\documentclass[a4paper]{ltugboat} \usepackage{amsmath,amsfonts,amsthm,arsenal-math,multicol} \usepackage[svgnames,dvipsnames]{xcolor} \setmathfont{ArsenalMath-Sans}[ BoldFont=ArsenalMath-SansBold, StylisticSet=1, range={cal, bfcal}] \setmainfont{Arsenal} \setcounter{secnumdepth}{0} \newcommand{\abc}{abcdefghijklmnopqrstuvwxyz} \newcommand{\ABC}{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \newcommand{\alphabeta}{\alpha\beta\gamma\delta \epsilon\varepsilon\zeta\eta\theta\vartheta\iota \kappa\varkappa\lambda\mu\nu\xi o\pi\varpi\rho\varrho\sigma \varsigma\tau\upsilon\phi\varphi\chi\psi\omega} \newcommand{\AlphaBeta}{\Gamma\Delta\Theta\Lambda \Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega} \newtheorem{theorem}{Theorem} \colorlet{math}{RoyalBlue} \everymath{\color{math}} \abovedisplayskip 3pt plus 2pt minus 1pt \belowdisplayskip 3pt plus 1pt minus .5pt %% Getting version and date \makeatletter \def\GetFileInfo#1{% \def\filename{#1}% \def\@tempb##1 ##2 ##3\relax##4\relax{% \def\filedate{##1}% \def\fileversion{##2}% \def\fileinfo{##3}}% \edef\@tempa{\csname ver@#1\endcsname}% \expandafter\@tempb\@tempa\relax? ? \relax\relax} \makeatother \GetFileInfo{arsenal-math.sty} \begin{document} \pagestyle{empty} \title{Sample of Arsenal Math font} \author{\color{black}Rajeesh K\,V} \date{Arsenal Math package version \fileversion, \filedate} \maketitle \parindent0pt \parskip 0ex plus .1ex \section{Introduction} \label{sec:intro} Arsenal Math is created from KpMath-Sans and Arsenal font, both licensed under OFL. The math symbols are from KpMath-Sans font; Latin characters and numerals are\linebreak from Arsenal font. \section{Results} \label{sec:Results} \begin{theorem}[Residue Theorem] Let $f$ be analytic in the region $G$ except for the isolated singularities $a_1,a_2,\ldots,a_m$. If $\gamma$ is a closed rectifiable curve in $G$ which does not pass through any of the points $a_k$ and if $\gamma\approx 0$ in $G$ then \begin{align*} \frac{1}{2\pi i}\int_\gamma f = \sum_{k=1}^m n(\gamma;a_k) \text{Res}(f;a_k). \end{align*} \end{theorem} \begin{theorem}[Maximum Modulus] \emph{Let $G$ be a bounded open set in $\mathbb{C}$ and suppose that $f$ is a continuous function on $G^-$ which is analytic in $G$. Then} \begin{align*} \max\{|f(z)|:z\in G^-\}=\max \{|f(z)|:z\in \partial G \}. \end{align*} \end{theorem} \section{Large aligned equation and matrix} \begin{eqnarray*} V(R) &=& \int_{\varphi=0}^{2 \pi} \int_{\theta=0}^{\pi} \int_{r=0}^{R} r^2 \sin(\theta) dr d\theta d\varphi \\ &=& \left( \int_{\varphi=0}^{2 \pi} d\varphi \right) \left( \int_{\theta=0}^{\pi} \sin(\theta) d\theta \right) \left( \int_{r=0}^{R} r^2 dr \right) \\ &=& \left[ \varphi \right]_{\varphi=0}^{2 \pi} \left[ -\cos(\theta) \right]_{\theta=0}^{\pi} \left[ \frac{r^3}{3} \right]_{r=0}^{R} \\ &=& \frac{4}{3} \pi R^3 \\ \det(A) &=& \sum_{\sigma \in S_n} \epsilon(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \\ I_n &=& \mathbb{1}_n\\ &\phantom{=}& \left[\begin{array}{ccccc} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & \ddots & & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & \cdots & 0 & 1 \end{array}\right| \end{eqnarray*} \section{Alphabets} \label{sec:alphabets} \subsection{Uppercase and math} \ABC\\ \textit{\ABC} \\ $\ABC$ \subsection{Lowercase and math} \abc\\ \textit{\abc} \\ $\abc$\\ 0123456789\quad $01234567890$ \subsection{Greek} $\AlphaBeta$ \\ $\alphabeta$ \\ $\ell\wp\aleph\infty\propto\emptyset\nabla\partial\mho\imath\jmath\hslash\eth$ \subsection{Lowercase Greek and math} $\abc$\\ $\alphabeta$ \subsection{Uppercase Greek and math} $\ABC$\\ $\AlphaBeta$ \subsection{Greek and misc} $\mathrm{A}$ $\Lambda$ $\Delta$ $\nabla$ $\mathrm{B}$ $\mathrm{C}$ $\mathrm{D}$ $\Sigma$ $\mathrm{E}$ $\mathrm{F}$ $\Gamma$ $\mathrm{G}$ $\mathrm{H}$ $\mathrm{I}$ $\mathrm{J}$ $\mathrm{K}$ $\mathrm{L}$ $\mathrm{M}$ $\mathrm{N}$ $\mathrm{O}$ $\Theta$ $\Omega$ $\mho$ $\mathrm{P}$ $\Phi$ $\Pi$ $\Xi$ $\mathrm{Q}$ $\mathrm{R}$ $\mathrm{S}$ $\mathrm{T}$ $\mathrm{U}$ $\mathrm{V}$ $\mathrm{W}$ $\mathrm{X}$ $\mathrm{Y}$ $\Upsilon$ $\Psi$ $\mathrm{Z}$\\ $1234567890 $ \subsection{Mathbold} \textbf{\ABC}\\ $\mathbf{\ABC}$\\ \textbf{\abc}\\ $\mathbf{\abc}$ \subsection{Math and symbols} $a$ $\alpha$ $b$ $\beta$ $c$ $\partial$ $d$ $\delta$ $e$ $\epsilon$ $\varepsilon$ $f$ $\zeta$ $\xi$ $g$ $\gamma$ $h$ $\hbar$ $\hslash$ $\iota$ $i$ $\imath$ $j$ $\jmath$ $k$ $\kappa$ $\varkappa$ $l$ $\ell$ $\lambda$ $m$ $n$ $\eta$ $\theta$ $\vartheta$ $o$ $\sigma$ $\varsigma$ $\phi$ $\varphi$ $\wp$ $p$ $\rho$ $\varrho$ $q$ $r$ $s$ $t$ $\tau$ $\pi$ $u$ $\mu$ $\nu$ $v$ $\upsilon$ $w$ $\omega$ $\varpi$ $x$ $\chi$ $y$ $\psi$ $z$$ $ $\infty$ $\propto$ $\emptyset$ $\varnothing$ $\mathrm{d}$ $\eth$ $\backepsilon$ \subsection{Mathcal} %$\mathcal{\ABC}$ $\mathcal{A}$ $\mathcal{B}$ $\mathcal{C}$ $\mathcal{D}$ $\mathcal{E}$ $\mathcal{F}$ $\mathcal{G}$ $\mathcal{H}$ $\mathcal{I}$ $\mathcal{J}$ $\mathcal{K}$ $\mathcal{L}$ $\mathcal{M}$ $\mathcal{N}$ $\mathcal{O}$ $\mathcal{P}$ $\mathcal{Q}$ $\mathcal{R}$ $\mathcal{S}$ $\mathcal{T}$ $\mathcal{U}$ $\mathcal{V}$ $\mathcal{W}$ $\mathcal{X}$ $\mathcal{Y}$ $\mathcal{Z}$ \subsection{Mathbb} %$\mathbb{\ABC}$ $\mathbb{A}$ $\mathbb{B}$ $\mathbb{C}$ $\mathbb{D}$ $\mathbb{E}$ $\mathbb{F}$ $\mathbb{G}$ $\mathbb{H}$ $\mathbb{I}$ $\mathbb{J}$ $\mathbb{K}$ $\mathbb{L}$ $\mathbb{M}$ $\mathbb{N}$ $\mathbb{O}$ $\mathbb{P}$ $\mathbb{Q}$ $\mathbb{R}$ $\mathbb{S}$ $\mathbb{T}$ $\mathbb{U}$ $\mathbb{V}$ $\mathbb{W}$ $\mathbb{X}$ $\mathbb{Y}$ $\mathbb{Z}$ \subsection{Mathscr} %$\mathscr{\ABC}$ $\mathscr{A}$ $\mathscr{B}$ $\mathscr{C}$ $\mathscr{D}$ $\mathscr{E}$ $\mathscr{F}$ $\mathscr{G}$ $\mathscr{H}$ $\mathscr{I}$ $\mathscr{J}$ $\mathscr{K}$ $\mathscr{L}$ $\mathscr{M}$ $\mathscr{N}$ $\mathscr{O}$ $\mathscr{P}$ $\mathscr{Q}$ $\mathscr{R}$ $\mathscr{S}$ $\mathscr{T}$ $\mathscr{U}$ $\mathscr{V}$ $\mathscr{W}$ $\mathscr{X}$ $\mathscr{Y}$ $\mathscr{Z}$ \subsection{Uppercase mathfrak} %$\ABC$\\ %$\mathfrak{\ABC}$ $\mathfrak{A}$ $\mathfrak{B}$ $\mathfrak{C}$ $\mathfrak{D}$ $\mathfrak{E}$ $\mathfrak{F}$ $\mathfrak{G}$ $\mathfrak{H}$ $\mathfrak{I}$ $\mathfrak{J}$ $\mathfrak{K}$ $\mathfrak{L}$ $\mathfrak{M}$ $\mathfrak{N}$ $\mathfrak{O}$ $\mathfrak{P}$ $\mathfrak{Q}$ $\mathfrak{R}$ $\mathfrak{S}$ $\mathfrak{T}$ $\mathfrak{U}$ $\mathfrak{V}$ $\mathfrak{W}$ $\mathfrak{X}$ $\mathfrak{Y}$ $\mathfrak{Z}$ \subsection{Lowercase mathfrak} %$\abc$\\ %$\mathfrak{\abc}$ $\mathfrak{a}$ $\mathfrak{b}$ $\mathfrak{c}$ $\mathfrak{d}$ $\mathfrak{e}$ $\mathfrak{f}$ $\mathfrak{g}$ $\mathfrak{h}$ $\mathfrak{i}$ $\mathfrak{j}$ $\mathfrak{k}$ $\mathfrak{l}$ $\mathfrak{m}$ $\mathfrak{n}$ $\mathfrak{o}$ $\mathfrak{p}$ $\mathfrak{q}$ $\mathfrak{r}$ $\mathfrak{s}$ $\mathfrak{t}$ $\mathfrak{u}$ $\mathfrak{v}$ $\mathfrak{w}$ $\mathfrak{x}$ $\mathfrak{y}$ $\mathfrak{z}$ \subsection{Bold math} {\boldmath$\alpha + b = 27$} \subsection{Primes} $d', d'', d'''$. \end{document}