Advanced Bash-Scripting Guide

An in-depth exploration of the art of shell scripting

Mendel Cooper

<thegrendel .abs@gmail.com>
10
10 Mar 2014

Revision History

Revision 6.5 05 Apr 2012 Revised by: mc
"TUNGSTENBERRY release

Revision 6.6 27 Nov 2012 Revised by: mc
"YTTERBIUMBERRY' release

Revision 10 10 Mar 2014 Revised by: mc

'PUBLICDOMAIN' release

This tutorial assumes no previous knowledge of scripting or programming, yet progresses rapidly toward an
intermediate/advanced level of instruction . . . all the while sneaking in little nuggets of UNIX® wisdom and
lore. It serves as a textbook, a manual for self-study, and as a reference and source of knowledge on shell
scripting techniques. The exercises and heavily-commented examples invite active reader participation, under
the premise that the only way to really learn scripting is to write scripts.

This book is suitable for classroom use as a general introduction to programming concepts.

This document is herewith granted to the Public Domain. No copyright!

Dedication

For Anita, the source of all the magic

mailto:thegrendel.abs@gmail.com

Advanced Bash-Scripting Guide

Table of Contents

Chapter 1. Shell Programming!

hapter 2. Starting Off With a Sha-Ban

Part 2. Basics

Chapter 3. Special Characters

30

Chapter 4. Introduction to Variables and Parameters

4.1. Variable SUDSHLULION.uueeiieeeieeteeeeeeeeeeeeeeeeeererereeeeeeeeeeseseeeeeees

Chapter 5. Quoting

... 30
... 33
... 34
... 35

5.1. Quoting Variables.......ceeoueeierieiieiierie ettt
5.2, BSCAPIME .ttt ettt sttt sttt sbe e bt e bt e b e bt e naeas

51

Chapter 6. Exit and Exit Status,
Chapter 7. Tests

54

T, TSt COMSIITICES . ..vvuuuuueeeeeieeeeiitiee e et e e ettt e e e e e e ettt e e e e e e eeessaaaanaans

Chapter 8. Operations and Related Topics

... 54
... 62
... 65
... 70
... 71

72

8. 1. OPEIALOIS . uveeeuvreetreeiteeniteeeteesbeeebee ettt enbaeesabeesabeesabeesbeeebeeenareesareesares
8.2. NUMETICAl CONSLANLS ..evvviviiiiiiiieieieieeeeeeeeee et ee et eeereeeseeeeseeeeeesnes

8.3. The Double-Parentheses CONSIIUCE..........ccoveviiiieiiiiiieieeeeeeeeeeeeeeeeeeeeans
8.4. Operator PreCedenCe. .. .covrerureeriiiiiieeiieeniieesiee ettt

Part 3. Bevond the Basics.

... 72
... 78
... 80
... 81

84

Chapter 9. Another Look at Variables

9.1. Internal VariableS.....ccuvvviiiiiiiiieeeeie e
9.2. Typing variables: declare Or tyPESEL........ceerveerueeeerrieerieeieeieeieeeeeiens

9.2.1. Another use for deClare...........ooovuvvveeeiiiiiiiieiiieeeeeeeeee e
9.3. SRANDOM: generate random inteZeL.......oververeererrerrereeeereerereereeeerenes

Chapter 10. Manipulating Variables

10.1. Manipulating STNGSccoeerreerueerieerieenieenieenieesieeniee st et e sieesbe e e e naeas

10.1.1. Manipulating strings using awk..........cecoeereereeneeneeneeneeneeneenn
10.1.2. Further REfEreNCEoooveeeeeeeeeeeeeeeeeeeeeeee e

10.2. Parameter SUDSUEULION. ...vvvvvereeiiiiiiiieeeeeeeeeeeeeeeeeeeee e e e e eeeeeeeeeeeeaes

Advanced Bash-Scripting Guide

Table of Contents

Chapter 11. Loops and Branches 138
L L L 00D ettt ettt ettt ettt ettt ettt e sa e st e sa e et e bt e bt e bt e bt e e eab e e e b et e bt e e b et e baeenabeesabeesabeean 138
11.2. INESIEA LLOODS: c-veeuveeuteenteeieenteeteerttet e e bt esteesbe e bt e bt e bt esbeesbeesbee bt enbtesbeesbeesbeesbeesbtesbeesbeesaeesaeesaeenns 152
11.3. 100D COMEIOL. ..ttt ettt ettt ettt b e bt e s bt e bt e bt e bt e s bt e sbeesbeesbeesbtesbeesbeesaeesaeesaeenas 153
11.4. Testing and Branching.......co.eeoueeruiiitieiieiieee ettt sttt st st st 156
Chapter 12. Command Substitution 165
Chapter 13. Arithmetic Expansion 171
Chapter 14. Recess Time, 172
Part 4. Commands 173
Chapter 15. Internal Commands and Builtins 181
15.1. JOb Control COMIMANGS.uvvvveeiiiiiiiiiiiieieeeee et e e e e e e e e e e e e e e e e e s ee s sasasaasasssssasesessseesenes 210
Chapter 16. External Filters, Programs and Commands 215
16.1. BASIC COMIMANUS. .. .vvvveeeieieeeeieeeseeesesesesesesasssssssssssessssnsssssssssssessssesanes 215
16.2. ComPIeX COMMANGAS ... ceveerteetietietterteerteest et te bt et testeesteesbeesbeesbeesbtesbeesbeesbeesstesbeesbeesaeesaeesneenas 221
16.3. Time / Date COMIMANGS.....uvvveeeeiiiiiiiiiiiieeeeeeeeee et ee e e e e e e e e e e e e e e e e e e eeseesssssssssasassasasssssssssesssseseees 231
16.4. Text Processing COMMANAS cooveertierteenientieniieriierttentee st estee st eesttesbeesteesbeesbeesbtesbeesbeesaeesaeesaeenas 235
16.5. File and Archiving COMMANGS. ... ccoveerteerteeriientientientientte st ettt tesite st et e st et e bt e sbeesbeesaeesaeesaeeeas 258
16.6. Communications COMMEANASceviiiiiiiiieiieeeeeieeee ettt e et e e e e e e e e e e e e e e s sasasaaeasssssssesesaesesenes 276
16.7. Terminal Control COMMANGS.covvtiiieiiiieeieeieeeeieee et et e e e e e e e ee s e e e eaaeaaasasaaesesaeeeseees 291
16.8. Math COMIMIANGASuvvveeeeeeeeeeeeieeieieeeee ettt et eeeee et ettt e ettt eeeeeeseeeetstesesesesssessssssssssssasssssssssssssssssssssesenes 292
16.9. Miscellaneous COMMANGS.......vvvviiiiiiiiiieieieeeeeeeeee et e e e e e e e e e e e e e e eeeeesee s sssasasessasssssssssesseseneees 303
Chapter 17. System and Administrative Commands 318
17.1. Analyzing 8 SYSIEM SCIIPL. . eeveertiertiertientierteesteert et te et e sttt et te st e sbeesbeesbeesbeesbeesbeesaeesaeesaeenas 349
Part 5. Advanced Topics 351
Chapter 18. Regular Expressions. 353
18.1. A Brief Introduction to Regular EXPreSSiOnS.......cereereereerienienieniieniesitenitesitesite e sieesiee e 353
18.2. GIODDIME. e euveeuteentieiiett ettt ettt ettt et e bt e bt e bt e bt e sb e e s bt e s bt e bt e sbeesbeesbeesbeesbeesbtesbeesbeesaeesaeeeaeenas 357
Chapter 19. Here Documents 359
1.1, HET® STIIMES. .o euveeuteetieteeteeete et et et et e st e et e bt e bt et e e st e e sbeesb e e s bt e bt e sbeesbeesbeesbeenbteabeesbeesaeesaeesaeenas 369
Chapter 20. I/0 Redirection 373
20. 1. USIIZ EXEC . uveeuverureruteauteesterttesiteettesttesutessteshtesutesuteeueesbeeabeeabtesbeesbeeabeeabee bt e bt enbeesbeenbeenbeebeabeensean 376
20.2. Redirecting Code BIOCKS.ciutiiiiiiiiiei ettt ettt ettt be e bbb as 379
20.3. ADDICATIOMS v veeuteeiteeiteette et te et et ettt e st e e st eshteshteeutesbtesbeesbeesbeesheesbeeebee bt e bt e bt e sbeesbee bt ebeebeenbean 384
Chapter 21. Subshells 386

Advanced Bash-Scripting Guide

Table of Contents

Chapter 22. Restricted Shells 391
Chapter 23. Process Substitution 393
Chapter 24. Functions 398
24.1. Complex Functions and Function COMPIEXITIESeeuverveerrierierienieniieniienieenieesieesieesieesieeneeeneeas 402

24,2, T.0CAL VATTADIES. .. vttt e e e e e e e et e e e e e st e e e e e e e s e sasasssssasssssasasasasanes 413

24.2.1. Local variables and TECUISION. .. .uuuueeeeeeieeeeeeeeeeteeeeeeeeeeeeeeeeeeeeeeeeeesereeerereeeseeseeeseseeeseseeseses 414

24.3. Recursion Without 1ocal VariableS.coouvviiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeee e aaeaaaeaeaees 417
Chapter 25. Aliases 420
Chapter 26. List Constructs. 423
Chapter 27. Arrays 427
Chapter 28. Indirect References 456
Chapter 29. /dev and /proc 460
20 . L LBV e e e e e e e e e ————eeesaaa——————eeeeeaa——————eeesaaaar———aaeeeaaar——aaeesaanann 460

A I L 0] x0T RO ORORORPRPPPPPRPPPPPRRt 463
Chapter 30. Network Programming 469
hapter 31. Of Zeros and Nulls 472
Chapter 32. Debugging 476
Chapter 33. Options 487
Chapter 34. Gotchas 490
Chapter 35. Scripting With Style 499
35.1. Unofficial Shell Scripting StYIEShEet.......ccueviiiiiiiiiieieiete ettt 499
Chapter 36. Miscellany. 502
36.1. Interactive and non-interactive shells and SCIIPES........uereerierierienienierienteree st 502

36.2. SHEIL WIADDEIS . ..veuteeuteettertteriteetteette et e sttesttesutesttesutesutesbtesbeesbeesbeeebeeabee bt enbeenbeesbeesbeenbeenbeabeensean 503

36.3. Tests and Comparisons: AIEIMALIVES.ceterierierienieriertiesttesieeseesteesteesbeesbeesteesbeesbeenbeenbeeeeas 509

36.4. Recursion: a script Calling TESEIE.......couiiiiiiiiiiiieee ettt 509

RO TR T ©10) (o] u 41 1 oAl T3 4 10 1 USSR 512

36.6. ODUIMIZATIONS -+ vveeuteuteettertiestteetteetteette st testtesttesttesutesutesbeesbtesbeesbeeebeeabeenbeenbeenbeesbeesbeanbeenbeanbeensean 525

36.7. ASSOTEEA TIPS, ..ttt ettt ettt e b e b e e s bt e s bt e s bt e sbe e s bt e bt e bt e bt e sbeesbeenbeenbeebeenbean 528

36.7.1. Ideas for more POWETTUL SCIIDESvevvtertterierieetierttertte st e st et et et ee et e e sbeesbee b enbeenbeenbeas 528

B0.7.2. WIAGEES ...ttt h et b e s bt e sb e e sbe e s bt e s bt e s bt e bt e beesbe e bt e nbe e be e beebean 539

36.8. SECUTLILY ISSUES. .. .eeuiiuiiiiieitie ittt ettt sttt et e st e bt e s bt e s bt e sbeesheesbe e bt e bt enbeesbeesbee bt ebeabeeneean 541

36.8.1. Infected Shell SCIIDES. . ..ueiterieeieiiesite ettt sttt et e st e b e b e e bt e sbeesbe e beebeenbean 541

36.8.2. Hiding Shell SCript SOUICE ... ccuveiutiiieriieiiieeiie ettt ettt ettt et e sbe e sbeeneeas 541

Advanced Bash-Scripting Guide

Table of Contents

Chapter 36. Miscellany

36.8.3. Writing Secure Shell SCIDPLS.......eevveerieeriierieieeieeeee e
36.9. Portability ISSUESeeoueeeeeteeiieieete ettt ettt ettt ettt et et eeean
36.9. 1. A TS SUILE ...coeeiieeieieieee oo aeaaeeeeeseeeeeeseeeees

36.10. Shell Scripting Under WindOWS.........ccceerueerieenieeniennieeieeieeieeieeeeieeeee

Chapter 37. Bash, versions 2, 3, and 4

544

37.1. BaSh, VEISION 2..eveeiieeiieeieieeeeeeeeeee e eeeeteee e e e et e e e e e eeaaaeeeeesseennaaaeeeeeseans
37.2. Bash, VEISION B...oooiieiiiiiiieeeeeeiieeeee et e e e e e e e e e eaaae e e e e s eeennaaeeeeeeeeans
37.2.1. Bash, VEISION 3.1 ..cccoiiiiiiiiieeeiieeieieee ettt e et eeeeeeans
37.2.2. Bash, VEISION 3.2.....cccooiiiiiiiieiiieieeeeee ettt e e e et e e e s eeeaaaeeeeeeeeans
37.3. Bash, VEISION Q...occooeeeieeeiiee oottt e et e et e e e s eeennaaeeeeeeeeans
37.3.1. Bash, VEISION 4. l..cccciiiiiiiiieeeeeeeieeeeee et e e e
37.3.2. Bash, VEISION 4.2ccooeeieiieeeeeeeeieeeeee e e e e e s eeaaaeeeeeeeen

544
548
551
552
552
559
560

564

Chapter 38. Endnotes

381, AULNOI'S INOLE...vvvveeeeeecieeeeeeee ettt e e e et e e e e seaaa e e e e e s s eennaaeeeeeeeeas
38.2. ADOUL the AULNOT......cceveieieie e e e e e e e e e
38.3. Where t0 GO FOr Help....o.eooveeiieiieiieeeieeeeeeeeeee e
38.4. Tools Used to Produce This BOOK........cccuvvvviiiiiiiiieiieeeeeeiiieeeee e

384 1. HArAWATE........cooeeeeeeeeeeeee ettt e e e e e e e e eaeaeeas

38.4.2. Software and PriNtWAaTE...........ccovuvvvieeeeiiiieeeeeeeeeeieeeeeeeeeeeieveeeeeeeeennns
L T T O3 C=1a 11 1T
38.0. DISCIAIMIETuuvvvvieeeeeeeiiieieee e eeeeee e e e e e et e e e e e eeae e e e e s senaaaeeeeesssensaaaeeeeeeeas

564
564
565
565
565
565
566
567

569

Bibliography.

Appendix A. Contributed Scripts

577

Appendix B. Reference Cards

787

Appendix C. A Sed and Awk Micro-Primer

Appendix D. Parsing and Managing Pathnames

792
792
795
798

802

Appendix E. Exit Codes With Special Meanings.

Appendix F. A Detailed Introduction to and Redirection

803

Appendix G. Command-Line Options.

805

G.1. Standard Command-L1in€ OPONS.cceerueertierienieniieneeneenieenieeieesieesieeneeens
G.2. Bash Command-L1ine OPLONS. .. .ccerveertierienienieniieneeseesieesieesteenieeneeesieeneeens

Appendix H. Important Files.

805
806

808

Advanced Bash-Scripting Guide

Table of Contents

Appendix 1. Important System Directories

809

Appendix J. An Introduction to Programmable Completion

811

Appendix K. Localization

814

Appendix L. History Commands

818

Appendix M. Sample .bashrc and .bash profile Files.

Appendix N. Converting D Batch Files to Shell Scripts

820

837

Appendix O. Exercises

841

O.1. ADALYZING SCIIPLS -+t euveeutteteeteete ettt ettt ettt et e e bttt et e ebeebe e beenbeenbeeeeeneeenee
O.2. WIING SCIIPES e uveeuteeuteenteeieeteete et ete et eteebeebeebeebeesteesteebeebeenbeeneeeeeenseenne

Appendix P. Revision History.

841
843

853

Appendix Q. Download and Mirror Sites

856

857

Appendix R. To Do List

Appendix S. Copyright.

858

Appendix T. ASCII Table

Chapter 1. Shell Programming!

