Timer and Work Manager for Application
Servers

International Business Machines Corp. and BEA Systems, Inc.
Version 1.1
May, 2004

Authors

John Beatty, BEA Systems, Inc.

Chris D Johnson, IBM Corporation
Revanuru Naresh, BEA Systems, Inc
Billy Newport, IBM Corporation
Andy Piper, BEA Systems, Inc.
Stephan Zachwieja, BEA Systems, Inc

Copyright Notice
© Copyright BEA Systems, Inc. and International Business Machines Corp 2003-2004. All rights reserved.

License

The Timer and Work Manager for Application Servers Specification is being provided by the copyright holders under
the following license. By using and/or copying this work, you agree that you have read, understood and will comply
with the following terms and conditions:

Permission to copy and display the Timer and Work Manager for Application Servers
Specification and/or portions thereof, without modification, in any medium without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the
Timer and Work Manager for Application Servers Specification, or portions thereof, that
you make:

1. A link or URL to the Timer and Work Manager for Application Servers Specification at
this location: http://dev2dev.bea.com/technologies/common]j/index.jsp

or at this location:

http://www.ibm.com/developerworks/library/j-commonj-sdownt/

2. The full text of this copyright notice as shown in the Timer and Work Manager for
Application Servers Specification.

IBM and BEA (collectively, the “Authors”) agree to grant you a royalty-free license,
under reasonable, non-discriminatory terms and conditions to patents that they deem
necessary to implement the Timer and Work Manager for Application Servers Specification.

THE Timer and Work Manager for Application Servers SPECIFICATION IS PROVIDED "AS IS," AND
THE AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS
SPECIFICATION AND THE IMPLEMENTATION OF ITS CONTENTS, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT OR
TITLE.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THE Timer
and Work Manager for Application Servers SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the Timer and Work Manager for Application Servers
Specification or its contents without specific, written prior permission. Title to
copyright in the Timer and Work Manager for Application Servers Specification will at all
times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Status of this Document

This specification may change before final release and you are cautioned against relying
on the content of this specification. IBM and BEA are currently soliciting your
contributions and suggestions. Licenses are available for the purposes of feedback and
(optionally) for implementation.

Introduction

The Timer and Work Manager for Application Servers specification provides a
concurrent programming API for use within managed environments on the Java™
platform, such as Servlets and EJBs.

This specification is organized as follows:

* Version Updates describes the changes since version 1.0 of the specification.

* Architecture describes the design of the specification.

* Deployment discusses how Timers and Work Managers are configured by
deployment descriptors.

* Examples provides a series of examples showing common usages of the Timer
and Work Manager API

* The Java API is provided as Javadocs in a separate file

Timer API

The Timer API enables applications to schedule future timer notifications and receive
timer notification callbacks to an application-specified listener.

When inside these managed environments, this API is a much better alternative to
java.util.Timer: java.util.Timer should never be used within managed
environments, as it creates threads outside the purview of the container. Further, there is
no clean way of subclassing java.util.Timer to avoid thread creation, as all
constructors create and start a thread. This API is also a better choice than using the JMX
Timer Service because the JIMX Timer Service API is tightly coupled with the JMX
framework and thus does not provide a sufficiently user-friendly or independent API.

Work Manager API

The Work Manager service provides a high-level programming model that enables
applications to logically execute multiple work items concurrently under the control of
the container. In essence, the work manager provides a container-managed alternative to
using the java.lang.Thread, which is inappropriate for use within applications
hosted in managed environments.

The Work Manager API enables a number of common use cases:
* A Servlet or JSP needs to aggregate data from various sources and render an
HTML page after all the data has been retrieved. In this case, the Work Manager

API could be used to retrieve the data in parallel and allow execution to continue
once all the data is ready.

* An EJB needs a result from any one of several network services in order to
complete its task. The EJB can use the Work Manager API to initiate concurrent
requests to the network services and continue execution once one of the services
has completed.

