ,transparent-level = true
 29 }

3.1.2 Their block instances

We provide 6 nesting levels (as in LATEX2ε). If you want to provide more you need to
change the maxblocklevels counter, offer further std-display-⟨level⟩ instances but
also define further (legacy) \list⟨romannumeral⟩ commands for the defaults. If not,
then the settings from the previous level are reused automatically—which may or may
not be good enough).
 30 \setcounter{maxblocklevels}{6}

block std-display-1 (inst.)
block std-display-2 (inst.)
block std-display-3 (inst.)
block std-display-4 (inst.)
block std-display-5 (inst.)
block std-display-6 (inst.)

 We show all keys here for reference, with those using their default values commented
out:
 31 \DeclareInstance{block}{std-display-1}{std}
 32 {
 33 % ,begin-vspace = \topsep
 34 % ,begin-extra-vspace = \partopsep
 35 % ,para-vspace = \parskip
 36 % ,end-vspace = \KeyValue{begin-vspace}
 37 % ,end-extra-vspace = \KeyValue{begin-extra-vspace}
 38 % ,item-vspace = \itemsep
 39 % ,begin-penalty = \UseName{@beginparpenalty}
 40 % ,end-penalty = \UseName{@endparpenalty}
 41 ,left-margin = 0pt
 42 % ,right-margin = \rightmargin
 43 % ,para-indent = 0pt
 44 }

 45 \DeclareInstanceCopy{block}{std-display-2}{std-display-1}
 46 \DeclareInstanceCopy{block}{std-display-3}{std-display-1}
 47 \DeclareInstanceCopy{block}{std-display-4}{std-display-1}
 48 \DeclareInstanceCopy{block}{std-display-5}{std-display-1}
 49 \DeclareInstanceCopy{block}{std-display-6}{std-display-1}

3.2 The center, flushleft, and flushright environments
All three environments use the std-display instance as block instance. They only differ
in the choice of para instance.

center (env.)
flushleft (env.)
flushright (env.)

 For now we redeclare various document environments as late as possible in order to make
tagging work, even if classes have changed the definitions. Of course, this means that
such changes get lost.
 50 \AddToHook{begindocument/before}[./legacy-core]{

 51 \RenewDocumentEnvironment{center} { !O{} }
 52 { \SimpleBlockEnv{center}{#1} } { \BlockEnvEnd }

16

 53 \RenewDocumentEnvironment{flushright} { !O{} }
 54 { \SimpleBlockEnv{flushright}{#1} } { \BlockEnvEnd }

 55 \RenewDocumentEnvironment{flushleft} { !O{} }
 56 { \SimpleBlockEnv{flushleft}{#1} } { \BlockEnvEnd }
 57 }

3.2.1 Their blockenv instances

blockenv center (inst.) The center environment is defined through the blockenv instance center which makes
use of the block instance std-display-⟨level⟩ and the para instance center. The
block nesting level is not incremented. With respect to tagging, text separated by \par
commands (or empty lines) inside the environment is not tagged as separate paragraphs,
i.e., the whole environment is considered to be part of an outer paragraph.
 58 \DeclareInstance{blockenv}{center}{std}
 59 {
 60 name = center
 61 ,tag-name =
 62 ,tag-attr-class =
 63 ,tagging-recipe = basic
 64 ,tagging-suppress-paras = true
 65 ,inner-level-counter =
 66 ,transparent-level = true
 67 ,legacy-code =
 68 ,block-instance = std-display
 69 ,para-instance = center
 70 ,inner-instance =
 71 }

blockenv flushleft (inst.) Same as center except that we use the para instance raggedright.
 72 %\DeclareInstance{blockenv}{flushleft}{std}
 73 %{
 74 % name = flushleft
 75 % ,tag-name =
 76 % ,tag-attr-class =
 77 % ,tagging-recipe = basic
 78 % ,tagging-suppress-paras = true
 79 % ,inner-level-counter =
 80 % ,transparent-level = true
 81 % ,legacy-code =
 82 % ,block-instance = std-display
 83 % ,para-instance = raggedright
 84 % ,inner-instance =
 85 %}

Or more concise in the source and perhaps even faster in processing if only few keys are
changed:
 86 \DeclareInstanceCopy{blockenv}{flushleft}{center}
 87 \EditInstance{blockenv}{flushleft}{
 88 name = flushleft
 89 ,para-instance = raggedright }

blockenv flushright (inst.) Same game for flushright.
 90 \DeclareInstanceCopy{blockenv}{flushright}{center}

17

 91 \EditInstance{blockenv}{flushright}{
 92 name = flushright
 93 ,para-instance = raggedleft }

3.2.2 Their block instances

They all use the block instances std which have already been set up in section 3.1.2.

3.2.3 Their para instances

Formatting of paragraphs is handled through the para-instance key which either refers
to a instance of type para or is empty, in which case the handling of paragraphs is
inherited. The predefined instances are discussed in section 4.

3.3 The quote and quotation environments
LATEX2ε has two environments for quoting: quote and quotation. By default they
differ only in indentation of inner paragraphs. This is handled by using separate block
instances. The paragraph setup is inherited. The block nesting level is incremented.

The tag names are both role-mapped to <BlockQuote>.

quote (env.)
quotation (env.)

 We can’t use \RenewDocumentEnvironment for quote and other environments that
are class defined, because some classes aren’t implementing them at all. So we use
\DeclareDocumentEnvironment instead. This problem will vanish if all such definitions
move in new versions of the classes instead.
 94 \AddToHook{begindocument/before}[./legacy-quotes]{
 95 \DeclareDocumentEnvironment{quote}{ !O{} }
 96 { \SimpleBlockEnv{quote} {#1} } { \BlockEnvEnd }

 97 \DeclareDocumentEnvironment{quotation}{ !O{} }
 98 { \SimpleBlockEnv{quotation} {#1} } { \BlockEnvEnd }
 99 }

3.3.1 Their blockenv instances

blockenv quotation (inst.) For the quotation environment:
 100 \DeclareInstance{blockenv}{quotation}{std}
 101 {
 102 name = quotation
 103 ,tag-name = \UseStructureName{block/quotation}
 104 ,tag-attr-class =
 105 ,tagging-recipe = standard
 106 ,inner-level-counter =
 107 ,transparent-level = false
 108 ,legacy-code =
 109 ,block-instance = quotation
 110 ,inner-instance =
 111 }

blockenv quote (inst.) For the quote environment:
 112 \DeclareInstance{blockenv}{quote}{std}
 113 {
 114 name = quote

18

 115 ,tag-name = \UseStructureName{block/quote}
 116 ,tag-attr-class =
 117 ,tagging-recipe = standard
 118 ,inner-level-counter =
 119 ,transparent-level = false
 120 ,legacy-code =
 121 ,block-instance = quote
 122 ,inner-instance =
 123 }

3.3.2 Their block instances

block quote-1 (inst.)
block quote-2 (inst.)
block quote-3 (inst.)
block quote-4 (inst.)
block quote-5 (inst.)
block quote-6 (inst.)

 Default layout is to indent equally from both sides.
 124 \DeclareInstance{block}{quote-1}{std}
 125 { right-margin = \KeyValue{left-margin} }

 126 \DeclareInstanceCopy{block}{quote-2}{quote-1}
 127 \DeclareInstanceCopy{block}{quote-3}{quote-1}
 128 \DeclareInstanceCopy{block}{quote-4}{quote-1}
 129 \DeclareInstanceCopy{block}{quote-5}{quote-1}
 130 \DeclareInstanceCopy{block}{quote-6}{quote-1}

block quotation-1 (inst.)
block quotation-2 (inst.)
block quotation-3 (inst.)
block quotation-4 (inst.)
block quotation-5 (inst.)
block quotation-6 (inst.)

 Quotation additionally changes the para-indent.
 131 \DeclareInstance{block}{quotation-1}{std}
 132 { para-indent = 1.5em , right-margin = \KeyValue{left-margin} }

 133 \DeclareInstanceCopy{block}{quotation-2}{quotation-1}
 134 \DeclareInstanceCopy{block}{quotation-3}{quotation-1}
 135 \DeclareInstanceCopy{block}{quotation-4}{quotation-1}
 136 \DeclareInstanceCopy{block}{quotation-5}{quotation-1}
 137 \DeclareInstanceCopy{block}{quotation-6}{quotation-1}

3.4 The verse environment
The verse environment of LATEX is intended for poetry. Not sure what that should mean
with respect to tagging.

verse (env.) Implementation is like quote etc.
 138 \AddToHook{begindocument/before}[./legacy]{
 139 \DeclareDocumentEnvironment{verse}{!O{}}
 140 { \SimpleBlockEnv{verse} {#1} } { \BlockEnvEnd }
 141 }

3.4.1 Their blockenv instances

blockenv verse (inst.)
 142 \DeclareInstance{blockenv}{verse}{std}
 143 {
 144 name = verse
 145 ,tag-name = \UseStructureName{block/verse}
 146 ,tag-attr-class =
 147 ,tagging-recipe = standard
 148 ,inner-level-counter =
 149 ,transparent-level = false

19

 150 ,legacy-code =
 151 ,block-instance = quote % reuse?
 152 ,para-instance = verse
 153 ,inner-instance =
 154 }

The special indentation on continuation lines (the way LATEX handled poetry is done in
the para instance verse, defined later on.

3.5 The verbatim, verbatim* and alltt environments
verbatim (env.)

verbatim* (env.)
 Here are the definitions for the verbatim environments They look somewhat different than
others (but this isn’t the final definition). At the moment we use 2 optional arguments,
the second is only there so that there is yet another scan even if one optional argument
got detected. That then scans away the newline so that afterwards we can reinsert one
via \obeyedline. A better solution will be to use a c specifier for grabbing the body,
but that is for another day not Christmas Eve.fix
 155 \AddToHook{begindocument/before}[./legacy-verbatims]{
 156 \RenewDocumentEnvironment{verbatim}{ ={legacy-code} !o !o }
 157 { \SimpleBlockEnv{verbatim} {#1} \obeyedline } { \BlockEnvEnd }

 158 \RenewDocumentEnvironment{verbatim*}{ ={legacy-code} !o !o }
 159 { \SimpleBlockEnv{verbatim*} {#1} \obeyedline } { \BlockEnvEnd }

alltt (env.)
alltt* (env.)

 The alltt package implements a variation on verbatim handling where backslash and
braces retain their normal meanings. We also reimplement it using the template approach
The alltt* variant didn’t exist in the package, but it is trivial to set it up as well.The parsing here

should be adjusted
as well, eventually.

 160 \NewDocumentEnvironment{alltt}{ ={legacy-code} !o }
 161 { \SimpleBlockEnv{alltt} {#1} } { \BlockEnvEnd }
 162 \NewDocumentEnvironment{alltt*}{ ={legacy-code} !o }
 163 { \SimpleBlockEnv{alltt*} {#1} } { \BlockEnvEnd }
 164 }

3.5.1 Their blockenv instances

blockenv verbatim (inst.) The verbatim environment is defined through blockenv instance verbatim that makes
use of the block instance verbatim-⟨level⟩ and the para instance justify. The block
nesting level is not incremented. Verbatim processing requires various catcode changes,
etc. and as a consequence a special parsing routine that grabs the whole environment
while these catcodes are in force. This setup is done in the final-code key and its last
action is to initiate the special parsing.
 165 \DeclareInstance{blockenv}{verbatim}{std}
 166 {
 167 name = verbatim
 168 ,tag-name = \UseStructureName{block/verbatim}
 169 ,tag-attr-class =
 170 ,tagging-recipe = standard
 171 ,tagging-suppress-paras = true
 172 ,inner-level-counter =
 173 ,transparent-level = true
 174 ,legacy-code =
 175 ,block-instance = verbatim
 176 ,inner-instance =

20

 177 ,para-instance = justify

Here is where verbatim and verbatim* technically differ: in the former we set up spaces
to become nonbreakable spaces (if necessary followed by a \pdffakespace in the pdfTEX
engine) and in verbatim* we set it up to generate visible space chars.
 178 ,final-code = \legacyverbatimsetup{invisible}

Then we start the special scanning process to look for \end{verbatim} with special
catcodes and grab everything in between. For verbatim* we use \@sxverbatim to look
for \end{verbatim*} instead.1
 179 \@xverbatim
 180 }

The role-mapping is <verbatim> to <Code> and <codeline> to <Sub> (which is role
mapped to in pdf 1.7). Sub inside Code is allowed according the errata of ISO
32005. The paragraphs inside verbatim are flattened. Line numbers should be inside the
<codeline> structure and be tagged either as <Lbl> or <Artifact><Lbl>.

blockenv verbatim* (inst.) The implementation of verbatim* is similar using the blockenv instance verbatim*. Its
final-code sets up visible spaces and a slightly different parsing that grabs everything
up to \end{verbatim*}. Otherwise the setup is identical.
 181 \DeclareInstance{blockenv}{verbatim*}{std}
 182 {
 183 name = verbatim
 184 ,tag-name = \UseStructureName{block/verbatim}
 185 ,tag-attr-class =
 186 ,tagging-recipe = standard
 187 ,tagging-suppress-paras = true
 188 ,inner-level-counter =
 189 ,transparent-level = true
 190 ,legacy-code =
 191 ,block-instance = verbatim
 192 ,inner-instance =
 193 ,para-instance = justify
 194 ,final-code = \legacyverbatimsetup{visible}
 195 \@sxverbatim
 196 }

blockenv alltt (inst.) The implementation of the alltt environment from the alltt is more or less identical as
well. We just need a slightly different final code to keep backslash and braces functional.
 197 \DeclareInstance{blockenv}{alltt}{std}
 198 {
 199 name = alltt
 200 ,tag-name = \UseStructureName{block/verbatim} % private tag instead?
 201 ,tag-attr-class =
 202 ,tagging-recipe = standard
 203 ,tagging-suppress-paras = true
 204 ,inner-level-counter =
 205 ,transparent-level = true
 206 ,legacy-code =
 207 ,block-instance = verbatim
 208 ,inner-instance =
 209 ,para-instance = justify

1Perhaps there should be some other command names for this?

21

Now set up the special environment settings with most characters verbatim. We don’t
even have to scan ahead for the \end{alltt} because backslash and braces still have
their normal meaning.
 210 ,final-code = \legacyallttsetup {invisible}
 211 }

blockenv alltt* (inst.) The alltt* variant didn’t exist in the alltt package, but it is trivial to set it up as well.
 212 \DeclareInstance{blockenv}{alltt*}{std}
 213 {
 214 name = alltt*
 215 ,tag-name = \UseStructureName{block/verbatim} % private tag instead?
 216 ,tag-attr-class =
 217 ,tagging-recipe = standard
 218 ,tagging-suppress-paras = true
 219 ,inner-level-counter =
 220 ,transparent-level = true
 221 ,legacy-code =
 222 ,block-instance = verbatim
 223 ,inner-instance =
 224 ,para-instance = justify
 225 ,final-code = \legacyallttsetup {visible}
 226 }

3.5.2 Their block instances

block verbatim-1 (inst.)
block verbatim-2 (inst.)
block verbatim-3 (inst.)
block verbatim-4 (inst.)
block verbatim-5 (inst.)
block verbatim-6 (inst.)

 Verbatim instances have there own levels so that one can specify specific indentations
or vertical separations between lines.
 227 \DeclareInstance{block}{verbatim-1}{std}
 228 {
 229 ,left-margin = 0pt
 230 ,para-vspace = 0pt
 231 }

 232 \DeclareInstanceCopy{block}{verbatim-2}{verbatim-1}
 233 \DeclareInstanceCopy{block}{verbatim-3}{verbatim-1}
 234 \DeclareInstanceCopy{block}{verbatim-4}{verbatim-1}
 235 \DeclareInstanceCopy{block}{verbatim-5}{verbatim-1}
 236 \DeclareInstanceCopy{block}{verbatim-6}{verbatim-1}

3.6 The trivlist environment
In LATEX2ε trivlist was used to define various display environments that aren’t really
lists at all. To support such legacy definitions (even though they should be updated to
achieve proper tagging) we continue to support and implement it as a list environment
with a few hardwired settings mimicking the original behavior.maybe we should sim­

ply implement it as
a displayblock in­
stance (at least when
doing tagging) - decide

3.7 The standard lists: itemize, enumerate, and description
itemize (env.)

enumerate (env.)
description (env.)

 For the standard lists everything is managed by the blockenv instances.
 237 \AddToHook{begindocument/before}[./legacy-lists]{
 238 \RenewDocumentEnvironment{itemize}{!O{}}
 239 { \SimpleBlockEnv{itemize} {#1} } { \BlockEnvEnd }

22

 240 \RenewDocumentEnvironment{enumerate}{!O{}}
 241 { \SimpleBlockEnv{enumerate} {#1} } { \BlockEnvEnd }

 242 \DeclareDocumentEnvironment{description}{!O{}}
 243 { \SimpleBlockEnv{description} {#1} } { \BlockEnvEnd }
 244 }

3.7.1 Their blockenv instances

blockenv itemize (inst.) The itemize environment is defined through the blockenv instance itemize which
makes use of the block instance list-⟨level⟩, and an inner instance itemize-⟨inner-
level⟩ of type list. The paragraph setup is inherited.2 The ⟨inner-level⟩ is deter­
mined through \@itemdepth. The block nesting level and the inner list nesting level are
incremented.
 245 \DeclareInstance{blockenv}{itemize}{std}
 246 {
 247 name = itemize
 248 ,tag-name = \UseStructureName{block/itemize}
 249 ,tag-attr-class = itemize
 250 ,tagging-recipe = list
 251 ,inner-level-counter = \@itemdepth
 252 ,transparent-level = false
 253 ,max-inner-levels = 4
 254 ,legacy-code =
 255 ,block-instance = std-list
 256 ,inner-instance-type = list
 257 ,inner-instance = itemize
 258 ,para-instance =
 259 }

blockenv enumerate (inst.) The enumerate environment is similar to itemize but uses the blockenv instance
enumerate, the block instance list-⟨level⟩, and the inner instance enumerate-⟨inner-
level⟩. The ⟨inner-level⟩ is determined through \@enumdepth.
 260 \DeclareInstance{blockenv}{enumerate}{std}
 261 {
 262 name = enumerate
 263 ,tag-name = \UseStructureName{block/enumerate}
 264 ,tag-attr-class = enumerate
 265 ,tagging-recipe = list
 266 ,transparent-level = false
 267 ,max-inner-levels = 4
 268 ,legacy-code =
 269 ,block-instance = std-list
 270 ,inner-level-counter = \@enumdepth
 271 ,inner-instance-type = list
 272 ,inner-instance = enumerate
 273 }

2In the LATEX2ε implementation justified paragraphs where forced, even if the whole document was
set in ragged text. If this slightly strange behavior is desired then one has to set the para-instance key
to justify.

23

blockenv description (inst.) The description environment uses the blockenv instance description, the block in­
stance list-⟨level⟩, and the inner instance description (no dependency on the nesting
level), i.e., the environment has the same appearance on all nesting levels.
 274 \DeclareInstance{blockenv}{description}{std}
 275 {
 276 name = description
 277 ,tag-name = \UseStructureName{block/description}
 278 ,tag-attr-class = description
 279 ,tagging-recipe = list
 280 ,inner-level-counter =
 281 ,transparent-level = false
 282 ,legacy-code =
 283 ,block-instance = std-list
 284 ,inner-instance-type = list
 285 ,inner-instance = description
 286 }

3.7.2 Their block instances

block std-list-1 (inst.)
block std-list-2 (inst.)
block std-list-3 (inst.)
block std-list-4 (inst.)
block std-list-5 (inst.)
block std-list-6 (inst.)

 The block instances for the various list environments use the same underlying instance
(well, by default) and nothing needs to be set up specifically (because that is already
done in the legacy \list⟨romannumeral⟩ unless a different layout is wanted.
 287 \DeclareInstance{block}{std-list-1}{std}{
 288 % begin-vspace = \topsep
 289 % ,begin-extra-vspace = \partopsep

This is the only one we have to explicitly set for lists if the default setup is wanted.
 290 ,para-vspace = \parsep
 291 % ,end-vspace = \KeyValue{begin-vspace}
 292 % ,end-extra-vspace = \KeyValue{begin-extra-vspace}
 293 % ,item-vspace = \itemsep
 294 % ,begin-penalty = \UseName{@beginparpenalty}
 295 % ,end-penalty = \UseName{@endparpenalty}
 296 % ,left-margin = \leftmargin
 297 % ,right-margin = \rightmargin
 298 % ,para-indent = 0pt
 299 }

 300 \DeclareInstanceCopy{block}{std-list-2}{std-list-1}
 301 \DeclareInstanceCopy{block}{std-list-3}{std-list-2}
 302 \DeclareInstanceCopy{block}{std-list-4}{std-list-3}
 303 \DeclareInstanceCopy{block}{std-list-5}{std-list-4}
 304 \DeclareInstanceCopy{block}{std-list-6}{std-list-5}

If the legacy \list⟨romannumeral⟩ is not used in a modern class then, of course, these
instances all need to set up the different parameters explicitly. The new implementation
of the standard classes (will) show that approach.

3.7.3 Their list instances

For all list instances we have to say what kind of label we want (item-label) and how
it should be formatted.

24

list itemize-1 (inst.)
list itemize-2 (inst.)
list itemize-3 (inst.)
list itemize-4 (inst.)

 For itemize environments this is all we need to do and we refer back to the external
definitions rather than defining the item-label code in the instance to ensure that old
documents still work.
 305 \DeclareInstance{list}{itemize-1}{std}{ item-label = \labelitemi }
 306 \DeclareInstance{list}{itemize-2}{std}{ item-label = \labelitemii }
 307 \DeclareInstance{list}{itemize-3}{std}{ item-label = \labelitemiii }
 308 \DeclareInstance{list}{itemize-4}{std}{ item-label = \labelitemiv }

list enumerate-1 (inst.)
list enumerate-2 (inst.)
list enumerate-3 (inst.)
list enumerate-4 (inst.)

 enumerate environments are similar, except that we also have to say which counter to
use on each level.
 309 \DeclareInstance{list}{enumerate-1}{std}
 310 { item-label = \labelenumi , counter = enumi }
 311 \DeclareInstance{list}{enumerate-2}{std}
 312 { item-label = \labelenumii , counter = enumii }
 313 \DeclareInstance{list}{enumerate-3}{std}
 314 { item-label = \labelenumiii , counter = enumiii }
 315 \DeclareInstance{list}{enumerate-4}{std}
 316 { item-label = \labelenumiv , counter = enumiv }

list description (inst.) The description lists also use only a single list instance with only one key not using
the default:
 317 \DeclareInstance{list}{description}{std} { item-instance = description }

Of course, if handling of description lists should differ in nested lists all one has to do is
to provide an inner-level-counter and then define description-1, description-2,
etc.

3.7.4 Their item instances

item basic (inst.)
item description (inst.)

 There are two item instances to set up: description for use with the description
environment and basic for use with all other lists (up to now).
 318 \DeclareInstance{item}{basic}{std}
 319 { label-align = right }

 320 \DeclareInstance{item}{description}{std}
 321 {
 322 ,label-format = \normalfont\bfseries #1
 323 ,label-align = left
 324 }

3.8 The legacy list and trivlist environments
list (env.) The legacy 2e list environment is more complicated as we have to get the extra arguments

accounted for.
 325 \AddToHook{begindocument/before}[./legacy]{
 326 \RenewDocumentEnvironment{list}{O{} m m }
 327 {

We do this by storing them away and then call the list instance. Inside this instance the
legacy-code key contains \legacylistsetup which makes use of the stored values.
 328 \tl_set:Nn \l_@@_legacy_env_params_tl
 329 {
 330 \tl_set:Nn \@itemlabel {#2}

25

 331 #3
 332 }

The LATEX2ε lists don’t support captions so we use \SimpleBlockEnv.
 333 \SimpleBlockEnv{list} {#1}
 334 }
 335 { \BlockEnvEnd }
 336 }

trivlist (env.) LATEX2ε defined trivlist as an implementation of list (or rather the other way
around).Replace with code

not using \list 337 \AddToHook{begindocument/before}[./legacy]{
 338 \RenewDocumentEnvironment{trivlist}{ !O{} }
 339 { \list[#1]{}
 340 {
 341 \dim_zero:N \leftmargin
 342 \dim_zero:N \labelwidth
 343 \cs_set_eq:NN \makelabel \use:n
 344 }
 345 }
 346 { \BlockEnvEnd }
 347 }

3.8.1 Its blockenv instance

blockenv list (inst.) The generic list environment of LATEX2ε is modeled with a blockenv instance named
list, a block instance named std-list-⟨level⟩, and an inner instance named legacy
(with no dependency on the nesting level). This environment has two arguments and
customization of the layout is expected to be directly set in the second argument. For
this reason this legacy instance is something that shouldn’t be changed (all that is
attempted to provide a way to support legacy setups).
To set up the default settings (as they were used in LATEX2ε) the legacy-code key gets
\legacylistsetup assigned that contains the necessary code to set up these defaults.
Changing the blockenv is therefore not recommended for the legacy list environment.
 348 \DeclareInstance{blockenv}{list}{std}
 349 {
 350 name = list
 351 ,tag-name = \UseStructureName{block/list}
 352 ,tag-attr-class =
 353 ,tagging-recipe = list
 354 ,transparent-level = false
 355 ,legacy-code = \legacylistsetup
 356 ,block-instance = std-list
 357 ,inner-level-counter =
 358 ,inner-instance-type = list
 359 ,inner-instance = legacy
 360 }

3.8.2 Its list instance

list legacy (inst.) For the legacy list environment there is only one instance which is reused on all levels.
This is done this way because the legacy list environment sets all its parameters through

26

its arguments. So this instances shouldn’t really be touched. It sets the legacy-support
key to true, which means that the list code uses \makelabel for formatting the label.
 361 \DeclareInstance{list}{legacy}{std} {
 362 ,item-instance = basic
 363 ,legacy-support = true
 364 }

3.9 Theorem-like environments declared through \newtheorem

In standard LATEX theorem-like environments are not defined directly, but with the help
of a \newtheorem declaration. That allows specifying the typeset environment title, e.g.,
“ Lemma”, and the counter to use to number the environments, e.g., they could be all
numbered individually or one could number them using the same counter as some other
theorem-like environment.

This was first augmented by the theorem package which implemented the idea of
a \theoremstyle; this is now considered obsolete. Michael Downes from the AMS
improved on these early ideas and wrote the amsthm package, which offered more
functionality including a \newtheoremstyle declaration and for the document level a
\swapnumbers and an proof environment. It also provided star-forms for \newtheorem
(to define an unnumbered environment) and allowed to use star-forms of the theorem-like
environments to suppress numbering on an individual instance in the document.

This new implementation based on templates, is supposed to cover the functionality
of amsthm including it declarations so that documents that use amsthm explicitly or
implicitly via their class should continue to work seamlessly.

For other packages that provide theorem-like environments we have to see if they
could be easily remodeled using the new implementation or if there is a need for extended
templates.

Assuming declarations such as

 % \swapnumbers % <- commented out
 \theoremstyle{definition}
 \newtheorem{axiom}[def]{Axiom}

in a document, then the following instances of type blockenv and captionedtext are
declared by \newtheorem.

3.9.1 The blockenv instances they use

Given the above input \newtheorem defines the following blockenv instance:

 \DeclareInstance{blockenv}{axiom}{std}
 {

 name = theorem-like
,tag-name = \UseStructureName{block/theorem-like}
,tagging-recipe = standalone
,transparent-level = true
,block-instance:e = thm-

 \IfInstanceExistsTF{block}
 { thm-definition-1 }
 { definition } { plain }

,inner-instance-type = captionedtext

27

,inner-instance = axiom
,para-instance = justify

 }

The setting for block-instance means that it checks if a block instance with the
name thm-definition-1 exists. If so then the value thm-definition is used, otherwise
thm-plain is used which is always defined, i.e., if the theoremstyle does not specify any
special vertical spacing the block instance from the plain style is reused.

What varies from blockenv instance to instance are the values for block-instance
and inner-instance.

We use <theorem-like> as the structure name and role-map it to a <Sect> because
that can hold a <Caption>.

3.9.2 The captionedtext instances they use

The instance of type captionedtext is also defined by \newtheorem and in this case it
looks like this:

\DeclareInstance{captionedtext}{axiom}{thmlike}
{
,counter = def
,title = Axiom % <-- that the title provided to \newtheorem
,style = definition % <-- that's the used \theoremstyle

}

If we uncomment the \swapnumbers line in the example above then we get

,style = definition-swap

in the captionedtext instance instead.