No programming language is perfect. There is
not even a single best language; there are only
languages well suited or perhaps poorly suited
for particular purposes.

--Herbert Mayer
A working knowledge of shell scripting is essential to anyone wishing to become reasonably proficient at
system administration, even if they do not anticipate ever having to actually write a script. Consider that as a
Linux machine boots up, it executes the shell scripts in /et c/rc.d to restore the system configuration and
set up services. A detailed understanding of these startup scripts is important for analyzing the behavior of a
system, and possibly modifying it.

The craft of scripting is not hard to master, since scripts can be built in bite-sized sections and there is only a
fairly small set of shell-specific operators and options [1] to learn. The syntax is simple -- even austere --
similar to that of invoking and chaining together utilities at the command line, and there are only a few "rules"
governing their use. Most short scripts work right the first time, and debugging even the longer ones is
straightforward.

In the early days of personal computing, the BASIC language enabled
anyone reasonably computer proficient to write programs on an early
generation of microcomputers. Decades later, the Bash scripting
language enables anyone with a rudimentary knowledge of Linux or
UNIX to do the same on modern machines.

We now have miniaturized single-board computers with amazing
capabilities, such as the Raspberry Pi.

Bash scripting provides a way to explore the capabilities of these
fascinating devices.

A shell script is a quick-and-dirty method of prototyping a complex application. Getting even a limited subset
of the functionality to work in a script is often a useful first stage in project development. In this way, the
structure of the application can be tested and tinkered with, and the major pitfalls found before proceeding to
the final coding in C, C++, Java, Perl, or Python.

Shell scripting hearkens back to the classic UNIX philosophy of breaking complex projects into simpler
subtasks, of chaining together components and utilities. Many consider this a better, or at least more
esthetically pleasing approach to problem solving than using one of the new generation of high-powered
all-in-one languages, such as Perl, which attempt to be all things to all people, but at the cost of forcing you to
alter your thinking processes to fit the tool.

According to Herbert Mayer, "a useful language needs arrays, pointers, and a generic mechanism for building
data structures." By these criteria, shell scripting falls somewhat short of being "useful." Or, perhaps not. . . .

When not to use shell scripts

Chapter 1. Shell Programming! 1

http://www.raspberrypi.org/

Advanced Bash-Scripting Guide

e Resource-intensive tasks, especially where speed is a factor (sorting, hashing, recursion [2] ...)

¢ Procedures involving heavy-duty math operations, especially floating point arithmetic, arbitrary
precision calculations, or complex numbers (use C++ or FORTRAN instead)

¢ Cross-platform portability required (use C or Java instead)

e Complex applications, where structured programming is a necessity (type-checking of variables,
function prototypes, etc.)

e Mission-critical applications upon which you are betting the future of the company

e Situations where security is important, where you need to guarantee the integrity of your system and
protect against intrusion, cracking, and vandalism

¢ Project consists of subcomponents with interlocking dependencies

¢ Extensive file operations required (Bash is limited to serial file access, and that only in a
particularly clumsy and inefficient line-by-line fashion.)

¢ Need native support for multi-dimensional arrays

e Need data structures, such as linked lists or trees

¢ Need to generate / manipulate graphics or GUIs

® Need direct access to system hardware or external peripherals

¢ Need port or socket I/O

® Need to use libraries or interface with legacy code

¢ Proprietary, closed-source applications (Shell scripts put the source code right out in the open for all
the world to see.)

If any of the above applies, consider a more powerful scripting language -- perhaps Perl, Tcl, Python, Ruby
-- or possibly a compiled language such as C, C++, or Java. Even then, prototyping the application as a
shell script might still be a useful development step.

We will be using Bash, an acronym [3] for "Bourne-Again shell" and a pun on Stephen Bourne's now classic
Bourne shell. Bash has become a de facto standard for shell scripting on most flavors of UNIX. Most of the
principles this book covers apply equally well to scripting with other shells, such as the Korn Shell, from
which Bash derives some of its features, [4] and the C Shell and its variants. (Note that C Shell programming
is not recommended due to certain inherent problems, as pointed out in an October, 1993 Usenet post by Tom
Christiansen.)

What follows is a tutorial on shell scripting. It relies heavily on examples to illustrate various features of the
shell. The example scripts work -- they've been tested, insofar as possible -- and some of them are even useful
in real life. The reader can play with the actual working code of the examples in the source archive
(scriptname.sh or scriptname.bash), [5] give them execute permission (chmod u+rx
scriptname), then run them to see what happens. Should the source archive not be available, then
cut-and-paste from the HTML or pdf rendered versions. Be aware that some of the scripts presented here
introduce features before they are explained, and this may require the reader to temporarily skip ahead for
enlightenment.

Unless otherwise noted, the author of this book wrote the example scripts that follow.
His countenance was bold and bashed not.

--Edmund Spenser

Chapter 1. Shell Programming! 2

http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
http://bash.deta.in/abs-guide-latest.tar.bz2
http://www.tldp.org/LDP/abs/abs-guide.html.tar.gz
http://bash.deta.in/abs-guide.pdf
mailto:thegrendel.abs@gmail.com

Chapter 2. Starting Off With a Sha-Bang

Shell programming is a 1950s juke box . . .

--Larry Wall
In the simplest case, a script is nothing more than a list of system commands stored in a file. At the very least,
this saves the effort of retyping that particular sequence of commands each time it is invoked.

Example 2-1. cleanup: A script to clean up log files in /var/log

Cleanup
Run as root, of course.

cd /var/log

cat /dev/null > messages

cat /dev/null > wtmp

echo "Log files cleaned up."

There is nothing unusual here, only a set of commands that could just as easily have been invoked one by one
from the command-line on the console or in a terminal window. The advantages of placing the commands in a
script go far beyond not having to retype them time and again. The script becomes a program -- a tool -- and it
can easily be modified or customized for a particular application.

Example 2-2. cleanup: An improved clean-up script

#!/bin/bash
Proper header for a Bash script.

Cleanup, version 2

Run as root, of course.
Insert code here to print error message and exit if not root.

LOG_DIR=/var/log

Variables are better than hard-coded values.

cd SLOG_DIR

cat /dev/null > messages

cat /dev/null > wtmp

echo "Logs cleaned up."

exit # The right and proper method of "exiting" from a script.

A bare "exit" (no parameter) returns the exit status
#+ of the preceding command.

Now that's beginning to look like a real script. But we can go even farther . . .

Example 2-3. cleanup: An enhanced and generalized version of above scripts.

#!/bin/bash
Cleanup, version 3

Chapter 2. Starting Off With a Sha-Bang 3

Advanced Bash-Scripting Guide

Warning:

This script uses quite a number of features that will be explained

#+ later on.
By the time you've finished the first half of the book,
#+ there should be nothing mysterious about it.

LOG_DIR=/var/log

ROOT_UID=0 # Only users with SUID 0 have root privileges.
LINES=50 # Default number of lines saved.
E_XCD=86 # Can't change directory?

E_NOTROOT=87 # Non-root exit error.

Run as root, of course.

if ["SUID" —-ne "SROOT_UID"]

then
echo "Must be root to run this script."
exit SE_NOTROOT

fi

if [-n "S$1"]
Test whether command-line argument is present (non-empty) .
then

lines=$1
else

1lines=SLINES # Default, if not specified on command-line.
fi

Stephane Chazelas suggests the following,
#+ as a better way of checking command-line arguments,

#+ but this is still a bit advanced for this stage of the tutorial.

#

E_WRONGARGS=85 # Non-numerical argument (bad argument format) .
#

case "$1" in

") lines=50;;

[!10-9]) echo "Usage: “basename $0° lines-to-cleanup";
exit S$E_WRONGARGS; ;

&) lines=$1;;

esac

#

#* Skip ahead to "Loops" chapter to decipher all this.

cd $LOG_DIR

if ["pwd® != "SLOG_DIR"] # or if ["$PWD" != "SLOG_DIR"
Not in /var/log?
then
echo "Can't change to $LOG_DIR."
exit S$E_XCD

]

fi # Doublecheck if in right directory before messing with log file.

Far more efficient is:

#
cd /var/log || {
echo "Cannot change to necessary directory." >&2

exit S$E_XCD;

Chapter 2. Starting Off With a Sha-Bang

Advanced Bash-Scripting Guide

#* 0}

tail -n $lines messages > mesg.temp # Save last section of message log file.
mv mesg.temp messages # Rename it as system log file.

cat /dev/null > messages
#* No longer needed, as the above method is safer.

cat /dev/null > wtmp # ': > wtmp' and '> wtmp' have the same effect.
echo "Log files cleaned up."

Note that there are other log files in /var/log not affected

#+ by this script.

exit O
A zero return value from the script upon exit indicates success
#+ to the shell.

Since you may not wish to wipe out the entire system log, this version of the script keeps the last section of
the message log intact. You will constantly discover ways of fine-tuning previously written scripts for
increased effectiveness.

k sk sk

The sha-bang (#!) [6] at the head of a script tells your system that this file is a set of commands to be fed to
the command interpreter indicated. The #! is actually a two-byte [7] magic number, a special marker that
designates a file type, or in this case an executable shell script (type man magic for more details on this
fascinating topic). Immediately following the sha-bang is a path name. This is the path to the program that
interprets the commands in the script, whether it be a shell, a programming language, or a utility. This
command interpreter then executes the commands in the script, starting at the top (the line following the
sha-bang line), and ignoring comments. [8]

#!/bin/sh
#!/bin/bash
#!/usr/bin/perl
#!/usr/bin/tcl
#!/bin/sed —-f
#!/bin/awk —-f

Each of the above script header lines calls a different command interpreter, be it /bin/ sh, the default shell
(bash in a Linux system) or otherwise. [9] Using #! /bin/sh, the default Bourne shell in most commercial
variants of UNIX, makes the script portable to non-Linux machines, though you sacrifice Bash-specific
features. The script will, however, conform to the POSIX [10] sh standard.

Note that the path given at the "sha-bang" must be correct, otherwise an error message -- usually "Command
not found." -- will be the only result of running the script. [11]

#! can be omitted if the script consists only of a set of generic system commands, using no internal shell
directives. The second example, above, requires the initial #!, since the variable assignment line, 1ines=50,
uses a shell-specific construct. [12] Note again that #! /bin/sh invokes the default shell interpreter, which
defaults to /bin/bash on a Linux machine.

i) This tutorial encourages a modular approach to constructing a script. Make note of and collect
"boilerplate" code snippets that might be useful in future scripts. Eventually you will build quite an

Chapter 2. Starting Off With a Sha-Bang 5

Advanced Bash-Scripting Guide

extensive library of nifty routines. As an example, the following script prolog tests whether the script has
been invoked with the correct number of parameters.

E_WRONG_ARGS=85

script_parameters="-a -h -m -z"

-a = all, -h = help, etc.
if [$S# —ne SNumber_ of_ expected_args]

then

echo "Usage: "basename $0° S$script_parameters"

"basename $0° 1is the script's filename.

exit SE_WRONG_ARGS
fi
Many times, you will write a script that carries out one particular task. The first script in this chapter is
an example. Later, it might occur to you to generalize the script to do other, similar tasks. Replacing the
literal ("hard-wired") constants by variables is a step in that direction, as is replacing repetitive code
blocks by functions.

2.1. Invoking the script

Having written the script, you can invoke it by sh scriptname, [13] or alternatively bash
scriptname. (Not recommended is using sh <scriptname, since this effectively disables reading from
stdin within the script.) Much more convenient is to make the script itself directly executable with a chmod.

Either:

chmod 555 scriptname (gives everyone read/execute permission) [14]
or

chmod +rx scriptname (gives everyone read/execute permission)

chmod u+rx scriptname (gives only the script owner read/execute permission)

Having made the script executable, you may now test it by . /scriptname. [15] If it begins with a
"sha-bang" line, invoking the script calls the correct command interpreter to run it.

As a final step, after testing and debugging, you would likely want to move it to /usr/local/bin (as root,
of course), to make the script available to yourself and all other users as a systemwide executable. The script
could then be invoked by simply typing scriptname [ENTER] from the command-line.

2.2. Preliminary Exercises

1. System administrators often write scripts to automate common tasks. Give several instances where
such scripts would be useful.

2. Write a script that upon invocation shows the time and date, lists all logged-in users, and gives the
system uptime. The script then saves this information to a logfile.

Chapter 2. Starting Off With a Sha-Bang 6

Part 2. Basics

Table of Contents

3. Special Characters

4. Introduction to Variables and Parameters
4.1. Variable Substitution

4.2. Variable Assignment
4.3. Bash Variables Are Untyped
4.4. Special Variable Types
5. Quoting
5.1. Quoting Variables

5.2. Escaping
Exit and Exit Status
Tests

6.
7.

7.1. Test Constructs

7.2. File test operators

7.3. Other Comparison Operators

7.4. Nested 1 £/t hen Condition Tests

7.5. Testing Your Knowledge of Tests
8. Operations and Related Topics

8.1. Operators
8.2. Numerical Constants

8.3. The Double-Parentheses Construct
8.4. Operator Precedence

Part 2. Basics

Chapter 3. Special Characters

What makes a character special? If it has a meaning beyond its literal meaning, a meta-meaning, then we refer

to it as a special character. Along with commands and keywords, special characters are building blocks of
Bash scripts.

Special Characters Found In Scripts and Elsewhere

#

Comments. Lines beginning with a # (with the exception of #!) are comments and will not be
executed.

This line is a comment.

Comments may also occur following the end of a command.

echo "A comment will follow." # Comment here.
~ Note whitespace before

Comments may also follow whitespace at the beginning of a line.

A tab precedes this comment.

Comments may even be embedded within a pipe.

initial=(‘cat "Sstartfile" | sed —-e '"/#/d' | tr -d '\n' |\
Delete lines containing '#' comment character.

sed -e 's/\./\. /g' -e 's/_/_ /g')
Excerpted from life.sh script

<1> A command may not follow a comment on the same line. There is no method of
terminating the comment, in order for "live code" to begin on the same line. Use a new
line for the next command.

=) Of course, a quoted or an gscaped # in an echo statement does not begin a comment.
Likewise, a # appears in certain parameter-substitution constructs and in numerical
constant expressions.

echo "The # here does not begin a comment."
echo 'The # here does not begin a comment.'
echo The \# here does not begin a comment.
echo The # here begins a comment.

echo S$S{PATH#*:} # Parameter substitution, not a comment.
echo $((2#101011)) # Base conversion, not a comment.

Thanks, S.C.
The standard quoting and escape characters (" '\) escape the #.
Certain pattern matching operations also use the #.

Command separator [semicolon]. Permits putting two or more commands on the same line.

echo hello; echo there

Chapter 3. Special Characters 8

Advanced Bash-Scripting Guide

if [-x "Sfilename"]; then # Note the space after the semicolon.
#+ AN

echo "File S$filename exists."; cp S$filename S$filename.bak
else # an

echo "File S$filename not found."; touch $filename
fi; echo "File test complete."

Note that the ";" sometimes needs to be escaped.
Terminator in a case option [double semicolon].

case "Svariable" in

abc) echo "\$variable = abc" ;;
xyz) echo "\$variable = xyz" ;;
esac

&, &
Terminators in a case option (version 4+ of Bash).

"dot" command [period]. Equivalent to source (see Example 15-22). This is a bash builtin.

""dot"', as a component of a filename. When working with filenames, a leading dot is the prefix of a
"hidden" file, a file that an Is will not normally show.

bash$ touch .hidden-file
bash$ 1s -1

total 10

—rW—r——r—— 1 bozo 4034 Jul 18 22:04 datal.addressbook
—rW—r——r—— 1 bozo 4602 May 25 13:58 datal.addressbook.bak
—rW—r——r—— 1 bozo 877 Dec 17 2000 employment.addressbook

bash$ 1s -al

total 14

ArwXrwxr—x 2 bozo Dbozo 1024 Aug 29 20:54 ./

drwx—————— 52 bozo bozo 3072 Aug 29 20:51 ../

—rW—r——r—— 1 bozo bozo 4034 Jul 18 22:04 datal.addressbook
—rW—r——r—— 1 bozo bozo 4602 May 25 13:58 datal.addressbook.bak
—rW—r——r—— 1 bozo bozo 877 Dec 17 2000 employment.addressbook
—rW—YrwW-—Ir—— 1 bozo bozo 0 Aug 29 20:54 .hidden-file

When considering directory names, a single dot represents the current working directory, and two dots
denote the parent directory.

bash$ pwd
/home/bozo/projects

bash$ ed
bash$ pwd
/home/bozo/projects

bash$ ed ..
bash$ pwd
/home /bozo/

The dot often appears as the destination (directory) of a file movement command, in this context
meaning current directory.