When inside managed environments, this Work Manager API is a much better alternative
to java.lang.Thread, as Thread should never be used by application-level code
within managed environments as the container needs full visibility and control over all
executing threads. Also, this Work Manager API is a better alternative than the J2EE
Connector Architecture 1.5 [1] Work Service, as the JCA Work Service is tightly coupled
with the JCA framework and thus does not provide a sufficiently independent API for use
outside JCA. In particular, the JCA javax.resource.spi.work.WorkManager
interface exposes methods taking
javax.resource.spi.work.ExecutionContext, which is not generally the
context mechanism that should be used by J2EE applications.

The Timer and Work Manager for Application Servers specification thus provides a
clean, simple, and independent API that is appropriate for use within any J2EE container.

Version Updates

Version 1.1 of the Timer and Work Manager for Application Servers specification

merges the former Timer Specification for Application Servers and Work Manager
Specification for Application Servers specifications and resolves a few minor API

problems and clarifies behaviors.

TimerManager
Each method was changed to explicitly declare the runtime exceptions that can be thrown
and the JavaDocs were clarified the difference between fixed-rate and fixed-delay timers.

The suspend and stop methods were changed to no longer block until the timer
listeners are completed. Both stop and suspend will now return immediately.

New methods were added to allow tracking the state of timer listeners once the
suspend or stop methods are issued.

Timer
The scheduledExecutionTime method name was changed to
getScheduledExecutionTime.

Each method was changed to explicitly declare the runtime exceptions that can be thrown
and the JavaDocs were clarified to describe the getScheduledExecutionTime and
getPeriod methods.

WorkEvent

The getWork method was removed and replaced with the getWorkItem method to
allow the WorkListener to correlate the event with a specific WorkItem.

WorkManager

The waitForAll and waitForAny methods were updated to throw a
java.lang.InterruptedException. This is required to signal the caller that the
wait has been interrupted. These methods will also now throw a
java.lang.IllegalArgumentException if the Collection is null or
timeout is negative.

The waitForAny method now returns an empty Collection object instead of a null.

WorklItem

The getResult() method was added and the interface changed to extend
Comparable.

RemoteWorkItem
The getResult() method was removed and added to the WorkItem super
interface.

Timer Architecture

The Timer API is comprised of three primary interfaces: TimerManager, Timer, and
TimerListener. Applications use a TimerManager to schedule
TimerListeners. Each of the TimerManager schedule methods returns a Timer
object. The returned Timer can then be queried and/or cancelled. Applications are
required to implement the TimerListener interface and may optionally implement
one or both of the CancelTimerListener and StopTimerListener interfaces.
When a timer expires, the timerExpired () method on the provided
TimerListener instance is executed. This execution is always in the same JVM as
the thread that scheduled the timer with the TimerManager. TimerManager
provides a set of schedule () and scheduleAtFixedRate () methods which take
a TimerListener instance along with other parameters (including absolute first
execution time, relative delays before first execution, and execution periods) and returns
a Timer instance.

It is important to note the difference between fixed-delay execution, provided by the
series of schedule () methods that take a period parameter, and fixed-rate
execution, provided by the series of scheduleAtFixedRate () methods. Fixed-
delay means that the period parameter specifies the time between actual execution time
of the last timerExpired () method call. If the timerExpired() call was
delayed for any reason (e.g., TimerManager suspension, garbage collection or other
background activity), this is taken into account. This is contrasted by fixed-rate

execution, which tries to keep timerExpired () “caught up” and on schedule. Thus,
under fixed-rate execution, the actually time interval between timerExpired|()
executions may be much smaller than the specified period.

The Timer instance returned by the TimerManager can be used to manipulate the
timer (e.g., cancel, determine time to next execution, etc.).

A managed environment can support an arbitrary number of independent
TimerManager instances. The common method for obtaining a TimerManager
instance is through a JNDI lookup to the local Java environment (i.e.,
java:comp/env/timer/[timername]). Thus, Timer Managers are configured at
deployment time through deployment descriptors, and may be further configured through
implementation-specific management features. Each JNDI 1lookup() for a
TimerManager returns a new logical instance of TimerManager. Thus, applications
need to cache copies of TimerManager if they intend to reuse the same instance.
TimerManager is thread-safe.