3.9.3 The thmstyle instances they use

New theorem styles can be declared with \newtheoremstyle which then generates an
instance of type thmstyle. Alternatively, it is, of course, possible to declare the instances
directly (which gives you a bit more flexibility). A few such styles are predeclared,
matching what is offered by amsthm. These are shown below.

thmstyle plain (inst.) The main style used for many theorem-like environments, i.e., the one you get if no
special \theoremstyle has been specified.
 365 \DeclareInstance{thmstyle}{plain}{std}
 366 {
 367 ,caption-placement = unchained
 368 ,numbered = true
 369 ,space = \
 370 ,punct = .
 371 ,before-hspace = 0pt
 372 ,after-hspace = 5pt plus 1pt minus 1pt
 373 ,order = {title, space, number, punct, space, note}
 374 ,caption-decls = \bfseries
 375 ,title-format = #1
 376 ,number-format = #1
 377 ,punct-format = #1

28

 378 ,note-format = (#1)
 379 ,body-decls = \itshape
 380 }

thmstyle remark (inst.) The remark is like plain with two changes:
 381 \DeclareInstanceCopy{thmstyle}{remark}{plain}
 382 \EditInstance{thmstyle}{remark}
 383 {
 384 ,caption-decls = \itshape
 385 ,body-decls = \normalfont
 386 }

thmstyle definition (inst.) The definition is like plain with only a difference in the font used for the body:
 387 \DeclareInstanceCopy{thmstyle}{definition}{plain}
 388 \EditInstance{thmstyle}{definition}
 389 {
 390 ,body-decls = \normalfont
 391 }

thmstyle legacy2e (inst.) Vanilla LATEX2ε (without amsthm loaded) had a slightly different default. We provide
this under the name legacy2e. It doesn’t use a punctuation after the number and it has
slightly different vertical spacing (defined by thm-legacy2e-1 below).
Thus, to reprocess an old document for tagging that uses \newtheorem without loading
amsthm one has to set \theoremstyle{legacy2e} to avoid layout changes. How such a
compatibility setting is automated is not yet decided.
 392 \DeclareInstanceCopy{thmstyle}{legacy2e}{plain}
 393 \EditInstance{thmstyle}{legacy2e}{ punct = }

3.9.4 The block instances they use

block thm-plain-1 (inst.)
block thm-plain-2 (inst.)

 Theorems do not support nesting, so in theory we have only one to set up. There are,
however, documents that put theorem-like environments inside of lists or other block
environments. While that is in most case somewhat dubious, it can make sense, for
example, in description lists. So we support it by providing thm-plain instances for
levels 1 and 2. If somebody really nests them further down, then more such instances
need to be declared.
The LATEX default reused the general value of \parindent and \parskip and, of course,
they start at the outer margin.
 394 \DeclareInstance{block}{thm-plain-1}{std}
 395 {
 396 ,begin-extra-vspace = 0pt
 397 ,left-margin = 0pt
 398 ,para-indent = \parindent
 399 ,para-vspace = \parskip
 400 }

 401 \DeclareInstanceCopy{block}{thm-plain-2}{thm-plain-1}

block thm-remark-1 (inst.)
block thm-remark-2 (inst.)

 The \thmstyle for “ remarks” is defined by amsthm to use less vertical spacing. It
therefore needs its own block instance.
 402 \DeclareInstance{block}{thm-remark-1}{std}
 403 {
 404 ,begin-vspace = 0.5\topsep

29

 405 ,begin-extra-vspace = 0pt
 406 ,left-margin = 0pt
 407 ,para-indent = \parindent
 408 ,para-vspace = \parskip
 409 }

 410 \DeclareInstanceCopy{block}{thm-remark-2}{thm-remark-1}

block thm-legacy2e-1 (inst.)
block thm-legacy2e-2 (inst.)

 These are like the plain ones but without resetting begin-extra-vspace to zero.
 411 \DeclareInstance{block}{thm-legacy2e-1}{std}
 412 {
 413 ,left-margin = 0pt
 414 ,para-indent = \parindent
 415 ,para-vspace = \parskip
 416 }

 417 \DeclareInstanceCopy{block}{thm-legacy2e-2}{thm-legacy2e-1}

3.10 The proof environment (from amsthm)
proof (env.) The proof environment expects one optional argument holding an alternative title for

the proof. We parse this optional argument as an implicit key/value argument, so that
it is possible to interpret it either as the value for the key note or as a key/value list
that holds special key settings for this particular environment instance. The result is
analyzed by \ParseLaTeXeTheoremlike which then calls a blockenv instance with the
name proof.
In addition we have to set up handling of QED symbols using \pushQED and \popQED
using the logic already defined in amsthm. Details on all this is given in the code section
of this module but normally this top-level declaration doesn’t require any changes.
 418 \NewDocumentEnvironment{proof}{ ={note}o }
 419 { \pushQED{\qed}%
 420 \ParseLaTeXeTheoremlike {proof} \BooleanTrue {#1} }
 421 { \popQED \BlockEnvEnd }

blockenv proof (inst.) A proof uses its own proofblock instance of type block for vertical spacing. As the
proof has a heading we use a captionedtext instance with name proof as the inner
instance and the paragraphs of the proof are justified.
 422 \DeclareInstance{blockenv}{proof}{std}
 423 {
 424 name = proof
 425 ,tag-name = \UseStructureName{block/proof}
 426 ,tag-attr-class =
 427 ,tagging-recipe = standalone
 428 ,inner-level-counter =
 429 ,transparent-level = true
 430 ,legacy-code =
 431 ,block-instance = proof
 432 ,inner-instance-type = captionedtext
 433 ,inner-instance = proof
 434 ,para-instance = justify
 435 }

30

captionedtext proof (inst.) We use a special captionedtext template to set up the proof because proofs are not
numbered and the argument to a proof environment has a somewhat different semantic
meaning than that of theorem-like environments.
 436 \DeclareInstance{captionedtext}{proof}{proof}
 437 {
 438 ,title = Proof
 439 ,punct = .
 440 ,before-hspace = 0pt
 441 ,after-hspace = 5pt plus 1pt minus 1pt
 442 ,caption-decls = \itshape
 443 ,title-format = #1
 444 ,punct-format = #1
 445 ,body-decls = \normalfont
 446 }

3.10.1 Block instances for the proofs

block proof-1 (inst.)
block proof-2 (inst.)

 Blocks for proofs are pretty normal (the values are taken from the amsthm implementa­
tion):
 447 \DeclareInstance{block}{proof-1}{std}
 448 {
 449 ,begin-vspace = 6pt plus 6pt
 450 ,left-margin = 0pt
 451 ,para-indent = \parindent
 452 ,para-vspace = \parskip
 453 }
 454 \DeclareInstanceCopy{block}{proof-2}{proof-1}

4 Declaring para instances
Display block environments often require special paragraph settings and therefore have a
para-instance key to specify and appropriate instance. Here are the standard instances
that are predefined for this purpose.

para justify (inst.) Justifying is exactly what the default values do, so the instance hasn’t any special setup.
 455 \DeclareInstance{para}{justify}{std}
 456 {
 457 % ,para-attr-class = justify
 458 % ,para-indent = \parindent
 459 % ,begin-hspace = 0pt
 460 % ,left-hspace = \z@skip
 461 % ,right-hspace = \z@skip
 462 % ,end-hspace = \@flushglue
 463 % ,final-hyphen-demerits = 5000
 464 % ,newline-cmd = \@normalcr
 465 }

para center (inst.) Centering a paragraph means putting stretchable glue on both sides.
 466 \DeclareInstance{para}{center}{std}
 467 {
 468 ,para-attr-class = center
 469 ,para-indent = 0pt

31

 470 % ,begin-hspace = 0pt
 471 ,left-hspace = \@flushglue
 472 ,right-hspace = \@flushglue
 473 ,end-hspace = \z@skip
 474 ,final-hyphen-demerits = 0
 475 ,newline-cmd = \@centercr
 476 }

para raggedright (inst.) This is the plain TEX version of ragged right, which basically means no hyphenation
unless a word is truly longer than a line. This implements flushleft.
 477 \DeclareInstance{para}{raggedright}{std}
 478 {
 479 ,para-attr-class = raggedright
 480 ,para-indent = 0pt
 481 % ,begin-hspace = 0pt
 482 ,left-hspace = \z@skip
 483 ,right-hspace = \@flushglue
 484 ,end-hspace = \z@skip
 485 ,final-hyphen-demerits = 0
 486 ,newline-cmd = \@centercr
 487 }

para raggedleft (inst.) This here is for flushright.
 488 \DeclareInstance{para}{raggedleft}{std}
 489 {
 490 ,para-attr-class = raggedleft
 491 ,para-indent = 0pt
 492 % ,begin-hspace = 0pt
 493 ,left-hspace = \@flushglue
 494 ,right-hspace = \z@skip
 495 ,end-hspace = \z@skip
 496 ,final-hyphen-demerits = 0
 497 ,newline-cmd = \@centercr
 498 }

Here are the attribute definitions used in the para-attr-class in the above in­
stances:this should be

moved elsewhere 499 \tagpdfsetup
 500 {
 501 ,role/new-attribute = {justify} {/O /Layout /TextAlign/Justify}
 502 ,role/new-attribute = {center} {/O /Layout /TextAlign/Center}
 503 ,role/new-attribute = {raggedright}{/O /Layout /TextAlign/Start}
 504 ,role/new-attribute = {raggedleft} {/O /Layout /TextAlign/End}
 505 }

\centering
\raggedleft

\raggedright
\justifying

These instances are also used to implement declarations for direct use in documents or
in user definitions.
 506 \DeclareRobustCommand\centering {\UseInstance{para}{center}{}}
 507 \DeclareRobustCommand\raggedleft {\UseInstance{para}{raggedleft}{}}
 508 \DeclareRobustCommand\raggedright{\UseInstance{para}{raggedright}{}}
 509 \DeclareRobustCommand\justifying {\UseInstance{para}{justify}{}}

LATEX’s default is to typeset paragraphs justified.
 510 \justifying

32

(End of definition for \centering and others.)

para verse (inst.) For the verse environment we use a special para instance. If the right hand side should
be ragged then a different right-hspace is needed.
 511 \DeclareInstance{para}{verse}{std}
 512 {
 513 para-attr-class = justify ,
 514 para-indent = 0pt ,
 515 begin-hspace = -1.5em ,
 516 left-hspace = 1.5em ,
 517 right-hspace = 0pt ,
 518 end-hspace = \@flushglue ,
 519 final-hyphen-demerits = 0 ,
 520 newline-cmd = \@centercr ,
 521 }

 522 ⟨/class-code⟩

5 Advice on adjusting the layout of standard block
environments

to document

6 Tagging support
6.1 Paragraph tags
Paragraphs in LATEX can be nested, e.g., you can have a paragraph containing a display
quote, which in turn consists of more than one (sub)paragraph, followed by some more
text which all belongs to the same outer paragraph.

In the PDF model and in the HTML model that is not supported — a limitation
that conflicts with real life, given that such constructs are quite normal in spoken and
written language.

The approach we take to resolve this is to model such “ big” paragraphs with a
structure named <text-unit> and use <text> (role-mapped to <P>) only for (portions
of) the actual paragraph text in a way that the <text>s are not nested. As a result we
have for a simple paragraph the structures

 <text>
 <text>

 The paragraph text …
 </text>

 </text>

The <text-unit> structure is role-mapped to <Part> or possibly to <Div> so we get a
valid PDF, but processors who care can identify the complete paragraphs by looking for
<text-unit> tags.

In the case of an element, such as a display quote or a display list inside the para­
graph, we then have

33

 <text-unit>
 <text>

 The paragraph text before the display element …
 </text>
 <display element structure>

 Content of the display structure possibly involving inner <text-unit> tags
 </display element structure>
 <text>

 … continuing the outer paragraph text
 </text>

 </text-unit>

In other words such a display block is always embedded in a <text-unit> structure,
possibly preceded by a <text>…</text> block and possibly followed by one, though
both such blocks are optional.

Thus an itemize environment that has some introductory text but no text imme­
diately following the list would be tagged as follows:

 <text-unit>
 <text>

 The intro text for the itemize environment …
 </text>
 <itemize>

 <itemlabel> label </itemlabel>
 <itembody>

 The text of the first item involving <text-unit> as necessary …
 </itembody>

 The second item …

 … further items …

 </itemize>
 </text-unit>

The <itemize> is roll-mapped to <L>.
For some display blocks, such as centered text, we use a simpler strategy. Such

blocks still ensure that they are inside a <text-unit> structure but their body uses
simple <text> blocks and not <text-unit><text> inside, e.g., the input

This is a paragraph with some
\begin{center}
 centered lines

 with a paragraph break between them
\end{center}
followed by some more text.

34

will be tagged as follows:

 <text-unit>
 <text>

 This is a paragraph with some
 </text>
 <text /O /Layout /TextAlign/Center>

 centered lines
 </text>
 <text /O /Layout /TextAlign/Center>

 with a paragraph break between them
 </text>
 <text>

 followed by some more text.
 </text-unit>

The text-unit structures are added by using the tagging sockets para/semantic/begin
and para/semantic/end declared in lttagging.dtx. They can be disabled by assigning
these sockets the plug noop.

6.1.1 Tagging recipes

There are a number of different tagging recipes that implement different tagging ap­
proaches. They are selected through the tagging-recipe of the blockenv template.
Currently the following values are implemented:

standalone This recipe does the following:

• Ensure that the blockenv is not inside a <text-unit> structure. If
necessary, close the open one (and any open <text> structure).

• Text inside the body of the environment start with <text-unit><text>
unless the key tagging-suppress-paras is set to true (which is most likely
the wrong thing to do because we then get just <text> as the structure).

• At the end of the environment close </text> and possibly an inner
</text-unit> if open.

• Finally, ensure that after the environment a new <text-unit> is started, if
appropriate, e.g., if text is following.

basic This recipe does the following:

• Ensure that the blockenv is inside a <text-unit> structure, if necessary,
start one.

• If inside a <text-unit><text>, then close the </text> but leave the
<text-unit> open.

• Text inside the body of the environment start with <text-unit><text> if
tagging-suppress-paras is set to false, otherwise just with <text>.

• At the end of the environment close </text> and possibly an inner
</text-unit> if open.

35

• Then look if the environment is followed by an empty line (\par). If so, close
the outer </text-unit> and start any following text with
<text-unit><text>. Otherwise, don’t and following text restarts with a just
a <text> (and no paragraph indentation)

standard This recipe is like the basic one as far as handling <text-unit> and <text>
is concerned. In addition

• it starts an inner tagging structure (i.e., which is therefore a child of the
outer <text-unit>).

• By default this structure is a <Div> unless overwritten by the key tag-name.
If that key is used, a suitable role-map needs to be provided for the name
given.

• At the end of the environment that inner structure is closed again so that we
are back on the <text-unit> level from the outside.

• Then the lookahead for an empty line is done as described previously.

list This recipe is like the standard one except that

• the inner structure is a list (<L>).
• Furthermore everything is set up so that we have list items () with

suitable substructures (<itemlabel> for the item labels and <itembody> for
the item bodies).

• If the key tag-name is specified, this is used as the tag name for the whole
list instead of <L>. Of course, it should then have a suitable rolemap.

• If the key tag-attr-class is specified then this is used as the class
attribute. Again, this requires a suitable setup on the outside.

• At the end of the environment the </itembody>, , and </L> (or the
tag name used) are closed.

• Then the lookahead for an empty line is done as described previously.

7 Tracing and debugging

These commands enable/disable debugging messages for blocks. They also enable/disable
debugging of templates (e.g., call \DebugTemplatesOn or \DebugTemplatesOff).

\DebugBlocksOn
\DebugBlocksOff
\block_debug_on:
\block_debug_off:

The data that is produced is rather verbose and largely guided (so far) by what
seemed helpful while developing the code. This needs some cleanup at a later stage. At cleanup
the moment, if you have the following simple document

1 \DocumentMetadata{tagging=on, lang=en}
2

3 \documentclass{article}
4

5 \DebugBlocksOn
6

7 \begin{document}

36

8 \begin{itemize}[item-vspace=3pt]
9 \item A normal item

10 \item[\textbf{+}] A special item
11 \end{itemize}
12 \end{document}

then you will get the following information on the screen and in the .log file:

[Template] ==> Use 'blockenv' instance: itemize on input line 8
[Template] ==> template: 'std'; arguments: |item-vspace=3pt|\BooleanFalse |\NoValue |\NoValue |
[Template] ==> Use 'block' instance: std-list-1 on input line 8
[Template] ==> template: 'std'; argument: |item-vspace={3pt}|
[Blocks] ==> @endpe=false on input line 8
[Template] ==> Use 'list' instance: itemize-1 on input line 8
[Template] ==> template: 'std'; arguments: ||\BooleanFalse |\NoValue |\NoValue |
[Blocks] ==> Set first block everypar on input line 8
[Blocks] ==> template:list:std end

[Template] ==> Use 'item' instance: basic on input line 9
[Template] ==> template: 'std'; argument: ||
[Blocks] ==> Set item block everypar on input line 9
[Blocks] ==> ... in item block everypar on input line 9
[Blocks] ==> increment P on input line 9
[Blocks] ==> Set noop block everypar on input line 9

[Template] ==> Use 'item' instance: basic on input line 10
[Template] ==> template: 'std'; argument: |label={\textbf {+}}|
[Blocks] ==> item with optional
[Blocks] ==> Set item block everypar on input line 10
[Blocks] ==> ... in item block everypar on input line 10
[Blocks] ==> increment P on input line 10
[Blocks] ==> Set noop block everypar on input line 10

[Blocks] ==> blockenv common ending on input line 11

[Blocks] ==> flattened=false on input line 12
[Blocks] ==> Structure-end text-unit after displayblock on input line 12

8 New and redefined kernel command

to be documented\SimpleBlockEnv
\BlockEnv
\BlockEnvEnd
\g_block_nesting_depth_int

to be documented\legacyverbatimsetup
\legacyallttsetup
\legacylistsetup

A counterpart definition to the kernel command \@setupverbinvisiblespace, needed
as we need to handle real space chars in verbatim.

\@setupverbinvisiblespace

37

Reimplemented to fit the template approach. \newtheoremstyle was defined by amsthm.\newtheorem
\newtheoremstyle

These are no longer used (to be removed).\@nthm
\@xnthm
\@ynthm
\@thm
\@xthm
\@ythm
\@othm
\@begintheorem
\@opargbegintheorem
\@endtheorem

The \item is redefined.\item
\@itemlabel

A counter to increase or decrease the number of supported level. If increased, one needs
to supply additional level instances.

\c@maxblocklevels

The \begin is slightly redefined to handle \@doendpe better. TODO: move to kernel\begin

The original LATEX2ε command is augmented to allow for tagging.\@doendpe

TODO: consider name, document\para_end:

The para/begin hook is enhanced to support list endspara/begin

9 The Implementation
 523 ⟨∗package-start⟩

 524 ⟨@@=block⟩

 525 \ProvidesPackage {latex-lab-testphase-block}
 526 [\ltlabblockdate\space v\ltlabblockversion\space
 527 blockenv implementation]

38

9.1 Candidates for kernel changes
General kernel changes, also loaded by the sec and toc code.
 528 \RequirePackage{latex-lab-kernel-changes}

For testing we temporarily load it here (it has to come before the definition of
\DebugBlocksOff below:
 529 \RequirePackage{latex-lab-testphase-context}

 530 \ExplSyntaxOn

9.1.1 Augmented \SetKnownTemplateKeys

\SetKnownTemplateKeys A key/val list passed to \SetKnownTemplateKeys can either be empty (in which we
do not want to start up the parsing machinery) or it could be \NoValue in which we
do not want to do that either. The latter can happen, for example, with verbatim
where we define the optional argument with ={legacy-code} !o so that people can
write \begin{verbatim}[\small] a syntax promoted by the TUGboat class.
 531 \cs_set_protected:Npn \SetKnownTemplateKeys #1#2#3
 532 {

An “ empty” argument (or rather one that is empty after one expansion) is most likely
the case that happens most often so we test for this first.
 533 \tl_if_empty:oTF {#3}
 534 {
 535 \tl_set_eq:NN \UnusedTemplateKeys \c_empty_tl
 536 }
 537 {
 538 \tl_if_novalue:nTF {#3}
 539 {
 540 \tl_set_eq:NN \UnusedTemplateKeys \c_empty_tl
 541 }
 542 {
 543 \keys_set_known:noN { template / #1 / #2 } {#3}
 544 \UnusedTemplateKeys
 545 }
 546 }
 547 }
(End of definition for \SetKnownTemplateKeys. This function is documented on page ??.)

\SetTemplateKeys Same kind of extension for \SetTemplateKeys:
 548 \cs_set_protected:Npn \SetTemplateKeys #1#2#3
 549 {
 550 \tl_if_empty:oF {#3}
 551 {
 552 \tl_if_novalue:nF {#3}
 553 {
 554 \keys_set:no { template / #1 / #2 } {#3}
 555 }
 556 }
 557 }
(End of definition for \SetTemplateKeys. This function is documented on page ??.)

39

9.1.2 Tracing templates and instances

\template_debug_typeout:n I guess that tracing macro is needed in several modules, so should become public (or at
least kernel).
 558 \cs_new_protected:Npn \template_debug_typeout:n { __template_debug_typeout:n }
(End of definition for \template_debug_typeout:n. This function is documented on page ??.)

9.1.3 Handling \par after the end of the list

An empty line (or a \par) after a list has semantic meaning as it defines whether then
following text is logically within the same paragraph as the list (no empty line) or whether
it starts a new paragraph and the paragraph containing the list ends at the end of the
list (empty line after the list). This is handled by LATEX using a legacy flag called @endpe
and set of commands inside the generic \end (calling \@doendpe) and as part of the list
environments identifying themselves as “ paragraph ending environments” (by setting this
flag).

For the reimplementation of the list environments including support of tagging we
need to augment that mechanism slightly and add some kernel hook(s) to add the tagging
code if needed.

\@doendpe The original LATEX2ε command is augmented to allow for tagging. TODO: use sockets
for this and move to the kernel eventually.
 559 \def\@doendpe{\@endpetrue
 560 \def\par
 561 {

If we are processing a $$ math display and we encounter a real \par after it, we need to
add a \parskip when tagging is done, because the one added by TEX is always canceled
by the processing in __math_tag_dollardollar_display_end: in that case. This is
signaled by the global legacy switch @domathendpe which is set to true in that case.
Once the skip is applied we set it to false. If there is no \par at all, it will be reset in
\everypar when the next paragraph starts.
 562 \if@domathendpe
 563 \skip_vertical:n { \tex_parskip:D }
 564 \@domathendpefalse
 565 \fi
 566 \@restorepar
 567 \clubpenalty\@clubpenalty

At this point we add the tagging code that closes an open <text-unit>, <text> tag
combination, if necessary:
 568 \tag_socket_use:n {@doendpe}

The standard \par command (\par_end:) acts on @endpe and attempts to close a still
open <text-unit>s and this would be wrong if it was already closed above. So we have
to reset the switch to false first.
 569 \@endpefalse
 570 \everypar{}
 571 \par
 572 }
 573 \everypar{{\setbox\z@\lastbox}
 574 \everypar{}
 575 \@endpefalse

40

Not sure what is faster: testing for the status of the switch or setting it unconditionally
to false (globally), probably roughly the same, so we set it always:
 576 % \if@domathendpe
 577 \@domathendpefalse
 578 % \fi
 579 }
 580 }
(End of definition for \@doendpe. This function is documented on page 38.)

tagsupport/@doendpe (socket) The socket used in the \@doendpe TODO: if this goes into the kernel, the name should
probably be different.
 581 \socket_if_exist:nF{ tagsupport/@doendpe }
 582 {
 583 \NewTaggingSocket {@doendpe}{0}
 584 }

default (plug) If a display block ends and is followed by a blank line we have to end the enclosing
paragraph tagging structure.
 585 \NewTaggingSocketPlug {@doendpe}{default}
 586 {
 587 \bool_if:NT \l__tag_para_bool
 588 {

Given that restoring \par through the legacy LATEX2ε method can take a few iterations
(for example, in case of nested lists, e.g., ...\end{itemize} \item ...\par it can hap­
pen that the socket code is called while @endpe is already handled and then we should
not attempt to close a <text-unit> structure). So we need to check for this.
 589 \legacy_if:nT { @endpe }
 590 {

If the display block currently ending was “ flattened” (i.e., uses simplified paragraphs that
are not tagged by a combination of <text-unit> followed by <text>, but simply with a
<text>), then we don’t have to do anything, because the <text> is already closed.
 591 __block_debug_typeout:n
 592 { flattened= \bool_if:NTF
 593 \l__tag_para_flattened_bool
 594 {true}{false}
 595 \on@line }
 596 \bool_if:NF \l__tag_para_flattened_bool
 597 {

 598 \UseTaggingSocket{para/semantic/end}
 599 {
 600 __block_debug_typeout:n{Structure-end~
 601 \l__tag_para_main_tag_tl\space
 602 after~ displayblock \on@line }
 603 }
 604 }
 605 }
 606 }
 607 }

 608 \AssignTaggingSocketPlug{@doendpe}{default}

41

\if@domathendpe
\@domathendpefalse
\@domathendpetrue

Signal that special paragraph handling after a math display is required.
 609 \newif\if@domathendpe
 610 \def\@domathendpefalse{\global\let\if@domathendpe\iffalse}
 611 \def\@domathendpetrue {\global\let\if@domathendpe\iftrue}
(End of definition for \if@domathendpe , \@domathendpefalse , and \@domathendpetrue.)

There is a general bug in the para handling: when the output routine is triggered
the current setting of @endpe affects what happens in the OR. but it shouldn’t so we
need to reset its value (which is global) and set it back after the OR has finished. This is
what the following code does (final implementation should probably not involve a normal
hook):fix in kernel
 612 \AddToHook{build/column/before}{%
 613 \if@endpe \@endpefalse \aftergroup\@endpetrue \fi
 614 }

9.1.4 Other useful expl3 commands

This section collects expl3 commands that will be useful in the code here and possibly
generally.

__block_skip_set_to_last:N
__block_skip_remove_last:

Set a skip register to the value of an immediately preceding skip or zero if there was
none.
 615 \cs_new_protected:Npn __block_skip_set_to_last:N #1 {
 616 \skip_set:Nn #1 { \tex_lastskip:D }
 617 }

Remove a skip previous skip if it is directly in front (not allowed in unrestricted vertical
mode).
 618 \cs_new_eq:NN __block_skip_remove_last: \tex_unskip:D
(End of definition for __block_skip_set_to_last:N and __block_skip_remove_last:.)

\tl_if_novalue:oTF Not sure this is still necessary (or even correct) after the move to \NoValue. check
 619 \cs_generate_variant:Nn \tl_if_novalue:nTF { o }
(End of definition for \tl_if_novalue:oTF. This function is documented on page ??.)

9.2 Tracing and debugging interfaces
This follows the same convention as in other modules, but eventually that should be
given a better implementation.refactor at some stage

\g__block_debug_bool Boolean to indicate if we want to get debugging info from commands and templates
handling block displays.
 620 \bool_new:N \g__block_debug_bool
(End of definition for \g__block_debug_bool.)

__block_debug:n
__block_debug_typeout:n

Put debugging info in the code, displayed or not displayed depending on the value in
\g__block_debug_bool.
 621 \cs_new_eq:NN __block_debug:n \use_none:n
 622 \cs_new_eq:NN __block_debug_typeout:n \use_none:n
(End of definition for __block_debug:n and __block_debug_typeout:n.)

42

\block_debug_on:
\block_debug_off:

__block_debug_gset:

Changing the debugging status.
 623 \cs_new_protected:Npn \block_debug_on:
 624 {
 625 \bool_gset_true:N \g__block_debug_bool
 626 __block_debug_gset:
 627 }

 628 \cs_new_protected:Npn \block_debug_off:
 629 {
 630 \bool_gset_false:N \g__block_debug_bool
 631 __block_debug_gset:
 632 }

 633 \cs_new_protected:Npn __block_debug_gset:
 634 {
 635 \cs_gset_protected:Npx __block_debug:n ##1
 636 { \bool_if:NT \g__block_debug_bool {##1} }
 637 \cs_gset_protected:Npx __block_debug_typeout:n ##1
 638 { \bool_if:NT \g__block_debug_bool
 639 { \iow_term:x { ^^J [Blocks]~ ==>~ ##1} } }
 640 }
(End of definition for \block_debug_on: , \block_debug_off: , and __block_debug_gset:. These func­
tions are documented on page 36.)

\DebugBlocksOn
\DebugBlocksOff

If we are debugging blocks we also want to know about template instances, so we turn
the debugging for templates as well (for now).
 641 \cs_new_protected:Npn \DebugBlocksOn { \block_debug_on: \template_debug_on: }
 642 \cs_new_protected:Npn \DebugBlocksOff { \block_debug_off: \template_debug_off: }

 643 \DebugBlocksOff
(End of definition for \DebugBlocksOn and \DebugBlocksOff. These functions are documented on page
36.)

\DebugSwitchesOn
\DebugSwitchesOff

This debugs the use of legacy switches (so perhaps better called \DebugLegacySwitchesOn)
but so far it was just a quick debugging aid while I was trying to understand. It needs
some further thoughts and is probably not necessary at all in the end.
 644 \cs_new_protected:Npn \DebugSwitchesOn {
 645 \AddToHookWithArguments{cmd/legacy_if_gset_false:n/before}[debug]
 646 {\typeout{[Switch]~==>~ ##1~=~false~(global)}}
 647 \AddToHookWithArguments{cmd/legacy_if_gset_true:n/before}[debug]
 648 {\typeout{[Switch]~==>~ ##1~=~true~(global)}}
 649 \AddToHookWithArguments{cmd/legacy_if_set_false:n/before}[debug]
 650 {\typeout{[Switch]~==>~ ##1~=~false}}
 651 \AddToHookWithArguments{cmd/legacy_if_set_true:n/before}[debug]
 652 {\typeout{[Switch]~==>~ ##1~=~true}}
 653 }

 654 \cs_new_protected:Npn \DebugSwitchesOff {
 655 \RemoveFromHook{cmd/legacy_if_gset_false:n/before}[debug]
 656 \RemoveFromHook{cmd/legacy_if_gset_true:n/before}[debug]
 657 \RemoveFromHook{cmd/legacy_if_set_false:n/before}[debug]
 658 \RemoveFromHook{cmd/legacy_if_set_true:n/before}[debug]
 659 }

 660 %\DebugSwitchesOn
 661 %\DebugSwitchesOff
(End of definition for \DebugSwitchesOn and \DebugSwitchesOff. These functions are documented on
page ??.)