Chapter 3. Special Characters 9

Advanced Bash-Scripting Guide

bash$ cp /home/bozo/current_work/junk/* .

Copy all the "junk" files to $PWD.

"dot'" character match. When matching characters, as part of a regular expression, a "dot" matches a
single character.

partial quoting [double quote]. "STRING" preserves (from interpretation) most of the special
characters within STRING. See Chapter 5.

full quoting [single quote]. 'STRING' preserves all special characters within STRING. This is a
stronger form of quoting than "STRING". See Chapter 5.

comma operator. The comma operator [16] links together a series of arithmetic operations. All are
evaluated, but only the last one is returned.

let "t2 = ((a =9, 15/ 3))"
Set "a = 9" and "t2 = 15 / 3"

The comma operator can also concatenate strings.

for file in /{,usr/}bin/*calc

" Find all executable files ending in "calc"
#+ in /bin and /usr/bin directories.
do

if [-x "S$file"]

then

echo $file

fi

done

/bin/ipcalc

/usr/bin/kcalc

/usr/bin/oidcalc
/usr/bin/oocalc

Thank you, Rory Winston, for pointing this out.
Lowercase conversion in parameter substitution (added in yersion 4 of Bash).
escape [backslash]. A quoting mechanism for single characters.

\X escapes the character X. This has the effect of "quoting" X, equivalent to 'X'. The \ may be used to
quote " and ', so they are expressed literally.

See Chapter 5 for an in-depth explanation of escaped characters.

Filename path separator [forward slash]. Separates the components of a filename (as in
/home/bozo/projects/Makefile).

This is also the division arithmetic operator.

command substitution. The “‘command” construct makes available the output of command for
assignment to a variable. This is also known as backquotes or backticks.

Chapter 3. Special Characters 10

Advanced Bash-Scripting Guide

null command [colon]. This is the shell equivalent of a "NOP" (no op, a do-nothing operation). It
may be considered a synonym for the shell builtin true. The ":" command is itself a Bash builtin, and
its exit status is true (0).

écho S? # 0
Endless loop:

while

do
operation-1
operation-2

operation—-n
done
Same as:
while true
do
..
done
Placeholder in if/then test:

if condition

then : # Do nothing and branch ahead
else # Or else

take-some—action
fi

Provide a placeholder where a binary operation is expected, see Example 8-2 and default parameters.

${username="whoami }

S{username='whoami’ } Gives an error without the leading :
unless "username" is a command or builtin...
${1?"Usage: $0 ARGUMENT"} # From "usage-message.sh example script.

Provide a placeholder where a command is expected in a here document. See Example 19-10.
Evaluate string of variables using parameter substitution (as in Example 10-7).

S{HOSTNAME?} ${USER?} ${MAIL?}
Prints error message
#+ 1f one or more of essential environmental variables not set.

Variable expansion / substring replacement.

In combination with the > redirection operator, truncates a file to zero length, without changing its
permissions. If the file did not previously exist, creates it.

> data.xxx # File "data.xxx" now empty.
Same effect as cat /dev/null >data.xxx
However, this does not fork a new process, since ":" is a builtin.

See also Example 16-15.

Chapter 3. Special Characters 11

Advanced Bash-Scripting Guide

In combination with the >> redirection operator, has no effect on a pre-existing target file (: >>
target_file). If the file did not previously exist, creates it.

<& This applies to regular files, not pipes, symlinks, and certain special files.

May be used to begin a comment line, although this is not recommended. Using # for a comment
turns off error checking for the remainder of that line, so almost anything may appear in a comment.
However, this is not the case with :.

This is a comment that generates an error, (if [$x -eqg 3]).

The ":" serves as a field separator, in /et c/passwd, and in the $PATH variable.

bash$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/sbin:/usr/sbin:/usr/games

A colon is acceptable as a function name.

: ()
{
echo "The name of this function is "S$FUNCNAME" "

Why use a colon as a function name?
It's a way of obfuscating your code.

}

The name of this function is
This is not portable behavior, and therefore not a recommended practice. In fact, more recent releases
of Bash do not permit this usage. An underscore _ works, though.

A colon can serve as a placeholder in an otherwise empty function.

not_empty ()
{

} # Contains a : (null command), and so is not empty.
reverse (or negate) the sense of a test or exit status [bang]. The ! operator inverts the exit status of

the command to which it is applied (see Example 6-2). It also inverts the meaning of a test operator.
This can, for example, change the sense of equal (=) to not-equal (!=). The ! operator is a Bash

keyword.

In a different context, the ! also appears in indirect variable references.

In yet another context, from the command line, the ! invokes the Bash history mechanism (see
Appendix L). Note that within a script, the history mechanism is disabled.

wild card [asterisk]. The * character serves as a "wild card" for filename expansion in globbing. By
itself, it matches every filename in a given directory.

bash$ echo *
abs-book.sgml add-drive.sh agram.sh alias.sh

Chapter 3. Special Characters 12

$* $@

$?

$$
0

Advanced Bash-Scripting Guide

The * also represents any number (or zero) characters in a regular expression.
arithmetic operator. In the context of arithmetic operations, the * denotes multiplication.
** A double asterisk can represent the exponentiation operator or extended file-match globbing.

test operator. Within certain expressions, the ? indicates a test for a condition.

In a double-parentheses construct, the ? can serve as an element of a C-style frinary operator. [17
condition?result—-if-true:result-if-false

((var0 = varl<9829:21))

4 A A
if ["Svarl" -1t 98]
then

var0=9

else

var0=21

fi

In a parameter substitution expression, the ? tests whether a variable has been set.

wild card. The ? character serves as a single-character "wild card" for filename expansion in
globbing, as well as representing one character in an extended regular expression.

Yariable substitution (contents of a variable).

varl=5
var2=23skidoo

echo S$varl # 5
echo $var2 # 23skidoo

A $ prefixing a variable name indicates the value the variable holds.
end-of-line. In a regular expression, a "$" addresses the end of a line of text.

Parameter substitution.

Quoted string expansion. This construct expands single or multiple escaped octal or hex values into

ASCII [18] or Unicode characters.

positional parameters.

exit status variable. The $? variable holds the exit status of a command, a function, or of the script

itself.
process ID variable. The $$ variable holds the process ID [19] of the script in which it appears.

command group.

Chapter 3. Special Characters

13

Advanced Bash-Scripting Guide

(a=hello; echo $a)

!) A listing of commands within parentheses starts a subshell.

Variables inside parentheses, within the subshell, are not visible to the rest of the
script. The parent process, the script, cannot read variables created in the child
process, the subshell.

a=123
(a=321;)

echo "a = sa" # a =123
"a" within parentheses acts like a local variable.

array initialization.

Array=(elementl element2 element3)

{xxx,yyy,zzz,...}

{a..z}

{}

Brace expansion.

echo \"{These,words, are, quoted}\" # " prefix and suffix
"These" "words" "are" "quoted"

cat {filel,file2,file3} > combined_file
Concatenates the files filel, file2, and file3 into combined_file.

cp file22.{txt,backup}
Copies "file22.txt" to "file22.backup"

A command may act upon a comma-separated list of file specs within braces. [20] Filename
expansion (globbing) applies to the file specs between the braces.

<1 No spaces allowed within the braces unless the spaces are quoted or escaped.
echo {filel,file2}\ :{\ A," B",' C'}

filel : A filel : B filel : C file2 : A file2 : B file2
C

Extended Brace expansion.

echo {a..z} # abcdefghijklmnopgrstuvwzxyz
Echoes characters between a and z.

echo {0..3} # 0 1 2 3
Echoes characters between 0 and 3.

base64_charset=({A..Z} {a..z} {0..9} + / =)
Initializing an array, using extended brace expansion.
From vladz's "base64.sh" example script.

The {a..z} extended brace expansion construction is a feature introduced in version 3 of Bash.

Block of code [curly brackets]. Also referred to as an inline group, this construct, in effect, creates
an anonymous function (a function without a name). However, unlike in a "standard" function, the

Chapter 3. Special Characters 14

Advanced Bash-Scripting Guide

variables inside a code block remain visible to the remainder of the script.

bash$ { local a;
a=123; }
bash: local: can only be used in a
function
a=123
{ a=321; }
echo "a = S$a" # a = 321 (value inside code block)

Thanks, S.C.

The code block enclosed in braces may have I/O redirected to and from it.

Example 3-1. Code blocks and 1/0 redirection

#!/bin/bash
Reading lines in /etc/fstab.

File=/etc/fstab

{

read linel
read line2
} < $File

echo "First line in $File is:"
echo "$linel"

echo

echo "Second line in $File is:"
echo "$line2"

exit O
Now, how do you parse the separate fields of each line?

Hint: use awk, or
. . . Hans-Joerg Diers suggests using the "set" Bash builtin.

Example 3-2. Saving the output of a code block to a file

#!/bin/bash
rpm-check.sh

Queries an rpm file for description, listing,
+ and whether it can be installed.
Saves output to a file.

H o o

This script illustrates using a code block.

SUCCESS=0
E_NOARGS=65

if [-z "$1"]
then

Chapter 3. Special Characters

Advanced Bash-Scripting Guide
echo "Usage: “basename $0° rpm-file"
exit SE_NOARGS
fi

{ # Begin code block.

echo
echo "Archive Description:"
rpm —gpi $1 # Query description.
echo
echo "Archive Listing:"
rpm —gpl $1 # Query listing.
echo
rpm —-i —-test $1 # Query whether rpm file can be installed.
if ["$?" -eqg $SUCCESS]
then
echo "$1 can be installed."
else
echo "$1 cannot be installed."
fi
echo # End code block.
} > "Sl.test" # Redirects output of everything in block to file.

echo "Results of rpm test in file $1l.test"
See rpm man page for explanation of options.

exit O

=& Unlike a command group within (parentheses), as above, a code block enclosed by
{braces} will not normally launch a subshell. [21]

It is possible to iterate a code block using a non-standard for-loop.

{}
placeholder for text. Used after xargs —i (replace strings option). The {} double curly brackets are a
placeholder for output text.
ls . | xargs -i -t cp ./{} $1
AN AN
From "ex42.sh" (copydir.sh) example.
{h\
pathname. Mostly used in find constructs. This is not a shell builtin.
Definition: A pathname is a filename that includes the complete path. As an example,
/home/bozo/Notes/Thursday/schedule. txt. This is sometimes referred to as the
absolute path.
& The ";" ends the —exec option of a find command sequence. It needs to be escaped to
protect it from interpretation by the shell.
[]

test.

Chapter 3. Special Characters 16

(L1

[]

[]

$[...

()

Advanced Bash-Scripting Guide

Test expression between []. Note that [is part of the shell builtin test (and a synonym for it), not a
link to the external command /usr/bin/test.

test.

Test expression between [[]]. More flexible than the single-bracket [] test, this is a shell keyword.
See the discussion on the [[...]] construct.

array element.

In the context of an array, brackets set off the numbering of each element of that array.

Array[l]=slot_1
echo S${Array[1l]}

range of characters.
As part of a regular expression, brackets delineate a range of characters to match.
integer expansion.

Evaluate integer expression between $[.

echo $[$Sa+s$bl # 10

echo $[$a*S$Sb] # 21

Note that this usage is deprecated, and has been replaced by the ((...)) construct.
integer expansion.

Expand and evaluate integer expression between (()).

See the discussion on the ((...)) construct.

>&>>&>><<>

redirection.

scriptname >filename redirects the output of scriptname to file £ilename. Overwrite
filename if it already exists.

command &>filename redirects both the st dout and the stderr of command to £ilename.

&) This is useful for suppressing output when testing for a condition. For example, let us
test whether a certain command exists.

bash$ type bogus_command &>/dev/null

Chapter 3. Special Characters

17

Advanced Bash-Scripting Guide

bash$ echo $?
1

Or in a script:

command_test () { type "S$1" &>/dev/null; }
A
cmd=rmdir # Legitimate command.
command_test $cmd; echo $? # 0
cmd=bogus_command # Illegitimate command
command_test $cmd; echo $? # 1

command >&2 redirects stdout of command to stderr.

scriptname >>filename appends the output of scriptname to file filename. If
filename does not already exist, it is created.

[i] <>filename opens file £ilename for reading and writing, and assigns file descriptor i to it. If
filename does not exist, it is created.

process substitution.

(command) >
< (command)
In a different context, the "<" and ">" characters act as string comparison operators.

In yet another context, the "<" and ">" characters act as integer comparison operators. See also
Example 16-9.

<<
redirection used in a here document.

<<

redirection used in a here string.

ASCII comparison.

vegl=carrots
veg2=tomatoes

if [["$Svegl" < "Sveg2" 1]

then
echo "Although $vegl precede $veg2 in the dictionary,"
echo -n "this does not necessarily imply anything "
echo "about my culinary preferences."

else
echo "What kind of dictionary are you using, anyhow?"

fi

\<, >

word boundary in a regular expression.

Chapter 3. Special Characters 18

>|

Advanced Bash-Scripting Guide

bash$ grep '\<the\>' textfile

pipe. Passes the output (stdout) of a previous command to the input (stdin) of the next one, or to
the shell. This is a method of chaining commands together.

echo 1ls -1 | sh
Passes the output of "echo 1ls -1" to the shell,
#+ with the same result as a simple "l1ls -1".

cat *.lst | sort | unig
Merges and sorts all ".lst" files, then deletes duplicate lines.

A pipe, as a classic method of interprocess communication, sends the st dout of one process to the
stdin of another. In a typical case, a command, such as cat or echo, pipes a stream of data to a
filter, a command that transforms its input for processing. [22

cat $filenamel $filename2 | grep $search_word

For an interesting note on the complexity of using UNIX pipes, see the UNIX FAQ. Part 3.
The output of a command or commands may be piped to a script.

#!/bin/bash
uppercase.sh : Changes input to uppercase.

tr 'a-z' 'A-Z'
Letter ranges must be quoted
#+ to prevent filename generation from single-letter filenames.

exit O

Now, let us pipe the output of Is -1 to this script.

bash$ 1s -1 | ./uppercase.sh

—RW-RW-R—— 1 BOZO BOZO 109 APR 7 19:49 1.TXT
—RW-RW-R—— 1 BOZO BOZO 109 APR 14 16:48 2.TXT
—RW-R——R—— 1 BOZO BOZO 725 APR 20 20:56 DATA-FILE

&) The stdout of each process in a pipe must be read as the st din of the next. If this
is not the case, the data stream will block, and the pipe will not behave as expected.

cat filel file2 | 1ls -1 | sort
The output from "cat filel file2" disappears.

A pipe runs as a child process, and therefore cannot alter script variables.

variable="initial_value"
echo "new_value" | read variable
echo "variable = Svariable" # variable = initial_value

If one of the commands in the pipe aborts, this prematurely terminates execution of the
pipe. Called a broken pipe, this condition sends a SIGPIPE signal.

force redirection (even if the noclobber option is set). This will forcibly overwrite an existing file.

Chapter 3. Special Characters 19

http://www.faqs.org/faqs/unix-faq/faq/part3/

Chapter 3. Special Characters

Advanced Bash-Scripting Guide

OR logical operator. In a test construct, the Il operator causes a return of O (success) if either of the
linked test conditions is true.

Run job in background. A command followed by an & will run in the background.

bash$ sleep 10 &
[1] 850
[1]+ Done sleep 10

Within a script, commands and even loops may run in the background.

Example 3-3. Running a loop in the background

#!/bin/bash
background-loop.sh

for i in 1 2 345 6 7 8 9 10 # First loop.
do
echo —n "$i "
done & # Run this loop in background.
Will sometimes execute after second loop.

echo # This 'echo' sometimes will not display.

for i in 11 12 13 14 15 16 17 18 19 20 # Second loop.

do
echo —n "$i "
done
echo # This 'echo' sometimes will not display.
#

The expected output from the script:
12345678910
11 12 13 14 15 16 17 18 19 20

H =

Sometimes, though, you get:

11 12 13 14 15 16 17 18 19 20
123456789 10 bozo $

(The second 'echo' doesn't execute. Why?)