This specification places no requirements on persistence of timers: if the managed
environment is shut down or fails, the timers will be irrevocably lost unless the
implementation supports a higher quality of service.

TimerManager may also be suspended and resumed via the suspend () and
resume () methods. When a TimerManager is suspended, all pending timers are
deferred until the TimerManager is resumed and all in-flight TimerListeners are
allowed to complete.

TimerManager can also be destroyed via the stop () method. After stop () has
been called, all Timers will be stopped and the TimerManager instance will never
expire another timer.

Timer Interface
The Timer interface, instances of which are returned when timers are scheduled with the
TimerManager, provides several capabilities:

* cancel(): Cancels the timer that is currently pending. If the listener associated
with this timer implements the CancelTimerListener interface, the listener
will be notified via the timerCancel () callback.

* getPeriod(): This returns the period that is used to compute the next time the
timer will expire.

* getScheduledExecutionTime (): This returns the absolute time in
milliseconds that the timer is scheduled to expire. If this method is executed
while the associated TimerListener execution is in progress, this value will be that
of the current TimerListener execution.

* getTimerListener (): Returns the TimerListener associated with the
timer.

Timer Listener Interfaces

The base TimerListener interface provides the timerExpired() callback. It is
anticipated that this is sufficient for many applications. However, additional callbacks for
timers being cancelled and TimerManagers being stopped are sometimes necessary.
Listener classes can implement CancelTimerListener if they want the
timerCancel () callback in the case that the application cancels a Timer. Listener
classes can implement the StopTimerListener if they want the timerStop ()
callback in the case that the TimerManager on which the Timer was scheduled is
stopped. Listener classes can also implement both CancelTimerListener and
StopTimerListener if desired.

Work Manager Architecture

The Work Manager API is comprised of six primary interfaces: WorkManager, Work,
WorkItem, RemoteWorkItem, WorkListener, and WorkEvent. The
WorkManager interface provides a set of schedule() methods whereby Work can be
scheduled for execution. The WorkManager then returns a WorkItem, which can be
used to get the status of the in-flight work. The WorkManager executes the scheduled
work using an implementation-specific strategy. Most implementations will use thread
pools. Configuration of WorkManager thread pools or other resources is vendor-
dependent.

A managed environment can support an arbitrary number of independent
WorkManager instances. The primary method for obtaining a WorkManager instance
is through a JNDI lookup to the local Java environment (i.e.,
java:comp/env/wm/[work manager name]). Thus, Work Managers are
configured at deployment time through deployment descriptors as resource-refs
(see Deployment below). Each JNDI 1lookup () of a specific WorkManager (e.g.
wm/MyWorkManager) returns a shared instance of that WorkManager.
WorkManager is a thread-safe.

This specification places no requirements on persistence of in-flight Work: if the
managed environment is shut down or fails, the work will be irrevocably lost unless the
particular implementation in use supports a higher quality of service.

Work Lifecycle

Work objects can be defined as long-lived (daemon) by returning a value of true from the
isDaemon() method. Daemon Works can outlive the Servlet request or EJB method that
scheduled it, but will automatically be released when the application is stopped. These
Works do not use a thread from a pool.

Short-lived, non-daemon Works are allocated from a thread pool. Normally, short-lived
Works should complete before the submitting Servlet request or EJB method terminates.
The WorkManager .waitForAll () method can be used to wait for the Works to
complete, or the Works can be released using the Work.release() or
RemoteWorkItem.release() methods. Short-lived Works may exceed the the life
of the submitting request method as long as the Work doesn’t utilize resources that are

tied to the method’s duration. For example, a javax.servlet.ServletResponse
object is only valid during the request and is invalid after the request completes.

Remote Execution of Work

The Work Manager API supports, but by no means mandates, implementation strategies
whereby Work can be executed in a JVM that is remote with respect to the JVM on
which the WorkManager is executing. Implementations may choose to farm out Work
to remote JVMs when the underyling platform is a parallel architecture and supports
high-speed communication between JVMs, for example.