43

9.3 Template types and template interfaces
This section is devoted to the template interfaces, and the template code is covered later.

blockenv (type)
list (type)

captionedtext (type)
thmstyle (type)

block (type)
item (type)
para (type)

 All template types expect a first key–value argument used to tweak template parameters
at a specific point in the document for a single environment or command. The template
types blockenv, list, captionedtext, and thmstyle take three more arguments which
are a boolean for suppressing numbering, a possible caption, and a possible sub-caption.
 662 \NewTemplateType{blockenv}{4}
 663 \NewTemplateType{list}{4}
 664 \NewTemplateType{captionedtext}{4}
 665 \NewTemplateType{thmstyle}{4}

 666 \NewTemplateType{block}{1}
 667 \NewTemplateType{item}{1}
 668 \NewTemplateType{para}{1}

blockenv std (templ.)
 669 \DeclareTemplateInterface{blockenv}{std}{4}
 670 {
 671 name : tokenlist ,

If not explicitly set then tag-name and tag-attr-class are set by the tagging-recipe.
However, we have to default both to ⟨empty⟩ so that nested blocks do not inherit from
the outer level.
 672 ,tag-name : tokenlist =
 673 ,tag-attr-class : tokenlist =
 674 ,tagging-recipe : tokenlist = standard
 675 ,transparent-level : boolean = false
 676 ,legacy-code : tokenlist =
 677 ,block-instance : tokenlist = std-display

Paragraph instance is normally inherited so no default.
 678 ,para-instance : tokenlist
 679 ,inner-level-counter : tokenlist
 680 ,max-inner-levels : tokenlist = 4
 681 ,inner-instance-type : tokenlist =
 682 ,inner-instance : tokenlist =
 683 ,tagging-suppress-paras : boolean = false
 684 ,final-code : tokenlist = \ignorespaces
 685 }

block std (templ.)
 686 \DeclareTemplateInterface{block}{std}{1}
 687 {
 688 ,begin-vspace : skip = \topsep
 689 ,begin-extra-vspace : skip = \partopsep
 690 ,begin-unchained-vspace : skip = .5\topsep
 691 ,para-vspace : skip = \parskip
 692 ,end-vspace : skip = \KeyValue{begin-vspace}
 693 ,end-extra-vspace : skip = \KeyValue{begin-extra-vspace}
 694 ,item-vspace : skip = \itemsep
 695 ,begin-penalty : integer = \UseName{@beginparpenalty}
 696 ,end-penalty : integer = \UseName{@endparpenalty}
 697 ,item-penalty : integer = \UseName{@itempenalty}

44

 698 ,left-margin : length = \leftmargin
 699 ,right-margin : length = \rightmargin
 700 ,para-indent : length = 0pt
 701 }

para std (templ.)
 702 \DeclareTemplateInterface{para}{std}{1}
 703 {
 704 ,para-attr-class : tokenlist = justify
 705 ,para-indent : length = \parindent
 706 ,begin-hspace : skip = 0pt
 707 ,left-hspace : skip = 0pt
 708 ,right-hspace : skip = 0pt
 709 ,end-hspace : skip = \@flushglue
 710 ,fixed-word-spaces : boolean = false
 711 ,final-hyphen-demerits : integer = 5000
 712 ,newline-cmd : function(0) = \@normalcr
 713 }

list std (templ.)
 714 \DeclareTemplateInterface{list}{std}{4}
 715 {
 716 ,counter : tokenlist =
 717 ,item-label : tokenlist =
 718 ,start : integer = 1
 719 ,resume : boolean = false
 720 ,item-instance : instance{item} = basic
 721 ,item-vspace : skip = \itemsep
 722 ,item-penalty : integer = \UseName{@itempenalty}
 723 ,item-indent : length = \itemindent
 724 ,label-width : length = \labelwidth
 725 ,label-sep : length = \labelsep
 726 ,legacy-support : boolean = false
 727 }

item std (templ.)
 728 \DeclareTemplateInterface{item}{std}{1}
 729 {
 730 ,counter-label : function{1} = \arabic{#1}
 731 ,counter-ref : function{1} = \KeyValue{counter-label}
 732 ,label-ref : function{1} = #1
 733 ,label-autoref : function{1} = item~#1
 734 ,label-format : function{1} = #1
 735 ,label-strut : boolean = false
 736 ,label-align : choice {left,center,right,parleft} = right
 737 ,label-boxed : boolean = true
 738 ,next-line : boolean = false % <- review viz standalone below
 739 ,text-font : tokenlist
 740 ,compatibility : boolean = true
 741 ,label-placement : choice {chained,unchained,standalone} = chained ,
 742 }

45

captionedtext thmlike (templ.) The captionedtext thmlike template for theorem-like environments has only three
keys because it delegates most of the work to the thmstyle template specified in the key
style.
 743 \DeclareTemplateInterface{captionedtext}{thmlike}{4}
 744 {
 745 ,counter : tokenlist =
 746 ,title : tokenlist = % <- bad name?
 747 ,style : instance{thmstyle} = plain
 748 }

captionedtext proof (templ.) In contrast, the captionedtext proof template implements all of the proof environ­
ment without any delegation and therefore shows several keys for customizing the layout
(similar to those seen with thmstyle std).
 749 \DeclareTemplateInterface{captionedtext}{proof}{4}
 750 {
 751 ,title : tokenlist = Proof
 752 ,punct : tokenlist = .
 753 ,caption-placement : choice {chained,unchained,standalone} = unchained
 754 ,before-hspace : skip = 0pt
 755 ,after-hspace : skip = 5pt
 756 ,caption-decls : tokenlist =
 757 ,title-format : function{1} = #1
 758 ,punct-format : function{1} = #1
 759 ,body-decls : tokenlist =
 760 }

thmstyle std (templ.)

 761 \DeclareTemplateInterface{thmstyle}{std}{4}
 762 {
 763 ,numbered : boolean = true
 764 ,space : tokenlist = \ % <- bad name?
 765 ,punct : tokenlist = .
 766 ,caption-placement : choice {chained,unchained,standalone} = unchained
 767 ,before-hspace : skip = 0pt
 768 ,after-hspace : skip = 5pt
 769 ,order : commalist = { title, space, number, punct, space, note }
 770 ,caption-decls : tokenlist =
 771 ,title-format : function{1} = #1
 772 ,number-format : function{1} = #1
 773 ,punct-format : function{1} = #1
 774 ,note-format : function{1} = (#1)
 775 ,body-decls : tokenlist =
 776 }

9.4 Implementation of templates
9.4.1 Some notes on the LATEX2ε legacy switches

LATEX2ε used a number of switches to manage its list environments and everything that
was based on them.

For the reimplementation I made some notes about the original usage and how this
got changed (while keeping the names for now).

46

Some of these switches really need to keep their names, e.g., @nobreak or minipage,
because they are used all over the place. Others can probably replaced with L3 booleans
which makes things faster and cleaner, but for now I kept them too.

9.4.1.1 Original usage:
 777 %
 778 % @newlist (global): signal that we are at the start of a list
 779 %
 780 % -> true at the start of a list before the first item when control
 781 % is returned to document
 782 % -> false in everypar setting the first item
 783 % -> false at end of list if still true (after generating an error)
 784 %
 785 % -> tests: at list start setting @noparitemtrue and @noparlisttrue
 786 %
 787 %
 788 % @inlabel (global): signaling that some item label waits to be typeset
 789 %
 790 % -> true in \@item
 791 % -> false at list end
 792 % -> false in everypar after label has been typeset
 793 % -> false in \newpage after \leavemode to typeset item label
 794 % (probably not needed)
 795 %
 796 % -> tests: at list start setting @noparitemtrue and @noparlisttrue
 797 % -> tests: at list end to ensure that dangling label is typeset
 798 % -> tests: in \@item to output a dangling item label by switching to hmode
 799 % -> tests: in \everypar to output a dangling item label
 800 % -> tests: in \newpage to output a dangling item label before the page is ended
 801 % -> tests: in tagging hook {para/begin}{kernel}
 802 %
 803 %
 804 % @noparlist (local):
 805 %
 806 % -> true at start of list if already @inlabel=true
 807 % -> false at start of list otherwise
 808 %
 809 % -> tests: in \endtrivlist. If true suppress vertical spacing after the list
 810 %
 811 %
 812 % @noparitem (local):
 813 %
 814 % -> true at start of list if already @inlabel=true
 815 % -> false
 816 %

9.4.1.2 Repurpose:
 817 %
 818 % Interpret legacy switches as follows (keeping the names for now)
 819 %
 820 % @newlist -> signals that we are at the start of a new block with a caption or
 821 % at the start of a list block expecting an item next
 822 %

47

 823 % In other words this is now really start of a block
 824 % with inner structure.
 825 %
 826 % @noparlist -> signals that we are on a new block with @inlabel already true, i.e.,
 827 % and this placement should happen horizontally
 828 %
 829 % @inlabel -> Signals that we have at least one item or caption waiting to be typeset
 830 % inside the label box
 831 %
 832 % @noparitem -> dropped (handled directly)
 833 %

9.4.2 Implementation of blockenv templates

So far there is only one, but who knows … — however, the majority will be vertically
oriented blocks, so we make this the std.

blockenv std (templ.)
 834 \DeclareTemplateCode{blockenv}{std}{4}
 835 {
 836 name = \l__block_env_name_tl
 837 ,tag-name = \l__block_tag_name_tl
 838 ,tag-attr-class = \l__block_tag_class_tl
 839 ,tagging-recipe = \l__block_tagging_recipe_tl
 840 ,transparent-level = \l__block_transparent_level_bool
 841 ,legacy-code = \l__block_legacy_code_tl
 842 ,block-instance = \l__block_block_instance_tl
 843 ,para-instance = \l__block_para_instance_tl
 844 ,tagging-suppress-paras = \l__tag_para_flattened_bool
 845 ,inner-level-counter = \l__block_inner_level_counter_tl
 846 ,max-inner-levels = \l__block_max_inner_levels_tl
 847 ,inner-instance-type = \l__block_inner_instance_type_tl
 848 ,inner-instance = \l__block_inner_instance_tl
 849 ,final-code = \l__block_final_code_tl
 850 }
 851 {
 852 \template_debug_typeout:n{~\space template:~ 'std;~
 853 arguments:~ \exp_not:n{|#1|#2|#3|#4|}}

 854 \UseHook{blockenv}

We first evaluate the key list passed from the document (if any). All known keys are
used, the remainder is stored in \UnusedTemplateKeys to be passed to any inner instances
below.
 855 \SetKnownTemplateKeys{blockenv}{std}{#1}

We need to know later if we have nested blockenvs inside a flattened environment.
Whenever we start a new blockenv we increment \l__tag_block_flattened_level_­
int if it is already different from zero. If it is zero we increment it if flattening is
requested. Thus a value of 0 means no flattening requested so far and 1 means this is
the first blockenv requesting flattening. In either case we have to make sure that the
blockenv is surrounded by a <text-unit> tag, while for any value above 1 we have to
omit the <text-unit>.
 856 \int_compare:nNnTF \l__tag_block_flattened_level_int > 0

48

 857 {
 858 \int_incr:N \l__tag_block_flattened_level_int
 859 }
 860 {
 861 \bool_if:NT \l__tag_para_flattened_bool
 862 {
 863 \int_incr:N \l__tag_block_flattened_level_int
 864 }
 865 }

 866 \tl_if_empty:NF \l__block_inner_level_counter_tl
 867 {
 868 \int_compare:nNnTF \l__block_inner_level_counter_tl >
 869 { \l__block_max_inner_levels_tl - 1 }
 870 { \@toodeep }
 871 { \int_incr:N \l__block_inner_level_counter_tl } % not clean "o"?
 872 }

Legacy defaults are only roped in if the list level changes. For display blocks that remain
on the same level the current values are kept.
 873 \int_compare:nNnTF \g_block_nesting_depth_int >
 874 { \c@maxblocklevels - 1 }
 875 { \@toodeep }
 876 {
 877 \int_gincr:N \g_block_nesting_depth_int

If there are no legacy defaults for that level then the next line does nothing, i.e., the
current values (from the last level) become the defaults for the next.
If have a transparent level (e.g., something like a center environment) we omit setting
the legacy defaults, because that is the way LATEX2ε lists worked as well.
 878 \bool_if:NF \l__block_transparent_level_bool
 879 {
 880 \use:c { @list
 881 \int_to_roman:n { \g_block_nesting_depth_int } }
 882 }
 883 }

If we are doing tagging we load one of the available recipes for tagging, which alters
various kernel hooks to add appropriate tagging structures.
 884 \UseTaggingSocket{block/recipe}{\l__block_tagging_recipe_tl}

The default for list environments is that they have an empty label and are not numbered
(something that is then overwritten by the setup of a specific list). We ensure this here
even for non-lists, because we need a defined state that then can be overwritten by
the legacy setup code for the list environment in \l__block_legacy_code_tl. This is
needed in case lists are nested as they otherwise would inherit outer values (and suddenly
an itemize would start incrementing an outer enumerate counter, etc.
 885 \tl_clear:N \@itemlabel
 886 \tl_clear:N \@listctr
 887 \legacy_if_set_false:n { @nmbrlist }

Then run the legacy setup code if any is given in the instance.
 888 \l__block_legacy_code_tl

49

Next call a block instance at the appropriate level passing it any remaining key/value from
the optional document-level argument (i.e., those now stored in \UnusedTemplateKeys).
 889 \exp_args:Nee \UseInstance{block}
 890 { \l__block_block_instance_tl - \int_use:N
 891 \g_block_nesting_depth_int }
 892 \UnusedTemplateKeys

After this instance has been processed, any remaining unused keys are stored in
\UnusedTemplateKeys and we can make use of this data later as long as we do not
call another instance that also does unused key processing and overwrites it. But this is
what happens below, so we better save its current value for now.
 893 \tl_set_eq:NN \l__block_unused_blockenv_keys_tl \UnusedTemplateKeys

After the block instance call the para and then inner (list) instance if either or both are
specified (which may not be the case).
 894 \tl_if_empty:NF \l__block_para_instance_tl
 895 {

For now we don’t offer to alter instance parameters here so we pass an empty argument.
 896 \exp_args:Ne \UseInstance{para}{ \l__block_para_instance_tl } {}
 897 }

The inner instance may have its own levels or none depending on which the instance
name differs. Again we pass it the optional key/value list.
 898 \tl_if_empty:NF \l__block_inner_instance_tl
 899 {

We expand the first two arguments so that we get proper names for template type and
instance, because \UseInstance is not doing that for us in the right way.
 900 \exp_args:Nee
 901 \UseInstance{ \l__block_inner_instance_type_tl }
 902 { \l__block_inner_instance_tl
 903 \tl_if_empty:NF \l__block_inner_level_counter_tl
 904 % not clean use "o"?
 905 { - \int_use:N \l__block_inner_level_counter_tl }
 906 }
 907 \l__block_unused_blockenv_keys_tl
 908 #2 % <-- \BooleanTrue or False
 909 { #3 } % <-- \NoValue or content
 910 { #4 } % <-- \NoValue or content

Again the instance may have processed a few keys from the so far unused keys, so we
update \l__block_unused_blockenv_keys_tl to match the new reality.
 911 \tl_set_eq:NN \l__block_unused_blockenv_keys_tl \UnusedTemplateKeys
 912 }

At this point, the \l__block_unused_blockenv_keys_tl token list should either be
empty or it should contain only keys that are suitable for the item template, but right
now there is no code to test that can test the latter; it would help probably if we have
an interface for this.
For now we handle that when the first item is encountered, but that isn’t really clean.fix
 913 % \tl_if_empty:NF \l__block_unused_blockenv_keys_tl
 914 % {
 915 % % check if only item template keys remain
 916 % }

50

If this is supposed to be a transparent block environment then we have to decrement the
nesting level again so that nested environments think nothing is there.
 917 \bool_if:NT \l__block_transparent_level_bool
 918 { \int_gdecr:N \g_block_nesting_depth_int }

We finish off with \l__block_final_code_tl which defaults to \ignorespaces so that
spaces between \begin{...} and the start of the text are ignored.
 919 \l__block_final_code_tl
 920 }

blockenv (hook) Might want a hook or a socket for legacy support.decide
 921 \NewHook{blockenv}

\BlockEnv
\SimpleBlockEnv

To simplify the environment declarations later we provide two simple commands that in­
voke a blockenv instance. The matching counterpart to these commands is \BockEnvEnd
(defined below) that carries out all necessary action when a block environment ends.
 922 \cs_new_protected:Npn \BlockEnv % #1#2#3#4 implicit
 923 { \UseInstance{blockenv} }

This here is the most common one that hides arguments 2–4 when they aren’t needed,
e.g., in a center environment.
 924 \cs_new_protected:Npn \SimpleBlockEnv #1#2
 925 { \UseInstance{blockenv}{#1}{#2} \BooleanFalse \NoValue \NoValue }
(End of definition for \BlockEnv and \SimpleBlockEnv. These functions are documented on page 37.)

\g_block_nesting_depth_int LATEX2ε already has a counter to record the nesting depth of blocks, but we want our
own name because it isn’t really tied to “ lists” any more. However, \@listdepth is really
part of the legacy interface (for example minipage alters it to point to a different counter)
so that we are stuck with using at least indirectly for now and the following line makes
this look like an L3 integer variable but internally expands to \@listdepth:
 926 \cs_new_protected:Npn \g_block_nesting_depth_int { \@listdepth } % a fake int
 927 % for now
(End of definition for \g_block_nesting_depth_int. This function is documented on page 37.)

\l__block_unused_blockenv_keys_tl The token list that holds key values we haven’t yet used while we are processing the
instances in a block environment.
 928 \tl_new:N \l__block_unused_blockenv_keys_tl
(End of definition for \l__block_unused_blockenv_keys_tl.)

\l__tag_block_flattened_level_int Count the levels of nested blockenvs starting with the first that is “ flattened”. The
counter is defined in lttagging.dtx, but until the next release 11/24 we set it up here too
 929 \int_if_exist:NF \l__tag_block_flattened_level_int
 930 {
 931 \int_new:N \l__tag_block_flattened_level_int
 932 }
(End of definition for \l__tag_block_flattened_level_int.)

\c@maxblocklevels A counter to increase or decrease the number of supported level. If increased, one needs
to supply additional level instances.
 933 \newcounter{maxblocklevels}
 934 \setcounter{maxblocklevels}{6}
(End of definition for \c@maxblocklevels. This function is documented on page 38.)

51

\BlockEnvEnd The code executed when a blockenv ends is 99% the same for all blockenvs (at least up
to now). Small differences exist, though. They are accounted for first in the conditionals.
We make this a public command so that new block environments can be set up without
the need to resort to L3 layer programming.
 935 \cs_new_protected:Npn \BlockEnvEnd {
 936 __block_debug_typeout:n{blockenv~ common~ ending \on@line}

If this block is not a transparent one we have to decrement the level now again, otherwise
that had happened earlier:
 937 \bool_if:NF \l__block_transparent_level_bool
 938 { \int_gdecr:N \g_block_nesting_depth_int }

If the @inlabel switch is true, i.e., if there is a caption or an item waiting to be placed
we move to horizontal mode to get them typeset.
 939 \legacy_if:nT { @inlabel }
 940 {
 941 \mode_leave_vertical:
 942 \legacy_if_gset_false:n { @inlabel }
 943 }

If we are ending a list environment and we have not seen any \item, i.e., @newlist is
still true, we raise an error. In basic a “displayblock” scenario @newlist will always be
false, but if such an environment appears inside an outer list then \noitemerr could still
be triggered and that is undesirable (as the missing item will be detected at the wrong
point and again later, during the outer list processing). We therefore run it only if the
current environment is a list.
 944 __block_if_list:T { \legacy_if:nT { @newlist } { \@noitemerr } }

 945 \mode_if_horizontal:TF
 946 { __block_skip_remove_last: __block_skip_remove_last: \par }
 947 { \@inmatherr{\end{\@currenvir}} }

Once we are back in vertical mode we can add the appropriate closing tagging struc­
ture(s), if we are doing tagging.
 948 __kernel_displayblock_end:

Resetting the @newlist switch is also only done if the current environment is a list.
 949 __block_if_list:T { \legacy_if_gset_false:n { @newlist } }

There is a possibility that the @nobreak switch is still true so we set it back just in case.
 950 \legacy_if_gset_false:n { @nobreak }

What to do in terms of vertical spacing in different situations is still somewhat open to
debate, right now this is more or less implementing what LATEX2ε list environments have
been doing.some redesign/ex­

tensions here? 951 % __block_debug_typeout:n{@noparlist =
 952 % \legacy_if:nTF { @noparlist }{true}{false}}
 953 \legacy_if:nF { @noparlist }
 954 {
 955 __block_skip_set_to_last:N \l_tmpa_skip
 956 \dim_compare:nNnT \l_tmpa_skip > \c_zero_dim
 957 {
 958 \skip_vertical:n { - \l_tmpa_skip }
 959 \skip_vertical:n { \l_tmpa_skip + \parskip - \@outerparskip }
 960 }
 961 \addpenalty \@endparpenalty
 962 \addvspace \l__block_topsepadd_skip

52

LATEX2ε triggered the paragraph handling after a list at this point here, i.e., only if
the list didn’t start a paragraph. One can make a case for that, but it can be somewhat
surprising to the user and there is a good argument that even such a list could be followed
explanatory text that is part of the same paragraph and doesn’t start a new one.decide which logic we

want to use! If the old
logic is used we need to
close the text-unit our­
selves in the true branch

 963 % \legacy_if_gset_true:n { @endpe }
 964 }

So this is for now always done. Probably \l__block_topsepadd_skip above should be
added only if the paragraph ends here and not if it continues, so this need some further
cleanup.decide
Finally, we have a socket that handles the \par handling after the block. Normally,
we use it with the on plug (check for a following \par) but in the case of standalone
environments we assign it the off plug.
 965 \socket_use:n {block/endpe}
 966 }

(End of definition for \BlockEnvEnd. This function is documented on page 37.)

__block_if_list:T The following code may need some redesigning, as there is no good test for “ is this
environment a ‘ list’ that has \items”. For now this here does the trick well enough.revisit and correct
 967 \cs_new:Npn __block_if_list:T
 968 { \tl_if_eq:NnT \l__block_block_instance_tl {std-list} }
(End of definition for __block_if_list:T.)

__kernel_displayblock_end: The kernel hook for tagging at the end of the block.
 969 \cs_new_protected:Npn __kernel_displayblock_end: {
 970 __block_debug_typeout:n{\detokenize{__kernel_displayblock_end:}}
 971 }
(End of definition for __kernel_displayblock_end:.)

block/endpe (socket) This socket is responsible for the end environment \par handling. We define two plugs
for it (on and off).
 972 \socket_new:nn {block/endpe} {0}

on (plug)
off (plug)

 The plugs set the legacy @endpe switch. This must always happen because block envi­
ronments with different settings can be nested and should not inherit the setting from
the outer environment.
We can’t use \legacy_if_gset_true:n because this is now doing more than setting the
legacy switch:
 973 \socket_new_plug:nnn{block/endpe} {on} { \@endpetrue }
 974 \socket_new_plug:nnn{block/endpe} {off} { \@endpefalse }

 975 \socket_assign_plug:nn{block/endpe}{on}

9.4.3 Implementation of para templates

para std (templ.)

 976 \DeclareTemplateCode{para}{std}{1}
 977 {
 978 ,para-indent = \parindent

53

The next parameter needs integrating in the basic paragraph handling (not done yet)
and it should therefore probably a public name like the rest.integrate/fix
 979 ,begin-hspace = \l_para_begin_skip
 980 ,left-hspace = \leftskip
 981 ,right-hspace = \rightskip
 982 ,end-hspace = \parfillskip

Next isn’t yet implemented (and the variable name is wrong).fix
 983 ,fixed-word-spaces = \l__par_fixed_word_spaces_bool % name??
 984 ,final-hyphen-demerits = \finalhyphendemerits
 985 ,newline-cmd = \\
 986 ,para-attr-class = \l__tag_para_attr_class_tl
 987 }
 988 {
 989 \template_debug_typeout:n{~\space template:~ 'std';~
 990 argument:~ \exp_not:n{|#1|}}
 991 \SetTemplateKeys{para}{std}{#1}

 992 \skip_set:Nn \@rightskip \rightskip
 993 }

__para_handle_indent: We insert \l_para_begin_skip directly in front of the indentation box. This way
it is hidden from any special setting of \everypar (whether that is used to remove
the indentation box or whether it attempts to do something with the first token(s)
of the paragraph). However, we only insert it if it differs from 0.0pt to avoid adding
\penalty 10000 \glue 0.0 all over the place.
 994 \tl_const:Ne \c__zero_skip_tl { \skip_use:N \z@skip }
 995 \tl_new:N \l__para_begin_skip_tl

 996 \cs_set:Npn __para_handle_indent: {
 997 \tl_set:Ne \l__para_begin_skip_tl { \skip_use:N \l_para_begin_skip }
 998 \if_meaning:w \l__para_begin_skip_tl
 999 \c__zero_skip_tl
1000 \else:
1001 \nobreak
1002 \tex_hskip:D \l_para_begin_skip
1003 \fi:
1004 \box_use_drop:N \g_para_indent_box
1005 }

(End of definition for __para_handle_indent:.)

\para_raw_noindent: \para_raw_noindent: doesn’t call __para_handle_indent: so we have to manually
do the \l_para_begin_skip handling.
1006 \cs_set:Npn \para_raw_noindent: {
1007 \mode_if_vertical:TF
1008 {
1009 \tex_everypar:D {
1010 \tex_everypar:D { \g__para_standard_everypar_tl }
1011 \tl_set:Ne \l__para_begin_skip_tl { \skip_use:N \l_para_begin_skip }
1012 \if_meaning:w \l__para_begin_skip_tl
1013 \c__zero_skip_tl
1014 \else:
1015 \nobreak
1016 \tex_hskip:D \l_para_begin_skip

54

1017 \fi:
1018 \the\everypar }
1019 }
1020 { \msg_error:nn { latex2e }{ raw-para } }
1021 \tex_noindent:D
1022 }

(End of definition for \para_raw_noindent:. This function is documented on page ??.)