R

S

Occasionally also:
12345678910 11 12 13 14 15 16 17 18 19 20
(The first 'echo' doesn't execute. Why?)

S

Very rarely something like:
11 12 13 1 2 3 456 7 8 9 10 14 15 16 17 18 19 20
The foreground loop preempts the background one.

S

exit O
Nasimuddin Ansari suggests adding sleep 1
#+ after the echo —n "$i" in lines 6 and 14,

#+ for some real fun.

20

Advanced Bash-Scripting Guide

<1 A command run in the background within a script may cause the script to hang,
waiting for a keystroke. Fortunately, there is a remedy for this.
&&

AND logical operator. In a test construct, the && operator causes a return of 0 (success) only if both
the linked test conditions are true.

option, prefix. Option flag for a command or filter. Prefix for an operator. Prefix for a default
parameter in parameter substitution.

COMMAND -[Optionl] [Option2][...]
ls -al
sort —-dfu $filename

if [$filel -ot $file2]
then # ~

echo "File S$filel is older than S$file2."
fi

if [vl$all -eq "$b"]

then # ~
echo "$Sa is equal to Sb."
fi
if ["$c" -eq 24 -a "$d" -eq 47]
then # A A
echo "S$Sc equals 24 and $d equals 47."
fi

param2=${paraml : ~-SDEFAULTVAL}
A

The double-dash —— prefixes long (verbatim) options to commands.
sort —--ignore-leading-blanks
Used with a Bash builtin, it means the end of options to that particular command.

i) This provides a handy means of removing files whose names begin with a dash.

bash$ 1s -1
—-rw-r——r—— 1 bozo bozo 0 Nov 25 12:29 -badname

bash$ rm -- —-badname

bash$ 1s -1
total 0

The double-dash is also used in conjunction with set.

set —- $variable (asin Example 15-18)

Chapter 3. Special Characters 21

Advanced Bash-Scripting Guide

redirection from/to stdin or stdout [dash].

bash$ cat -
abc
abc

Ctl-D
As expected, cat - echoes stdin, in this case keyboarded user input, to stdout. But, does I/O
redirection using - have real-world applications?

(cd /source/directory && tar cf — .) | (cd /dest/directory && tar xpvf -)
Move entire file tree from one directory to another
[courtesy Alan Cox <a.cox@swansea.ac.uk>, with a minor change]

1) cd /source/directory
Source directory, where the files to be moved are.

2) &&
"And-list": if the 'cd' operation successful,
then execute the next command.
3) tar cf -
The 'c' option 'tar' archiving command creates a new archive,
the '"f' (file) option, followed by '-' designates the target file
as stdout, and do it in current directory tree ('.').
4) |
Piped to
5) (...)
a subshell

6) cd /dest/directory
Change to the destination directory.
7) &&
"And-1list", as above
8) tar xpvf -
Unarchive ('x'), preserve ownership and file permissions ('p'),
and send verbose messages to stdout ('v'),
reading data from stdin ('f' followed by '-'").

Note that 'x' is a command, and 'p', 'v', 'f' are options.

S S S e e o o o e e o o o e e o o o 3 e o o e 3 o

Whew!

More elegant than, but equivalent to:
cd source/directory
tar ¢f - . | (cd ../dest/directory; tar xpvf -)

Also having same effect:

cp —a /source/directory/* /dest/directory
Or:

cp —a /source/directory/* /source/directory/.[".]* /dest/directory
If there are hidden files in /source/directory.

SHE S S e e o o o

bunzip2 -c linux-2.6.1l6.tar.bz2 | tar xvf -

—-uncompress tar file—- | ——then pass it to "tar"--

If "tar" has not been patched to handle "bunzip2",

#+ this needs to be done in two discrete steps, using a pipe.

The purpose of the exercise is to unarchive "bzipped" kernel source.

Chapter 3. Special Characters

Advanced Bash-Scripting Guide

Note that in this context the "-" is not itself a Bash operator, but rather an option recognized by certain
UNIX utilities that write to stdout, such as tar, cat, etc.

bash$ echo "whatever" | cat -
whatever

Where a filename is expected, — redirects output to stdout (sometimes seen with tar cf), or
accepts input from stdin, rather than from a file. This is a method of using a file-oriented utility as
a filter in a pipe.

bash$ file
Usage: file [-bciknvzL] [-f namefile] [-m magicfiles] file...

By itself on the command-line, file fails with an error message.

Add a "-" for a more useful result. This causes the shell to await user input.

bashS$ file -
abc
standard input: ASCII text

bash$ file -
#!/bin/bash
standard input: Bourne-Again shell script text executable

Now the command accepts input from stdin and analyzes it.

The "-" can be used to pipe stdout to other commands. This permits such stunts as prepending lines
to a file.

Using diff to compare a file with a section of another:
grep Linux filel | diff file2 -

Finally, a real-world example using — with tar.

Example 3-4. Backup of all files changed in last day

#!/bin/bash

Backs up all files in current directory modified within last 24 hours
#+ in a "tarball" (tarred and gzipped file).

BACKUPFILE=backup-$ (date +%m-%d-%Y)

Embeds date in backup filename.

Thanks, Joshua Tschida, for the idea.
archive=${1:-$BACKUPFILE}

If no backup-archive filename specified on command-line,
#+ it will default to "backup-MM-DD-YYYY.tar.gz."

tar cvf - “find . -mtime -1 -type f -print® > S$Sarchive.tar

gzip $archive.tar
echo "Directory $PWD backed up in archive file \"S$archive.tar.gz\"."

Chapter 3. Special Characters 23

Advanced Bash-Scripting Guide

Stephane Chazelas points out that the above code will fail
#+ 1f there are too many files found
#+ or if any filenames contain blank characters.

He suggests the following alternatives:

find . —-mtime -1 -type f -print0 | xargs -0 tar rvf "Sarchive.tar"
using the GNU version of "find".

find . —-mtime -1 -type f —-exec tar rvf "Sarchive.tar" '{}' \;

portable to other UNIX flavors, but much slower.

exit O

nn "non

<1> Filenames beginning wit may cause problems when coupled with the
redirection operator. A script should check for this and add an appropriate prefix to
such filenames, for example . /-FILENAME, $PWD/-FILENAME, or
SPATHNAME /-FILENAME.

If the value of a variable begins with a —, this may likewise create problems.

var="-n"
echo $var
Has the effect of "echo -n", and outputs nothing.

previous working directory. A cd - command changes to the previous working directory. This uses
the $OLDPWD environmental variable.

"non non

<1> Do not confuse the "-" used in this sense with the "-" redirection operator just
discussed. The interpretation of the "-" depends on the context in which it appears.

Minus. Minus sign in an arithmetic operation.

Equals. Assignment operator

a=28

echo $a # 28

In a different context, the "=" is a string comparison operator.

Plus. Addition arithmetic operator.

In a different context, the + is a Regular Expression operator.

Option. Option flag for a command or filter.

Certain commands and builtins use the + to enable certain options and the — to disable them. In
parameter substitution, the + prefixes an _alternate value that a variable expands to.

%
moduloe. Modulo (remainder of a division) arithmetic operation.

Chapter 3. Special Characters 24

Advanced Bash-Scripting Guide
leie Tz = 5 % 30
echo $z # 2
In a different context, the % is a pattern matching operator.

home directory [tilde]. This corresponds to the SHOME internal variable. ~bozo is bozo's home
directory, and Is ~bozo lists the contents of it. ~/ is the current user's home directory, and Is ~/ lists the
contents of it.

bash$ echo ~bozo
/home /bozo

bash$ echo ~
/home /bozo

bash$ echo ~/
/home /bozo/

bash$ echo ~:
/home /bozo:

bash$ echo ~nonexistent-user
~nonexistent-user

~+
current working directory. This corresponds to the $PWD internal variable.

previous working directory. This corresponds to the SOLDPWD internal variable.
regular expression match. This operator was introduced with version 3 of Bash.
beginning-of-line. In a regular expression, a """ addresses the beginning of a line of text.
Uppercase conversion in parameter substitution (added in yersion 4 of Bash).

Control Characters
change the behavior of the terminal or text display. A control character is a CONTROL + key
combination (pressed simultaneously). A control character may also be written in octal or
hexadecimal notation, following an escape.
Control characters are not normally useful inside a script.

dctl-a

Moves cursor to beginning of line of text (on the command-line).
0Cctl-B

Backspace (nondestructive).
¢
Cctl-C

Break. Terminate a foreground job.

0
Ctl-D

Chapter 3. Special Characters 25

Advanced Bash-Scripting Guide

Log out from a shell (similar to exit).

EOF (end-of-file). This also terminates input from stdin.

When typing text on the console or in an xterm window, Ct1-D erases the character under
the cursor. When there are no characters present, Ct1-D logs out of the session, as expected.
In an xterm window, this has the effect of closing the window.

0 Ctl-E

Moves cursor to end of line of text (on the command-line).

0 Ctl-F

Moves cursor forward one character position (on the command-line).

0
Ctl-G

BEL. On some old-time teletype terminals, this would actually ring a bell. In an xterm it

might beep.
0
Ctl-H

Rubout (destructive backspace). Erases characters the cursor backs over while backspacing.

#!/bin/bash

Embedding Ctl-H in a string.

a="~H"H"

echo "abcdef"

echo

echo -n "abcdef$a "
Space at end *

echo

echo -n "abcdefs$a"

No space at end

echo; echo
a=$'\010\010"

a=5$"\b\b'
a=$'\x08\x08"'

4 o o3 o

S

Two Ctl-H's —-- backspaces
ctl-V ctl-H, using vi/vim
abcdef

abcd f

A

Backspaces twice.

abcdef
~ Doesn't backspace (why?).
Results may not be quite as expected.

Constantin Hagemeier suggests trying:

But, this does not change the results.

B

Now, try this.
rubout=""H "H "H"H"H"

echo -n "12345678"
sleep 2
echo -n "Srubout"
sleep 2

¢ctl-I

Chapter 3. Special Characters

5 x Ctl-H.

26

Advanced Bash-Scripting Guide

Horizontal tab.

0
Ctl-J

Newline (line feed). In a script, may also be expressed in octal notation -- \012' or in
hexadecimal -- "\x0Oa'".
0Ctl-K

Vertical tab.

When typing text on the console or in an xterm window, Ct 1-K erases from the character
under the cursor to end of line. Within a script, Ct 1-K may behave differently, as in Lee Lee
Maschmeyer's example, below.

0Cctl-L

Formfeed (clear the terminal screen). In a terminal, this has the same effect as the clear
command. When sent to a printer, a Ct 1-L causes an advance to end of the paper sheet.

0
Ctl-M

Carriage return.

#!/bin/bash
Thank you, Lee Maschmeyer, for this example.

read -n 1 -s -p \

$'Control-M leaves cursor at beginning of this line. Press Enter. \x0d'
Of course, '0d' is the hex equivalent of Control-M.

echo >&2 # The '-s' makes anything typed silent,
#+ so it is necessary to go to new line explicitly.

read -n 1 -s -p $'Control-J leaves cursor on next line. \x0a'
'Oa' is the hex equivalent of Control-J, linefeed.
echo >&2

#H4#

read —-n 1 -s -p $'And Control-K\x0Obgoes straight down.'
echo >&2 # Control-K is vertical tab.

A better example of the effect of a vertical tab is:

var=$'\x0aThis is the bottom line\x0bThis is the top line\x0a'

echo "Svar"

This works the same way as the above example. However:

echo "$var" | col

This causes the right end of the line to be higher than the left end.
It also explains why we started and ended with a line feed —-

#+ to avoid a garbled screen.

As Lee Maschmeyer explains:

In the [first vertical tab example] . . . the vertical tab

#+ makes the printing go straight down without a carriage return.
This is true only on devices, such as the Linux console,

#+ that can't go "backward."

The real purpose of VT is to go straight UP, not down.

Chapter 3. Special Characters 27

Advanced Bash-Scripting Guide

It can be used to print superscripts on a printer.
The col utility can be used to emulate the proper behavior of VT.
exit O

¢ Ctl-N

Erases a line of text recalled from history buffer [23] (on the command-line).
¢ctl-o0

Issues a newline (on the command-line).
dctl-p

Recalls last command from history buffer (on the command-line).
¢ctl-0

Resume (XON).

This resumes stdin in a terminal.
0 Cctl-R

Backwards search for text in history buffer (on the command-line).
¢Cctl-s

Suspend (XOFF).

This freezes st din in a terminal. (Use Ctl-Q to restore input.)
dctl-T

Reverses the position of the character the cursor is on with the previous character (on the
command-line).

dctl-u

Erase a line of input, from the cursor backward to beginning of line. In some settings, Ct1-U

erases the entire line of input, regardless of cursor position.
¢Cctl-v

When inputting text, Ct 1-V permits inserting control characters. For example, the following
two are equivalent:

echo -e '\x0a'
echo <Ctl-V><Ctl-J>

Ct1-V is primarily useful from within a text editor.
0ctl-w

When typing text on the console or in an xterm window, Ct 1-W erases from the character

under the cursor backwards to the first instance of whitespace. In some settings, Ct1-W
erases backwards to first non-alphanumeric character.
0ctl-x

In certain word processing programs, Cuts highlighted text and copies to clipboard.
0ctl-y

Chapter 3. Special Characters 28

Advanced Bash-Scripting Guide

Pastes back text previously erased (with Ct1-U or Ct1-W).
0ctl-z

Pauses a foreground job.
Substitute operation in certain word processing applications.
EOF (end-of-file) character in the MSDOS filesystem.
Whitespace
functions as a separator between commands and/or variables. Whitespace consists of either
spaces, tabs, blank lines, or any combination thereof. [24] In some contexts, such as variable

assignment, whitespace is not permitted, and results in a syntax error.

Blank lines have no effect on the action of a script, and are therefore useful for visually separating
functional sections.

$IES, the special variable separating fields of input to certain commands. It defaults to whitespace.

Separating each field from adjacent fields is either whitespace or some other designated character
(often determined by the $IFS). In some contexts, a field may be called a record.

Definition: A field is a discrete chunk of data expressed as a string of consecutive characters.

To preserve whitespace within a string or in a variable, use guoting.

UNIX filters can target and operate on whitespace using the POSIX character class [:space:].

Chapter 3. Special Characters

29

Chapter 4. Introduction to Variables and
Parameters

Variables are how programming and scripting languages represent data. A variable is nothing more than a
label, a name assigned to a location or set of locations in computer memory holding an item of data.

Variables appear in arithmetic operations and manipulation of quantities, and in string parsing.

4.1. Variable Substitution

The name of a variable is a placeholder for its value, the data it holds. Referencing (retrieving) its value is
called variable substitution.

$

Let us carefully distinguish between the name of a variable and its value. If variablel is the name
of a variable, then $variablel is a reference to its value, the data item it contains. [25]

bash$ wvariablel=23

bash$ echo variablel
variablel

bash$ echo $variablel

23
The only times a variable appears "naked" -- without the $ prefix -- is when declared or assigned,
when unset, when exported, in an arithmetic expression within double parentheses ((...)), or in the

special case of a variable representing a signal (see Example 32-5). Assignment may be with an = (as
in var1=27), in a read statement, and at the head of a loop (for var2 in 1 2 3).

Enclosing a referenced value in double quotes (" ... ") does not interfere with variable substitution.
This is called partial quoting, sometimes referred to as "weak quoting.” Using single quotes (' ...")
causes the variable name to be used literally, and no substitution will take place. This is full quoting,
sometimes referred to as 'strong quoting.' See Chapter 5 for a detailed discussion.

Note that $variable is actually a simplified form of $ {variable}. In contexts where the
$variable syntax causes an error, the longer form may work (see Section 10.2, below).

Example 4-1. Variable assignment and substitution

#!/bin/bash
ex9.sh

Variables: assignment and substitution
a=375

hello=S$a
AN

Chapter 4. Introduction to Variables and Parameters 30

Advanced Bash-Scripting Guide

No space permitted on either side of = sign when initializing variables.
What happens if there is a space?