If a Work instance that is scheduled on a WorkManager implements
java.io.Serializable, this indicates to the WorkManager that remote
execution (in a separate JVM) of that Work is possible. In this case, the WorkManager
returns a RemoteWorkItem, and thus the client can reliably downcast from
WorkItem to RemoteWorkItem. Note that many implementations of WorkManager
will execute the Work locally even if the Work instance implements
java.io.Serializable.

If the client’s Work instance implements java.io.Serializable, the client must
not rely on the Work instance submitted to the WorkManager to be current as it may be
executing remotely. Rather, the client should use the getResult () method on the
RemoteWorkItem. This returns the Work instance after it has been deserialized from
remote execution. Note that in some implementations, the Work instance submitted to
the WorkManager may be fresh, but this is not guaranteed behavior.

Work Listener

A WorkListener can be specified when work is being scheduled. The
WorkManager will call back on WorkListener for various work events (e.g.
accepted, rejected, started, completed).

WorkListener instances are always executed in the same JVM as the thread that
scheduled the Work with the WorkManager.

Waiting for Completion of Work
WorkManager also provides simple APIs for common join tasks. W"orkManager
provides two semantics:

* waitForAll(): blocks until all specified WorkItems complete, or until the
specified timeout. Returns true if all items completed within the specified
timeout value, and false otherwise.

* waitForAny (): blocks until any of the specified WorkItems complete until
the specified timeout and returns the Collection of completed WorkItems. If no
WorkItems completed within the specified timeout, an empty Collection
object is returned.

Two special timeout values are defined:

* WorkManager.INDEFINITE: Waits indefinitely for all/any of the work to
complete.

* WorkManager.IMMEDIATE: Checks the current state for all/any of the work to
complete and returns immediately.

Timer Deployment

Applications signal their need for a timer manager through including a resource-ref
in the appropriate deployment descriptor (e.g., web.xml, ejb-jar.xml, ra.xml, etc.). The
suggested name prefix for the JINDI namespace for TimerManager objects is
java:comp/env/timer.

The following provides an example resource-ref fragment configuring a
TimerManager named MyTimer:

<resource-ref>
<res-ref-name>timer/MyTimer</res-ref-name>
<res-type>commonj.timer.TimerManager</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Unshareable</res-sharing-scope>
</resource-ref>

Work Manager Deployment

Applications signal their need for a work manager by including a resource-ref in the
appropriate deployment descriptor (e.g., web.xml, ejb-jar.xml, ra.xml, etc.). The
suggested name prefix for the JINDI namespace for WorkManager objects is
java:comp/env/wmnm.

The following provides an example resource-ref fragment configuring a WorkManager
named MyWorkManager:

<resource-ref>
<res-ref-name>wm/MyWorkManager</res-ref-name>
<res-type>commonj.work.WorkManager</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

Timer Examples

The following example shows a TimerManager being looked up in JNDI and used to
schedule a timer that fires in 60 seconds.

InitialContext ctx = new InitialContext();

TimerManager mgr = (TimerManager)
ctx.lookup("java:comp/env/timer/MyTimer");

TimerListener listener =
new StockQuoteTimerListener("QQQ", "johndoe@example.com™);

// schedule timer to expire 60 seconds from now
mgr.schedule(listener, 1000*60);

The above code relies on the StockQuoteTimerListener class, which could be
defined as follows:

import commonj.timers.Timer;
import commonj.timers.TimerListener;

public class StockQuoteTimerListener implements TimerListener {
private String ticker;
private String email;

public StockQuoteTimerListener(String ticker, String email) {
this.ticker = ticker;
this.email = email;

3

public void timerExpired(Timer timer) {
// retrieve stock quote for ticker and
// email quote to recipient
System.out.println("sent stock quote for " +
ticker + " to " + email);
System.out.println("timer will fire again: " +
timer.getScheduledExecutionTime());

3

The TimerManager allows other fixed-delay schedule methods, as shown below:

// schedule timer to expire 60 seconds from now
mgr.schedule(listener, 1000*60);

// schedule timer to expire 60 seconds from now
// and repeat every 30 seconds
mgr.schedule(listener, 1000*6c0, 1000*30);