9.4.4 Implementation of block templates

block std (templ.) In contrast to the LATEX2ε implementation we do not directly use \listparindent here
but a private register of the template. The reason is that block template instances are
also used outside of lists.
1023 \DeclareTemplateCode{block}{std}{1}
1024 {
1025 ,begin-vspace = \topsep
1026 ,begin-extra-vspace = \partopsep
1027 ,begin-unchained-vspace = \l__block_unchained_skip
1028 ,para-vspace = \parsep

The bottom skips aren’t used yet, even if set instead as before \topsep is applied there.fix
1029 ,end-vspace = \l__block_botsep_skip
1030 ,end-extra-vspace = \l__block_parbotsep_skip
1031 ,item-vspace = \itemsep
1032 ,begin-penalty = \@beginparpenalty
1033 ,end-penalty = \@endparpenalty
1034 ,item-penalty = \@itempenalty
1035 ,right-margin = \rightmargin
1036 ,left-margin = \leftmargin
1037 ,para-indent = \l__block_parindent_dim
1038 }
1039 {
1040 \template_debug_typeout:n{~\space template:~ 'std';~
1041 argument:~ \exp_not:o{\exp_after:wN |#1|}}
1042 \SetKnownTemplateKeys{block}{std}{#1}

The code largely follows the logic of LATEX2ε’s trivlist implementation as far as it
applicable for the “ display block” but coded using the L3 programming layer. However,
we keep most of the legacy variables (e.g., @noskipsec) if there is some chance that they
are set/used in classes or packages.
1043 \legacy_if:nTF { @noskipsec }

A @noskipsec heading is a heading that is placed in the same line as the following text
(using \everypar) but not if that text starts with a display block, so we ensure that the
heading gets typeset now.This is similar to the stan­

dalone case for block cap­
tions so perhaps that
can be combined, check

1044 { \mode_leave_vertical: }

If no such heading is waiting we might have a block caption waiting to be typeset and
this might be requested to be set “ unchained”. In that case we also have to ensure that
this gets typeset now.
The situation is slightly different though, because we want to end in vertical mode in
that case also add some special vertical space and have to properly deal with avoiding
page breaks.
1045 {

55

1046 \bool_if:NT \g__block_label_unchained_bool
1047 {
1048 __block_debug_typeout:n{Set~ captioned~ block~ everypar \on@line }
1049 \cs_set_eq:NN __block_everypar: __block_captioned_everypar_std:
1050 \legacy_if:nT { @inlabel }
1051 {
1052 \hbox_unpack_drop:N \g__block_labels_box
1053 \legacy_if_gset_false:n { @inlabel }
1054 \par
1055 \nobreak
1056 \skip_vertical:n { \l__block_unchained_skip }
1057 \legacy_if_gset_true:n { @nobreak }
1058 }
1059 }
1060 }
1061 \skip_set:Nn \l__block_topsepadd_skip { \topsep }
1062 \mode_if_vertical:TF
1063 {
1064 \skip_add:Nn \l__block_topsepadd_skip { \partopsep }

At this point it is safe to add tagging structure(s) so we have a kernel-owned hook here for
tagging. This is used to possibly start a paragraph structure (to surround the block, for
example, in case of lists) and possibly do some other preparation for tagging the block.
1065 __kernel_displayblock_beginpar_vmode:
1066 }
1067 {

If we are in horizontal mode then the displayblock has to return to vertical mode now
(after removing any immediately preceding skip or kern. But before we actually issue the
\par we execute a kernel hook in which we can add tagging code. This hook is “ weird”
because by default it does nothing, but if tagging is wanted it takes an argument and
grabs the following \par in order to put tagging code before and after the \par.
1068 __block_skip_remove_last: __block_skip_remove_last:
1069 __kernel_displayblock_beginpar_hmode:w \par
1070 }

Next lines set some paragraph defaults, any of them may get overwritten if there is a
para-instance specified on the blockenv instance.
1071 \skip_zero:N \leftskip
1072 \skip_set_eq:NN \rightskip \@rightskip
1073 \skip_set_eq:NN \parfillskip \@flushglue

The next lines establish a parshape which is retained across paragraphs be executing
\para_end: within a group and thus reestablishing the parshape for the next paragraph
again. In case a list got started \par is ignored until we have seen an \item (or we have
executed \par one thousand times.
1074 \int_zero:N \par@deathcycles
1075 \@setpar
1076 {
1077 \legacy_if:nTF { @newlist }
1078 {
1079 \int_incr:N \par@deathcycles
1080 \int_compare:nNnTF \par@deathcycles > { 1000 }
1081 { \@noitemerr
1082 { \para_end: }

56

1083 }
1084 }
1085 {
1086 { \para_end: }
1087 }
1088 }

1089 \dim_set_eq:NN \parindent \l__block_parindent_dim
1090 \dim_add:Nn \linewidth { - \rightmargin - \leftmargin }
1091 \dim_add:Nn \@totalleftmargin { \leftmargin }
1092 \tex_parshape:D 1 ~ \@totalleftmargin \linewidth

This is the point where we are ready to add the tagging structure for the block, e.g., an
<L>, a <Figure> or some other structure.
1093 __kernel_displayblock_begin:

Finally, we have to output the vertical separation and penalty at the start of the block
and make corrections for a change in \parskip and some other housekeeping, unless this
block is inside a list and the list \item has not yet placed. In that case the vertical space
and penalty is suppressed. This is controlled through the legacy switches @inlabel,
minipage, and @nobreak.
Now we are back to legacy list implementation …
1094 \skip_set_eq:NN \@outerparskip \parskip
1095 \skip_set_eq:NN \parskip \parsep
1096 %
1097 \legacy_if:nTF { @inlabel }
1098 {
1099 \legacy_if_set_true:n { @noparlist }
1100 \hbox_gset:Nn \g__block_labels_box
1101 {
1102 \skip_horizontal:n { - \leftmargin }
1103 \hbox_unpack_drop:N \g__block_labels_box
1104 \skip_horizontal:n { \leftmargin }
1105 }document 2e

logic used here
1106 \legacy_if:nF { @minipage } % Why this chunk of code?
1107 {
1108 __block_skip_set_to_last:N \l__block_tmpa_skip
1109 \skip_vertical:n { - \l__block_tmpa_skip }
1110 \skip_vertical:n { \l__block_tmpa_skip +
1111 \@outerparskip - \parsep }
1112 }
1113 }
1114 {
1115 \legacy_if_set_false:n { @noparlist }
1116 \legacy_if:nT { @newlist } { \@noitemerr }
1117 \legacy_if:nTF { @nobreak }
1118 {

We are not resetting @nobreak here as it should also apply to the upcoming item.
1119 \addpenalty{ 10000 }
1120 \addvspace{ \skip_eval:n{\@outerparskip-\parsep} }
1121 }
1122 {
1123 \addpenalty \@beginparpenalty

57

1124 \addvspace { \skip_eval:n { \l__block_topsepadd_skip +
1125 \@outerparskip } }
1126 \addvspace { - \parsep }
1127 }
1128 }
1129 }

__block_captioned_everypar_std: The captioned text is typeset at the start of a paragraph using code triggered in
\everypar (by setting __block_everypar to this code here).
1130 \cs_new_protected:Npn __block_captioned_everypar_std: {
1131 __block_debug_typeout:n{...~ in~ captioned~ block~ everypar \on@line }

First set some control switches to false:
1132 \legacy_if_set_false:n { @minipage }
1133 \legacy_if_gset_false:n { @newlist }

The @inlabel is normally true at this point, but if we also have @nobreak then the same
routine is called again at the next paragraph to reset \clubpenalty and at that point
the \g__block_labels_box has been typeset and @inlabel is false.
1134 \legacy_if:nT { @inlabel }
1135 {

Typeset the saved label (aka captioned text):
1136 \legacy_if_gset_false:n { @inlabel }
1137 \para_omit_indent:
1138 \box_use_drop:N \g__block_labels_box
1139 __kernel_list_label_after:n { \PARALABEL } % <- change
1140 % this name
1141 \penalty \c_zero_int
1142 }

If @nobreak is true we prevent a break after the first line by setting \clubpenalty.
1143 \legacy_if:nTF { @nobreak }
1144 {
1145 \legacy_if_gset_false:n { @nobreak }
1146 \int_set:Nn \clubpenalty { 10000 }
1147 }
1148 {

Otherwise we reset \clubpenalty and disable __block_everypar.
1149 \int_set_eq:NN \clubpenalty \@clubpenalty
1150 __block_debug_typeout:n{Set~ noop~ block~ everypar \on@line }
1151 \cs_set_eq:NN __block_everypar: \prg_do_nothing:
1152 }
1153 }

(End of definition for __block_captioned_everypar_std:.)

__kernel_displayblock_begin:
__kernel_displayblock_beginpar_hmode:w
__kernel_displayblock_beginpar_vmode:

The internal kernel hooks for tagging.
1154 \cs_new_protected:Npn __kernel_displayblock_begin: {
1155 __block_debug_typeout:n
1156 {\detokenize{__kernel_displayblock_begin:}}
1157 }

1158 \cs_new_protected:Npn __kernel_displayblock_beginpar_hmode:w {
1159 __block_debug_typeout:n
1160 {\detokenize{__kernel_displayblock_beginpar_hmode:w}}
1161 }

58

1162 \cs_new_protected:Npn __kernel_displayblock_beginpar_vmode: {
1163 __block_debug_typeout:n
1164 {\detokenize{__kernel_displayblock_beginpar_vmode:}}
1165 }

(End of definition for __kernel_displayblock_begin: , __kernel_displayblock_beginpar_hmode:w ,
and __kernel_displayblock_beginpar_vmode:.)

9.4.5 Implementation of list templates

This list is one of the template types that can be used as an inner-type in a blockenv;
the other one currently implemented is captionedtext.

\@itemlabel
\@listctr

Both \@itemlabel and \@listctr from the LATEX2ε list implementation are used (or
set) by various packages. We therefore use them too, so that these packages have a
fighting chance to work with the new tagging-aware implementation for list.
1166 \tl_new:N \@itemlabel % should have a top-level definition
1167 \tl_new:N \@listctr % should have a top-level definition

(End of definition for \@itemlabel and \@listctr. These functions are documented on page 38.)

__block_evaluate_saved_user_keys:nn Keys set on individual list environments may be intended to alter the behavior of the
template instance that defines the \item command. If meant to alter only a single
\item command one would specify them in the optional argument of the \item, but
if they should alter all items the right place would be the list environment. For this
reason we need to store the values and then set them inside the \item template code
using \SetKnownTemplateKeys in the appropriate context (template type and template
name). This is done in __block_evaluate_saved_user_keys:nn. The context is pro­
vided in the two arguments (because different list environments may use different \item
instances based on different templates. By default the command does nothing because
most environments do not have user key settings.
1168 \cs_new_eq:NN __block_evaluate_saved_user_keys:nn \use_none:nn

Maybe something like this should become a public function, but for now this is a one-off
for the \item command and therefore coded inline and internal to the block code.
1169 %\cs_new:Npn __block_save_user_keys:n #1 {
1170 % \tl_if_empty:nTF {#1}
1171 % { \cs_set_eq:NN __block_evaluate_saved_user_keys:nn \use_none:nn }
1172 % { \cs_set:Npe __block_evaluate_saved_user_keys:nn ##1##2
1173 % { \SetKnownTemplateKeys{##1}{##2}{ \exp_not:n{#1} } }
1174 %}

(End of definition for __block_evaluate_saved_user_keys:nn.)

list std (templ.)
This template implements numbered and unnumbered lists and can be combined with
display blocks or with inline blocks.
1175 \DeclareTemplateCode{list}{std}{4}
1176 {
1177 ,counter = \l__block_counter_tl
1178 ,item-label = \l__block_item_label_tl
1179 ,start = \l__block_counter_start_int
1180 ,resume = \l__block_resume_bool
1181 ,item-instance = __block_item_instance:n
1182 ,item-vspace = \itemsep

59

1183 % ,item-para-vspace = \parsep
1184 ,item-penalty = \@itempenalty
1185 ,item-indent = \itemindent
1186 ,label-width = \labelwidth
1187 ,label-sep = \labelsep
1188 ,legacy-support = \l__block_legacy_support_bool % FMi questionable
1189 }
1190 {
1191 \template_debug_typeout:n{~\space template:~ 'std';~
1192 arguments:~ \exp_not:o{\exp_after:wN |#1|#2|#3|#4|}}

We start by looking at the user supplied keys in #1. If there aren’t any we reset
__block_evaluate_saved_user_keys:nn to do nothing. Otherwise we evaluate and set
the keys in the context of the current list template. In addition we prepare __block_­
evaluate_saved_user_keys:nn for execution in the template for \item.
1193 \tl_if_empty:oTF {#1}
1194 { \cs_set_eq:NN __block_evaluate_saved_user_keys:nn \use_none:nn }
1195 {
1196 \SetKnownTemplateKeys{list}{std}{#1}

The setup for __block_evaluate_saved_user_keys:nn is a bit tricky and has to be
done with \cs_set:Npe even though we don’t want to expand anything and therefore
use \exp_not:n inside. All this does is that any # passed in via #1 is doubled (e.g.,
from label-format=\fbox{#1} which is represented as ...\fbox{##1}). Otherwise, we
would end up with a replacement text like

 \SetTemplateKeys {#1}{#2}{label-format=\fbox {#1}}

instead of

 \SetTemplateKeys {#1}{#2}{label-format=\fbox {##1}}

resulting in very odd and puzzling behavior later on.
The definition of __block_evaluate_saved_user_keys:nn made here is later used
when an \item is processed and passes remaining keys to the item instance. After that
nothing should remain, so we test that and issue an error if not.
1197 \cs_set:Npe __block_evaluate_saved_user_keys:nn ##1##2
1198 { \SetKnownTemplateKeys{##1}{##2}{
1199 \exp_not:o { \UnusedTemplateKeys }
1200 }
1201 \exp_not:n {
1202 \tl_if_empty:NF \UnusedTemplateKeys
1203 {
1204 \msg_error:nnee { block } { unknown-keys }
1205 { \l__block_env_name_tl \space environment}
1206 \UnusedTemplateKeys
1207 }
1208 }
1209 }
1210 }

Has this list a counter name defined in the instance?
1211 \tl_if_empty:NTF \l__block_counter_tl
1212 {

60

If no counter name has been specified as part of the instance setup the list might still be
numbered if it is a legacy list that uses \usecounter in the second argument of the legacy
list environment. However, in that case we don’t have to do much because \usecounter
sets up \@listctr and sets it to zero so that the first item is numbered 1.
So all we do is to check if there was a start value given that differs from 1 and if so we
change the counter value to match that. This makes it possible to define a legacy list
in which the counter doesn’t start with 1 by explicitly setting the counter value in the
second argument of the list environment but also overwriting that through a start key
setting on invocation.
1213 \int_compare:nNnF \l__block_counter_start_int = 1
1214 {
1215 \int_gset:cn{ c@ \@listctr }
1216 { \l__block_counter_start_int - 1 }
1217 }
1218 }

In that case we only check if we should resume a previous list (\@listctr should be set
in that case through the legacy method as well so we should be able to use it).
If a counter is set in the list instance we use that one. This should be the name of a
LATEX counter that is already allocated externally—no runtime check is made for this: if
it is not declared one will get “ no such counter” error when the list is used.
1219 {
1220 \@nmbrlisttrue
1221 \tl_set_eq:NN \@listctr \l__block_counter_tl
1222 \bool_if:NF \l__block_resume_bool
1223 {
1224 \int_gset:cn{ c@ \@listctr }
1225 { \l__block_counter_start_int - 1 }
1226 }
1227 }

Does the current instance have an item label representation? This would be possible
whether or not we have a numbered list. If yes, then we use this for \@itemlabel,
otherwise we expect that \@itemlabel is provided from the outside, e.g., as part of the
list environment argument.
1228 \tl_if_empty:NF \l__block_item_label_tl
1229 {
1230 \tl_set_eq:NN \@itemlabel \l__block_item_label_tl
1231 }

Finally, we signal that we are at the start of a new list (which affects how the first \item
is handled and how \par commands are interpreted.
1232 \legacy_if_gset_true:n { @newlist }

If we encounter horizontal material before the first \item we do want a \@noitemerr
straight away, because afterwards we end up with tagging structure faults whose cause
is the missing \item. So we set up __block_everypar: to test for this; when the first
\item is encountered this will get reset. This is only relevant for vertical lists, when
dealing with inline lists one would need to test for something else to identify that there
is horizontal material between the start of the list and the first \item (maybe some
\spacefactor trick could be used then, or the material is boxed first and the width is
inspected as suggested by Joseph).Think about a bet­

ter implementa­
tion at some point.

1233 __block_debug_typeout:n{Set~ first~ block~ everypar \on@line }
1234 \cs_set_eq:NN __block_everypar: __block_item_everypar_first:

61

1235 __block_debug_typeout:n{template:list:std~end}
1236 }

The message that is used above when we are left with keys that are unknown:
1237 \msg_new:nnnn { block } { unknown-keys }
1238 { Some~ keys~ specified~ on~ the~ #1~ are~ unknown. }
1239 {
1240 The~ following~ keys~ are~ unknown~ and~ their~
1241 values~ are~ ignored:\\
1242 \space\space #2\\
1243 Perhaps~ a~ misspelling~ or~ the~ current~ template~
1244 instance~ uses~ special~ keys.
1245 }

9.4.6 Implementation of item templates

item std (templ.) The item template has one hidden key label which is not available on the template for
setting because it is only used to receive any optional data passed to the \item command.
We therefore declare it with \keys_define:nn and ensure that the optional argument
data to \item (if it is not a key/value list already) is passed to this label key.
1246 \keys_define:nn { template/item/std }
1247 { label .tl_set:N = \l__block_label_given_tl }alignment is mostly

wrong (test short medium
and multiline labels)

1248 \DeclareTemplateCode{item}{std}{1}
1249 {
1250 ,counter-label = __block_counter_label:n
1251 ,counter-ref = __block_counter_ref:nnext set of key

not yet used
1252 ,label-ref = __block_label_ref:n
1253 ,label-autoref = __block_label_autoref:n
1254 ,label-format = __block_label_format:n
1255 ,label-strut = \l__block_label_strut_bool
1256 ,label-boxed = \l__block_label_boxed_bool
1257 ,next-line = \l__block_next_line_bool
1258 ,text-font = \l__block_text_font_tl
1259 ,compatibility = \l__block_item_compatibility_bool

This probably needs a different implementation (and needs completing)complete
1260 ,label-align = {
1261 left = \tl_set:Nn \l__block_item_align_tl { \relax \hss } ,
1262 center = \tl_set:Nn \l__block_item_align_tl { \hss \hss } ,
1263 right = \tl_set:Nn \l__block_item_align_tl { \hss \relax } ,
1264 parleft = \NOT_IMPLEMENTED ,
1265 }

The keylabel-placement is implemented using two booleans (at the moment).
1266 ,label-placement = {
1267 chained = \bool_gset_false:N \g__block_label_standalone_bool
1268 \bool_gset_false:N \g__block_label_unchained_bool ,
1269 unchained = \bool_gset_false:N \g__block_label_standalone_bool
1270 \bool_gset_true:N \g__block_label_unchained_bool ,
1271 standalone = \bool_gset_true:N \g__block_label_standalone_bool
1272 \bool_gset_false:N \g__block_label_unchained_bool ,
1273 }
1274 }

62

Then typeset the label at its natural width by applying __block_make_label_box:n to
the label given or to a label constructed from the counter. If it is boxed and reasonably
short, add padding to make it at least of size \labelwidth, then add another layer of
box. This way, when we unpack it in \g__block_labels_box it correctly remains boxed
in those cases. Afterwards, in the nextline case add \newline if the label did not fit in
the allotted space.
1275 {
1276 \template_debug_typeout:n{~\space template:~ 'std';~
1277 argument:~ \exp_not:n{|#1|}}

First deal with the key–value input, which in particular may provide a value for the label
(the usual optional argument of \item). For this we set \l__block_label_given_tl to
\c_novalue_tl so that we can identify if an optional argument was given.
1278 \tl_set_eq:NN \l__block_label_given_tl \c_novalue_tl

First we evaluate and set any keys specified on the list environment by calling __block_­
evaluate_saved_user_keys:nn. Then we do the same with all keys specified on this
\item command (which may overwrite one or the other setting just made).
1279 __block_evaluate_saved_user_keys:nn {item}{std}

We don’t care whether all of the user keys from the list level have been applied, but those
explicitly set on the \item command should be applicable, so we generate an error if that
isn’t the case:
1280 \SetKnownTemplateKeys{item}{std}{#1}
1281 \tl_if_empty:NF \UnusedTemplateKeys
1282 {
1283 \msg_error:nnee { block } { unknown-keys }
1284 { \noexpand\item command }
1285 \UnusedTemplateKeys
1286 }

If no optional argument was given then \l__block_label_given_tl is still equal to
\c_novalue_tl and so we can distinguish that from \item[].next line needs check­

ing after novalue imple­
mentation was changed

1287 \tl_if_novalue:oTF \l__block_label_given_tl
1288 {

The rest of the code for this template needs work and is both incomplete and partly
wrong.fix
1289 \tl_if_blank:oF \@listctr { \@kernel@refstepcounter \@listctr }
1290 \bool_if:NTF \l__block_item_compatibility_bool % not sure that
1291 % conditional
1292 % makes sense
1293 { __block_make_label_box:n { \MakeLinkTarget[\@listctr]{}%
1294 \@itemlabel } } % TODO ?
1295 { __block_make_label_box:n { \MakeLinkTarget[\@listctr]{}%
1296 __block_counter_label:n { \@listctr } } }
1297 }

1298 {
1299 __block_debug_typeout:n{item~ with~ optional}
1300 __block_make_label_box:n {
1301 \MakeLinkTarget [\l__block_env_name_tl]{}
1302 \l__block_label_given_tl
1303 }

63

1304 }
1305 \bool_if:nT
1306 {
1307 \l__block_label_boxed_bool
1308 % TODO: is \linewidth correct?
1309 && \dim_compare_p:n
1310 { \box_wd:N \l__block_one_label_box <= \linewidth }
1311 }
1312 {
1313 \dim_compare:nNnT
1314 { \box_wd:N \l__block_one_label_box } < \labelwidth
1315 {
1316 \hbox_set_to_wd:Nnn \l__block_one_label_box { \labelwidth }
1317 {
1318 \exp_after:wN \use_i:nn \l__block_item_align_tl

FMi: LATEX2ε keeps the label boxed inside (not unboxed). This means that the content
stays rigid and does not vary based on glue setting in the line with the label. There are
cases where we do want the unboxed version (I think enumitem offers that in some cases
too) but it should probably not the default.
1319 % TODO: customize?
1320 % \hbox_unpack_drop:N \l__block_one_label_box
1321 \box_use_drop:N \l__block_one_label_box

1322 \exp_after:wN \use_ii:nn \l__block_item_align_tl
1323 }
1324 }

Add another box level to the label box:
1325 \hbox_set:Nn \l__block_one_label_box
1326 { \box_use_drop:N \l__block_one_label_box }
1327 }
1328 \dim_compare:nNnTF { \box_wd:N \l__block_one_label_box } > \labelwidth
1329 { \bool_set_true:N \l__block_long_label_bool }
1330 { \bool_set_false:N \l__block_long_label_bool }
1331 \hbox_gset:Nn \g__block_labels_box
1332 {
1333 \hbox_unpack_drop:N \g__block_labels_box
1334 \skip_horizontal:n { \itemindent - \labelsep - \labelwidth }
1335 \hbox_unpack_drop:N \l__block_one_label_box
1336 \skip_horizontal:n { \labelsep }
1337 \bool_if:NT \l__block_next_line_bool
1338 { \bool_if:NT \l__block_long_label_bool { \nobreak \hfil \break } }
1339 % version of \newline inside an hbox that will be unpacked
1340 }
1341 % TODO??? FMi what's that?
1342 % \skip_set_eq:NN \parsep \l__block_item_parsep_skip

The next setting is for compatibility: The list template sets \listparindent to zero and
otherwise doesn’t use it any more. However, in the second argument of a legacy list
environment the user may have set it explicitly to some other value and whatever value it
had was then used for \parindent within the list. Now we use its value only if it differs
from zero but otherwise use whatever the template instances specify. This gives 99.9%
compatibility for legacy documents. 100% for definitions using the list environment
and a setting inside, but if the user used \listparindent within the document, e.g.,

64

inside a verse environment there there is one case in which the setting is ignored, i.e.,
when it was set back to zero. That’s a rather unlikely scenario, but it is not impossible.
However, I couldn’t think of an approach that circumvents such boundary cases.
1343 \dim_compare:nNnF \listparindent = {0pt}
1344 { \dim_set_eq:NN \parindent \listparindent }

Placing the list label(s) is done when the paragraph for the \item is started, which exe­
cutes __block_everypar: inside para/begin. By default this command does nothing,
now we change it to attach the pending label or labels.
1345 __block_debug_typeout:n{Set~ item~ block~ everypar \on@line }
1346 \cs_set_eq:NN __block_everypar: __block_item_everypar_std:
1347 }

g__block_label_standalone_bool
g__block_label_unchained_bool

The two booleans for implementing label-placement and below caption-placement.
1348 \bool_new:N \g__block_label_standalone_bool % tmp until replaced
1349 \bool_new:N \g__block_label_unchained_bool % tmp until replaced

(End of definition for g__block_label_standalone_bool and g__block_label_unchained_bool.)

\l__block_item_align_tl

1350 \tl_new:N \l__block_item_align_tl

(End of definition for \l__block_item_align_tl.)

\l__block_one_label_box
\g__block_labels_box

Each label is typeset in \l__block_one_label_box to be measured. Once this is ready, it
is put (boxed or unboxed) in \g__block_labels_box, together with any pending labels
(for the case where a list begins just after \item). This is an analogue of LATEX2ε’s
\@labels, but it is always unboxed before use, to support both boxed and unboxed
labels.
1351 \box_new:N \l__block_one_label_box
1352 \box_new:N \g__block_labels_box

(End of definition for \l__block_one_label_box and \g__block_labels_box.)

\l__block_long_label_bool Track whether the \l__block_one_label_box is larger than \labelwidth.
1353 \bool_new:N \l__block_long_label_bool

(End of definition for \l__block_long_label_bool.)

__block_make_label_box:n
__block_label_format:e

Make one label, wrapped in __block_label_format:n, with an appropriate \strut
and possibly \makelabel in compatibility mode (used for the list environment).
1354 \cs_new_protected:Npn __block_make_label_box:n #1
1355 {
1356 \hbox_set:Nn \l__block_one_label_box
1357 {

If we do tagging then the contents of this box may need to be wrapped into a structure,
e.g., <Lbl>.
1358 \tag_socket_use:nnn {block/list/label}{}
1359 {

65

1360 __block_label_format:n
1361 {
1362 \bool_if:NT \l__block_label_strut_bool { \strut }
1363 \bool_if:NTF \l__block_legacy_support_bool
1364 \makelabel
1365 \use:n
1366 {#1}
1367 }

And what gets opened also needs closing:
1368 }
1369 }
1370 }

(End of definition for __block_make_label_box:n and __block_label_format:e.)

block/list/label (socket) A tagging socket to tag the label. It takes two arguments so that it can transparently
pass the label content. Declaration is in lttagging.dtx.I think this socket should

just be called list/label
default (plug)

1371 \NewTaggingSocketPlug{block/list/label}{default}
1372 {
1373 %
1374 % FMi: this needs a different logic to decide when to make the label
1375 % an artifact (after cleaning up the \item code), therefore
1376 % disabled for now
1377 % \tl_if_empty:oTF \@itemlabel
1378 % {
1379 % \tag_mc_begin:n {artifact}
1380 % }
1381 % {
1382 \tagstructbegin{tag=\UseStructureName{block/list/label}}
1383 \tagmcbegin{tag=\UseStructureName{block/list/label}}
1384 % }
1385 #2
1386 \tagmcend % end mc-\UseStructureName{block/list/label} or artifact
1387 % FMi: unconditionally for now
1388 % \tl_if_empty:oF \@itemlabel
1389 \tagstructend % end label
1390 \tagstructbegin{tag=\UseStructureName{block/list/body}}
1391 }
1392 \AssignTaggingSocketPlug{block/list/label}{default}

__block_everypar:
__block_item_everypar_std:

__block_item_everypar_first:

The __block_everypar: command is executed as part of para/begin but most of the
time does nothing, i.e., it has the following default definition outside of lists (and most
of the time within lists).
1393 \cs_new_eq:NN __block_everypar: \prg_do_nothing:

1394 \AddToHook{para/begin}[items]{__block_everypar:}

Note that we have to make sure that the above code is executed after the hook chunk
from tagpdf because the latter uses @inlabel to make a decision.
By the end of the day both should probably move into the kernel hook instead.
1395 \DeclareHookRule{para/begin}{items}{after}{tagpdf}

66

What follows is the version that resets various legacy booleans and puts the label box in
the right place and finally resets itself to do nothing next time. __block_everypar: is
set to this by the item template so that the next paragraph start runs the code below.
1396 \cs_new_protected:Npn __block_item_everypar_std: {
1397 __block_debug_typeout:n{...~ in~ item~ block~ everypar \on@line }
1398 \legacy_if_set_false:n { @minipage }
1399 \legacy_if_gset_false:n { @newlist }
1400 \legacy_if:nT { @inlabel }
1401 {
1402 \legacy_if_gset_false:n { @inlabel }

1403 \box_if_empty:NT \g_para_indent_box { \kern - \itemindent }
1404 \para_omit_indent:

1405 \box_use_drop:N \g__block_labels_box

After the labels are placed we start a paragraph structure (if appropriate). This is
handled in the following kernel hook:
1406 __kernel_list_label_after:n {LI-}

1407 \penalty \c_zero_int
1408 }
1409 \legacy_if:nTF { @nobreak }
1410 {
1411 \legacy_if_gset_false:n { @nobreak }
1412 \int_set:Nn \clubpenalty { 10000 }
1413 }
1414 {
1415 \int_set_eq:NN \clubpenalty \@clubpenalty

Once the label(s) are typeset and we are past any special @nobreak handling we reset
__block_everypar: to do nothing.
1416 __block_debug_typeout:n{Set~ noop~ block~ everypar \on@line }
1417 \cs_set_eq:NN __block_everypar: \prg_do_nothing:
1418 }
1419 }

This is the definition of __block_everypar: before the first \item is encountered.
1420 \cs_new_protected:Npn __block_item_everypar_first: {
1421 __block_debug_typeout:n{...~ in~ first~ block~ everypar \on@line }
1422 \legacy_if:nT { @newlist } { \@noitemerr }
1423 }

(End of definition for __block_everypar: , __block_item_everypar_std: , and __block_item_­
everypar_first:.)

\l__block_tmpa_skip

1424 \skip_new:N \l__block_tmpa_skip
(End of definition for \l__block_tmpa_skip.)

\l__block_topsepadd_skip
\l__block_effective_top_skip

Variables equivalent to LATEX2ε’s \@topsepadd and \@topsep. Roughly equal to a mix­
ture of topsep, partopsep, and various parskip at different nesting levels in lists. The
code is really elaborate when @inlabel is true.
1425 \skip_new:N \l__block_topsepadd_skip
1426 \skip_new:N \l__block_effective_top_skip

(End of definition for \l__block_topsepadd_skip and \l__block_effective_top_skip.)