"VARIABLE =value"
A
#% Script tries to run "VARIABLE" command with one argument, "=value".

"VARIABLE= value"

A

#% Script tries to run "value" command with

#+ the environmental variable "VARIABLE" set to "".

echo hello # hello
Not a variable reference, just the string "hello"

echo S$hello # 375

~ This *is* a variable reference.

echo ${hello} # 375

Likewise a variable reference, as above.
Quoting .

echo "S$Shello" # 375

echo "${hello}" # 375
echo
hello="A B C D"

echo S$hello # A BCD
echo "$hello" # A B C D

As we see, echo Shello and echo "Shello" give different results.
#

Quoting a variable preserves whitespace.

#

echo

echo 'Shello' # Shello

A A

Variable referencing disabled (escaped) by single quotes,
#+ which causes the "$" to be interpreted literally.

Notice the effect of different types of quoting.

hello= # Setting it to a null value.

echo "\Shello (null value) = Shello" # Shello (null value) =

Note that setting a variable to a null value is not the same as
#+ unsetting it, although the end result is the same (see below) .

It is permissible to set multiple variables on the same line,
#+ 1f separated by white space.
Caution, this may reduce legibility, and may not be portable.

varl=21 var2=22 var3=$V3

echo
echo "varl=S$varl var2=$var?2 var3=Svar3"

Chapter 4. Introduction to Variables and Parameters 31

Advanced Bash-Scripting Guide

May cause problems with legacy versions of "sh"

echo; echo

numbers="one two three"

A A
other_ numbers="1 2 3"
AN A

If there is whitespace embedded within a variable,
#+ then quotes are necessary.
other numbers=1 2 3

Gives an error message.

echo "numbers = $numbers"

echo "other numbers = S$Sother numbers" # other_numbers = 1 2 3

Escaping the whitespace also works.

mixed_bag=2\ —---\ Whatever

" ~ Space after escape (\).

echo "Smixed_bag" # 2 ——— Whatever

echo; echo

echo "uninitialized_variable = Suninitialized_variable"

Uninitialized variable has null value (no value at all!).
uninitialized_variable= # Declaring, but not initializing it --

#+ same as setting it to a null value, as

echo "uninitialized_variable = Suninitialized_variable"
It still has a null value.

uninitialized_variable=23 # Set it.
unset uninitialized_variable # Unset it.
echo "uninitialized_variable = Suninitialized_variable"

uninitialized_variable =
It still has a null value.
echo

exit O

above.

An uninitialized variable has a "null" value -- no assigned value at all (not zero!).

if [-z "Sunassigned"]
then

echo "\Sunassigned is NULL."
fi # Sunassigned is NULL.

Using a variable before assigning a value to it may cause problems. It is nevertheless

possible to perform arithmetic operations on an uninitialized variable.

echo "Suninitialized" # (blank line)
let "uninitialized += 5" # Add 5 to it.
echo "Suninitialized" # 5

Conclusion:
An uninitialized variable has no value,
#+ however it evaluates as 0 in an arithmetic operation.

See also Example 15-23.

Chapter 4. Introduction to Variables and Parameters

32

Advanced Bash-Scripting Guide

4.2. Variable Assignment

the assignment operator (no space before and after)
¢ 1 Do not confuse this with = and -eq, which test, rather than assign!

Note that = can be either an assignment or a test operator, depending on context.

Example 4-2. Plain Variable Assignment

#!/bin/bash
Naked variables

echo

When is a variable "naked", i.e., lacking the '$' in front?
When it is being assigned, rather than referenced.

Assignment
a=879
echo "The value of \"a\" is $a."

Assignment using 'let'
let a=16+5
echo "The value of \"a\" is now $a."

echo

In a 'for' loop (really, a type of disguised assignment) :
echo -n "Values of \"a\" in the loop are: "
for a in 7 8 9 11
do
echo -n "S$a "
done

echo
echo

In a 'read' statement (also a type of assignment) :
echo —-n "Enter \"a\" "

read a

echo "The value of \"a\" is now $a."

echo

exit O

Example 4-3. Variable Assignment, plain and fancy

#!/bin/bash
a=23 # Simple case

echo $a
b=$a

Chapter 4. Introduction to Variables and Parameters

Advanced Bash-Scripting Guide
echo $b

Now, getting a little bit fancier (command substitution).

a="echo Hello!" # Assigns result of 'echo' command to 'a'
echo $a
Note that including an exclamation mark (!) within a

#+ command substitution construct will not work from the command-line,
#+ since this triggers the Bash "history mechanism."
Inside a script, however, the history functions are disabled by default.

a="1ls -1° # Assigns result of 'ls -1' command to 'a'

echo $Sa # Unquoted, however, it removes tabs and newlines.
echo

echo "S$Sa" # The quoted variable preserves whitespace.

S

(See the chapter on "Quoting.")

exit O

Variable assignment using the $(...) mechanism (a newer method than backquotes). This is likewise a
form of command substitution.

From /etc/rc.d/rc.local
R=$ (cat /etc/redhat-release)
arch=$ (uname -m)

4.3. Bash Variables Are Untyped

Unlike many other programming languages, Bash does not segregate its variables by "type." Essentially, Bash
variables are character strings, but, depending on context, Bash permits arithmetic operations and
comparisons on variables. The determining factor is whether the value of a variable contains only digits.

Example 4-4. Integer or string?

#!/bin/bash
int-or-string.sh

a=2334 # Integer.
let "a += 1"
echo "a = $a " # a = 2335
echo # Integer, still.
b=${a/23/BB} # Substitute "BB" for "23".
This transforms $b into a string.
echo "b = S$b" # b = BB35
declare -i b # Declaring it an integer doesn't help.
echo "b = S$b" # b = BB35
let "b += 1" # BB35 + 1
echo "b = $b" # b =1
echo # Bash sets the "integer value" of a string to O.
c=BB34
echo "c = s$c" # ¢ = BB34

Chapter 4. Introduction to Variables and Parameters 34

Advanced Bash-Scripting Guide

d=${c/BB/23} # Substitute "23" for "BB".
This makes $d an integer.

echo "d = sd" # d = 2334

let "d += 1" # 2334 + 1

echo "d = sd" # d = 2335

echo

What about null variables?

@="" # ... Or e="" ... Or e=

echo "e = Se" # e =

let "e += 1" # Arithmetic operations allowed on a null variable?
echo "e = S$e" #e=1

echo # Null variable transformed into an integer.

What about undeclared variables?

echo "f = Sf" # £ =

let "f += 1" # Arithmetic operations allowed?

echo "f = S$f" # £ =1

echo # Undeclared variable transformed into an integer.
#

However

let "f /= Sundecl_var" # Divide by zero?

let: £ /= : syntax error: operand expected (error token is " ")

Syntax error! Variable S$undecl_var is not set to zero here!

#

But still

let "f /= Q"

let: £ /= 0: division by 0 (error token is "0")
Expected behavior.

Bash (usually) sets the "integer value" of null to zero
#+ when performing an arithmetic operation.

But, don't try this at home, folks!

It's undocumented and probably non-portable behavior.

Conclusion: Variables in Bash are untyped,
#+ with all attendant consequences.

exit $°?

Untyped variables are both a blessing and a curse. They permit more flexibility in scripting and make it easier
to grind out lines of code (and give you enough rope to hang yourself!). However, they likewise permit subtle
errors to creep in and encourage sloppy programming habits.

To lighten the burden of keeping track of variable types in a script, Bash does permit declaring variables.

4.4. Special Variable Types

Local variables

Variables visible only within a code block or function (see also local variables in functions)
Environmental variables

Variables that affect the behavior of the shell and user interface

- In a more general context, each process has an "environment", that is, a group of
variables that the process may reference. In this sense, the shell behaves like any other

Chapter 4. Introduction to Variables and Parameters 35

Advanced Bash-Scripting Guide

process.

Every time a shell starts, it creates shell variables that correspond to its own
environmental variables. Updating or adding new environmental variables causes the
shell to update its environment, and all the shell's child processes (the commands it
executes) inherit this environment.

<1> The space allotted to the environment is limited. Creating too many environmental
variables or ones that use up excessive space may cause problems.

bash$ eval "'seq 10000 | sed -e 's/.*/export var&=ZZZZZZZZZZZZZZ/' "

bash$ du
bash: /usr/bin/du: Argument list too long

Note: this "error" has been fixed, as of kernel version 2.6.23.

(Thank you, Stéphane Chazelas for the clarification, and for providing the above
example.)
If a script sets environmental variables, they need to be "exported," that is, reported to the
environment local to the script. This is the function of the export command.

=) A script can export variables only to child processes, that is, only to commands or
processes which that particular script initiates. A script invoked from the
command-line cannot export variables back to the command-line environment.
Child processes cannot export variables back to the parent processes that spawned
them.

Definition: A child process is a subprocess launched by another process, its

parent.
Positional parameters
Arguments passed to the script from the command line [26] : $0, $1, $2, $3 ...

$0 is the name of the script itself, $1 is the first argument, $2 the second, $3 the third, and so forth.
[27] After $9, the arguments must be enclosed in brackets, for example, ${10}, ${11}, ${12}.

The special variables $* and $@ denote all the positional parameters.

Example 4-5. Positional Parameters

#!/bin/bash

Call this script with at least 10 parameters, for example
./scriptname 1 2 3 4 5 6 7 8 9 10

MINPARAMS=10

echo

echo "The name of this script is \"S$O\"."

Adds ./ for current directory
echo "The name of this script is \" basename $0 \"."

Chapter 4. Introduction to Variables and Parameters 36

Advanced Bash-Scripting Guide

Strips out path name info (see 'basename')

echo

if [-n "$S1"] # Tested variable is quoted.
then

echo "Parameter #1 is $1" # Need quotes to escape #
fi

if [-n ll$2ll]

then

echo "Parameter #2 is $2"
fi

if [-n "$3"]

then

echo "Parameter #3 is $3"
fi

if [-n "S{10}"] # Parameters > $9 must be enclosed in {brackets}.
then

echo "Parameter #10 is ${10}"

fi

EhE Yom—mmmmmeeoeeeeeeeeeeeeeseeseeesees
echo "All the command-line parameters are: "s$*""

if [$# -1t "SMINPARAMS"]
then

echo

echo "This script needs at least SMINPARAMS command-line arguments!"
fi

echo

exit O
Bracket notation for positional parameters leads to a fairly simple way of referencing the last
argument passed to a script on the command-line. This also requires indirect referencing.

args=S# # Number of args passed.
lastarg=${'!args}
Note: This is an *indirect reference* to $args

Or: lastarg=S${!#} (Thanks, Chris Monson.)
This i1s an *indirect reference* to the $# variable.
Note that lastarg=${!S$#} doesn't work.

Some scripts can perform different operations, depending on which name they are invoked with. For
this to work, the script needs to check $0, the name it was invoked by. [28] There must also exist
symbolic links to all the alternate names of the script. See Example 16-2.

i) If a script expects a command-line parameter but is invoked without one, this may
cause a null variable assignment, generally an undesirable result. One way to prevent
this is to append an extra character to both sides of the assignment statement using the

Chapter 4. Introduction to Variables and Parameters 37

Advanced Bash-Scripting Guide

expected positional parameter.

variablel =$1_ # Rather than variablel=$1
This will prevent an error, even if positional parameter is absent.

critical_argumentOl=$variablel_

The extra character can be stripped off later, like so.
variablel=${variablel /_/}

Side effects only if $variablel_ begins with an underscore.

This uses one of the parameter substitution templates discussed later.
(Leaving out the replacement pattern results in a deletion.)

A more straightforward way of dealing with this is
#+ to simply test whether expected positional parameters have been passed.

if [-z $1]
then

exit SE_MISSING_POS_PARAM
fi

However, as Fabian Kreutz points out,

#+ the above method may have unexpected side-effects.
A better method is parameter substitution:

S{l:-SDefaultVal}

See the "Parameter Substition" section

#+ in the "Variables Revisited" chapter.

Example 4-6. wh, whois domain name lookup

#!/bin/bash
ex18.sh

Does a 'whois domain-name' lookup on any of 3 alternate servers:
ripe.net, cw.net, radb.net

Place this script —-- renamed 'wh' -- in /usr/local/bin

Requires symbolic links:

1ln -s /usr/local/bin/wh
1ln -s /usr/local/bin/wh
1ln -s /usr/local/bin/wh

e

E_NOARGS=75

/usr/local/bin/wh-ripe
/usr/local/bin/wh-apnic
/usr/local/bin/wh-tucows

if [-z "S$1"]

then
echo "Usage: "basename $0° [domain-name]"
exit S$E_NOARGS

fi

Check script

name and call proper server.

case “basename $0° in # Or: case S${O##*/} in
"wh") whois $1@whois.tucows.com; ;
"wh-ripe") whois $1@whois.ripe.net;;
"wh-apnic") whois $1@whois.apnic.net;;
"wh—cw") whois $1@whois.cw.net;;
)

*

Chapter 4. Introduction to Variables and Parameters

echo "Usage:

‘basename $0° [domain-name]";;

38

Advanced Bash-Scripting Guide
esac

exit $°7?

The shift command reassigns the positional parameters, in effect shifting them to the left one notch.
$1 <--- 82, $2 <---$3, $3 <--- $4, etc.

The old $1 disappears, but SO (the script name) does not change. If you use a large number of
positional parameters to a script, shift lets you access those past 10, although {bracket} notation also
permits this.

Example 4-7. Using shift

#!/bin/bash
shft.sh: Using 'shift' to step through all the positional parameters.

Name this script something like shft.sh,
#+ and invoke it with some parameters.
#+ For example:

sh shft.sh a b ¢ def 83 barndoor
until [-z "$1"] # Until all parameters used up
do

echo -n "$1 "

shift
done
echo # Extra linefeed.

But, what happens to the "used-up" parameters?

echo "S$2"

Nothing echoes!

When $2 shifts into $1 (and there is no $3 to shift into $2)
#+ then $2 remains empty.

So, it is not a parameter *copy*, but a *movex*.

exit

See also the echo-params.sh script for a "shiftless"
#+ alternative method of stepping through the positional params.

The shift command can take a numerical parameter indicating how many positions to shift.

#!/bin/bash
shift-past.sh

shift 3 # Shift 3 positions.
n=3; shift $n
Has the same effect.

echo "S$1"

exit O

Chapter 4. Introduction to Variables and Parameters 39

Advanced Bash-Scripting Guide

$ sh shift-past.sh 1 2 3 4 5

4

However, as Eleni Fragkiadaki, points out,

#+ attempting a 'shift' past the number of

#+ positional parameters ($#) returns an exit status of 1,
#+ and the positional parameters themselves do not change.
This means possibly getting stuck in an endless loop.

For example:

until [-z "$1"]

do

echo —n "$1 "

shift 20 # If less than 20 pos params,

done #+ then loop never ends!

#

When in doubt, add a sanity check.

shift 20 || break

AAAAANAAAN

&) The shift command works in a similar fashion on parameters passed to a function. See
Example 36-18.

Chapter 4. Introduction to Variables and Parameters

40

Chapter 5. Quoting

Quoting means just that, bracketing a string in quotes. This has the effect of protecting special characters in
the string from reinterpretation or expansion by the shell or shell script. (A character is "special" if it has an
interpretation other than its literal meaning. For example, the asterisk * represents a wild card character in

globbing and Regular Expressions).

bash$ 1s -1 [Vv]*

—IW—Yrw-r—-— 1 bozo Dbozo 324 Apr 2 15:05 VIEWDATA.BAT
—rW—YW-—Ir—— 1 bozo bozo 507 May 4 14:25 vartrace.sh
—rW—YrwW—Ir—— 1 bozo bozo 539 Apr 14 17:11 viewdata.sh

bash$ 1s =1 '[Vv]*'
ls: [Vv]*: No such file or directory

In everyday speech or writing, when we "quote" a phrase, we set it apart and give it special meaning. In a
Bash script, when we quote a string, we set it apart and protect its liferal meaning.

Certain programs and utilities reinterpret or expand special characters in a quoted string. An important use of
quoting is protecting a command-line parameter from the shell, but still letting the calling program expand it.

bash$ grep '[Fflirst' *.txt
filel.txt:This is the first line of filel.txt.
file2.txt:This is the First line of file2.txt.