// schedule timer to expire at noon today
Calendar cal = Calendar.getInstance();
cal.set(Calendar.HOUR, 12);
mgr.schedule(listener, cal.getTime());

// schedule timer to expire at noon today

// and repeat every hour thereafter

cal = Calendar.getInstance();
cal.set(Calendar.HOUR, 12);

mgr.schedule(listener, cal.getTime(), 1000*60*60);

The scheduleAtFixedRate () method can also be used:
// schedule timer to expire 60 seconds from now

// and repeat every 30 seconds
mgr.scheduleAtFixedRate(listener, 1000*60, 1000*30);

// schedule timer to expire at noon today

// and repeat every hour thereafter

cal = Calendar.getInstance();

cal.set(Calendar.HOUR, 12);

mgr.scheduleAtFixedRate(listener, cal.getTime(), 1000*60*60);

The following shows an example listener class similar to the previous listener class, but it
implements both StopTimerListener and CancelTimerListener:

import commonj.timers.CancelTimerlListener;
import commonj.timers.StopTimerListener;
import commonj.timers.Timer;

public class StockQuoteTimerlListener?2
implements StopTimerListener, CancelTimerListener {

private String ticker;
private String email;

public StockQuoteTimerListener2(String ticker, String email) {
this.ticker = ticker;
this.email = email;

3

public void timerStop(Timer timer) {

System.out.println("Timer stopped: " + timer);

3

public void timerCancel(Timer timer) {
System.out.println("Timer cancelled: " + timer);

3

public void timerExpired(Timer timer) {
// retrieve stock quote for ticker and
// email quote to recipient
System.out.println("sent stock quote for " +
ticker + " to " + email);
System.out.println("timer will fire again: " +
timer.getScheduledExecutionTime());

3

Here is an example deployment descriptor that configures the TimerManager used
above:

<?xml version="1.0" encoding="IS0-8859-1"?>
<web-app ..>

<display-name>A Simple Application</display-name>

<servlet>
<servlet-name>OrderTracking</servlet-name>
<servlet-class>com.mycorp.OrderTracking</servlet-class>

</servlet>

<resource-ref>
<res-ref-name>timer/MyTimer</res-ref-name>
<res-type>commonj.timer.TimerManager</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Unshareable</res-sharing-scope>

</resource-ref>

</web-app>

Work Manager Examples

The following example shows a WorkManager being looked up in JNDI and used to
schedule work:

import commonj.work.*;

RetrieveDataWork workl =

new RetrieveDataWork(new URI("http://www.example.com/1"));
RetrieveDataWork work2 =

new RetrieveDataWork(new URI("http://www.example.com/2"));
InitialContext ctx = new InitialContext();
WorkManager mgr = (WorkManager)

ctx.lookup("java: comp/env/wm/MyWorkManager™);
WorkItem wil = mgr.schedule(workl);
WorkItem wi2 = mgr.schedule(work2);

This example uses a RetrieveDataWork class, which is a fictitious worker classes
that retrieves data from a resource specified by a URI:

public class RetrieveDataWork implements Work {
private URI uri;
private String data;

public RetrieveDataWork(URI uri) {
this.uri = uri;

3

public void release() {
// release my resources

3

public boolean isDaemon() {
return false;

3

public void run() {
// do the actual work here
data = "Hello, World";

public String getData() {
return data;

3

public String toString() {
return "RetrieveDataWork(" + uri + ")";
3
3

The following example shows an example deployment descriptor for a Servlet that
configures the WorkManager used above.