67

\item Here we already have all the building blocks. Complain in math mode. Distin­
guish between first item (do necessary tagging) and later items __block_inter_­
item: to cleanly close what’s before, then call __block_item_instance:n (which calls
\UseInstance{item}{⟨instance⟩}) to prepare the upcoming item: it will be actually in­
serted only once some later material triggers \everypar.
1427 \AddToHook{begindocument/before}[./legacy-lists]{
1428 \RenewDocumentCommand{\item}{ ={label}o }
1429 {
1430 \@inmatherr \item

TODO: Check if test for being outside of a list is sensible
1431 \cs_if_free:NTF __block_item_instance:n
1432 {
1433 \@latex@error{Lonely~\string\item--perhaps~a~missing~
1434 list~environment}\@ehc
1435 }
1436 {
1437 \legacy_if:nTF { @newlist }
1438 {
1439 __kernel_list_item_begin:

The first item of a list also has to change the @newlist switch.
1440 \legacy_if_gset_false:n { @newlist }
1441 }
1442 { __block_inter_item: }

To avoid unnecessary key/val processing we make a quick check if there was an optional
argument.
1443 \tl_if_novalue:nTF {#1} % avoids reparsing label={}
1444 { __block_item_instance:n { } }
1445 { __block_item_instance:n {#1} }

The item instance puts the item label into \g__block_label_standalone_bool ready to
be placed later. To make that happen we need to signal that by setting the legacy switch
@inlabel to true. However, if this is a label that should be always placed “ standalone”
we instead typeset it immediately and ensure that there is no page break after it.support extra ver­

tical space as well? 1446 \bool_if:NTF \g__block_label_standalone_bool
1447 {
1448 \bool_gset_false:N \g__block_label_standalone_bool
1449 \leavevmode
1450 \box_use_drop:N \g__block_labels_box
1451 \par
1452 \legacy_if_gset_true:n { @nobreak } % do not break after
1453 % a standalone item
1454 }
1455 {
1456 \legacy_if_gset_true:n { @inlabel }
1457 }
1458 \ignorespaces
1459 }
1460 }
1461 }

(End of definition for \item. This function is documented on page 38.)

68

__block_inter_item: Between items. If the previous item had no content then we need to trigger \everypar.
Otherwise we simply close the previous item with \par after removing some horizontal
space. Between items, there is a penalty and some space.
1462 \cs_new_protected:Npn __block_inter_item: {
1463 \legacy_if:nT { @inlabel }
1464 { \indent \par } % case of \item\item

\par may have a strange definition and may not get us back to vertical mode in one go,
so we better not treat the next line as an else case to the above conditional (for now).
1465 \mode_if_horizontal:T { __block_skip_remove_last:
1466 __block_skip_remove_last: \par }

End any LI-tag, then start the next LI-tag (if doing tagging):
1467 __kernel_list_item_end:
1468 __kernel_list_item_begin:

1469 \addpenalty \@itempenalty
1470 \addvspace \itemsep
1471 }

(End of definition for __block_inter_item:.)

__kernel_list_item_begin:
__kernel_list_item_end:

1472 \cs_new_eq:NN __kernel_list_item_begin: \prg_do_nothing:
1473 \cs_new_eq:NN __kernel_list_item_end: \prg_do_nothing:

(End of definition for __kernel_list_item_begin: and __kernel_list_item_end:.)

9.4.7 Implementation of captionedtext and thmstyle templates

captionedtext thmlike (templ.) The template for typical theorem-like environments is rather trivial, just setting keys
and then passing used keys and the arguments to a thmstyle instance to do the real
work.
1474 \DeclareTemplateCode{captionedtext}{thmlike}{4}
1475 {
1476 ,counter = \l__block_counter_tl
1477 ,title = \l__block_title_tl
1478 ,style = \l__block_style:nnnn
1479 }
1480 {

Some debugging info as usual (showing the arguments that are passed):
1481 \template_debug_typeout:n{~\space template:~ 'thmlike';~
1482 arguments:~ \exp_not:o{\exp_after:wN |#1|#2|#3|#4|}}

Then we check if there are any keys passed to the instance from the outside.
1483 \SetKnownTemplateKeys{captionedtext}{thmlike}{#1}

Finally, we apply the style which is just an instance of type thmstyle:
1484 \l__block_style:nnnn \UnusedTemplateKeys {#2} {#3} {#4}
1485 }

\theoremstyle
\l__block_thmstyle_tl

All that the \theoremstyle declaration does is saving its argument so that it can be
used in \newtheorem.
1486 \cs_new_protected:Npn \theoremstyle #1{ \tl_set:Nn \l__block_thmstyle_tl {#1} }

1487 \tl_new:N \l__block_thmstyle_tl

69

And the default is plain:
1488 \theoremstyle{plain}

(End of definition for \theoremstyle and \l__block_thmstyle_tl. This function is documented on page
??.)

thmstyle std (templ.) The thmstyle implements the theorem-like environment and assumes that the fixed part
of the caption is already stored in \l__block_title_tl. The reason for this separation
into two templates is that typically the same design is used for different theorem-like
environments only differing in this fixed string.
1489 \DeclareTemplateCode{thmstyle}{std}{4}
1490 {
1491 ,numbered = \l__block_numbered_bool
1492 ,space = \l__block_space_tl
1493 ,punct = \l__block_punct_tl
1494 ,caption-placement = {
1495 chained = \bool_gset_false:N \g__block_label_standalone_bool
1496 \bool_gset_false:N \g__block_label_unchained_bool
1497 ,unchained = \bool_gset_false:N \g__block_label_standalone_bool
1498 \bool_gset_true:N \g__block_label_unchained_bool
1499 ,standalone = \bool_gset_true:N \g__block_label_standalone_bool
1500 \bool_gset_false:N \g__block_label_unchained_bool
1501 }
1502 ,before-hspace = \l__block_caption_before_skip
1503 ,after-hspace = \l__block_caption_after_skip
1504 ,order = \l__block_order_clist
1505 ,caption-decls = \l__block_caption_decls_tl
1506 ,title-format = __block_title_format:n
1507 ,number-format = __block_number_format:n
1508 ,punct-format = __block_punct_format:n
1509 ,note-format = __block_note_format:n
1510 ,body-decls = \l__block_body_decls_tl
1511 }
1512 {

Some tracing:
1513 \template_debug_typeout:n{~\space template:~ 'std';~
1514 arguments:~ \exp_not:o{\exp_after:wN |#1|#2|#3|#4|}}

Applying any user keys:
1515 \SetKnownTemplateKeys{thmstyle}{std}{#1}

Since this is the last template that gets applied for theorem-like environments, all keys
should make sense, so if something is left over we better generate an error:
1516 \tl_if_empty:NF \UnusedTemplateKeys
1517 {
1518 \msg_error:nnee { block } { unknown-keys }
1519 { \l__block_env_name_tl \space environment}
1520 \UnusedTemplateKeys
1521 }

In case there is a dangling \item we can either join that with the caption or we can
output the item first. For now we provide no customization for this, but it could be
made customizable.
1522 % \legacy_if:nT { @inlabel } { \indent \par }

70

Determine if we do numbering:
1523 \bool_lazy_or:nnT
1524 { \tl_if_empty_p:N \l__block_counter_tl }
1525 { #2 }
1526 { \bool_set_false:N \l__block_numbered_bool }

Save any note for later use (\#3 might contain \NoValue):
1527 \tl_set:Nn \l__block_note_tl {#3}

If we use numbering then we need a link target and increment the counter.
1528 \bool_if:NTF \l__block_numbered_bool
1529 {
1530 \@kernel@refstepcounter{ \l__block_counter_tl }
1531 \MakeLinkTarget{ \l__block_counter_tl }
1532 }
1533 {
1534 \MakeLinkTarget[theorem-like]{}
1535 }

Add the caption into \g__block_labels_box:
1536 \hbox_gset:Nn \g__block_labels_box
1537 {
1538 \box_use_drop:N \g__block_labels_box % <- does nothing if
1539 % there is no dangling label

Now apply the declarations that are for the whole caption.
1540 \l__block_caption_decls_tl

Then we apply the tagging socket for the caption to the complete content:
1541 \tag_socket_use:nnn {captionedtext/caption} {}
1542 {
1543 \skip_horizontal:n { \l__block_caption_before_skip }

For flexibility, the inner structure is given as a clist stored in \l__block_order_clist.
We loop through it and call a processing function for each item in this clist. Everything
happens in a group
1544 \clist_map_inline:Nn \l__block_order_clist
1545 { \group_begin:
1546 \use:c { __block_do_##1: }
1547 \group_end:
1548 }
1549 \skip_horizontal:n { \l__block_caption_after_skip }
1550 }
1551 }

If the title should be standalone we immediately push it out:
1552 \bool_if:NTF \g__block_label_standalone_bool
1553 {
1554 \bool_gset_true:N \g__block_label_standalone_bool
1555 \para_omit_indent:
1556 \box_use_drop:N \g__block_labels_box
1557 \parDo we need a

\nobreak here or is
this covered? check

1558 }

71

Otherwise we signal that we are at the start and have a label dangling. The name
@newlist is a bit unfortunate, but for now we keep this name.check if @newlist could

be replaced by some­
thing more general

1559 {
1560 \legacy_if_gset_true:n { @newlist }
1561 \legacy_if_gset_true:n { @inlabel }
1562 }

Do not break after the first line:
1563 \legacy_if_gset_true:n { @nobreak }

Then set up a special everypar to handle the dangling caption:
1564 __block_debug_typeout:n{Set~ captioned~ block~ everypar \on@line }
1565 \cs_set_eq:NN __block_everypar: __block_captioned_everypar_std:

Finally, set up any declarations for the body of the environment:
1566 \l__block_body_decls_tl

1567 __block_debug_typeout:n{template:thmstyle:std~end}
1568 }

tagsupport/captionedtext/caption (socket)
1569 \NewTaggingSocket{captionedtext/caption}{2}

kernel (plug) why kernel?
1570 \NewTaggingSocketPlug{captionedtext/caption}{kernel}
1571 {
1572 \tag_struct_begin:n{tag=\UseStructureName{block/theorem-like/caption}}
1573 #2
1574 \tag_struct_end:
1575 }
1576 \AssignTaggingSocketPlug{captionedtext/caption}{kernel}

Here are the functions that are called when the corresponding name appears in the
caption clist.

__block_do_title: Handle the title:
1577 \cs_new_protected:Npn __block_do_title: {

Check if there is a title.
1578 \tl_if_empty:NTF \l__block_title_tl

If the title is empty we drop accumulated but not yet typeset spaces:
1579 { __block_drop_spaces: }

Otherwise we typeset the title, first inserting space (or spaces) that have been waiting.
1580 { \tag_socket_use:nnn {mc} {}{
1581 __block_insert_spaces:

The title may have its own formatting:
1582 __block_title_format:n \l__block_title_tl }
1583 }
1584 }

(End of definition for __block_do_title:.)

72

__block_do_note: Formatting of a note (if present) uses the same structure.
1585 \cs_new_protected:Npn __block_do_note: {
1586 \tl_if_novalue:oTF \l__block_note_tl
1587 { __block_drop_spaces: }
1588 { \tag_socket_use:nnn {mc} {} {
1589 __block_insert_spaces:
1590 __block_note_format:n \l__block_note_tl }
1591 }
1592 }

(End of definition for __block_do_note:.)

__block_do_number: The number (if present) has a similar formatting but it uses an Lbl structure:
1593 \cs_new_protected:Npn __block_do_number: {
1594 \bool_if:NTF \l__block_numbered_bool
1595 { \tag_socket_use:nnn {struct-mc} {tag=\UseStructureName{block/theorem-like/label}}
1596 { __block_insert_spaces:
1597 __block_number_format:n {
1598 \use:c{ the \l__block_counter_tl } }
1599 }
1600 }
1601 { __block_drop_spaces: }
1602 }

(End of definition for __block_do_number:.)

__block_do_punct: The punctuation is handled slightly differently. It unconditionally drops any dangling
spaces whether or not it is empty:
1603 \cs_new_protected:Npn __block_do_punct: {
1604 __block_drop_spaces:
1605 \tl_if_empty:NF \l__block_punct_tl
1606 { \tag_socket_use:nnn {mc} {}{
1607 __block_punct_format:n \l__block_punct_tl }
1608 }
1609 }

(End of definition for __block_do_punct:.)

__block_do_space:
__block_insert_spaces:
__block_drop_spaces:

\g__block_collected_spaces_tl

What’s still missing is what space should do. It simply adds a \l__block_space_­
tl to the \g__block_collected_spaces_tl tokenlist. This way the clist can contain
space,space,... to indicate multiple spaces. The storage tokenlist is global as the
functions are executed inside their own group, but the collected space is used outside of
that group.
1610 \cs_new_protected:Npn __block_do_space: {
1611 \tl_gput_right:Nn \g__block_collected_spaces_tl \l__block_space_tl
1612 }

So __block_insert_spaces: is trivial, all we have to do is to insert the collected space
and then clear the tokenlist
1613 \cs_new_protected:Npn __block_insert_spaces: {
1614 \g__block_collected_spaces_tl
1615 \tl_gclear:N \g__block_collected_spaces_tl
1616 }

73

Even simpler is __block_drop_spaces:
1617 \cs_new_protected:Npn __block_drop_spaces: {
1618 \tl_gclear:N \g__block_collected_spaces_tl
1619 }

What remains is to declare the tokenlist.
1620 \tl_new:N \g__block_collected_spaces_tl

(End of definition for __block_do_space: and others.)

captionedtext proof (templ.) In case of the templates for proofs we do everything in a single template.
1621 \DeclareTemplateCode{captionedtext}{proof}{4}
1622 {
1623 ,title = \l__block_title_tl
1624 ,punct = \l__block_punct_tl
1625 ,caption-placement = {
1626 chained = \bool_gset_false:N \g__block_label_standalone_bool
1627 \bool_gset_false:N \g__block_label_unchained_bool
1628 ,unchained = \bool_gset_false:N \g__block_label_standalone_bool
1629 \bool_gset_true:N \g__block_label_unchained_bool
1630 ,standalone = \bool_gset_true:N \g__block_label_standalone_bool
1631 \bool_gset_false:N \g__block_label_unchained_bool
1632 }
1633 ,before-hspace = \l__block_caption_before_skip
1634 ,after-hspace = \l__block_caption_after_skip
1635 ,caption-decls = \l__block_caption_decls_tl
1636 ,title-format = __block_title_format:n
1637 ,punct-format = __block_punct_format:n
1638 ,body-decls = \l__block_body_decls_tl
1639 }
1640 {

Display the template’s arguments when tracing:
1641 \template_debug_typeout:n{~\space template:~ 'proof';~
1642 arguments:~ \exp_not:o{\exp_after:wN |#1|#2|#3|#4|}}

Evaluate document-level key settings. As all given keys should be handled we use
\SetTemplateKeys to raise an error if one or more are not recognized:
1643 \SetTemplateKeys{captionedtext}{proof}{#1}

By default the title is defined by the proof instance, but if the user provides an op­
tional argument that optional argument overwrites the title (in contrast to theorem-like
environments that use the optional argument to provide an additional note):
1644 \IfNoValueF {#3} { \tl_set:Nn \l__block_title_tl {#3} }

Now we prepare typesetting the title by placing it in the \g__block_labels_box:
1645 \hbox_gset:Nn \g__block_labels_box
1646 {
1647 \box_use_drop:N \g__block_labels_box % <- does nothing if there
1648 % is no dangling label
1649 \l__block_caption_decls_tl
1650 \tag_socket_use:nnn {captionedtext/caption} {}
1651 {
1652 \skip_horizontal:n { \l__block_caption_before_skip }

74

__block_do_title: and __block_do_punct: unnecessarily call __block_drop_­
spaces: but otherwise they do well, so …
1653 \group_begin: __block_do_title: \group_end:
1654 \group_begin: __block_do_punct: \group_end:
1655 \skip_horizontal:n { \l__block_caption_after_skip }
1656 }
1657 }

The remaining code is identical to the one in thmstyle std; for documentation see there:
1658 \bool_if:NTF \g__block_label_standalone_bool
1659 {
1660 \bool_gset_true:N \g__block_label_standalone_bool
1661 \para_omit_indent:
1662 \box_use_drop:N \g__block_labels_box
1663 \par
1664 }
1665 {
1666 \legacy_if_gset_true:n { @newlist }
1667 \legacy_if_gset_true:n { @inlabel }
1668 }
1669 \legacy_if_gset_true:n { @nobreak }
1670 __block_debug_typeout:n{Set~ captioned~ block~ everypar \on@line }
1671 \cs_set_eq:NN __block_everypar: __block_captioned_everypar_std:
1672 \l__block_body_decls_tl

1673 __block_debug_typeout:n{template:captionedtext:proof~end}
1674 }

9.5 Tagging support commands
In this section we provide code to the various kernel hooks to support the tagging of
different displayblock environments.

__block_beginpar_vmode: When a block starts out in vertical mode, i.e., is not yet part of a paragraph, we have
to start a paragraph structure. However, this is not the case if we are already flattening
paragraphs, thus in this case we do nothing. We also do nothing if @endpe is currently
true, because that means we are right now just after the end of a blockenv and in the
process of looking if we have to end the current <text-unit>, i.e., it is already open.
The command is mapped to __kernel_displayblock_beginpar_vmode: in various tag­
ging recipes. It is also used in the math code!
1675 \cs_set:Npn __block_beginpar_vmode: {
1676 __block_debug_typeout:n
1677 { @endpe = \legacy_if:nTF { @endpe }{true}{false} \on@line }
1678 \legacy_if:nTF { @endpe }
1679 {
1680 \legacy_if_gset_false:n { @endpe }
1681 }

We test for <2 because the first flattened environment has to surround itself with a
<text-unit>. Only any inner ones then have to avoid adding another <text-unit>.
1682 {
1683 \int_compare:nNnT \l__tag_block_flattened_level_int < 2
1684 {

75

1685 \UseTaggingSocket{para/semantic/begin}
1686 { __tag_para_main_store_struct: }
1687 }
1688 }
1689 }

(End of definition for __block_beginpar_vmode:.)

__block_beginpar_hmode:N If the block is already part of a part of a paragraph, i.e., when it has some text directly
in front, then the first thing to do is to return to vertical mode. However, that should
be done without inserting a paragraph end tag, so before calling \par to do its normal
work, we disable paragraph tagging and restarting afterwards again. The argument to
this config point simply gobbles the \par following it in the code above (which is used
when there is no tagging going on.
The command is mapped to __kernel_displayblock_beginpar_hmode:w in various
tagging recipes.
1690 \cs_set:Npn __block_beginpar_hmode:N #1
1691 {
1692 \tag_mc_end:
1693 __tag_gincr_para_end_int:
1694 __block_debug_typeout:n{increment~ /P \on@line }
1695 \bool_if:NT \l__tag_para_show_bool
1696 { \tag_mc_begin:n{artifact}
1697 \rlap{\color_select:n{red}\tiny\ \int_use:N\g__tag_para_end_int}
1698 \tag_mc_end:
1699 }
1700 \tag_struct_end:
1701 \tagpdfparaOff \par \tagpdfparaOn
1702 }

(End of definition for __block_beginpar_hmode:N.)

Paragraph tagging is mainly done using the paragraph hooks. The code is in
lttagging.dtx.

tagsupport/block/startpara/direct (socket) A tagging socket to start a paragraph structure. It takes an argument (which is only
used in debugging) that should be gobbled if tagging is not active. Not yet in lttagging
(name and function should be reviewed).
This is a similar code to the one used in the para/begin hook but without testing @endpe.
This is not needed in the standalone case and wrong inside lists.
This code is used in various places and should be a dummy if tagging is not active.
1703 \socket_if_exist:nF {tagsupport/block/startpara/direct}
1704 {
1705 \NewTaggingSocket {block/startpara/direct}{1}
1706 }

default (plug)
1707 \NewTaggingSocketPlug{block/startpara/direct}{default}
1708 {
1709 \bool_if:NF \l__tag_para_flattened_bool
1710 {

76

1711 \UseTaggingSocket{para/semantic/begin}
1712 { __tag_para_main_store_struct: }
1713 }
1714 __tag_gincr_para_begin_int:
1715 __block_debug_typeout:n{increment~ P \on@line }
1716 \tag_struct_begin:n
1717 {
1718 tag=\l__tag_para_tag_tl
1719 ,attribute-class=\l__tag_para_attr_class_tl
1720 }
1721 __tag_check_para_begin_show:nn {green}{#1}
1722 \tag_mc_begin:n {}
1723 }
1724 \AssignTaggingSocketPlug{block/startpara/direct}{default}

The para/end hook code is in lttagging. Currently we still need to remove the tagpdf
chunk to avoid that the socket is added twice. We add empty chunks to avoid warning
messages from code parts trying to remove the chunks.
1725 \AddToHook{para/end}[tagpdf]{}
1726 \RemoveFromHook{para/end}[tagpdf]
1727 \AddToHook{para/end}{}

1728 \def\PARALABEL{NP-}

tagsupport/kernel/endpe/vmode (socket) A tagging socket which ends a structure. Used in \begin and \para_end:. Not yet in
lttagging (name and function should be reviewed).
1729 \socket_if_exist:nF {tagsupport/kernel/endpe/vmode}
1730 {
1731 \NewTaggingSocket {kernel/endpe/vmode}{0}
1732 }

default (plug)
1733 \NewTaggingSocketPlug{kernel/endpe/vmode}{default}
1734 {
1735 \if@endpe \ifvmode
1736 \bool_if:NT \l__tag_para_bool
1737 {
1738 \bool_if:NF \l__tag_para_flattened_bool
1739 {

1740 \UseTaggingSocket{para/semantic/end}{}
1741 }

\@endpefalse is needed by \para_end:, see test tagging-0097.
1742 \@endpefalse
1743 }
1744 \fi \fi
1745 }
1746 \AssignTaggingSocketPlug{kernel/endpe/vmode}{default}

\para_end: If we see a \par in vmode and a <text-unit> is still open we need to close that. For
this we check if a request for @endpe was made (but the \par redefinition got lost due
to (bad?) coding).
1747 \cs_set_protected:Npn \para_end: {

77

1748 \scan_stop:
1749 \mode_if_horizontal:TF {
1750 \mode_if_inner:F {
1751 \tex_unskip:D
1752 \hook_use:n{para/end}
1753 \@kernel@after@para@end
1754 \mode_if_horizontal:TF {
1755 \if_int_compare:w 11 = \tex_lastnodetype:D
1756 \tex_hskip:D \c_zero_dim
1757 \fi:
1758 \tex_par:D
1759 \hook_use:n{para/after}
1760 \@kernel@after@para@after
1761 }
1762 { \msg_error:nnnn { hooks }{ para-mode }{end}{horizontal} }
1763 }
1764 }
1765 {

TODO 2025-07-01. This is not exactly as before, this doesn’t insert an \endpefalse
when tagging is active. Check if this a problem.
1766 \UseTaggingSocket{kernel/endpe/vmode}%
1767 \tex_par:D
1768 }
1769 }

Now reset LATEX2ε functions to use the changed \para_end: [TODO: Need to check if
\@@par is ever used in a way that the vmodetagging hook is needed.]
1770 \cs_set_eq:NN \par \para_end:
1771 \cs_set_eq:NN \@@par \para_end:
1772 \cs_set_eq:NN \endgraf \para_end:

(End of definition for \para_end:. This function is documented on page 38.)

\begin We need to do a little more than canceling @endpe now.
1773 \protected\def\begin#1{%
1774 \UseHook{env/#1/before}%
1775 \@ifundefined{#1}%
1776 {\def\reserved@a{\@latex@error{Environment~#1~undefined}\@eha}}%
1777 {\def\reserved@a{\def\@currenvir{#1}%
1778 \edef\@currenvline{\on@line}%
1779 \@execute@begin@hook{#1}%
1780 \csname #1\endcsname}}%
1781 \@ignorefalse
1782 \begingroup
1783 \UseTaggingSocket{kernel/endpe/vmode}%
1784 \reserved@a}

(End of definition for \begin. This function is documented on page 38.)

__kernel_list_label_after:n If starting the text-unit/text tags got delayed because of a pending label we have to do
it after the label got typeset. TODO: it should do nothing without tagging that’s why
there is a test, this should be better hidden in a tagging socket, but it is not quite clear
how to do this.internally this is now

a tagging socket, why
the outer test then?

1785 \cs_new_protected:Npn __kernel_list_label_after:n #1 {
1786 \bool_lazy_and:nnT { \tag_if_active_p: } {\l__tag_para_bool }

78

1787 {
1788 \tag_socket_use:nn {block/startpara/direct} { #1 }
1789 }
1790 }

(End of definition for __kernel_list_label_after:n.)

__block_inner_begin: Start a block that has an inner structure if it isn’t also a list. This command is tagging
specific, it is mapped to __kernel_displayblock_begin: in some tagging recipes.
1791 \cs_new_protected:Npn __block_inner_begin: {
1792 \tagstructbegin{tag=\l__block_tag_inner_tag_tl}
1793 }

(End of definition for __block_inner_begin:.)

__block_inner_end: End a block (which isn’t also a list). This command is tagging specific, it is mapped to
__kernel_displayblock_end: in some tagging recipes.
1794 \cs_new_protected:Npn __block_inner_end: {
1795 __block_debug_typeout:n{block-end \on@line}
1796 \legacy_if:nT { @endpe }
1797 {
1798 \UseTaggingSocket{para/semantic/end}
1799 { __block_debug_typeout:n{close~ /text-unit \on@line}}
1800 }
1801 \tagstructend % end inner structure
1802 }

(End of definition for __block_inner_end:.)

9.5.1 List tags

1803 \tl_new:N \l__tag_L_tag_tl
1804 \tl_set:Nn \l__tag_L_tag_tl {L}
1805
1806 \tl_new:N\l__tag_L_attr_class_tl
1807 \tl_set:Nn \l__tag_L_attr_class_tl {list}

1808 \tagpdfsetup
1809 {
1810 ,role/new-attribute = {itemize}
1811 {/O /List /ListNumbering/Unordered}
1812 ,role/new-attribute = {enumerate}
1813 {/O /List /ListNumbering/Ordered}
1814 ,role/new-attribute = {description}
1815 {/O /List /ListNumbering/Description}

Initially, we had /None for the basic list environment, but that is not allowed in
PDF/UA-2 if the list contains any Lbl tags. So now we default to Unordered.
1816 ,role/new-attribute = {list}{/O /List /ListNumbering/Unordered}
1817 }

__block_list_begin: Start a list …This command is tagging specific, it is mapped to __kernel_displayblock_­
begin: in a tagging recipe.
1818 \cs_set:Npn __block_list_begin: {
1819 \tagstructbegin
1820 {
1821 tag=\l__tag_L_tag_tl

79

1822 ,attribute-class=\l__tag_L_attr_class_tl
1823 }
1824 }

(End of definition for __block_list_begin:.)

__block_list_item_begin: Start tagging a list item. This command is tagging specific, it is mapped to __kernel_­
list_item_begin: in a tagging recipe.
1825 \cs_set:Npn __block_list_item_begin: {
1826 \tagstructbegin{tag=\UseStructureName{block/list/item}}
1827 }

(End of definition for __block_list_item_begin:.)

__block_list_item_end: When a list item ends we have to close <itembody> and but also a <text> in the
special case that the item material ends in a list (identifiable via @endpe). This command
is tagging specific. This command is copied to __kernel_list_item_end: in the list
recipe.
1828 \cs_set:Npn __block_list_item_end: {
1829 \legacy_if:nT { @endpe }
1830 {

1831 \UseTaggingSocket{para/semantic/end}{}
1832 % __block_debug_typeout:n{Structure-end~ P~ at~ item-end \on@line }
1833 }
1834 \tagstructend \tagstructend % end \UseStructureName{block/list/body}, LI
1835 }

(End of definition for __block_list_item_end:.)

__block_list_end: Finally, at the list end we have to close the open <itembody>, , <L>, and possibly a
<text> if the last item ends with a list. However, if the user forgot to add an \item then
there will be no and <itembody> open, so we check for the status of @newlist. The
corresponding no-item error was generated earlier outside the tagging code.
One could argue that it doesn’t matter if the tagging is wrong after a \@noitemerr was
issued. However, there is one case where it isn’t an error: In the thebibliography
environment (which is internally a list) it is often the case that documents start out with
an empty environment, not containing any \bibitems. For that reason \@noitemerr is
redefined inside that environment to only produce a warning; hence we have to produce
correct tag structures in that case. This command is tagging specific. This command is
copied to __kernel_displayblock_end: in the list recipe.
1836 \cs_new_protected:Npn __block_list_end: {

If @newlist is true (i.e., when we have an error or warning situation) there is not much
to close.
1837 \legacy_if:nF { @newlist }
1838 {
1839 \legacy_if:nT { @endpe }
1840 {

1841 \UseTaggingSocket{para/semantic/end}
1842 {__block_debug_typeout:n{Structure-end~ text-unit~ at~ list-end \on@line }}
1843 }
1844 \tagstructend\tagstructend % end \UseStructureName{block/list/body}, LI
1845 }
1846 \tagstructend % end L
1847 }

80

(End of definition for __block_list_end:.)

End of tagging related declarations.