Note that the unquoted grep [Ff]irst *.txt works under the Bash shell. [29]

Quoting can also suppress echo's "appetite" for newlines.

bash$ echo $(1ls -1)
total 8 —rw—rw-r—— 1 bo bo 13 Aug 21 12:57 t.sh —-rw-rw-r—— 1 bo bo 78 Aug 21 12:57 u.sh

bash$ echo "$(1s -1)"

total 8
—-rw—rw-r—— 1 bo bo 13 Aug 21 12:57 t.sh
—-rw—rw-r—— 1 bo bo 78 Aug 21 12:57 u.sh

5.1. Quoting Variables

When referencing a variable, it is generally advisable to enclose its name in double quotes. This prevents
reinterpretation of all special characters within the quoted string -- except $, * (backquote), and \ (escape). [30]
Keeping $ as a special character within double quotes permits referencing a quoted variable
("Svariable™), that is, replacing the variable with its value (see Example 4-1, above).

Use double quotes to prevent word splitting. [31] An argument enclosed in double quotes presents itself as a
single word, even if it contains whitespace separators.

List="one two three"

Chapter 5. Quoting 41

Advanced Bash-Scripting Guide

for a in $List # Splits the variable in parts at whitespace.
do
echo "S$Sa"
done
one
two
three

echo "——-"

for a in "S$List" # Preserves whitespace in a single variable.
do # A A
echo "S$Sa"
done
one two three

A more elaborate example:

variablel="a variable containing five words"
COMMAND This is $variablel # Executes COMMAND with 7 arguments:
"This" "is" "a" "variable" "containing" "five" "words"

COMMAND "This is $variablel" # Executes COMMAND with 1 argument:
"This is a variable containing five words"

variable2="" # Empty.
COMMAND $variable2 S$variable2 S$variable?2
Executes COMMAND with no arguments.
COMMAND "S$variable2" "S$Svariable2" "Svariable2"
Executes COMMAND with 3 empty arguments.
COMMAND "S$variable2 S$variable2 S$variable2"
Executes COMMAND with 1 argument (2 spaces).

Thanks, Stéphane Chazelas.

i) Enclosing the arguments to an echo statement in double quotes is necessary only when word splitting or
preservation of whitespace is an issue.

Example 5-1. Echoing Weird Variables

#!/bin/bash
weirdvars.sh: Echoing weird variables.

echo

var="" (]\\{ }\s\vlll

echo $var # U (IN{}S"

echo "Svar" # P (I\{}s" Doesn't make a difference.
echo

IFS="\"

echo $var # (1 {1S$" \ converted to space. Why?
echo "Svar" # ' (IN{}S"

Examples above supplied by Stephane Chazelas.

Chapter 5. Quoting 42

Advanced Bash-Scripting Guide

echo

var2="\\\\\""

echo S$Svar2 # "

echo "Svar2" # A\

echo

But ... var2="\\\\"" is illegal. Why?
var3="\\\\"

echo "$var3" # \\\\

Strong quoting works, though.

hhkhhkhkhk kA hkhhhhkrhhkrhhkhhhkhhkhkhhkrhhkrhhkhkhhkhkhkhkhhkrhkhkrhhkrkhhkrkkhkdxhkxk

As the first example above shows, nesting quotes is permitted.

echo "$(echo llll)ll # "
A A

At times this comes in useful.

varl="Two bits"
echo "\Svarl = "Svarl"" # Svarl = Two bits
A A

Or, as Chris Hiestand points out

if [["$(du "SMy_Filel")" -gt "$(du "SMy_File2")" 1]

A A AA A A AA

then

fi

hhkhkhkhkh kA hkhkhhhkrhhkrhhkhhhkhhkhkhhkrhhkrhhkhkhhkhhkhkhkhkrhkhkrhhkrkhhkrkkhkhkdxhkxk

Single quotes (' ') operate similarly to double quotes, but do not permit referencing variables, since the special
meaning of $ is turned off. Within single quotes, every special character except ' gets interpreted literally.
Consider single quotes ("full quoting") to be a stricter method of quoting than double quotes ("partial
quoting").

&) Since even the escape character (\) gets a literal interpretation within single quotes, trying to enclose a
single quote within single quotes will not yield the expected result.

echo "Why can't I write 's between single quotes"

echo

The roundabout method.

echo 'Why can'\''t I write '"'"'s between single quotes'
N R [!

Three single-quoted strings, with escaped and quoted single quotes between.

This example courtesy of Stéphane Chazelas.

5.2. Escaping

Escaping is a method of quoting single characters. The escape (\) preceding a character tells the shell to
interpret that character literally.

Chapter 5. Quoting 43

Advanced Bash-Scripting Guide

<1 With certain commands and utilities, such as echo and sed, escaping a character may have the opposite

effect - it can toggle on a special meaning for that character.

Special meanings of certain escaped characters

used with echo and sed

\n

\r

\t

\v

\b

\a

\Oxx

means newline

means return

means tab

means vertical tab

means backspace

means alert (beep or flash)

translates to the octal ASCII equivalent of Onn, where nn is a string of digits

" The$' ... ' guoted string-expansion construct is a mechanism that uses escaped
octal or hex values to assign ASCII characters to variables, e.g., quote=$'\042".

Example 5-2. Escaped Characters

#!/bin/bash
escaped.sh: escaped characters

FHAHHF AR AR AR AR AR A AR A A R R R R R A
First, let's show some basic escaped-character usage.
FHAHHF AR A AR A R AR A AR AR A A R R R R R A

Escaping a newline.

echo ""

echo "This will print
as two lines."

This will print

as two lines.

echo "This will print \
as one line."

This will print as one line.

echo; echo

echo "\v\v\v\v" # Prints \v\v\v\v literally.
Use the —-e option with 'echo' to print escaped characters.

Chapter 5. Quoting

44

Advanced Bash-Scripting Guide

echo "============="
echo "VERTICAL TABS"

echo —-e "\v\v\v\v" # Prints 4 vertical tabs.
echo n Al

echo "QUOTATION MARK"
echo —e "\042" # Prints " (quote, octal ASCII character 42).
echo n Al

The $'\X' construct makes the -e option unnecessary.

echo; echo "NEWLINE and (maybe) BEEP"
echo $'\n' # Newline.
echo $'\a' # Alert (beep).
May only flash, not beep, depending on terminal.

We have seen $'\nnn" string expansion, and now

#
Version 2 of Bash introduced the $'\nnn' string expansion construct.
#
echo "Introducing the \$\' ... \' string-expansion construct W
echo ". . . featuring more quotation marks."

echo $'\t \042 \t' # Quote (") framed by tabs.

Note that '\nnn' is an octal value.

It also works with hexadecimal values, in an $'\xhhh' construct.
echo $'\t \x22 \t' # Quote (") framed by tabs.

Thank you, Greg Keraunen, for pointing this out.

Farlier Bash versions allowed '\x022'.

echo

Assigning ASCII characters to a variable.

quote=$'\042" # " assigned to a variable.
echo "Squote Quoted string $quote and this lies outside the quotes."

echo

Concatenating ASCII chars in a variable.
triple_underline=$'\137\137\137' # 137 is octal ASCII code for '_'.
echo "S$triple_underline UNDERLINE S$triple_underline"

echo

ABC=$'\101\102\103\010" # 101, 102, 103 are octal A, B, C.
echo S$ABC

echo
escape=$'\033" # 033 is octal for escape.
echo "\"escape\" echoes as S$escape"

no visible output.

echo

Chapter 5. Quoting

Advanced Bash-Scripting Guide

exit O

A more elaborate example:

Example 5-3. Detecting key-presses

#!/bin/bash

Author: Sigurd Solaas, 20 Apr 2011
Used in ABS Guide with permission.
Requires version 4.2+ of Bash.

key="no value yet"
while true; do
clear
echo "Bash Extra Keys Demo. Keys to try:"
echo
echo "* Insert, Delete, Home, End, Page_Up and Page_Down"
echo "* The four arrow keys"
echo "* Tab, enter, escape, and space key"
echo "* The letter and number keys, etc."

echo

echo " d = show date/time"

echo " g = quit"

echo " "
echo

Convert the separate home-key to home-key_ num_7:

if ["Skey" = $'\x1b\x4f\x48']; then
key=$"\x1b\x5b\x31\x7e"

Quoted string-expansion construct.
fi

Convert the separate end-key to end-key_num_ 1.

if ["Skey" = $'\x1b\x4f\x46']; then
key=$"\x1b\x5b\x34\x7e"
fi

case "Skey" in
S'"\x1b\x5b\x32\x7e'") # Insert
echo Insert Key
S'"\x1b\x5b\x33\x7e"') # Delete
echo Delete Key
$S'\x1b\x5b\x31\x7e') # Home_key_num_7
echo Home Key
$S'\x1b\x5b\x34\x7e') # End_key_num_1
echo End Key
$'"\x1b\x5b\x35\x7e') # Page_Up
echo Page_Up
S'\x1b\x5b\x36\x7e') # Page_Down
echo Page_Down
S'\x1b\x5b\x41') # Up_arrow
echo Up arrow
S'"\x1b\x5b\x42"') # Down_arrow
echo Down arrow

Chapter 5. Quoting

Advanced Bash-Scripting Guide

i
S'\x1b\x5b\x43') # Right_arrow
echo Right arrow
i
S'\x1b\x5b\x44') # Left_arrow
echo Left arrow

i
$'"\x09'") # Tab

echo Tab Key

i
$'"\x0a') # Enter

echo Enter Key

i

S'"\x1b") # Escape

echo Escape Key

i

$'"\x20"') # Space

echo Space Key

i
d)

date

i
)
echo Time to quit...
echo
exit O

i

*)

echo You pressed: \'"Skey"\'
i

esacC

echo

echo " "

unset K1 K2 K3

read -s -N1 -p "Press a key: "
K1="SREPLY"

read -s -N2 -t 0.001
K2="SREPLY"

read -s -N1 -t 0.001
K3="SREPLY"

key="S$SK1SK2SK3"

done

exit $°7?

See also Example 37-1.

\ll
gives the quote its literal meaning
echo "Hello" # Hello
echo "\"Hello\" ... he said." # "Hello" ... he said.
\$
gives the dollar sign its literal meaning (variable name following \$ will not be referenced)
echo "\S$variableOl" # Svariable0l
echo "The book cost \$7.98." # The book cost $7.98.
\\

Chapter 5. Quoting

47

Advanced Bash-Scripting Guide

gives the backslash its literal meaning

echo "\\" # Results in \
Whereas

echo "\" # Invokes secondary prompt from the command-line.
In a script, gives an error message.

However
echo "\' # Results in \

=) The behavior of \ depends on whether it is escaped, strong-quoted, weak-quoted, or appearing within
command substitution or a here document.

Simple escaping and quoting
echo \z ¥ z
echo \\z # \z
echo '\z' # \z
echo "\\z' # \\z
echo "\z" # \z
echo "\\z" # \z
Command substitution
echo “echo \z° ¥ z
echo ‘echo \\z’ ¥ z
echo ‘echo \\\z® # \z
echo ‘echo \\\\z° # \z
echo “echo \\\\\\z® # \z
echo ‘echo \\\\\\\z' # \\z
echo “echo "\z"" # \z
echo “echo "\\z™ # \z

Here document
cat <<EOF
\z
EOF # \z

cat <<EOF
\\z
EOF # \z

These examples supplied by Stéphane Chazelas.

Elements of a string assigned to a variable may be escaped, but the escape character alone may not be
assigned to a variable.

variable=\
echo "S$variable"

Will not work - gives an error message:

test.sh: : command not found

A "naked" escape cannot safely be assigned to a variable.

#

What actually happens here is that the "\" escapes the newline and
#+ the effect is variable=echo "S$variable"

#+ invalid variable assignment

variable=\
23skidoo

Chapter 5. Quoting

Advanced Bash-Scripting Guide

echo "Svariable" # 23skidoo
This works, since the second line
#+ is a valid variable assignment.

variable=\
% escape followed by space
echo "S$variable" # space

variable=\\
echo "Svariable" # \

variable=\\\

echo "Svariable"

Will not work - gives an error message:

test.sh: \: command not found

#

First escape escapes second one, but the third one is left "naked",
#+ with same result as first instance, above.

variable=\\\\

echo "S$variable" # \\
Second and fourth escapes escaped.
This is o.k.

Escaping a space can prevent word splitting in a command's argument list.

file_list="/bin/cat /bin/gzip /bin/more /usr/bin/less /usr/bin/emacs-20.7"
List of files as argument (s) to a command.

Add two files to the list, and list all.
ls -1 /usr/X11R6/bin/xsetroot /sbin/dump $file_list

What happens if we escape a couple of spaces?

1s -1 /usr/X11R6/bin/xsetroot\ /sbin/dump\ $file_list

Error: the first three files concatenated into a single argument to 'ls -1'
because the two escaped spaces prevent argument (word) splitting.

The escape also provides a means of writing a multi-line command. Normally, each separate line constitutes a
different command, but an escape at the end of a line escapes the newline character, and the command
sequence continues on to the next line.

(cd /source/directory && tar cf - .) | \

(cd /dest/directory && tar xpvf -)

Repeating Alan Cox's directory tree copy command,
but split into two lines for increased legibility.

As an alternative:

tar cf - -C /source/directory . |
tar xpvf - -C /dest/directory

See note below.

(Thanks, Stéphane Chazelas.)

&) If a script line ends with a |, a pipe character, then a \, an escape, is not strictly necessary. It is, however,
good programming practice to always escape the end of a line of code that continues to the following

line.

echo "foo

Chapter 5. Quoting 49

Advanced Bash-Scripting Guide

bar"
#foo
#bar

echo

echo 'foo

bar' # No difference yet.
#foo

#bar

echo

echo foo\

bar # Newline escaped.

#foobar

echo

echo "foo\

bar" # Same here, as \ still interpreted as escape within weak quotes.
#foobar

echo

echo 'foo\

bar' # Escape character \ taken literally because of strong quoting.
#foo\

#bar

Examples suggested by Stéphane Chazelas.

Chapter 5. Quoting

50

Chapter 6. Exit and Exit Status

... there are dark corners in the Bourne shell, and
people use all of them.

--Chet Ramey
The exit command terminates a script, just as in a C program. It can also return a value, which is available to
the script's parent process.

Every command returns an exit status (sometimes referred to as a refurn status or exit code). A successful
command returns a 0, while an unsuccessful one returns a non-zero value that usually can be interpreted as an
error code. Well-behaved UNIX commands, programs, and utilities return a 0 exit code upon successful
completion, though there are some exceptions.

Likewise, functions within a script and the script itself return an exit status. The last command executed in the
function or script determines the exit status. Within a script, an exit nnncommand may be used to deliver
an nnn exit status to the shell (nnn must be an integer in the 0 - 255 range).

=) When a script ends with an exit that has no parameter, the exit status of the script is the exit status of the
last command executed in the script (previous to the exit).

#!/bin/bash

COMMAND_ 1

COMMAND_LAST
Will exit with status of last command.

exit

The equivalent of a bare exit is exit $? or even just omitting the exit.

#!/bin/bash

COMMAND_ 1

COMMAND_LAST
Will exit with status of last command.

exit $?

#!/bin/bash

COMMAND1

COMMAND_LAST

Chapter 6. Exit and Exit Status 51

Advanced Bash-Scripting Guide

Will exit with status of last command.

$? reads the exit status of the last command executed. After a function returns, $? gives the exit status of the
last command executed in the function. This is Bash's way of giving functions a "return value." [32]

Following the execution of a pipe, a $? gives the exit status of the last command executed.

After a script terminates, a $? from the command-line gives the exit status of the script, that is, the last
command executed in the script, which is, by convention, 0 on success or an integer in the range 1 - 255 on
error.

Example 6-1. exit / exit status

#!/bin/bash

echo hello

echo $? # Exit status 0 returned because command executed successfully.
1lskdf # Unrecognized command.

echo $? # Non-zero exit status returned -- command failed to execute.
echo

exit 113 # Will return 113 to shell.
To verify this, type "echo $?" after script terminates.

By convention, an 'exit 0' indicates success,

#+ while a non-zero exit value means an error or anomalous condition.
See the "Exit Codes With Special Meanings" appendix.