<?xml version="1.0" encoding="IS0-8859-1"?>
<web-app ..>
<display-name>A Simple Application</display-name>
<servlet>
<servlet-name>OrderTracking</servlet-name>
<servlet-class>com.mycorp.OrderTracking</servlet-class>
</servlet>
<resource-ref>
<res-ref-name>wm/MyWorkManager</res-ref-name>
<res-type>commonj.work.WorkManager</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>
</web-app>

The following example, building on the prior example, shows how the application can
block waiting for these work items to complete:

// block until all items are done

Collection coll = new Arraylist();
coll.add(wil);

coll.add(wi2);

mgr.waitForAll(coll, WorkManager.INDEFINITE);

Once the application knows that work is completed, the data can be retrieved from the
Work object:

System.out.println("workl data: " + workl.getData());
System.out.println("work2 data: " + work2.getData());

The next example is a slight variation on the example above: the application blocks
waiting for any of the items to complete. waitForAny () returns the WorkItem(s)
that completed, at which point we can extract the result and continue:

String result = null;

Collection coll = new ArraylList();

coll.add(wil);

coll.add(wi2);

Collection finished = mgr.waitForAny(coll, WorkManager.INDEFINITE);

if(finished.size() '= 0) {
Iterator i = finished.iterator();
if(i.hasNext()) {
WorkItem wi = (WorkItem) i.next();
if(wi.equals(wil)) {
result = workl.getData(Q);
} else if(wi.equals(wi2)){
result = work2.getData();
ks

3

Alternatively, the WorkItem can be used directly to get the resulting Work object to
avoid correlating the objects. This is always necessary if the Work was executed
remotely since the result needs to be serialized back to the submitter. Work objects can
optionally be executed remotely if the Work implements Serializable.

// block until any of the items are done

String result = null;

Collection coll = new ArraylList();

coll.add(wil);

coll.add(wi2);

Collection finished = mgr.waitForAny(coll, WorkManager.INDEFINITE);

Iterator i = finished.iterator();

if(i.hasNext()) {
RemoteWorkItem wi = (RemoteWorkItem) i.next();
RetrieveDataWork work = (RetrieveDataWork) wi.getResult();
result = work.getData(Q);

The application can also check the status of the WorkItem instances at any time:

if(wil.getStatus() == WorkEvent.WORK_COMPLETED) {
System.out.println(“wil completed”);
ks

When scheduling work with a WorkManager, a WorkListener can be used. To use
aWorkListener, a concrete class first needs to be defined that implements the
WorkListener interface. This example illustrates how the listener can use a
synchronized TreeMap to correlate WorkItem to Work objects:

import commonj.work.Work;

import commonj.work.WorkEvent;
import commonj.work.WorkItem;
import commonj.work.WorkListener;

public class Examplelistener implements WorkListener ({
protected java.util.Map workMap =
java.util.Collections.synchronizedMap (new java.util.TreeMap());

public void workAccepted (WorkEvent we) {
System.out.println ("Work Accepted: " + getWork (we.getWorkItem()))
}

public void workRejected (WorkEvent we) {
System.out.println ("Work Rejected: " + removeWork (we.getWorkItem())):

}

public void workStarted (WorkEvent we) {
System.out.println ("Work Started: " + getWork (we.getWorkItem()));
}

public void workCompleted (WorkEvent we) {
System.out.println ("Work Completed: " + removeWork (we.WorkItem())):;
}

public void addWork (WorkItem wi, Work w) {
workMap.put (wi, w);

}

public Work getWork (WorkItem wi) {
return (Work)workMap.get (wi);

}

public Work removeWork (WorkItem wi) {
return (Work)workMap.remove (wi) ;

}

Once the listener class is defined, it can be used in conjunction with the WorkManager:

RetrieveDataWork workl =
new RetrieveDataWork(new URI("http://www.example.com/1"));
RetrieveDataWork work2 =
new RetrieveDataWork(new URI("http://www.example.com/2"));
InitialContext ctx = new InitialContext();
WorkManager mgr = (WorkManager)
ctx.lookup("java: comp/env/wm/MyWorkManager™);
WorkListener listener = new ExamplelListener();
WorkItem wil =
mgr.schedule(workl, listener);
listener.addWork(wil,workl);
WorkItem wi2 =
mgr.schedule(work2,listener);
listener.addWork(wi2,work2);

References
[1] JSR 112, J2EE Connector Architecture 1.5. http://www.jcp.org/en/jsr/detail?id=112

Trademarks
IBM is a registered trademark of International Business Machines Corporation.

BEA is a registered trademark of BEA Systems, Inc.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