9.5.2 Tagging recipes

tagsupport/block/recipe (socket) A tagging socket to call the tagging recipe. Declared in lttagging.
1848 \socket_if_exist:nF {tagsupport/block/recipe}
1849 {
1850 \NewTaggingSocket{block/recipe}{1}
1851 }

default (plug)
1852 \NewTaggingSocketPlug{block/recipe}{default}
1853 {
1854 \use:c { __block_recipe_#1: }
1855 }
1856 \AssignTaggingSocketPlug{block/recipe}{default}

__block_recipe_basic: The basic recipe simply ensures that the block is inside a <text-unit> structure and
if necessary starts one. When the block ends and is followed by a blank line the <text-
unit> structure is closed too, otherwise it remains open and further text starts with just
a <text> structure.
There is otherwise no inner structure so __kernel_displayblock_begin: and __kernel_­
displayblock_end: do nothing—blockenvs with inner structure use the standard or
list recipe instead.
1857 \cs_new_protected:Npn __block_recipe_basic: {
1858 \cs_set_eq:NN __kernel_displayblock_beginpar_hmode:w
1859 __block_beginpar_hmode:N
1860 \cs_set_eq:NN __kernel_displayblock_beginpar_vmode:
1861 __block_beginpar_vmode:
1862 \let __kernel_displayblock_begin: \prg_do_nothing:
1863 \let __kernel_displayblock_end: \prg_do_nothing:

End environment \par handling:
1864 \socket_assign_plug:nn{block/endpe}{on}
1865 }

(End of definition for __block_recipe_basic:.)

__block_recipe_standalone:
The standalone recipe produces a block that ensures that a previous <text-unit> ends
and that after the block a new <text-unit> starts.
1866 \cs_new_protected:Npn __block_recipe_standalone: {
1867 \cs_set_eq:NN __kernel_displayblock_beginpar_hmode:w
1868 \prg_do_nothing:
1869 \cs_set_eq:NN __kernel_displayblock_beginpar_vmode:
1870 \prg_do_nothing:
1871 \cs_set_eq:NN __kernel_displayblock_begin: __block_inner_begin:
1872 \cs_set_eq:NN __kernel_displayblock_end: __block_inner_end:

End environment \par handling:
1873 \socket_assign_plug:nn{block/endpe}{off}

81

1874 \tl_if_empty:NTF \l__block_tag_name_tl
1875 { \tl_set:Nn \l__block_tag_inner_tag_tl {Sect} }
1876 { \tl_set_eq:NN \l__block_tag_inner_tag_tl \l__block_tag_name_tl }
1877 }

(End of definition for __block_recipe_standalone:.)

__block_recipe_standard: The standard recipe does the following:

• surround the block with a <text-unit> structure if not already in a <text-unit>.
In the latter case end the MC and the <text> but leave the <text-unit> open.
If we are producing flattened paragraphs, just close any <text> but do not open a
<text-unit>.

• Then open an new (inner) structure (by default <Div> but typically the one specified
on the instance).

• At the end of the block close the inner structure (<Div> or explicit one) but leave
the <text-unit> open to be either continued or closed due to a following \par.

1878 \cs_new_protected:Npn __block_recipe_standard:
1879 {
1880 \cs_set_eq:NN __kernel_displayblock_beginpar_hmode:w
1881 __block_beginpar_hmode:N
1882 \cs_set_eq:NN __kernel_displayblock_beginpar_vmode:
1883 __block_beginpar_vmode:
1884 \cs_set_eq:NN __kernel_displayblock_begin: __block_inner_begin:
1885 \cs_set_eq:NN __kernel_displayblock_end: __block_inner_end:

End environment \par handling:
1886 \socket_assign_plug:nn{block/endpe}{on}

1887 \tl_if_empty:NTF \l__block_tag_name_tl
1888 { \tl_set:Nn \l__block_tag_inner_tag_tl {Div} }
1889 { \tl_set_eq:NN \l__block_tag_inner_tag_tl \l__block_tag_name_tl }
1890 }

(End of definition for __block_recipe_standard:.)

\l__block_tag_inner_tag_tl The tag name that is used if the block has an inner structure.
1891 \tl_new:N \l__block_tag_inner_tag_tl

(End of definition for \l__block_tag_inner_tag_tl.)

__block_recipe_list: The list recipe does the following.

• It opens a <text-unit>-structure or keeps the current one open (only closing the
MC).

• It then starts a new structure role-mapped to L-structure and arranges for handling
list items, e.g., Li, itemlabel and itembody structures.

• At the end it closes open list structures as needed but keeps the <text-unit>-
structure open to continue the paragraph after the list, if necessary.

82

1892 \cs_new_protected:Npn __block_recipe_list:
1893 {
1894 \cs_set_eq:NN __kernel_displayblock_beginpar_hmode:w
1895 __block_beginpar_hmode:N
1896 \cs_set_eq:NN __kernel_displayblock_beginpar_vmode:
1897 __block_beginpar_vmode:
1898 \cs_set_eq:NN __kernel_displayblock_begin: __block_list_begin:
1899 \cs_set_eq:NN __kernel_displayblock_end: __block_list_end:

The next two lines could be done globally, because they are only called if we do have
\items, i.e., if we are in a list. It is therefore also not necessary to reset them in other
recipes (right now—this may change if we get more templates (like inline lists)).
1900 \cs_set_eq:NN __kernel_list_item_begin: __block_list_item_begin:
1901 \cs_set_eq:NN __kernel_list_item_end: __block_list_item_end:

End environment \par handling:
1902 \socket_assign_plug:nn{block/endpe}{on}

Handle the tag name and attribute classes using the key values from the current list
instance.
1903 \tl_if_empty:NTF \l__block_tag_name_tl
1904 { \tl_set:Nn \l__tag_L_tag_tl {L} }
1905 { \tl_set_eq:NN \l__tag_L_tag_tl \l__block_tag_name_tl }
1906 \tl_if_empty:NTF \l__block_tag_class_tl
1907 { \tl_set:Nn \l__tag_L_attr_class_tl {} }
1908 { \tl_set_eq:NN \l__tag_L_attr_class_tl \l__block_tag_class_tl }
1909 }

(End of definition for __block_recipe_list:.)

1910 ⟨/package-start⟩

10 Support code for document-level block
environments

10.1 Verbatim-like environments
10.1.1 Helper commands for verbatim and verbatim*

\legacyverbatimsetup This code is called as part of the final-code of the blockenv instance and sets up
the special conventions needed for verbatim environments. We pass one argument to
differentiate between visible and invisible spaces.
This code resembles the LATEX2ε verbatim implementation with a slight twist: in
LATEX2ε each code line was a paragraph using \leftskip=\@totalleftmargin. This
was possible because the whole environment was implemented as a trivlist. As this is
no longer the case setting \leftskip would alter the layout of a surrounding list. So
instead we need to make sure that the paragraph end is executed in a group so that any
parshape setup is preserved.
1911 ⟨∗package-finish⟩

1912 ⟨@@=⟩
1913 \def\legacyverbatimsetup #1 {%
1914 \language\l@nohyphenation
1915 \@tempswafalse

83

1916 \def\par{%
1917 \if@tempswa
1918 \leavevmode \null {\@@par}\penalty\interlinepenalty
1919 \else
1920 \@tempswatrue
1921 \ifhmode{\@@par}\penalty\interlinepenalty\fi
1922 \fi

Do something at the very beginning of each verbatim line:might also need a
hook not just a socket 1923 \UseSocket{verbatim/startline}%

1924 }%
1925 \let\do\@makeother \dospecials
1926 \obeylines \verbatim@font \@noligs
1927 \everypar \expandafter{\the\everypar \unpenalty}%

1928 \frenchspacingShould next line be hid­
den in a tagging socket? 1929 \AssignStructureRole {para/textblock}%

1930 {\UseStructureName{block/verbatim/codeline}}%

If the argument is neither visible nor invisible nothing will happen—tough.
1931 \use:c { @setupverb #1 space }
1932 \@vobeyspaces
1933 }

(End of definition for \legacyverbatimsetup. This function is documented on page 37.)

verbatim/startline (socket) A socket that is executed at the start of each verbatim line, to be used, for example, to
check for %␣ when the doc package is active.We might also need a

hook for line numbers. 1934 \NewSocket{verbatim/startline}{0}

\@setupverbinvisiblespace In the pdfTEX engine we need to use \pdffakespace chars for the invisible spaces. In
luatex we do not want this as it would lead to doubling the number of real space chars.
In dvi-mode we do not want that either: with pdftex it would error, with xetex it does
nothing.
1935 ⟨@@=block⟩
1936 \newcommand\@setupverbinvisiblespace{}
1937 \bool_lazy_or:nnF
1938 { \sys_if_engine_luatex_p: }
1939 { \sys_if_output_dvi_p: }
1940 {
1941 \renewcommand\@setupverbinvisiblespace
1942 {\def\@xobeysp{\nobreakspace\pdffakespace}}
1943 }

(End of definition for \@setupverbinvisiblespace. This function is documented on page 37.)

The command \@setupverbvisiblespace is already defined in the kernel.

10.1.2 Helper commands for alltt and alltt*

\legacyallttsetup The alltt environment also needs some special setup. We can reuse \legacyverbatimsetup
but we have to take out \, {, and } from \dospecials as they should remain available
with their normal catcodes and adjust ' inside math. This is lifted straight from the
original package code.
1944 ⟨@@=⟩
1945 \ExplSyntaxOff

84

1946 \def\legacyallttsetup #1{%
1947 \let\org@prime~%
1948 \everymath\expandafter{\the\everymath
1949 \catcode`\'=12 \let~\org@prime}%
1950 \everydisplay\expandafter{\the\everydisplay
1951 \catcode`\'=12 \let~\org@prime}%

This alters \dospecials:
1952 \let\org@dospecials\dospecials
1953 \g@remfrom@specials{\\}%
1954 \g@remfrom@specials{\{}%
1955 \g@remfrom@specials{\}}%

Then call \legacyverbatimsetup:
1956 \legacyverbatimsetup {#1}%

And afterwards restore \dospecials:
1957 \let\dospecials\org@dospecials
1958 }

\g@remfrom@specials
Copied from alltt.
1959 \def\g@remfrom@specials#1{%
1960 \def\@new@specials{}%
1961 \def\@remove##1{%
1962 \ifx##1#1\else
1963 \g@addto@macro\@new@specials{\do ##1}\fi}%
1964 \let\do\@remove\dospecials
1965 \let\dospecials\@new@specials
1966 }

1967 \ExplSyntaxOn
1968 ⟨@@=block⟩

(End of definition for \legacyallttsetup and \g@remfrom@specials. These functions are documented
on page 37.)

10.1.3 Helper command for legacy list environment

\legacylistsetup And here is the extra code for use in the list instance setup in the key legacy-code:
1969 \cs_new_protected:Npn \legacylistsetup {

Reset values to defaults:
1970 \dim_zero:N \listparindent
1971 \dim_zero:N \rightmargin
1972 \dim_zero:N \itemindent

By default a list environment is not numbered, but this happens already in the block
template.
1973 % \tl_set:Nn \@listctr {}
1974 % \legacy_if_set_false:n { @nmbrlist } % needed if lists are nested

By default there is a simple definition for \makelabel. It can be overwritten in the
second mandatory argument to the list environment (stored in \l__block_legacy_­
env_params_tl) and is used if the instance sets the compatibility key to true.
1975 \let\makelabel\@mklab % TODO: customize

85

Now we use the argument with parameter settings to update some or all of the above
defaults (this holds whatever was put into the second argument to the list environment):
1976 \l__block_legacy_env_params_tl

As we don’t know much about this list we can only make a guess about the nature of
the list and the setting of the tag name (default list role-mapped to <L>) and any tag
attributes may have to be overwritten in the optional key/value argument. But we do
have some hints to play with.
1977 \legacy_if:nTF { @nmbrlist }
1978 { \tl_set:Nn \l__tag_L_attr_class_tl {enumerate} } % numbered list
1979 { \tl_if_empty:NTF \@itemlabel
1980 { \tl_set:Nn \l__tag_L_attr_class_tl {list} } % no label
1981 { \tl_set:Nn \l__tag_L_attr_class_tl {itemize} } % unnumbered,
1982 % unordered
1983 }
1984 }

(End of definition for \legacylistsetup. This function is documented on page 37.)

\l__block_legacy_env_params_tl The token list in which the declarations from the second argument of list are temporarily
stored. This is then used in \legacylistsetup.
1985 \tl_new:N\l__block_legacy_env_params_tl

(End of definition for \l__block_legacy_env_params_tl.)

10.2 Theorem-like environments
Theorem-like environments are defined in LATEX with the help of \newtheorem declara­
tions. Internally they used a list with a single item. Using lists was convenient back then,
but in a tagged document you end up with a strange structure. We therefore alter the
mechanism.

10.2.1 Declarations for theorem-like environments

\newtheorem We reimplement the extended amsthm version of the declaration which also supports a
star form indicating that this theorem-like environment should not be numbered.
1986 \RenewDocumentCommand \newtheorem { s m o m o } {

Is the environment definable at all? If not there is not much point in continuing.
1987 \expandafter\@ifdefinable\csname #2\endcsname
1988 {

If a star was given then there is no need to set up a counter for this environment.
Otherwise we do what LATEX2e did, except that we do all the variations in one go, rather
than using \@ynthm, \@xnthm, and \@othm.undefined the old in­

ternal commands? 1989 \IfBooleanF #1
1990 {
1991 \IfNoValueTF {#3}

If there was no counter to use (#2) then we set up a counter with the same name as the
environment (#2).
1992 {
1993 \@definecounter {#2}

86

If there was no “ counter within” the counter representation is simple, otherwise we build
it up from the two counters:
1994 \IfNoValueTF {#5}
1995 { % @ynthm
1996 \tl_gset:ce { the #2 }
1997 {
1998 \@thmcounter{#2}
1999 }
2000 }
2001 { % @xnthm
2002 \@newctr{#2}[#5]
2003 \tl_gset:ce { the #2 }
2004 {
2005 \expandafter\noexpand\csname the#5\endcsname
2006 \@thmcountersep
2007 \@thmcounter{#2}
2008 }
2009 }
2010 }
2011 { % @othm

If we should reuse an existing counter (#3 was given) we check that this counter actually
exists and if so use it:
2012 \@ifundefined{c@#3}
2013 { \@nocounterr{#3} }
2014 {
2015 \newcounteralias{#2}{#3}
2016 }
2017 }
2018 }

With the counter defined we are ready to declare the environments. There is a slight
complication though: the “ theorem-like” environments have an optional argument which
contains a possible note, but now we also want to use the first optional argument to
hold a key/value list with parameter settings. We therefore define this argument via
={note}o so that a simple note, if given is assigned to a note key. Further processing is
then delegated to the command \ParseLaTeXeTheoremlike which, after sorting out the
argument situation, eventually calls \BlockEnv.
2019 \NewDocumentEnvironment{#2}{ ={note}o }
2020 { \ParseLaTeXeTheoremlike {#2} \BooleanFalse {##1} }
2021 { \BlockEnvEnd }

The starred form of the environment suppresses the number so we pass it \BooleanTrue,
otherwise it is identical to the previous definition.
2022 \NewDocumentEnvironment{#2*}{ ={note}o }
2023 { \ParseLaTeXeTheoremlike {#2} \BooleanTrue {##1} }
2024 { \BlockEnvEnd }

Now it is about time to provide all necessary template instances. They depend on the
\theoremstyle specified by the user and possibly by a \swapnumbers declaration. We
start by checking the requested \theoremstyle (if none was given then plain is the
default and if it is an unknown name we also revert to plain after issuing a warning).
2025 \IfInstanceExistsF{thmstyle}{\l__block_thmstyle_tl}
2026 { \@latex@warning{Unknown~ theoremstyle~

87

2027 '\l__block_thmstyle_tl'~ using~ 'plain'}
2028 \theoremstyle {plain}
2029 }

So now we know that \l__block_thmstyle_tl holds a valid style. What we don’t know
is whether or not there are special block instances that go with that style (it might be
a style that reuses the thm-⟨style⟩block-... instances).
2030 \IfInstanceExistsTF{block} { thm- \l__block_thmstyle_tl -1 }
2031 { __block_debug_typeout:n{...~ style~ \l__block_thmstyle_tl\space exists } }
2032 { __block_debug_typeout:n{...~ style~ \l__block_thmstyle_tl\space
2033 does~ not ~exist;~ 'plain'~ used } }

So here is the blockenv instance for the new “ theorem-like” environment. It uses a
captionedtext instance for the inner-instance which we also have to declare.
2034 \DeclareInstance{blockenv}{#2}{std}
2035 {
2036 name = theorem-like
2037 ,tag-name = \UseStructureName{block/theorem-like}
2038 ,tag-attr-class =
2039 ,tagging-recipe = standalone
2040 ,inner-level-counter =
2041 ,transparent-level = true
2042 ,legacy-code =

What block instance to use is determined by checking if a special one exists or whether
we should use plain:
2043 ,block-instance:e = thm-
2044 \IfInstanceExistsTF{block}
2045 {thm- \l__block_thmstyle_tl -1}
2046 { \l__block_thmstyle_tl } { plain }
2047 ,inner-instance-type = captionedtext
2048 ,inner-instance = #2

By default the body text is justified, but perhaps we should not set anything here and
use whatever is current.decide
2049 ,para-instance = justify
2050 }

The captionedtext instance is simple: the counter, if present, is either argument #2
or #3; the title receives argument #4, and the style to use is stored in \l__block_­
thmstyle_tl. If \swapnumbers was requested we use a style variant with the suffix -swap
appended.
2051 \DeclareInstance{captionedtext}{#2}{thmlike}
2052 {

The counter to use is either none or #2 based on the arguments given:
2053 ,counter:e = \IfBooleanF #1 { #2 }
2054 ,title = #4
2055 ,style:e = \l__block_thmstyle_tl
2056 \bool_if:NT \l__block_swap_number_bool {-swap}
2057 }

We already know that the style \l__block_thmstyle_tl exists, since we have tested
that earlier, but we don’t know if that is also true for the -swap variant. So we have to
check that and declare it if necessary.
2058 \bool_if:NT \l__block_swap_number_bool {

88

2059 \IfInstanceExistsF{thmstyle}{\l__block_thmstyle_tl -swap}
2060 {

If it doesn’t exist we first make a copy of the base instance.
2061 \DeclareInstanceCopy{thmstyle}
2062 {\l__block_thmstyle_tl -swap}
2063 {\l__block_thmstyle_tl}

Then we retrieve the value of the order key from that instance which is a clist.
2064 \clist_set:Ne \l__block_order_clist
2065 { \InstanceValue { thmstyle }
2066 { \l__block_thmstyle_tl }
2067 { order }
2068 }

Then we step through this clist and build a new one in \l__block_tmp_clist with the
title and number swapped. That is done under the assumption that both actually exist
in the clist which would be the case if the instance was declared with \newtheoremstyle,
i.e., for legacy setups.
2069 \clist_clear:N \l__block_tmp_clist
2070 \clist_map_inline:Nn \l__block_order_clist
2071 {
2072 \clist_put_right:Ne \l__block_tmp_clist {
2073 \str_case:nnF {##1}
2074 { {title} {number}
2075 {number} {title} }
2076 {##1}
2077 }
2078 }

Once that is done we put the new value for order in the new instance.
2079 \EditInstance {thmstyle}{\l__block_thmstyle_tl -swap}
2080 { order:e = \l__block_tmp_clist }
2081 }
2082 }
2083 }
2084 }

(End of definition for \newtheorem.)

\ParseLaTeXeTheoremlike The arguments to \ParseLaTeXeTheoremlike are as follows:

#1: instance name to use (of type “ blockenv”)

#2: unnumbered? boolean normally provided by using the star form of the environment

#3: key/val for layout adjustments settings provided in the optional argument of the
“ theorem-like” environment. If a note to the theorem was given in that argument,
then it has been turned into note...=

To be able to pick up the note, if provided, we make the following declaration:
2085 \keys_define:nn {blockenv} {
2086 , note .tl_set:N = \l__block_note_tl
2087 , note .groups:n = { interface }
2088 }

89

2089 \cs_new_protected:Npn \ParseLaTeXeTheoremlike #1 #2 #3 {
2090 %
2091 % __block_debug_typeout:n{Parse~#1.~ Arguments~ found:~ \IfBooleanT{#2}{*}
2092 % \IfValueT{#3}{[\exp_not:n{#3}]}}
2093 %

Normally, no note is provided, so that’s the starting point:
2094 \tl_set:Nn \l__block_note_tl { \NoValue }

Then we check #3 if it contains a key/val list containing note. This then sets \l__block_­
note_tl and puts all other key/vals in \l__block_instance_keys_tl. Otherwise the
complete key/val list ends up there.
2095 \IfNoValueTF { #3 }
2096 { \tl_clear:N \l__block_instance_keys_tl }
2097 { \keys_set_groups:nnnN {blockenv} {interface} { #3 }
2098 \l__block_instance_keys_tl }

We are now ready to invoke the blockenv instance for #1 but we need to expand some
of the values first, hence the \use:e.
2099 \use:e {
2100 \exp_not:N \BlockEnv { #1 }
2101 { \exp_not:o \l__block_instance_keys_tl }
2102 { #2 }
2103 { \exp_not:o \l__block_note_tl }
2104 }

We don’t have any use for the last argument (the sub-caption) in the standard setup, so
we pass \NoValue.
2105 \NoValue
2106 }

(End of definition for \ParseLaTeXeTheoremlike. This function is documented on page ??.)

\swapnumbers Beside declaring theorem-like environments with \newtheorem and \theoremstyle, the
amsthm package also introduced \swapnumbers to swap title and number in all environ­
ments (because that is a common requirement). The new implementation supports this
approach as well.
It is implemented with a boolean \l__block_swap_number_bool which is toggled by
\swapnumbers.
2107 \bool_new:N \l__block_swap_number_bool
2108 \cs_new_protected:Npn \swapnumbers { \bool_set_inverse:N \l__block_swap_number_bool }

(End of definition for \swapnumbers. This function is documented on page ??.)

\newtheoremstyle The \newtheoremstyle declaration was originally provided in the amsthm package. It
has 9 mandatory arguments that sets some aspects of theorem styles. We map those to
the template mechanism and generate thmstyle instances from them.
\newtheoremstyle has a bunch of argument conventions that haven’t been fully imple­
mented yet, e.g., #8 can be a blank (meaning normal word space or \newline) or a skip.
Those should eventually also be covered.extend
2109 \cs_set_protected:Npn \newtheoremstyle #1#2#3#4#5#6#7#8#9 {

90

First we build a thmstyle instance:
2110 \DeclareInstance{thmstyle}{#1}{std}{
2111 ,caption-decls = {#4}
2112 ,before-hspace:e = \tl_if_empty:nTF{#5}{0pt}{#5}
2113 ,body-decls = {#6}
2114 ,punct = {#7}

This setting doesn’t cover all syntax possibilities.
2115 ,after-hspace:e = \tl_if_empty:nTF{#8}{0pt}
2116 {\tl_if_blank:nTF{#8}{3.3pt}{#8}}
2117 }

If #2 or #3 are not empty we also have to set up a block instance to account for the fact
that special vertical spacing is requested:
2118 \tl_if_empty:nF { #2#3 }
2119 {
2120 \DeclareInstance{block}{thm-#1-1}{std}{
2121 ,begin-vspace:e = \tl_if_empty:nTF{#2}{0pt}{#2}
2122 ,end-vspace:e = \tl_if_empty:nTF{#3}{0pt}{#3}
2123 ,left-margin = 0pt
2124 ,para-indent = \parindent
2125 ,para-vspace = \parskip
2126 }

As elsewhere we provide two levels.
2127 \DeclareInstanceCopy{block}{thm-#1-2}{thm-#1-1}
2128 }

More complicated is argument #9. If not empty it can contain \thmname, \thmnumber,
and/or \thmnote to define the layout of the theorem caption. All the spacing has to
be given inside the arguments of these commands which means that this doesn’t work
together with \swapnumbers, but this is the way amsthm was defined. If the instances are
manually defined then it is easy to make them work with and without a \swapnumbers
declaration. So basically, this here is good for a subset of cases and for backwards
compatibility with amsthm.
The approach used doesn’t cover all circumstances, e.g., if the argument contains low-
level programming on top of the interface commands that the translation below will fail,
but most existing code should work and the rest would need a replacement using instances
that are directly set up.
2129 \tl_if_empty:oF { \exp_not:n{#9} }
2130 {

Give special definitions for the commands and then expand #9 and use the result to edit
the instance we defined earlier.
2131 \cs_set:Npn \thmname ##1 {title-format={{\exp_not:n{##1}}},}
2132 \cs_set:Npn \thmnumber ##1 {number-format={{\exp_not:n{##1}}},}
2133 \cs_set:Npn \thmnote ##1 {note-format={{\exp_not:n{##1}}},}
2134 \cs_set:Npn __block_tmp:w ##1##2##3 {
2135 \exp_args:Nnne \EditInstance{thmstyle}{#1}{#9}}
2136 __block_tmp:w {##1} {##1} {##1}

We then also use the commands to deduce a suitable order and put that into the instance
as well.
2137 \cs_set:Npn \thmname ##1 {title,}
2138 \cs_set:Npn \thmnumber ##1 {number,}

91

2139 \cs_set:Npn \thmnote ##1 {punct,note}
2140 \cs_set:Npn __block_tmp:w##1##2##3 {
2141 \exp_args:Nnne \EditInstance{thmstyle}{#1}{order={#9}}}
2142 __block_tmp:w {##1} {##1} {##1}
2143 }

If block tracing is turned on we show the final result:
2144 __block_debug:n { \ShowInstanceValues{thmstyle}{#1} }
2145 }

(End of definition for \newtheoremstyle. This function is documented on page 38.)

10.2.2 Supporting QED in proofs

The amsthm package contains some elaborate code to support placing a QED symbol
into the proof (by default at the end, but alternatively manually placed with \qedhere).
This code is simply lifted and not adjusted in any way for now (and therefore also not
documented—see the amsthm package for documentation for now).
2146 \ExplSyntaxOff
2147 \def\math@qedhere{%
2148 \@ifundefined{\@currenvir @qed}{%
2149 \qed@warning\quad\hbox{\qedsymbol}%
2150 }{%
2151 \@xp\aftergroup\csname\@currenvir @qed\endcsname
2152 }%
2153 }
2154 \def\displaymath@qed{%
2155 \relax
2156 \ifmmode
2157 \ifinner \aftergroup\linebox@qed
2158 \else
2159 \eqno
2160 \let\eqno\relax \let\leqno\relax \let\veqno\relax
2161 \hbox{\qedsymbol}%
2162 \fi
2163 \else
2164 \aftergroup\linebox@qed
2165 \fi
2166 }
2167 \expandafter\let\csname equation*@qed\endcsname\displaymath@qed
2168 \def\equation@qed{%
2169 \iftagsleft@
2170 \hbox{}%
2171 \gdef\alt@tag{%
2172 \rlap{\hbox to\displaywidth{\hfil\qedsymbol}}%
2173 \global\let\alt@tag\@empty
2174 }%
2175 \else
2176 \gdef\alt@tag{%
2177 \global\let\alt@tag\@empty
2178 \vtop{\ialign{\hfil####\cr
2179 \tagform@\theequation\cr
2180 \qedsymbol\cr}}%
2181 \setbox\z@
2182 }%

92

2183 \fi
2184 }
2185 \def\qed@tag{%
2186 \global\tag@true \nonumber
2187 &\omit\setboxz@h {\strut@ \qedsymbol}\tagsleft@false
2188 \place@tag@gather
2189 \kern-\tabskip
2190 \ifst@rred \else \global\@eqnswtrue \fi \global\advance\row@\@ne \cr
2191 }
2192 \def\split@qed{%
2193 \def\endsplit{\crcr\egroup \egroup \ctagsplit@false \rendsplit@
2194 \aftergroup\align@qed
2195 }%
2196 }
2197 \def\align@qed{%
2198 \ifmeasuring@ \tag*{\qedsymbol}%
2199 \else \let\math@cr__block@\qed@tag
2200 \fi
2201 }
2202 \expandafter\let\csname align*@qed\endcsname\align@qed
2203 \expandafter\let\csname gather*@qed\endcsname\align@qed
2204 %
2205 \def\math@qedhere{\quad\hbox{\qedsymbol}}%
2206 %
2207 \DeclareRobustCommand{\qed}{%
2208 \ifmmode \mathqed
2209 \else
2210 \leavevmode\unskip\penalty9999 \hbox{}\nobreak\hfill
2211 \quad\hbox{\qedsymbol}%
2212 \fi
2213 }%
2214 \let\QED@stack\@empty
2215 \let\qed@elt\relax
2216 \newcommand{\pushQED}[1]{%
2217 \toks@{\qed@elt{#1}}\@temptokena\expandafter{\QED@stack}%
2218 \xdef\QED@stack{\the\toks@\the\@temptokena}%
2219 }%
2220 \newcommand{\popQED}{%
2221 \begingroup\let\qed@elt\popQED@elt \QED@stack\relax\relax\endgroup
2222 }%
2223 \def\popQED@elt#1#2\relax{#1\gdef\QED@stack{#2}}%
2224 \newcommand{\qedhere}{%
2225 \begingroup \let\mathqed\math@qedhere
2226 \let\qed@elt\setQED@elt \QED@stack\relax\relax \endgroup
2227 }%
2228 \def\setQED@elt#1#2\relax{%
2229 \ifmeasuring@
2230 \else \iffirstchoice@ \gdef\QED@stack{\qed@elt{}#2}\fi
2231 \fi
2232 #1%
2233 }%
2234 \def\qed@warning{%
2235 \PackageWarning{amsthm}{The \@nx\qedhere command may not work
2236 correctly here}%

93

2237 }%
2238 \newcommand{\mathqed}{\quad\hbox{\qedsymbol}}%
2239 \DeclareRobustCommand{\qed}{%
2240 \ifmmode \mathqed
2241 \else
2242 \leavevmode\unskip\penalty9999 \hbox{}\nobreak\hfill
2243 \quad\hbox{\qedsymbol}%
2244 \fi
2245 }
2246 \newcommand{\openbox}{\leavevmode
2247 \hbox to.77778em{%
2248 \hfil\vrule
2249 \vbox to.675em{\hrule width.6em\vfil\hrule}%
2250 \vrule\hfil}}
2251 \providecommand{\qedsymbol}{\openbox}
2252 \ExplSyntaxOn

11 Support for other packages and classes
11.1 Replacement for alltt
The tools package alltt by Leslie Lamport has been completely implemented using the
template approach and is therefore no longer necessary. In fact it has also been extended
by providing alltt*.
2253 \declare@file@substitution{alltt.sty}{null.tex}

11.2 Replacement for amsthm
The amsthm package is basically supported out of the box (though there are currently
still a few limitation with \newtheoremstyle and perhaps also in other places). So this
here is a bit premature, but for now we disable loading amsthm and wait to see how far
this gets us. We may have to provide a bit more for better compatibility.
2254 \declare@file@substitution{amsthm.sty}{null.tex}

11.3 Support for amsart and amsbook classes
Unfortunately, the amsart class contains a full implementation of amsthm inside the class
(why ever) and they use \newcommand, sigh.