$? is especially useful for testing the result of a command in a script (see Example 16-35 and Example 16-20).

=& The !, the logical not qualifier, reverses the outcome of a test or command, and this affects its exit status.

Example 6-2. Negating a condition using !

true # The "true" builtin.

echo "exit status of \"true\" = $?" # 0

! true

echo "exit status of \"! true\" = $?2" # 1

Note that the "!" needs a space between it and the command.

'true leads to a "command not found" error

#

The '!' operator prefixing a command invokes the Bash history mechanism.
true

'true

No error this time, but no negation either.
It just repeats the previous command (true).

===
Preceding a _pipe_ with ! inverts the exit status returned.
ls | bogus_command # bash: bogus_command: command not found
echo $7? # 127

Chapter 6. Exit and Exit Status 52

Advanced Bash-Scripting Guide

! 1s | bogus_command # bash: bogus_command: command not found

echo $? # 0
Note that the ! does not change the execution of the pipe.

Only the exit status changes.
#

Thanks, Stéphane Chazelas and Kristopher Newsome.

<1 Certain exit status codes have reserved meanings and should not be user-specified in a script.

Chapter 6. Exit and Exit Status

53

Chapter 7. Tests

Every reasonably complete programming language can test for a condition, then act according to the result of

the test. Bash has the test command, various bracket and parenthesis operators, and the if/then construct.

7.1. Test Constructs

¢ An if/then construct tests whether the exit status of a list of commands is O (since 0 means "success”
by UNIX convention), and if so, executes one or more commands.

¢ There exists a dedicated command called [(left bracket special character). It is a synonym for test,
and a builtin for efficiency reasons. This command considers its arguments as comparison expressions
or file tests and returns an exit status corresponding to the result of the comparison (O for true, 1 for
false).

¢ With version 2.02, Bash introduced the [[...]] extended test command, which performs comparisons
in a manner more familiar to programmers from other languages. Note that [[is a keyword, not a
command.

Bashsees [[$a —1t $b]] as a single element, which returns an exit status.
[}

The ((...)) and et ... constructs return an exit status, according to whether the arithmetic expressions
they evaluate expand to a non-zero value. These arithmetic-expansion constructs may therefore be
used to perform arithmetic comparisons.

(0 && 1)) # Logical AND
echo $7? # 1 LR

And so

let "num = ((0 && 1))"

echo S$num # 0

But

let "num = ((0 && 1))"

echo $7? # 1 LR

((200 || 11)) # Logical OR
echo $? # 0 * kK

#

let "num = ((200 || 11))"

echo S$num # 1

let "num = ((200 || 11))"

echo $? # 0 LR

((200 | 11)) # Bitwise OR
echo $°? # 0 * Kk
...

let "num = ((200 | 11))"

echo S$num # 203

let "num = ((200 | 11))"

echo $°? # 0 * ok x

The "let" construct returns the same exit status
#+ as the double-parentheses arithmetic expansion.

Chapter 7. Tests 54

Advanced Bash-Scripting Guide

<1 Again, note that the exit status of an arithmetic expression is not an error value.

var=-2 && ((var+=2))
echo $? # 1
var=-2 && ((var+=2)) && echo S$Svar

Will not echo $var!

An if can test any command, not just conditions enclosed within brackets.

if cmp a b &> /dev/null # Suppress output.
then echo "Files a and b are identical."
else echo "Files a and b differ."

fi

The very useful "if-grep" construct:
if grep —g Bash file
then echo "File contains at least one occurrence of Bash."

fi

word=Linux
letter_sequence=inu

if echo "S$word" | grep —-gq "S$letter_ sequence"
The "-g" option to grep suppresses output.
then

echo "S$letter_sequence found in Sword"
else

echo "S$letter_sequence not found in Sword"
fi

if COMMAND_WHOSE_EXIT_STATUS_IS_0_UNLESS_ERROR_OCCURRED
then echo "Command succeeded."
else echo "Command failed."

fi

® These last two examples courtesy of Stéphane Chazelas.

Example 7-1. What is truth?

#!/bin/bash

Tip:

If you're unsure how a certain condition might evaluate,
#+ test it in an if-test.

echo

echo "Testing \"O\""

if [0] # zero
then
echo "0 is true."
else # Or else
echo "0 is false."
fi # 0 is true.
echo

Chapter 7. Tests 55

Advanced Bash-Scripting Guide

echo "Testing \"1\""

if [1] # one
then
echo "1 is true."
else
echo "1 is false."
fi # 1 is true.
echo

echo "Testing \"-1\""

if [-1 1] # minus one
then

echo "-1 is true."
else

echo "-1 is false."
fi # -1 is true.
echo

echo "Testing \"NULL\""

if [] # NULL (empty condition)
then
echo "NULL is true."
else
echo "NULL is false."
fi # NULL is false.
echo

echo "Testing \"xyz\""

if [xyz] # string
then
echo "Random string is true."
else
echo "Random string is false."
fi # Random string is true.
echo

echo "Testing \"\S$xyz\""
if [Sxyz] # Tests if $xyz is null, but...
it's only an uninitialized variable.

then
echo "Uninitialized variable is true."
else
echo "Uninitialized variable is false."
fi # Uninitialized variable is false.
echo

echo "Testing \"-n \S$xyz\""

if [-n "Sxyz"] # More pedantically correct.
then
echo "Uninitialized variable is true."
else
echo "Uninitialized variable is false."
fi # Uninitialized variable is false.
echo

Chapter 7. Tests

56

Advanced Bash-Scripting Guide
Xy Zz= # Initialized, but set to null value.

echo "Testing \"-n \S$xyz\""

if [-n "Sxyz"]
then
echo "Null variable is true."
else
echo "Null variable is false."
fi # Null variable is false.
echo

When is "false" true?

echo "Testing \"false\""

if ["false"] # It seems that "false" is just a string
then
echo "\"false\" is true." #+ and it tests true.
else
echo "\"false\" is false."
fi # "false" is true.
echo
echo "Testing \"\S$false\"" # Again, uninitialized variable.
if ["Sfalse"]
then
echo "\"\Sfalse\" is true."
else
echo "\"\Sfalse\" is false."
fi # "Sfalse" is false.

Now, we get the expected result.
What would happen if we tested the uninitialized variable "Strue"?
echo

exit O

Exercise. Explain the behavior of Example 7-1, above.

if [condition-true]
then

command 1

command 2

else # Or else
Adds default code block executing if original condition tests false.
command 3
command 4

fi

=& When if and then are on same line in a condition test, a semicolon must terminate the if statement. Both if
and then are keywords. Keywords (or commands) begin statements, and before a new statement on the
same line begins, the old one must terminate.

Chapter 7. Tests 57

Advanced Bash-Scripting Guide

if [—x "S$filename"]; then
Else if and elif

elif
elif is a contraction for else if. The effect is to nest an inner if/then construct within an outer one.

if [conditionl]
then
commandl
command?2
command3
elif [condition2]
Same as else if
then
command4
command5
else
default-command
fi

The 1f test condition-true constructis the exact equivalentof if [condition-true]. As
it happens, the left bracket, [, is a token [33] which invokes the test command. The closing right bracket,] , in
an if/test should not therefore be strictly necessary, however newer versions of Bash require it.

&) The test command is a Bash builtin which tests file types and compares strings. Therefore, in a Bash
script, test does not call the external /usr/bin/test binary, which is part of the sh-utils package.
Likewise, [does not call /usr/bin/ [, whichis linked to /usr/bin/test.

bash$ type test

test is a shell builtin
bash$ type '['

[is a shell builtin
bash$ type '[['

[[is a shell keyword
bash$ type '11'

1] is a shell keyword
bash$ type ']’

bash: type:]: not found

If, for some reason, you wish to use /usr/bin/test in a Bash script, then specify it by full
pathname.

Example 7-2. Equivalence of test, /usr/bin/test,[], and /usr/bin/ [

#!/bin/bash
echo

if test -z "S$1"
then

echo "No command-line arguments."
else

echo "First command-line argument is $1."

Chapter 7. Tests 58

Advanced Bash-Scripting Guide

fi
echo
if /usr/bin/test -z "S$1" # Equivalent to "test" builtin.
NNNANNAANAAAN # Specifying full pathname.
then
echo "No command-line arguments."
else
echo "First command-line argument is $1."
fi
echo
if [-z "sS1"] # Functionally identical to above code blocks.
if [-z "s1" should work, but...
#+ Bash responds to a missing close-bracket with an error message.
then
echo "No command-line arguments."
else
echo "First command-line argument is $1."
fi
echo
if /usr/bin/[-z "S$1"] # Again, functionally identical to above.
if /usr/bin/[-z "S$1" # Works, but gives an error message.
Note:
This has been fixed in Bash, version 3.x.
then
echo "No command-line arguments."
else
echo "First command-line argument is $1."
fi
echo
exit O

The [[]] construct is the more versatile Bash version of []. This is the extended test command, adopted from
ksh88.

No filename expansion or word splitting takes place between [[and]], but there is parameter expansion and
command substitution.

file=/etc/passwd

if [[—e S$file]]
then

echo "Password file exists."
fi

Using the [[...]] test construct, rather than [...] can prevent many logic errors in scripts. For example, the
&&, I, <, and > operators work within a [[]] test, despite giving an error within a [] construct.

Chapter 7. Tests 59

Advanced Bash-Scripting Guide

Arithmetic evaluation of octal / hexadecimal constants takes place automatically within a [[...]] construct.
[[Octal and hexadecimal evaluation]]
Thank you, Moritz Gronbach, for pointing this out.
decimal=15
octal=017 # = 15 (decimal)
hex=0x0f # = 15 (decimal)
if ["Sdecimal" -eqg "Soctal"]
then
echo "S$Sdecimal equals S$octal"
else
echo "$decimal is not equal to $Soctal" # 15 is not equal to 017
fi # Doesn't evaluate within [single brackets]!
if [["$decimal" -eqg "Soctal" 1]
then
echo "S$Sdecimal equals Soctal" # 15 equals 017
else
echo "$decimal is not equal to Soctal"
fi # Evaluates within [[double brackets 1]!
if [["$decimal" -eq "Shex"]]
then
echo "S$decimal equals Shex" # 15 equals 0xO0f
else
echo "$decimal is not equal to Shex"
fi # [[Shexadecimal]] also evaluates!

=) Following an if, neither the test command nor the test brackets ([] or [[]]) are strictly necessary.

dir=/home/bozo

if cd "$dir" 2>/dev/null; then # "2>/dev/null" hides error message.
echo "Now in $dir."

else
echo "Can't change to $dir."

fi

The "if COMMAND" construct returns the exit status of COMMAND.

Similarly, a condition within test brackets may stand alone without an if, when used in combination with

a list construct.

varl=20
var2=22
["$varl" -ne "S$var2"] && echo "$varl is not equal to S$var2"

home=/home/bozo
[-d "Shome"] || echo "Shome directory does not exist."

The (()) construct expands and evaluates an arithmetic expression. If the expression evaluates as zero, it
returns an exit status of 1, or "false". A non-zero expression returns an exit status of 0, or "true". This is in
marked contrast to using the test and [] constructs previously discussed.

Chapter 7. Tests

Advanced Bash-Scripting Guide

Example 7-3. Arithmetic Tests using (())

#!/bin/bash
arith-tests.sh
Arithmetic tests.

The ((...)) construct evaluates and tests numerical expressions.

Exit status opposite from [...] construct!

(C 0))

echo "Exit status of \"((0))\" is $2." # 1

(1))

echo "Exit status of \"((1))\" is $2." # 0

(5 >4)) # true

echo "Exit status of \"((5 > 4))\" is $2." # 0

(C5>9)) # false

echo "Exit status of \"((5 > 9))\" is $2." # 1

((5 ==5)) # true

echo "Exit status of \"((5 == y)\" is $2." # 0

((5=5)) gives an error message.

(5 -5)) # 0

echo "Exit status of \"((5 - 5))\" is $2." # 1

(57 4)) # Division o.k.

echo "Exit status of \"((5 / 4))\" is $2." # 0

(1 /7 2)) # Division result < 1.

echo "Exit status of \"((1 / 2))\" is $2." # Rounded off to O.
1

(¢1/ 0)) 2>/dev/null # Illegal division by 0.

AAAAAAAANAANAAN

echo "Exit status of \"((1 / 0))\" is $2." # 1

What effect does the "2>/dev/null" have?
What would happen if it were removed?
Try removing it, then rerunning the script.

#

((...)) also useful in an if-then test.

varl=5
var2=4

if ((varl > var2))

then #° A Note: Not S$varl, S$var2. Why?
echo "S$varl is greater than S$var2"

fi # 5 is greater than 4

exit O

Chapter 7. Tests

Advanced Bash-Scripting Guide
7.2. File test operators

Returns true if...

-€
file exists
-a
file exists
This is identical in effect to -e. It has been "deprecated," [34] and its use is discouraged.
-f
file is a regular file (not a directory or device file)
-S
file is not zero size
-d
file is a directory
-b
file is a block device
-C
file is a character device
device0="/dev/sda2" # / (root directory)
if [-b "SdeviceO"]
then
echo "S$deviceO is a block device."
fi
/dev/sda2 is a block device.
devicel="/dev/ttyS1l" # PCMCIA modem card.
if [—c "Sdevicel"]
then
echo "S$devicel is a character device."
fi
/dev/ttySl is a character device.
-p
file is a pipe
function show_input_type ()
{
[-p /dev/£fd/0] && echo PIPE || echo STDIN
}
show_input_type "Input" # STDIN
echo "Input" | show_input_type # PIPE
This example courtesy of Carl Anderson.
-h
file is a symbolic link
-L

Chapter 7. Tests

-k

Advanced Bash-Scripting Guide

file is a symbolic link
file is a socket
file (descriptor) is associated with a terminal device

This test option _may be used to check whether the stdin [=t 0 Jorstdout [-t 1]Jina
given script is a terminal.

file has read permission (for the user running the test)

file has write permission (for the user running the test)

file has execute permission (for the user running the test)

set-group-id (sgid) flag set on file or directory

If a directory has the sgid flag set, then a file created within that directory belongs to the group that
owns the directory, not necessarily to the group of the user who created the file. This may be useful
for a directory shared by a workgroup.

set-user-id (suid) flag set on file

A binary owned by root with set ~user-1id flag set runs with root privileges, even when an
ordinary user invokes it. [35] This is useful for executables (such as pppd and cdrecord) that need to

access system hardware. Lacking the suid flag, these binaries could not be invoked by a non-root
user.

—rwsr—-xr-t 1 root 178236 Oct 2 2000 /usr/sbin/pppd

A file with the suid flag set shows an s in its permissions.
sticky bit set

Commonly known as the sticky bit, the save-text-mode flag is a special type of file permission. If a
file has this flag set, that file will be kept in cache memory, for quicker access. [36] If set on a
directory, it restricts write permission. Setting the sticky bit adds a ¢ to the permissions on the file or
directory listing. This restricts altering or deleting specific files in that directory to the owner of those
files.

drwxrwxrwt 7 root 1024 May 19 21:26 tmp/

If a user does not own a directory that has the sticky bit set, but has write permission in that directory,
she can only delete those files that she owns in it. This keeps users from inadvertently overwriting or
deleting each other's files in a publicly accessible directory, such as /tmp. (The owner of the
directory or root can, of course, delete or rename files there.)

you are owner of file

group-id of file same as yours

Chapter 7. Tests 63

Advanced Bash-Scripting Guide

-N
file modified since it was last read
fl -nt 2
file £1 is newer than £2
fl -ot f2
file £1 is older than £2
fl -ef 2
files £1 and £2 are hard links to the same file

"not" -- reverses the sense of the tests above (returns true if condition absent).

Example 7-4. Testing for broken links

#!/bin/bash

broken-link.sh

Written by Lee bigelow <ligelowbee@yahoo.com>
Used in ABS Guide with permission.