Thus, to make the new code work with this class we have to hide some definitions,
load the class and only afterwards restore our own versions.

So first save some of the problematical definitions under some other names:
2255 \let \amsnewtheorem \newtheorem
2256 \let \amsnewtheoremstyle \newtheoremstyle
2257 \let \amstheoremstyle \theoremstyle
2258 \let \amsproof \proof
2259 \let \amsendproof \endproof

Then undefine them just before the class gets loaded (quite a handful):
2260 \AddToHook{class/amsart/before}[block]{
2261 \let \newtheoremstyle \relax
2262 \let \theoremstyle \relax

94

2263 \let \proof \relax
2264 \let \endproof \relax

2265 \let \pushQED \relax
2266 \let \popQED \relax
2267 \let \qedhere \relax
2268 \let \mathqed \relax
2269 \let \openbox \relax
2270 }

Same for amsbook and amsproc:
2271 \AddToHook{class/amsbook/before}[block]{
2272 \let \newtheoremstyle \relax
2273 \let \theoremstyle \relax
2274 \let \proof \relax
2275 \let \endproof \relax
2276 \let \pushQED \relax
2277 \let \popQED \relax
2278 \let \qedhere \relax
2279 \let \mathqed \relax
2280 \let \openbox \relax
2281 }

2282 \AddToHook{class/amsproc/before}[block]{
2283 \let \newtheoremstyle \relax
2284 \let \theoremstyle \relax
2285 \let \proof \relax
2286 \let \endproof \relax
2287 \let \pushQED \relax
2288 \let \popQED \relax
2289 \let \qedhere \relax
2290 \let \mathqed \relax
2291 \let \openbox \relax
2292 }

And once the class is loaded restore our versions again. Note that we don’t have to
restored all the QED-related commands as ours are identical to those defined by the
AMS.
2293 \AddToHook{class/amsart/after}[block]{
2294 \let \newtheorem \amsnewtheorem
2295 \let \newtheoremstyle \amsnewtheoremstyle
2296 \let \theoremstyle \amstheoremstyle
2297 \let \proof \amsproof
2298 \let \endproof \amsendproof
2299 }

2300 \AddToHook{class/amsbook/after}[block]{
2301 \let \newtheorem \amsnewtheorem
2302 \let \newtheoremstyle \amsnewtheoremstyle
2303 \let \theoremstyle \amstheoremstyle
2304 \let \proof \amsproof
2305 \let \endproof \amsendproof
2306 }

2307 \AddToHook{class/amsproc/after}[block]{
2308 \let \newtheorem \amsnewtheorem
2309 \let \newtheoremstyle \amsnewtheoremstyle

95

2310 \let \theoremstyle \amstheoremstyle
2311 \let \proof \amsproof
2312 \let \endproof \amsendproof
2313 }

11.4 Support for the enumitem interfaces
The current implementation incorporates most features of enumitem. The plan is that
the enumitem interfaces are either natively available or are emulated and mapped to new
interfaces, so that documents using enumitem work seamlessly.

Most (or even all of the enumitem keys have gotten new names, so there the task is
to map old names to new names. One question to decide here is which (if any) of the
original keys should remain natively available even if enumitem is not loaded, and which
should only be supported if the document explicitly loads enumitem, i.e., support them
only for compatibility with old documents. Providing the full set by default means one
ends up with a fairly inconsistent interface, but not providing some of them may result
in people unnecessarily loading enumitem in new documents just to get at, say, nosep.decide

The enumitem package also provides declarations to build out new lists and ad­
just the layout of existing list using commands like \newlist or \setlist. With the
new implementation this is normally done differently, e.g., defining instances and simple
document level commands via \SimpleBlockEnv, etc. However, we probably also want a
declaration such as \newlist (same name?) to provide a simple way to make this happen
in the document preamble in one go.

I’m less sure about \setlist at least as far as its optional argument is concerned
(even though we have to support it in an emulation.decide

We put the code that emulates enumitem in a separate file to be loaded instead of
the original package, but eventually some of the code from there has to move back to the
kernel to be always present.
2314 %\declare@file@substitution{enumitem.sty}{latex-lab-enumitem.sty}

But for now we simply disable enumitem loading and unconditionally load our replacement
into the kernel for ease of testing. In the end we have to decide which parts of the interface
(if any) we provide out of the box and which parts are only available if the document
requests enumitem.
2315 \declare@file@substitution{enumitem.sty}{null}
2316 \RequirePackage{latex-lab-enumitem}

11.5 Support for the doc package
When the doc package is loaded it wants to remove a % sign from the start of each verbatim
line. For this it uses \check@percent which we stick into the verbatim/startline
socket.

doc (plug)
2317 \NewSocketPlug {verbatim/startline}{doc}{ \check@percent }
2318 \AddToHook{package/doc/after}{
2319 \AssignSocketPlug{verbatim/startline}{doc}
2320 }

2321 ⟨/package-finish⟩

96

2322 ⟨∗latex-lab⟩
2323 \ProvidesFile{block-latex-lab-testphase.ltx}
2324 [\ltlabblockdate\space v\ltlabblockversion\space
2325 blockenv implementation]
2326 \RequirePackage{latex-lab-testphase-block}
2327 ⟨/latex-lab⟩

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
\' . 1949, 1951
@@ commands:
 \l_@@_legacy_env_params_tl 328
\\ 985, 1241, 1242, 1953
\{ . 1954
\} . 1955
\␣ . 369, 764, 1697

A
\addpenalty 961, 1119, 1123, 1469
\AddToHook 50, 94, 138, 155, 237, 325, 337,

612, 1394, 1427, 1725, 1727, 2260,
2271, 2282, 2293, 2300, 2307, 2318

\AddToHookWithArguments 645, 647, 649, 651
\addvspace . . . 962, 1120, 1124, 1126, 1470
\advance . 2190
\aftergroup . . 613, 2151, 2157, 2164, 2194
alltt (env.) . 160
alltt* (env.) . 160
\amsendproof 2259, 2298, 2305, 2312
\amsnewtheorem 2255, 2294, 2301, 2308
\amsnewtheoremstyle 2256, 2295, 2302, 2309
\amsproof 2258, 2297, 2304, 2311
\amstheoremstyle . . 2257, 2296, 2303, 2310
\arabic . 730
\AssignSocketPlug 2319
\AssignStructureRole 1929
\AssignTaggingSocketPlug

. . . 608, 1392, 1576, 1724, 1746, 1856

B
\begin 38, 77, 1773
\begingroup 1782, 2221, 2225
\bfseries 322, 374
block (type) . 662
block commands:
 \block_debug_off: . . 36, 623, 628, 642
 \block_debug_on: . . . 36, 623, 623, 641

 \g_block_nesting_depth_int
. 37, 873, 877, 881, 891, 918, 926, 938

block internal commands:
 __block_beginpar_hmode:N

. 1690, 1690, 1859, 1881, 1895
 __block_beginpar_vmode:

. 1675, 1675, 1861, 1883, 1897
 \l__block_block_instance_tl

. 842, 890, 968
 \l__block_body_decls_tl

. 1510, 1566, 1638, 1672
 \l__block_botsep_skip 1029
 \l__block_caption_after_skip . . .

. 1503, 1549, 1634, 1655
 \l__block_caption_before_skip . .

. 1502, 1543, 1633, 1652
 \l__block_caption_decls_tl

. 1505, 1540, 1635, 1649
 __block_captioned_everypar_std:

. 1049, 1130, 1130, 1565, 1671
 \g__block_collected_spaces_tl . .

. 73, 1610
 __block_counter_label:n . 1250, 1296
 __block_counter_ref:n 1251
 \l__block_counter_start_int

. 1179, 1213, 1216, 1225
 \l__block_counter_tl . 1177, 1211,

1221, 1476, 1524, 1530, 1531, 1598
 __block_debug:n . 621, 621, 635, 2144
 \g__block_debug_bool

. 42, 620, 625, 630, 636, 638
 __block_debug_gset: 623, 626, 631, 633
 __block_debug_typeout:n

. 591, 600, 621, 622, 637,
936, 951, 970, 1048, 1131, 1150,
1155, 1159, 1163, 1233, 1235, 1299,
1345, 1397, 1416, 1421, 1564, 1567,
1670, 1673, 1676, 1694, 1715, 1795,
1799, 1832, 1842, 2031, 2032, 2091

 __block_do_note: 1585, 1585

97

 __block_do_number: 1593, 1593
 __block_do_punct: 75, 1603, 1603, 1654
 __block_do_space: 1610, 1610
 __block_do_title: 75, 1577, 1577, 1653
 __block_drop_spaces: 74,

75, 1579, 1587, 1601, 1604, 1610, 1617
 \l__block_effective_top_skip . . 1425
 \l__block_env_name_tl

. 836, 1205, 1301, 1519
 __block_evaluate_saved_user_­

keys:nn 59, 60, 63, 1168,
1168, 1171, 1172, 1194, 1197, 1279

 __block_everypar 58
 __block_everypar:

 61, 65–67, 1049, 1151, 1234, 1346,
1393, 1393, 1394, 1417, 1565, 1671

 \l__block_final_code_tl . 51, 849, 919
 __block_if_list:TF 944, 949, 967, 967
 __block_inner_begin:

. 1791, 1791, 1871, 1884
 __block_inner_end:

. 1794, 1794, 1872, 1885
 \l__block_inner_instance_tl

. 848, 898, 902
 \l__block_inner_instance_type_tl

. 847, 901
 \l__block_inner_level_counter_tl

. 845, 866, 868, 871, 903, 905
 __block_insert_spaces:

. . . . 73, 1581, 1589, 1596, 1610, 1613
 \l__block_instance_keys_tl

. 90, 2096, 2098, 2101
 __block_inter_item:

. 68, 1442, 1462, 1462
 \l__block_item_align_tl

. . 1261, 1262, 1263, 1318, 1322, 1350
 \l__block_item_compatibility_­

bool 1259, 1290
 __block_item_everypar_first: . .

. 1234, 1393, 1420
 __block_item_everypar_std:

. 1346, 1393, 1396
 __block_item_instance:n

. 68, 1181, 1431, 1444, 1445
 \l__block_item_label_tl

. 1178, 1228, 1230
 \l__block_item_parsep_skip . . . 1342
 __block_label_autoref:n 1253
 \l__block_label_boxed_bool 1256, 1307
 __block_label_format:n

. 65, 1254, 1354, 1360
 \l__block_label_given_tl

. 63, 1247, 1278, 1287, 1302
 __block_label_ref:n 1252

 \g__block_label_standalone_bool
. 68, 1267, 1269, 1271, 1348,
1446, 1448, 1495, 1497, 1499, 1552,
1554, 1626, 1628, 1630, 1658, 1660

 g__block_label_standalone_bool 1348
 \l__block_label_strut_bool 1255, 1362
 \g__block_label_unchained_bool .

. . . . 1046, 1268, 1270, 1272, 1349,
1496, 1498, 1500, 1627, 1629, 1631

 g__block_label_unchained_bool . 1348
 \g__block_labels_box 58,

63, 65, 71, 74, 1052, 1100, 1103,
1138, 1331, 1333, 1351, 1405, 1450,
1536, 1538, 1556, 1645, 1647, 1662

 \l__block_legacy_code_tl 49, 841, 888
 \l__block_legacy_env_params_tl .

. 85, 1976, 1985
 \l__block_legacy_support_bool . .

. 1188, 1363
 __block_list_begin: 1818, 1818, 1898
 __block_list_end: . 1836, 1836, 1899
 __block_list_item_begin:

. 1825, 1825, 1900
 __block_list_item_end:

. 1828, 1828, 1901
 \l__block_long_label_bool

. 1329, 1330, 1338, 1353
 __block_make_label_box:n

. . . . 63, 1293, 1295, 1300, 1354, 1354
 \l__block_max_inner_levels_tl . .

. 846, 869
 \l__block_next_line_bool . 1257, 1337
 __block_note_format:n . . . 1509, 1590
 \l__block_note_tl

 90, 1527, 1586, 1590, 2086, 2094, 2103
 __block_number_format:n . 1507, 1597
 \l__block_numbered_bool

. 1491, 1526, 1528, 1594
 \l__block_one_label_box

. 65, 1310, 1314, 1316, 1320, 1321,
1325, 1326, 1328, 1335, 1351, 1356

 \l__block_order_clist
. 71, 1504, 1544, 2064, 2070

 \l__block_para_instance_tl
. 843, 894, 896

 \l__block_parbotsep_skip 1030
 \l__block_parindent_dim . . 1037, 1089
 __block_punct_format:n

. 1508, 1607, 1637
 \l__block_punct_tl

. 1493, 1605, 1607, 1624
 __block_recipe_basic: . . . 1857, 1857
 __block_recipe_list: 1892, 1892

98

 __block_recipe_standalone:
. 1866, 1866

 __block_recipe_standard: 1878, 1878
 \l__block_resume_bool 1180, 1222
 __block_save_user_keys:n 1169
 __block_skip_remove_last:

. 615, 618, 946, 1068, 1465, 1466
 __block_skip_set_to_last:N

. 615, 615, 955, 1108
 \l__block_space_tl . . . 73, 1492, 1611
 \l__block_swap_number_bool

. 90, 2056, 2058, 2107, 2108
 \l__block_tag_class_tl 838, 1906, 1908
 \l__block_tag_inner_tag_tl

. . 1792, 1875, 1876, 1888, 1889, 1891
 \l__block_tag_name_tl

 837, 1874, 1876, 1887, 1889, 1903, 1905
 \l__block_tagging_recipe_tl 839, 884
 \l__block_text_font_tl 1258
 \l__block_thmstyle_tl

. 88, 1486, 2025,
2027, 2030, 2031, 2032, 2045, 2046,
2055, 2059, 2062, 2063, 2066, 2079

 __block_title_format:n
. 1506, 1582, 1636

 \l__block_title_tl
. . . . 70, 1477, 1578, 1582, 1623, 1644

 __block_tmp:w . 2134, 2136, 2140, 2142
 \l__block_tmp_clist

. 89, 2069, 2072, 2080
 \l__block_tmpa_skip

. 1108, 1109, 1110, 1424
 \l__block_topsepadd_skip

. 53, 962, 1061, 1064, 1124, 1425
 \l__block_transparent_level_bool

. 840, 878, 917, 937
 \l__block_unchained_skip . 1027, 1056
 \l__block_unused_blockenv_keys_­

tl 50, 893, 907, 911, 913, 928
block proof-1 (instance) 447
block proof-2 (instance) 447
block quotation-1 (instance) 131
block quotation-2 (instance) 131
block quotation-3 (instance) 131
block quotation-4 (instance) 131
block quotation-5 (instance) 131
block quotation-6 (instance) 131
block quote-1 (instance) 124
block quote-2 (instance) 124
block quote-3 (instance) 124
block quote-4 (instance) 124
block quote-5 (instance) 124
block quote-6 (instance) 124
block std (template) 686, 1023

block std-display-1 (instance) 31
block std-display-2 (instance) 31
block std-display-3 (instance) 31
block std-display-4 (instance) 31
block std-display-5 (instance) 31
block std-display-6 (instance) 31
block std-list-1 (instance) 287
block std-list-2 (instance) 287
block std-list-3 (instance) 287
block std-list-4 (instance) 287
block std-list-5 (instance) 287
block std-list-6 (instance) 287
block thm-legacy2e-1 (instance) 411
block thm-legacy2e-2 (instance) 411
block thm-plain-1 (instance) 394
block thm-plain-2 (instance) 394
block thm-remark-1 (instance) 402
block thm-remark-2 (instance) 402
block verbatim-1 (instance) 227
block verbatim-2 (instance) 227
block verbatim-3 (instance) 227
block verbatim-4 (instance) 227
block verbatim-5 (instance) 227
block verbatim-6 (instance) 227
block/endpe (socket) 972
block/list/label (socket) 1371
\BlockEnv . 15
\BlockEnv 15, 37, 87, 922, 2100
blockenv (hook) 921
blockenv (type) 662
blockenv alltt (instance) 197
blockenv alltt* (instance) 212
blockenv center (instance) 58
blockenv description (instance) 274
blockenv displayblock (instance) 6
blockenv displayblockflattened (in­

stance) . 23
blockenv enumerate (instance) 260
blockenv flushleft (instance) 72
blockenv flushright (instance) 90
blockenv itemize (instance) 245
blockenv list (instance) 348
blockenv proof (instance) 422
blockenv quotation (instance) 100
blockenv quote (instance) 112
blockenv std (template) 669, 834
blockenv verbatim (instance) 165
blockenv verbatim* (instance) 181
blockenv verse (instance) 142
\BlockEnvEnd . 15
\BlockEnvEnd . . 15, 37, 3, 5, 52, 54, 56,

96, 98, 140, 157, 159, 161, 163, 239,
241, 243, 335, 346, 421, 935, 2021, 2024

\BockEnvEnd . 51

99

bool commands:
 \bool_gset_false:N . . . 630, 1267,

1268, 1269, 1272, 1448, 1495, 1496,
1497, 1500, 1626, 1627, 1628, 1631

 \bool_gset_true:N 625, 1270, 1271,
1498, 1499, 1554, 1629, 1630, 1660

 \bool_if:NTF 587, 592,
596, 636, 638, 861, 878, 917, 937,
1046, 1222, 1290, 1337, 1338, 1362,
1363, 1446, 1528, 1552, 1594, 1658,
1695, 1709, 1736, 1738, 2056, 2058

 \bool_if:nTF 1305
 \bool_lazy_and:nnTF 1786
 \bool_lazy_or:nnTF 1523, 1937
 \bool_new:N 620, 1348, 1349, 1353, 2107
 \bool_set_false:N 1330, 1526
 \bool_set_inverse:N 2108
 \bool_set_true:N 1329
\BooleanFalse 14, 925, 2020
\BooleanTrue 14, 87, 420, 908, 2023
box commands:
 \box_if_empty:NTF 1403
 \box_new:N 1351, 1352
 \box_use_drop:N

. 1004, 1138, 1321, 1326,
1405, 1450, 1538, 1556, 1647, 1662

 \box_wd:N 1310, 1314, 1328
\break . 1338

C
captionedtext (type) 662
captionedtext proof (instance) 436
captionedtext proof (template) . 749, 1621
captionedtext thmlike (template) 743, 1474
\catcode 1949, 1951
center (env.) . 50
\centering . 506
clist commands:
 \clist_clear:N 2069
 \clist_map_inline:Nn 1544, 2070
 \clist_put_right:Nn 2072
 \clist_set:Nn 2064
\clubpenalty 58, 567, 1146, 1149, 1412, 1415
color commands:
 \color_select:n 1697
\cr 2178, 2179, 2180, 2190
\crcr . 2193
cs commands:
 \cs_generate_variant:Nn 619
 \cs_gset_protected:Npx 635, 637
 \cs_if_free:NTF 1431
 \cs_new:Npn 967, 1169
 \cs_new_eq:NN

 618, 621, 622, 1168, 1393, 1472, 1473

 \cs_new_protected:Npn
. 558, 615, 623, 628,
633, 641, 642, 644, 654, 922, 924,
926, 935, 969, 1130, 1154, 1158,
1162, 1354, 1396, 1420, 1462, 1486,
1577, 1585, 1593, 1603, 1610, 1613,
1617, 1785, 1791, 1794, 1836, 1857,
1866, 1878, 1892, 1969, 2089, 2108

 \cs_set:Npe 60, 1172, 1197
 \cs_set:Npn 996, 1006, 1675,

1690, 1818, 1825, 1828, 2131, 2132,
2133, 2134, 2137, 2138, 2139, 2140

 \cs_set_eq:NN
. . . . 343, 1049, 1151, 1171, 1194,
1234, 1346, 1417, 1565, 1671, 1770,
1771, 1772, 1858, 1860, 1867, 1869,
1871, 1872, 1880, 1882, 1884, 1885,
1894, 1896, 1898, 1899, 1900, 1901

 \cs_set_protected:Npn
. 531, 548, 1747, 2109

\csname . 1780,
1987, 2005, 2151, 2167, 2202, 2203

D
\DebugBlocksOff 36, 39, 641
\DebugBlocksOn 36, 641
\DebugLegacySwitchesOn 43
\DebugSwitchesOff 644
\DebugSwitchesOn 644
\DebugTemplatesOff 36
\DebugTemplatesOn 36
\DeclareDocumentEnvironment

. 18, 95, 97, 139, 242
\DeclareHookRule 1395
\DeclareInstance 6, 23, 31, 58, 72, 100,

112, 124, 131, 142, 165, 181, 197,
212, 227, 245, 260, 274, 287, 305,
306, 307, 308, 309, 311, 313, 315,
317, 318, 320, 348, 361, 365, 394,
402, 411, 422, 436, 447, 455, 466,
477, 488, 511, 2034, 2051, 2110, 2120

\DeclareInstanceCopy
. 45, 46, 47, 48, 49, 86, 90,
126, 127, 128, 129, 130, 133, 134,
135, 136, 137, 232, 233, 234, 235,
236, 300, 301, 302, 303, 304, 381,
387, 392, 401, 410, 417, 454, 2061, 2127

\DeclareRobustCommand
. 506, 507, 508, 509, 2207, 2239

\DeclareTemplateCode 834,
976, 1023, 1175, 1248, 1474, 1489, 1621

\DeclareTemplateInterface
 669, 686, 702, 714, 728, 743, 749, 761

100

\def 559, 560,
610, 611, 1728, 1773, 1776, 1777,
1913, 1916, 1942, 1946, 1959, 1960,
1961, 2147, 2154, 2168, 2185, 2192,
2193, 2197, 2205, 2223, 2228, 2234

default (plug) . 585, 1371, 1707, 1733, 1852
description (env.) 237
\detokenize 970, 1156, 1160, 1164
dim commands:
 \dim_add:Nn 1090, 1091
 \dim_compare:nNnTF

. 956, 1313, 1328, 1343
 \dim_compare_p:n 1309
 \dim_set_eq:NN 1089, 1344
 \dim_zero:N . 341, 342, 1970, 1971, 1972
 \c_zero_dim 956, 1756
displayblock (env.) 2
displayblockflattened (env.) 2
\displaywidth 2172
\do 1925, 1963, 1964
doc (plug) . 2317
\dospecials .

. 84, 85, 1925, 1952, 1957, 1964, 1965
dospecials commands:
 \dospecials: 85

E
\edef . 1778
\EditInstance 87,

91, 382, 388, 393, 2079, 2135, 2141
\egroup . 2193
\else 1919, 1962, 2158, 2163,

2175, 2190, 2199, 2209, 2230, 2241
else commands:
 \else: 1000, 1014
\end . 947
\endcsname 1780,

1987, 2005, 2151, 2167, 2202, 2203
\endgraf . 1772
\endgroup 2221, 2226
\endproof 2259,

2264, 2275, 2286, 2298, 2305, 2312
\endsplit . 2193
\endtrivlist 809
enumerate (env.) 237
environments:
 alltt . 160
 alltt* . 160
 center . 50
 description 237
 displayblock 2
 displayblockflattened 2
 enumerate 237
 flushleft . 50

 flushright 50
 itemize . 237
 list . 325
 proof . 418
 quotation . 94
 quote . 94
 trivlist . 337
 verbatim . 155
 verbatim* 155
 verse . 138
\eqno . 2159, 2160
\everydisplay 1950
\everymath . 1948
\everypar 40, 54,

55, 58, 570, 573, 574, 799, 1018, 1927
exp commands:
 \exp_after:wN 1041,

1192, 1318, 1322, 1482, 1514, 1642
 \exp_args:Ne 896
 \exp_args:Nee 889, 900
 \exp_args:Nnne 2135, 2141
 \exp_not:N 2100
 \exp_not:n 60,

853, 990, 1041, 1173, 1192, 1199,
1201, 1277, 1482, 1514, 1642, 2092,
2101, 2103, 2129, 2131, 2132, 2133

\expandafter 1927, 1948, 1950,
1987, 2005, 2167, 2202, 2203, 2217

\ExplSyntaxOff 1945, 2146
\ExplSyntaxOn 530, 1967, 2252

F
\fi 565, 578, 613, 1744,

1921, 1922, 1963, 2162, 2165, 2183,
2190, 2200, 2212, 2230, 2231, 2244

fi commands:
 \fi: 1003, 1017, 1757
\finalhyphendemerits 984
flushleft (env.) 50
flushright (env.) 50
\frenchspacing 1928

G
\gdef 2171, 2176, 2223, 2230
\global . . . 610, 611, 2173, 2177, 2186, 2190
group commands:
 \group_begin: 1545, 1653, 1654
 \group_end: 1547, 1653, 1654

H
\hbox 2149, 2161, 2170, 2172, 2205,

2210, 2211, 2238, 2242, 2243, 2247
hbox commands:
 \hbox_gset:Nn . . 1100, 1331, 1536, 1645

101

 \hbox_set:Nn 1325, 1356
 \hbox_set_to_wd:Nnn 1316
 \hbox_unpack_drop:N

. 1052, 1103, 1320, 1333, 1335
\hfil 1338, 2172, 2178, 2248, 2250
\hfill . 2210, 2242
hook commands:
 \hook_use:n 1752, 1759
Hooks:
 blockenv . 921
 para/begin 65, 66
\hrule . 2249
\hss 1261, 1262, 1263

I
\ialign . 2178
if commands:
 \if_int_compare:w 1755
 \if_meaning:w 998, 1012
\IfBooleanF 1989, 2053
\IfBooleanT 2091
\iffalse . 610
\ifhmode . 1921
\ifinner . 2157
\IfInstanceExistsF 2025, 2059
\IfInstanceExistsTF 2030, 2044
\ifmmode 2156, 2208, 2240
\IfNoValueF 1644
\IfNoValueTF 1991, 1994, 2095
\iftrue . 611
\IfValueT . 2092
\ifvmode . 1735
\ifx . 1962
\ignorespaces 21, 684, 1458
\indent 1464, 1522
instances:
 block proof-1 447
 block proof-2 447
 block quotation-1 131
 block quotation-2 131
 block quotation-3 131
 block quotation-4 131
 block quotation-5 131
 block quotation-6 131
 block quote-1 124
 block quote-2 124
 block quote-3 124
 block quote-4 124
 block quote-5 124
 block quote-6 124
 block std-display-1 31
 block std-display-2 31
 block std-display-3 31
 block std-display-4 31

 block std-display-5 31
 block std-display-6 31
 block std-list-1 287
 block std-list-2 287
 block std-list-3 287
 block std-list-4 287
 block std-list-5 287
 block std-list-6 287
 block thm-legacy2e-1 411
 block thm-legacy2e-2 411
 block thm-plain-1 394
 block thm-plain-2 394
 block thm-remark-1 402
 block thm-remark-2 402
 block verbatim-1 227
 block verbatim-2 227
 block verbatim-3 227
 block verbatim-4 227
 block verbatim-5 227
 block verbatim-6 227
 blockenv alltt 197
 blockenv alltt* 212
 blockenv center 58
 blockenv description 274
 blockenv displayblock 6
 blockenv displayblockflattened . . 23
 blockenv enumerate 260
 blockenv flushleft 72
 blockenv flushright 90
 blockenv itemize 245
 blockenv list 348
 blockenv proof 422
 blockenv quotation 100
 blockenv quote 112
 blockenv verbatim 165
 blockenv verbatim* 181
 blockenv verse 142
 captionedtext proof 436
 item basic 318
 item description 318
 list description 317
 list enumerate-1 309
 list enumerate-2 309
 list enumerate-3 309
 list enumerate-4 309
 list itemize-1 305
 list itemize-2 305
 list itemize-3 305
 list itemize-4 305
 list legacy 361
 para center 466
 para justify 455
 para raggedleft 488
 para raggedright 477

102

 para verse 511
 thmstyle definition 387
 thmstyle legacy2e 392
 thmstyle plain 365
 thmstyle remark 381
\InstanceValue 2065
int commands:
 \int_compare:nNnTF

. 856, 868, 873, 1080, 1213, 1683
 \int_gdecr:N 918, 938
 \int_gincr:N 877
 \int_gset:Nn 1215, 1224
 \int_if_exist:NTF 929
 \int_incr:N 858, 863, 871, 1079
 \int_new:N 931
 \int_set:Nn 1146, 1412
 \int_set_eq:NN 1149, 1415
 \int_to_roman:n 881
 \int_use:N 890, 905, 1697
 \int_zero:N 1074
 \c_zero_int 1141, 1407
\interlinepenalty 1918, 1921
iow commands:
 \iow_term:n 639
item (type) . 662
\item . 10,

38, 60, 63, 70, 1284, 1375, 1427, 1464
item basic (instance) 318
item description (instance) 318
item std (template) 728, 1246
\itemindent . . 723, 1185, 1334, 1403, 1972
itemize (env.) 237
\itemsep 38, 293, 694, 721, 1031, 1182, 1470
\itshape 379, 384, 442

J
\justifying . 506

K
\kern . 1403, 2189
kernel (plug) 1570
kernel internal commands:
 __kernel_displayblock_begin: . .

. 79, 81, 1093,
1154, 1154, 1862, 1871, 1884, 1898

 __kernel_displayblock_beginpar_­
hmode:w 76, 1069,
1154, 1158, 1858, 1867, 1880, 1894

 __kernel_displayblock_beginpar_­
vmode: 75, 1065,
1154, 1162, 1860, 1869, 1882, 1896

 __kernel_displayblock_end:
. 79–81,
948, 969, 969, 1863, 1872, 1885, 1899

 __kernel_list_item_begin:
. . . . 80, 1439, 1468, 1472, 1472, 1900

 __kernel_list_item_end:
. 80, 1467, 1472, 1473, 1901

 __kernel_list_label_after:n . . .
. 1139, 1406, 1785, 1785

keys commands:
 \keys_define:nn 62, 1246, 2085
 \keys_set:nn 554
 \keys_set_groups:nnnN 2097
 \keys_set_known:nnN 543
\KeyValue . 36,

37, 125, 132, 291, 292, 692, 693, 731

L
l internal commands:
 \l__block_style:nnnn 1478, 1484
\labelenumi . 310
\labelenumii 312
\labelenumiii 314
\labelenumiv 316
\labelitemi . 305
\labelitemii 306
\labelitemiii 307
\labelitemiv 308
\labelsep 725, 1187, 1334, 1336
\labelwidth .

 342, 724, 1186, 1314, 1316, 1328, 1334
\language . 1914
\lastbox . 573
\leavemode . 793
\leavevmode . 1449, 1918, 2210, 2242, 2246
\leftmargin 296,

341, 698, 1036, 1090, 1091, 1102, 1104
\leftskip 980, 1071
legacy commands:
 \legacy_if:nTF 589, 939, 944,

952, 953, 1043, 1050, 1077, 1097,
1106, 1116, 1117, 1134, 1143, 1400,
1409, 1422, 1437, 1463, 1522, 1677,
1678, 1796, 1829, 1837, 1839, 1977

 \legacy_if_gset_false:n
. . 942, 949, 950, 1053, 1133, 1136,
1145, 1399, 1402, 1411, 1440, 1680

 \legacy_if_gset_true:n
. . 53, 963, 1057, 1232, 1452, 1456,
1560, 1561, 1563, 1666, 1667, 1669

 \legacy_if_set_false:n
. 887, 1115, 1132, 1398, 1974

 \legacy_if_set_true:n 1099
\legacyallttsetup 37, 210, 225, 1944
\legacylistsetup . . . 26, 37, 86, 355, 1969
\legacyverbatimsetup

. . . . 37, 84, 85, 178, 194, 1911, 1956

103

\leqno . 2160
\let . 610, 611, 1862, 1863, 1925, 1947,

1949, 1951, 1952, 1957, 1964, 1965,
1975, 2160, 2167, 2173, 2177, 2199,
2202, 2203, 2214, 2215, 2221, 2225,
2226, 2255, 2256, 2257, 2258, 2259,
2261, 2262, 2263, 2264, 2265, 2266,
2267, 2268, 2269, 2272, 2273, 2274,
2275, 2276, 2277, 2278, 2279, 2280,
2283, 2284, 2285, 2286, 2287, 2288,
2289, 2290, 2291, 2294, 2295, 2296,
2297, 2298, 2301, 2302, 2303, 2304,
2305, 2308, 2309, 2310, 2311, 2312

\linewidth 1090, 1092, 1308, 1310
list (env.) . 325
list (type) . 662
\list . 339
list description (instance) 317
list enumerate-1 (instance) 309
list enumerate-2 (instance) 309
list enumerate-3 (instance) 309
list enumerate-4 (instance) 309
list itemize-1 (instance) 305
list itemize-2 (instance) 305
list itemize-3 (instance) 305
list itemize-4 (instance) 305
list legacy (instance) 361
list std (template) 714, 1175
\listparindent 7, 1343, 1344, 1970
\ltlabblockdate 526, 2324
\ltlabblockversion 526, 2324

M
\makelabel 343, 1364, 1975
\MakeLinkTarget 1293, 1295, 1301, 1531, 1534
math internal commands:
 __math_tag_dollardollar_­

display_end: 40
math@cr internal commands:
 \math@cr__block@ 2199
\mathqed 2208,

2225, 2238, 2240, 2268, 2279, 2290
mode commands:
 \mode_if_horizontal:TF

. 945, 1465, 1749, 1754
 \mode_if_inner:TF 1750
 \mode_if_vertical:TF 1007, 1062
 \mode_leave_vertical: 941, 1044
msg commands:
 \msg_error:nn 1020
 \msg_error:nnnn 1204, 1283, 1518, 1762
 \msg_new:nnnn 1237

N
\newcommand .

 94, 1936, 2216, 2220, 2224, 2238, 2246
\newcounter . 933
\newcounteralias 2015
\NewDocumentEnvironment

. 2, 4, 160, 162, 418, 2019, 2022
\NewHook . 921
\newif . 609
\newline 90, 1339
\newlist . 96
\newpage 793, 800
\NewSocket . 1934
\NewSocketPlug 2317
\NewTaggingSocket

. 583, 1569, 1705, 1731, 1850
\NewTaggingSocketPlug

. . . 585, 1371, 1570, 1707, 1733, 1852
\NewTemplateType

. . . . 662, 663, 664, 665, 666, 667, 668
\newtheorem 27–29,

38, 69, 90, 1986, 2255, 2294, 2301, 2308
\newtheoremstyle 14,

27, 28, 38, 89, 90, 94, 2109, 2256,
2261, 2272, 2283, 2295, 2302, 2309

\nobreak .
 71, 1001, 1015, 1055, 1338, 2210, 2242

\nobreakspace 1942
\noexpand 1284, 2005
\nonumber . 2186
\normalfont 322, 385, 390, 445
NOT commands:
 \NOT_IMPLEMENTED 1264
\NoValue 4–6, 13, 14,

39, 42, 71, 90, 909, 910, 925, 2094, 2105
\Novalue . 14
\null . 1918

O
\obeyedline 20, 157, 159
\obeylines . 1926
off (plug) 53, 53, 973
\omit . 2187
on (plug) 53, 53, 973
\openbox 2246, 2251, 2269, 2280, 2291

P
\PackageWarning 2235
\par 17, 40, 560, 571,

946, 1054, 1069, 1451, 1464, 1466,
1522, 1557, 1663, 1701, 1770, 1916

par commands:
 \par_end: . 40

104

par internal commands:
 \l__par_fixed_word_spaces_bool . 983
para (type) . 662
para center (instance) 466
para commands:
 \l_para_begin_skip

. 54, 979, 997, 1002, 1011, 1016
 \para_end: . . . 38, 56, 77, 78, 1082,

1086, 1747, 1747, 1770, 1771, 1772
 \g_para_indent_box 1004, 1403
 \para_omit_indent:

. 1137, 1404, 1555, 1661
 \para_raw_noindent: . . . 54, 1006, 1006
para internal commands:
 \l__para_begin_skip_tl

. 995, 997, 998, 1011, 1012
 __para_handle_indent: . . 54, 994, 996
 \g__para_standard_everypar_tl . 1010
para justify (instance) 455
para raggedleft (instance) 488
para raggedright (instance) 477
para std (template) 702, 976
para verse (instance) 511
para/begin (hook) 65, 66
para/begin . 38
\PARALABEL 1139, 1728
\parfillskip 982, 1073
\parindent 398, 407, 414,

451, 458, 705, 978, 1089, 1344, 2124
\ParseLaTeXeTheoremlike

. . . . 30, 87, 89, 420, 2020, 2023, 2085
\parsep 290, 1028,

1095, 1111, 1120, 1126, 1183, 1342
\parskip 9, 40, 35, 399, 408,

415, 452, 691, 959, 1094, 1095, 2125
\partopsep 34, 289, 689, 1026, 1064
\pdffakespace 1942
\penalty 1141, 1407, 1918, 1921, 2210, 2242
\phantom . 2170
Plugs:
 default . . . 585, 1371, 1707, 1733, 1852
 doc . 2317
 kernel . 1570
 off 53, 53, 973
 on 53, 53, 973
\popQED . . . 30, 421, 2220, 2266, 2277, 2288
prg commands:
 \prg_do_nothing: 1151, 1393, 1417,

1472, 1473, 1862, 1863, 1868, 1870
proof (env.) . 418
\proof . 2258,

2263, 2274, 2285, 2297, 2304, 2311
\protected . 1773
\providecommand 2251

\ProvidesFile 2323
\ProvidesPackage 525
\pushQED . . 30, 419, 2216, 2265, 2276, 2287

Q
\qed 419, 2207, 2239
\qedhere . . 92, 2224, 2235, 2267, 2278, 2289
\qedsymbol .

 2149, 2161, 2170, 2172, 2180, 2187,
2198, 2205, 2211, 2238, 2243, 2251

\quad . . . 2149, 2170, 2205, 2211, 2238, 2243
quotation (env.) 94
quote (env.) . 94

R
\raggedleft . 506
\raggedright 506
\relax 1261, 1263, 2155, 2160, 2215, 2221,

2223, 2226, 2228, 2261, 2262, 2263,
2264, 2265, 2266, 2267, 2268, 2269,
2272, 2273, 2274, 2275, 2276, 2277,
2278, 2279, 2280, 2283, 2284, 2285,
2286, 2287, 2288, 2289, 2290, 2291

\RemoveFromHook . . 655, 656, 657, 658, 1726
\renewcommand 1941
\RenewDocumentCommand 1428, 1986
\RenewDocumentEnvironment 18,

51, 53, 55, 156, 158, 238, 240, 326, 338
\RequirePackage 528, 529, 2316, 2326
\rightmargin 42, 297, 699, 1035, 1090, 1971
\rightskip 981, 992, 1072
\rlap . 1697, 2172

S
scan commands:
 \scan_stop: 1748
\setbox . 573, 2181
\setcounter 30, 934
\SetKnownTemplateKeys

. 39, 531, 855, 1042,
1173, 1196, 1198, 1280, 1483, 1515

\setlist . 96
\SetTemplateKeys . . 39, 74, 548, 991, 1643
\ShowInstanceValues 2144
\SimpleBlockEnv 14
\SimpleBlockEnv 14, 26, 37, 96,

3, 5, 52, 54, 56, 96, 98, 140, 157,
159, 161, 163, 239, 241, 243, 333, 922

skip commands:
 \skip_add:Nn 1064
 \skip_eval:n 1120, 1124
 \skip_horizontal:n . . 1102, 1104,

1334, 1336, 1543, 1549, 1652, 1655
 \skip_new:N 1424, 1425, 1426

105

 \skip_set:Nn 616, 992, 1061
 \skip_set_eq:NN

. 1072, 1073, 1094, 1095, 1342
 \skip_use:N 994, 997, 1011
 \skip_vertical:n

. 563, 958, 959, 1056, 1109, 1110
 \skip_zero:N 1071
 \l_tmpa_skip 955, 956, 958, 959
socket commands:
 \socket_assign_plug:nn

. 975, 1864, 1873, 1886, 1902
 \socket_if_exist:nTF

. 581, 1703, 1729, 1848
 \socket_new:nn 972
 \socket_new_plug:nnn 973, 974
 \socket_use:n 965
Sockets:
 block/endpe 972
 block/list/label 1371
 tagsupport/@doendpe 581
 tagsupport/block/recipe 1848
 tagsupport/block/startpara/direct

. 1703
 tagsupport/captionedtext/caption

. 1569
 tagsupport/kernel/endpe/vmode . 1729
 verbatim/startline 96, 1934
\space 526, 601, 852, 989,

1040, 1191, 1205, 1242, 1276, 1481,
1513, 1519, 1641, 2031, 2032, 2324

str commands:
 \str_case:nnTF 2073
\string . 1433
\strut . 1362
\swapnumbers 14, 27, 28, 87, 88, 90, 91, 2107
sys commands:
 \sys_if_engine_luatex_p: 1938
 \sys_if_output_dvi_p: 1939

T
\tabskip . 2189
\tag . 2198
tag commands:
 \tag_if_active_p: 1786
 \tag_mc_begin:n 1379, 1696, 1722
 \tag_mc_end: 1692, 1698
 \tag_socket_use:n 568
 \tag_socket_use:nn 1788
 \tag_socket_use:nnn 1358,

1541, 1580, 1588, 1595, 1606, 1650
 \tag_struct_begin:n 1572, 1716
 \tag_struct_end: 1574, 1700

tag internal commands:
 \l__tag_block_flattened_level_­

int . . . 48, 856, 858, 863, 929, 1683
 __tag_check_para_begin_show:nn 1721
 __tag_gincr_para_begin_int: . . 1714
 __tag_gincr_para_end_int: . . . 1693
 \l__tag_L_attr_class_tl 1806, 1807,

1822, 1907, 1908, 1978, 1980, 1981
 \l__tag_L_tag_tl

. 1803, 1804, 1821, 1904, 1905
 \l__tag_para_attr_class_tl 986, 1719
 \l__tag_para_bool . . . 587, 1736, 1786
 \g__tag_para_end_int 1697
 \l__tag_para_flattened_bool

. 593, 596, 844, 861, 1709, 1738
 __tag_para_main_store_struct: .

. 1686, 1712
 \l__tag_para_main_tag_tl 601
 \l__tag_para_show_bool 1695
 \l__tag_para_tag_tl 1718
\tagmcbegin 1383
\tagmcend . 1386
\tagpdfparaOff 1701
\tagpdfparaOn 1701
\tagpdfsetup 499, 1808
\tagstructbegin 1382, 1390, 1792, 1819, 1826
\tagstructend 1389, 1801, 1834, 1844, 1846
tagsupport/@doendpe (socket) 581
tagsupport/block/recipe (socket) . . 1848
tagsupport/block/startpara/direct

(socket) 1703
tagsupport/captionedtext/caption

(socket) 1569
tagsupport/kernel/endpe/vmode (socket)

. 1729
template commands:
 \template_debug_off: 642
 \template_debug_on: 641
 \template_debug_typeout:n

. 558, 558, 852,
989, 1040, 1191, 1276, 1481, 1513, 1641

template internal commands:
 __template_debug_typeout:n 558
template types:
 block . 662
 blockenv . 662
 captionedtext 662
 item . 662
 list . 662
 para . 662
 thmstyle . 662
templates:
 block std 686, 1023
 blockenv std 669, 834

106

 captionedtext proof 749, 1621
 captionedtext thmlike 743, 1474
 item std 728, 1246
 list std 714, 1175
 para std 702, 976
 thmstyle std 761, 1489
TEX and LATEX2ε commands:
 \@@par 78, 1771, 1918, 1921
 \@beginparpenalty 9, 1032, 1123
 \@begintheorem 38
 \@centercr 475, 486, 497, 520
 \@clubpenalty 567, 1149, 1415
 \@currenvir 947, 1777, 2148, 2151
 \@currenvline 1778
 \@definecounter 1993
 \@doendpe 38, 40, 41, 559
 \@domathendpefalse 564, 577, 609
 \@domathendpetrue 609
 \@eha . 1776
 \@ehc . 1434
 \@empty 2173, 2177, 2214
 \@endparpenalty 9, 961, 1033
 \@endpefalse 77, 569, 575, 613, 974, 1742
 \@endpetrue 559, 613, 973
 \@endtheorem 38
 \@enumdepth 23, 270
 \@eqnswtrue 2190
 \@execute@begin@hook 1779
 \@flushglue 10,

462, 471, 472, 483, 493, 518, 709, 1073
 \@ifdefinable 1987
 \@ifundefined 1775, 2012, 2148
 \@ignorefalse 1781
 \@inmatherr 947, 1430
 \@item 790, 798
 \@itemdepth 23, 251
 \@itemlabel 38, 59, 61, 330,

885, 1166, 1230, 1294, 1377, 1388, 1979
 \@itempenalty 9, 1034, 1184, 1469
 \@kernel@after@para@after 1760
 \@kernel@after@para@end 1753
 \@kernel@refstepcounter . . 1289, 1530
 \@labels . 65
 \@latex@error 1433, 1776
 \@latex@warning 2026
 \@list... 8
 \@listctr

. . . 59, 61, 886, 1166, 1215, 1221,
1224, 1289, 1293, 1295, 1296, 1973

 \@listdepth 8, 51, 926
 \@listi . 7, 8
 \@listii . 7, 8
 \@listvi . 8
 \@makeother 1925

 \@mklab . 1975
 \@ne . 2190
 \@new@specials 1960, 1963, 1965
 \@newctr 2002
 \@nmbrlisttrue 1220
 \@nocounterr 2013
 \@noitemerr 61, 80, 944, 1081, 1116, 1422
 \@noligs 1926
 \@normalcr 10, 464, 712
 \@nthm . 38
 \@nx . 2235
 \@opargbegintheorem 38
 \@othm . 38, 86
 \@outerparskip

. 959, 1094, 1111, 1120, 1125
 \@remove 1961, 1964
 \@restorepar 566
 \@rightskip 992, 1072
 \@setpar 1075
 \@setupverbinvisiblespace . 37, 1935
 \@setupverbvisiblespace 84
 \@sxverbatim 21, 195
 \@tempswafalse 1915
 \@tempswatrue 1920
 \@temptokena 2217, 2218
 \@thm . 38
 \@thmcounter 1998, 2007
 \@thmcountersep 2006
 \@toodeep 870, 875
 \@topsep . 67
 \@topsepadd 67
 \@totalleftmargin 83, 1091, 1092
 \@vobeyspaces 1932
 \@xnthm 38, 86
 \@xobeysp 1942
 \@xp . 2151
 \@xthm . 38
 \@xverbatim 179
 \@ynthm 38, 86
 \@ythm . 38
 \endpefalse 78
 \align@qed 2194, 2197, 2202, 2203
 \alt@tag 2171, 2173, 2176, 2177
 \arabic . 11
 \begin . 38
 \bibitem . 80
 \c@maxblocklevels 38, 874, 933
 \check@percent 96, 2317
 \ctagsplit@false 2193
 \declare@file@substitution

. 2253, 2254, 2314, 2315
 \displaymath@qed 2154, 2167
 \end . 40
 \equation@qed 2168

107

 \everypar 68, 69
 \g@addto@macro 1963
 \g@remfrom@specials

. 1953, 1954, 1955, 1959
 \if@domathendpe 562, 576, 609
 \if@endpe 613, 1735
 \if@tempswa 1917
 \iffirstchoice@ 2230
 \ifmeasuring@ 2198, 2229
 \ifst@rred 2190
 \iftagsleft@ 2169
 \ignorespaces 8, 51
 \item . 15,

38, 52, 53, 56, 57, 59–63, 65, 67, 80, 83
 \itemsep . 9
 \l@nohyphenation 1914
 \labelsep . 11
 \labelwidth 11, 63, 65
 \leftmargin . 9
 \leftskip . 83
 \legacylistsetup 25
 \linebox@qed 2157, 2164
 \list . 26
 \list⟨romannumeral⟩ 16, 24
 \listparindent 55, 64
 \makelabel 11, 27, 65, 85
 \math@qedhere 2147, 2205, 2225
 \newline . 63
 \newtheorem 86
 \noitemerr 52
 \on@line 595, 602, 936,

1048, 1131, 1150, 1233, 1345, 1397,
1416, 1421, 1564, 1670, 1677, 1694,
1715, 1778, 1795, 1799, 1832, 1842

 \org@dospecials 1952, 1957
 \org@prime 1947, 1949, 1951
 \par . 36,

40, 41, 53, 56, 61, 69, 76, 77, 81–83
 \par@deathcycles . . . 1074, 1079, 1080
 \parindent 10, 29, 64
 \parskip 9, 29, 57
 \partopsep . 9
 \pdffakespace 21, 84
 \place@tag@gather 2188
 \popQED@elt 2221, 2223
 \qed@elt . 2215, 2217, 2221, 2226, 2230
 \QED@stack 2214,

2217, 2218, 2221, 2223, 2226, 2230
 \qed@tag 2185, 2199
 \qed@warning 2149, 2234
 \rendsplit@ 2193
 \reserved@a 1776, 1777, 1784
 \rightmargin 9
 \row@ . 2190

 \setboxz@h 2187
 \SetKnownTemplateKeys 59
 \setQED@elt 2226, 2228
 \spacefactor 61
 \split@qed 2192
 \strut . 11, 65
 \strut@ . 2187
 \tag@true 2186
 \tagform@ 2179
 \tagsleft@false 2187
 \toks@ 2217, 2218
 \topsep . 9
 \UseInstance 68
 \verbatim@font 1926
 \z@ . 573, 2181
 \z@skip .

 460, 461, 473, 482, 484, 494, 495, 994
tex commands:
 \tex_everypar:D 1009, 1010
 \tex_hskip:D 1002, 1016, 1756
 \tex_lastnodetype:D 1755
 \tex_lastskip:D 616
 \tex_noindent:D 1021
 \tex_par:D 1758, 1767
 \tex_parshape:D 1092
 \tex_parskip:D 563
 \tex_unskip:D 618, 1751
\the 1018, 1927, 1948, 1950, 2218
\theequation 2179
\theoremstyle 27,

28, 69, 87, 90, 1486, 2028, 2257,
2262, 2273, 2284, 2296, 2303, 2310

\thmname 91, 2131, 2137
\thmnote 91, 2133, 2139
\thmnumber 91, 2132, 2138
thmstyle (type) 662
\thmstyle . 29
thmstyle definition (instance) 387
thmstyle legacy2e (instance) 392
thmstyle plain (instance) 365
thmstyle remark (instance) 381
thmstyle std (template) 761, 1489
\tiny . 1697
tl commands:
 \c_empty_tl 535, 540
 \c_novalue_tl 63, 1278
 \tl_clear:N 885, 886, 2096
 \tl_const:Nn 994
 \tl_gclear:N 1615, 1618
 \tl_gput_right:Nn 1611
 \tl_gset:Nn 1996, 2003
 \tl_if_blank:nTF 1289, 2116
 \tl_if_empty:NTF

. 866, 894, 898, 903, 913,

108

1202, 1211, 1228, 1281, 1516, 1578,
1605, 1874, 1887, 1903, 1906, 1979

 \tl_if_empty:nTF
. 533, 550, 1170, 1193, 1377, 1388,
2112, 2115, 2118, 2121, 2122, 2129

 \tl_if_empty_p:N 1524
 \tl_if_eq:NnTF 968
 \tl_if_novalue:nTF

. 538, 552, 619, 619, 1287, 1443, 1586
 \tl_new:N 928, 995, 1166, 1167, 1350,

1487, 1620, 1803, 1806, 1891, 1985
 \tl_set:Nn 328, 330, 997,

1011, 1261, 1262, 1263, 1486, 1527,
1644, 1804, 1807, 1875, 1888, 1904,
1907, 1973, 1978, 1980, 1981, 2094

 \tl_set_eq:NN
. 535, 540, 893, 911, 1221,
1230, 1278, 1876, 1889, 1905, 1908

tl internal commands:
 \c__zero_skip_tl 994, 999, 1013
\topsep 55, 33, 288, 404, 688, 690, 1025, 1061
trivlist (env.) 337
\typeout 646, 648, 650, 652

U
\unpenalty . 1927
\unskip 2210, 2242
\UnusedTemplateKeys 48, 50, 535,

540, 544, 892, 893, 911, 1199, 1202,
1206, 1281, 1285, 1484, 1516, 1520

use commands:
 \use:N 880, 1546, 1598, 1854, 1931

 \use:n 90, 343, 1365, 2099
 \use_i:nn 1318
 \use_ii:nn 1322
 \use_none:n 621, 622
 \use_none:nn 1168, 1171, 1194
\usecounter . 61
\UseHook 854, 1774
\UseInstance 50, 506,

507, 508, 509, 889, 896, 901, 923, 925
\UseName 39, 40, 294, 295, 695, 696, 697, 722
\UseSocket . 1923
\UseStructureName . 103, 115, 145, 168,

184, 200, 215, 248, 263, 277, 351,
425, 1382, 1383, 1386, 1390, 1572,
1595, 1826, 1834, 1844, 1930, 2037

\UseTaggingSocket 598, 884, 1685, 1711,
1740, 1766, 1783, 1798, 1831, 1841

V
\vbox . 2249
\veqno . 2160
verbatim (env.) 155
verbatim* (env.) 155
verbatim/startline (socket) 96, 1934
verse (env.) . 138
\vfil . 2249
\vrule . 2248, 2250
\vtop . 2178

X
\xdef . 2218

109

	Contents
	1 Introduction
	2 Template types and templates for blocks and lists
	2.1 Template types
	2.1.1 The template type `blockenv'
	2.1.2 The template type `block'
	2.1.3 The template type `para'
	2.1.4 The template type `list'
	2.1.5 The template type `captionedtext'
	2.1.6 The template type `item'
	2.1.7 The template type `thmstyle'

	2.2 Templates
	2.2.1 The blockenv template `std'
	2.2.2 The block template `std'
	2.2.3 The para template `std'
	2.2.4 The list template `std'
	2.2.5 The item template `std'
	2.2.6 The captionedtext template `thmlike'
	2.2.7 The captionedtext template `proof'
	2.2.8 The thmstyle template `std'

	3 Declaring standard display block environments and their instances
	3.1 The display and displayflattened environments
	3.1.1 Their blockenv instances
	3.1.2 Their block instances

	3.2 The center, flushleft, and flushright environments
	3.2.1 Their blockenv instances
	3.2.2 Their block instances
	3.2.3 Their para instances

	3.3 The quote and quotation environments
	3.3.1 Their blockenv instances
	3.3.2 Their block instances

	3.4 The verse environment
	3.4.1 Their blockenv instances

	3.5 The verbatim, verbatim* and alltt environments
	3.5.1 Their blockenv instances
	3.5.2 Their block instances

	3.6 The trivlist environment
	3.7 The standard lists: itemize, enumerate, and description
	3.7.1 Their blockenv instances
	3.7.2 Their block instances
	3.7.3 Their list instances
	3.7.4 Their item instances

	3.8 The legacy list and trivlist environments
	3.8.1 Its blockenv instance
	3.8.2 Its list instance

	3.9 Theorem-like environments declared through \newtheorem
	3.9.1 The blockenv instances they use
	3.9.2 The captionedtext instances they use
	3.9.3 The thmstyle instances they use
	3.9.4 The block instances they use

	3.10 The proof environment (from amsthm)
	3.10.1 Block instances for the proofs

	4 Declaring para instances
	5 Advice on adjusting the layout of standard block environments
	6 Tagging support
	6.1 Paragraph tags
	6.1.1 Tagging recipes

	7 Tracing and debugging
	8 New and redefined kernel command
	9 The Implementation
	9.1 Candidates for kernel changes
	9.1.1 Augmented \SetKnownTemplateKeys
	9.1.2 Tracing templates and instances
	9.1.3 Handling \par after the end of the list
	9.1.4 Other useful expl3 commands

	9.2 Tracing and debugging interfaces
	9.3 Template types and template interfaces
	9.4 Implementation of templates
	9.4.1 Some notes on the LaTeX2ε legacy switches
	9.4.1.1 Original usage:
	9.4.1.2 Repurpose:

	9.4.2 Implementation of blockenv templates
	9.4.3 Implementation of para templates
	9.4.4 Implementation of block templates
	9.4.5 Implementation of list templates
	9.4.6 Implementation of item templates
	9.4.7 Implementation of captionedtext and thmstyle templates

	9.5 Tagging support commands
	9.5.1 List tags
	9.5.2 Tagging recipes

	10 Support code for document-level block environments
	10.1 Verbatim-like environments
	10.1.1 Helper commands for verbatim and verbatim*
	10.1.2 Helper commands for alltt and alltt*
	10.1.3 Helper command for legacy list environment

	10.2 Theorem-like environments
	10.2.1 Declarations for theorem-like environments
	10.2.2 Supporting QED in proofs

	11 Support for other packages and classes
	11.1 Replacement for alltt
	11.2 Replacement for amsthm
	11.3 Support for amsart and amsbook classes
	11.4 Support for the enumitem interfaces
	11.5 Support for the doc package

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X