A pure shell script to find dead symlinks and output them quoted
+ so they can be fed to xargs and dealt with :)
+ eg. sh broken-link.sh /somedir /someotherdir|xargs rm

This, however, is a better method:

find "somedir" -type 1 —-print0]\

xargs -r0 file]\

grep "broken symbolic"|

sed -e 's/”\|: *broken symbolic.*$/"/g'

+ but that wouldn't be pure Bash, now would it.
Caution: beware the /proc file system and any circular links!
FHHFEHS A

S S o e e o o o 3 o o o o

If no args are passed to the script set directories-to-search
#+ to current directory. Otherwise set the directories-to-search
#+ to the args passed.

iR E LR R A LS L LR LS LR

[$# —eq 0] && directorys="pwd || directorys=$@

Setup the function linkchk to check the directory it is passed
#+ for files that are links and don't exist, then print them quoted.
If one of the elements in the directory is a subdirectory then

#+ send that subdirectory to the linkcheck function.

R T E LT L L
linkchk () {
for element in $1/*; do
[-h "Selement" -a ! —-e "Selement"] && echo \"Selement\"
[-d "Selement"] && linkchk S$element
Of course, '-h' tests for symbolic link, '-d' for directory.
done

Send each arg that was passed to the script to the linkchk() function
#+ if it is a valid directoy. If not, then print the error message

Chapter 7. Tests

Advanced Bash-Scripting Guide

#+ and usage info.
(s Ea AR AL EEE
for directory in S$directorys; do
if [-d S$directory]
then linkchk $directory
else
echo "S$directory is not a directory"
echo "Usage: $0 dirl dir2 ..."
fi
done

exit $7?

Example 31-1, Example 11-8, Example 11-3, Example 31-3, and Example A-1 also illustrate uses of the file

test operators.

7.3. Other Comparison Operators

A binary comparison operator compares two variables or quantities. Note that integer and string comparison

use a different set of operators.

integer comparison

_eq

is equal to

1f [n$a|| _eq ||$bn]
-ne

is not equal to

1f [n$a|| -ne ||$bn]
_gt

is greater than

1f [n$a|| _gt ||$bn]
_ge

is greater than or equal to

1f [n$a|| _ge ||$bn]
-1t

is less than

1f [n$a|| _lt ||$bn]
-le

is less than or equal to

1f [n$a|| _le ||$bn]
<

is less than (within double parentheses)

((||$an < "$b"))
<=

is less than or equal to (within double parentheses)

Chapter 7. Tests

65

Advanced Bash-Scripting Guide
(("$a" <= "$b"))

is greater than (within double parentheses)
((u$an > n$bu))
is greater than or equal to (within double parentheses)

(("$a" >= "$b"))

string comparison

is equal to
if ["$a" = "$b"]
g 1 » Note the whitespace framing the =.
if ["$a"="$b"] isnotequivalent to the above.
is equal to
if ["$a" == "$b"]
This is a synonym for =.

B " The == comparison operator behaves differently within a double-brackets test than
~ within single brackets.

[[Sa == z*]] # True if S$Sa starts with an "z" (pattern matching) .
[[Sa == "zx*"]] # True if $a is equal to z* (literal matching).

[$Sa == z*] # File globbing and word splitting take place.

["$a" == "z*"] # True if $a is equal to z* (literal matching) .

Thanks, Stéphane Chazelas

is not equal to

if ["$a" != "$b"]

This operator uses pattern matching within a [[...]] construct.
is less than, in ASCII alphabetical order

if [["$a" < "$b" 1]

if [n$au \< "$b"]

Chapter 7. Tests

66

Advanced Bash-Scripting Guide

Note that the "<" needs to be escaped withina [] construct.

is greater than, in ASCII alphabetical order

if [["$a" > "$b"]]

if ["$a" \> "$b"]

Note that the ">" needs to be escaped withina [] construct.

See Example 27-11 for an application of this comparison operator.
string is null, that is, has zero length

String="'" # Zero-length ("null") string variable.

if [-z "$String"]
then

echo "\$String is null."
else

echo "\$String is NOT null."
fi # $String is null.

string is not null.

<1> The —n test requires that the string be quoted within the test brackets. Using an

unquoted string with ! -z, or even just the unquoted string alone within test brackets
(see Example 7-6) normally works, however, this is an unsafe practice. Always quote a

tested string. [37]

Example 7-5. Arithmetic and string comparisons

#!/bin/bash

Here "a" and "b" can be treated either as integers or strings.
There is some blurring between the arithmetic and string comparisons,
#+ since Bash variables are not strongly typed.

Bash permits integer operations and comparisons on variables
#+ whose value consists of all-integer characters.
Caution advised, however.

echo

if ["$a" —-ne ll$bvl]

then
echo "S$a is not equal to Sb"
echo " (arithmetic comparison)"
fi
echo

Chapter 7. Tests

67

Advanced Bash-Scripting Guide

if [Il$all != Il$bll]
then
echo "$a is not equal to S$b."
echo " (string comparison)"
"4" != "5"
ASCII 52 != ASCII 53
fi
In this particular instance, both "-ne" and "!=" work.
echo
exit O

Example 7-6. Testing whether a string is null

#!/bin/bash
str-test.sh: Testing null strings and unquoted strings,
#+ but not strings and sealing wax, not to mention cabbages and kings

Using if [...]

If a string has not been initialized, it has no defined value.
This state is called "null" (not the same as zero!).

if [-n $stringl] # stringl has not been declared or initialized.
then
echo "String \"stringl\" is not null."
else
echo "String \"stringl\" is null."
fi # Wrong result.

Shows $stringl as not null, although it was not initialized.
echo

Let's try it again.

if [-n "$stringl"] # This time, $stringl is quoted.
then
echo "String \"stringl\" is not null."
else
echo "String \"stringl\" is null."
fi # Quote strings within test brackets!
echo
if [$stringl] # This time, S$stringl stands naked.
then
echo "String \"stringl\" is not null."
else
echo "String \"stringl\" is null."
fi # This works fine.
The [...] test operator alone detects whether the string is null.
However it is good practice to quote it (if ["S$stringl"]).
#
As Stephane Chazelas points out,
if [$stringl] has one argument, "]"
if ["$stringl"] has two arguments, the empty "S$stringl" and "]"
echo

Chapter 7. Tests 68

Advanced Bash-Scripting Guide

stringl=initialized

if [S$stringl] # Again, S$stringl stands unquoted.
then
echo "String \"stringl\" is not null."
else
echo "String \"stringl\" is null."
fi # Again, gives correct result.

Still, it is better to quote it ("$stringl"), because

stringl="a = b"

if [S$stringl] # Again, S$stringl stands unquoted.
then
echo "String \"stringl\" is not null."
else
echo "String \"stringl\" is null."
fi # Not quoting "S$stringl" now gives wrong result!
exit O # Thank you, also, Florian Wisser, for the "heads-up".

Example 7-7. zmore

#!/bin/bash
zmore

View gzipped files with 'more' filter.

E_NOARGS=85
E_NOTFOUND=86
E_NOTGZIP=87

if [$# -eq 0] # same effect as: if [-z "S$1"]
$1 can exist, but be empty: zmore "" arg2 arg3
then

echo "Usage: "basename $0° filename" >&2

Error message to stderr.

exit SE_NOARGS

Returns 85 as exit status of script (error code).
fi

filename=$1

if [! —f "$filename"] # Quoting $filename allows for possible spaces.
then
echo "File $filename not found!" >&2 # Error message to stderr.
exit S$E_NOTFOUND
fi
if [${filename##*.} != "gz"]
Using bracket in variable substitution.
then

echo "File $1 is not a gzipped file!"
exit SE_NOTGZIP
fi

zcat $1 | more

Chapter 7. Tests

Advanced Bash-Scripting Guide

Uses the 'more' filter.
May substitute 'less' if desired.

exit $? # Script returns exit status of pipe.
Actually "exit $?" is unnecessary, as the script will, in any case,
#+ return the exit status of the last command executed.

compound comparison

-a
logical and

expl —a expZ2returns true if both expl and exp?2 are true.
logical or
expl -o expZ2returns true if either expl or exp2 is true.
These are similar to the Bash comparison operators && and Il, used within double brackets.

[[conditionl && condition2]]

The -0 and -a operators work with the test command or occur within single test brackets.

if ["Sexprl" -a "Sexpr2"]
then

echo "Both exprl and expr2 are true."
else

echo "Either exprl or expr2 is false."
fi

<1 But, as rihad points out:

[1 —eg 1] & [—-n "“echo true 1>&2°"] # true
[1 —eg 2] & [—-n "“echo true 1>&2°"] # (no output)
""AAAMN False condition. So far, everything as expected.

However
[1 —eg 2 —a —n "“echo true 1>&2°"] # true
""AAAMN False condition. So, why "true" output?

Is it because both condition clauses within brackets evaluate?
[[1 —eqg 2 && -n " echo true 1>&2°"]] # (no output)
No, that's not it.

Apparently && and || "short-circuit" while -a and -o do not.

Refer to Example 8-3, Example 27-17, and Example A-29 to see compound comparison operators in action.

7.4. Nested if/then Condition Tests

Condition tests using the i £/t hen construct may be nested. The net result is equivalent to using the &&
compound comparison operator.

a=3

Chapter 7. Tests

Advanced Bash-Scripting Guide

if ["$a" -gt 0]
then
if ["$a" -1t 5]
then
echo "The value of \"a\" lies somewhere between 0 and 5."
fi
fi

Same result as:

if ["$a" -gt 0] && ["sa" -1t 5]
then

echo "The value of \"a\" lies somewhere between 0 and 5."
fi

Example 37-4 and Example 17-11 demonstrate nested i £/t hen condition tests.

7.5. Testing Your Knowledge of Tests

The systemwide xinitrc file can be used to launch the X server. This file contains quite a number of if/then
tests. The following is excerpted from an "ancient" version of xinitrc (Red Hat 7.1, or thereabouts).

if [-f SHOME/.Xclients]; then
exec SHOME/.Xclients
elif [-f /etc/X1ll/xinit/Xclients]; then
exec /etc/X1l/xinit/Xclients
else
failsafe settings. Although we should never get here
(we provide fallbacks in Xclients as well) it can't hurt.
xclock —-geometry 100x100-5+5 &
xterm —-geometry 80x50-50+150 &
if [-f /usr/bin/netscape -a —-f /usr/share/doc/HTML/index.html]; then
netscape /usr/share/doc/HTML/index.html &
fi
fi
Explain the test constructs in the above snippet, then examine an updated version of the file,
/etc/X11l/xinit/xinitrc, and analyze the if/then test constructs there. You may need to refer ahead to

the discussions of grep, sed, and regular expressions.

Chapter 7. Tests 71

Chapter 8. Operations and Related Topics

8.1. Operators

assignment

variable assignment
Initializing or changing the value of a variable

All-purpose assignment operator, which works for both arithmetic and string assignments.

var=

27

category=minerals # No spaces allowed after the "=".

<1> Do not confuse the "=" assignment operator with the = test operator.

= as a test operator
if ["S$stringl" = "S$string2"]
then
command
fi
if ["XS$stringl" = "XS$string2"] is safer,
#+ to prevent an error message should one of the variables be empty.
(The prepended "X" characters cancel out.)

arithmetic operators

+

ksk

%

plus

minus

multiplication

division

exponentiation

Bash, version 2.02, introduced the "**" exponentiation operator.

let "z=5%*3"

echo

5 *5 *5
"z = $z" # z = 125

modulo, or mod (returns the remainder of an integer division operation)

2

bash$ expr 5 % 3

5/3 = 1, with remainder 2

Chapter 8. Operations and Related Topics

72

Advanced Bash-Scripting Guide

This operator finds use in, among other things, generating numbers within a specific range (see

Example 9-11 and Example 9-15) and formatting program output (see Example 27-16 and Example

A-6). It can even be used to generate prime numbers, (see Example A-15). Modulo turns up
surprisingly often in numerical recipes.

Example 8-1. Greatest common divisor

#!/bin/bash
gcd.sh: greatest common divisor
Uses Euclid's algorithm

The "greatest common divisor" (gcd) of two integers
#+ is the largest integer that will divide both, leaving no remainder.

Euclid's algorithm uses successive division.

In each pass,

#+ dividend <-—-- divisor

#+ divisor <-—— remainder

#+ until remainder = 0.

The gcd = dividend, on the final pass.
#

For an excellent discussion of Euclid's algorithm, see
#+ Jim Loy's site, http://www.jimloy.com/number/euclids.htm.

Argument check
ARGS=2
E_BADARGS=85

if [$# -ne "SARGS"]

then
echo "Usage: “basename $0° first-number second-number"
exit S$E_BADARGS

fi
__
gcd ()
{
dividend=$1 # Arbitrary assignment.
divisor=5$2 #! It doesn't matter which of the two is larger.
Why not?
remainder=1 # If an uninitialized variable is used inside
#+ test brackets, an error message results.
until ["Sremainder" -eqg 0]
do # "oannaaannr Must be previously initialized!
let "remainder = $dividend % S$divisor"
dividend=S$divisor # Now repeat with 2 smallest numbers.
divisor=$remainder
done # Euclid's algorithm
} # Last S$dividend is the gcd.
ged $1 $2

Chapter 8. Operations and Related Topics

73

%=

Advanced Bash-Scripting Guide
echo; echo "GCD of $1 and $2 = S$dividend"; echo

Exercises

1) Check command-line arguments to make sure they are integers,

#+ and exit the script with an appropriate error message if not.

2) Rewrite the gcd () function to use local variables.

exit 0

plus-equal (increment variable by a constant) [38]

let "var += 5" results in var being incremented by 5.
minus-equal (decrement variable by a constant)

times-equal (multiply variable by a constant)

let "var *= 4" results in var being multiplied by 4.
slash-equal (divide variable by a constant)

mod-equal (remainder of dividing variable by a constant)

Arithmetic operators often occur in an expr or let expression.

Example 8-2. Using Arithmetic Operations

#!/bin/bash
Counting to 11 in 10 different ways.

n=1; echo —-n "$n "

let "n = Sn + 1" # let "n = n + 1" also works.
echo -n "S$n "

$((n = $n + 1))
":" necessary because otherwise Bash attempts
#+ to interpret "S((n = Sn + 1))" as a command.
echo -n "$n "

((n=mn+1))

A simpler alternative to the method above.

Thanks, David Lombard, for pointing this out.
echo -n "$n "

n=s ((sn + 1))

echo -n "S$n "

S[n=5%n + 1]
":" necessary because otherwise Bash attempts
#+ to interpret "S[n = Sn + 1 " as a command.
Works even if "n" was initialized as a string.

Chapter 8. Operations and Related Topics

74

Advanced Bash-Scripting Guide
echo -n "$n "
n=$[$n + 1]
Works even if "n" was initialized as a string.
#* Avoid this type of construct, since it is obsolete and nonportable.
Thanks, Stephane Chazelas.

echo —n "$n "

Now for C-style increment operators.
Thanks, Frank Wang, for pointing this out.

let "n++" # let "++n" also works.
echo —n "S$n "

((n+t+)) # ((++n)) also works.
echo -n "$n "

S((nt+)) # : $((++n)) also works.
echo -n "$n "

S[n++] # : S[++n] also works
echo —n "$n "

echo

exit O

&) Integer variables in older versions of Bash were signed long (32-bit) integers, in the range of
-2147483648 to 2147483647. An operation that took a variable outside these limits gave an erroneous
result.

echo $BASH VERSION # 1.14

a=2147483646

echo "a = sa" # a = 2147483646
let "at+=1" # Increment "a"
echo "a = sa" # a = 2147483647
let "at+=1" # increment "a" again, past the limit.
echo "a = sa" # a = —2147483648
ERROR: out of range,
+ and the leftmost bit, the sign bit,
+ has been set, making the result negative.

As of version >= 2.05b, Bash supports 64-bit integers.

Bash does not understand floating point arithmetic. It treats numbers containing a decimal point as
strings.

a=1.5

let "b = Sa + 1.3" # Error.

t2.sh: let: b = 1.5 + 1.3: syntax error in expression
(error token is ".5 + 1.3")
echo "b = $b" # b=1

Use be in scripts that that need floating point calculations or math library functions.

Chapter 8. Operations and Related Topics

Advanced Bash-Scripting Guide

bitwise operators. The bitwise operators seldom make an appearance in shell scripts. Their chief use seems to
be manipulating and testing values read from ports or sockets. "Bit flipping" is more relevant to compiled
languages, such as C and C++, which provide direct access to system hardware. However, see viadz's
ingenious use of bitwise operators in his base64.sh (Example A-54) script.

bitwise operators

<<
bitwise left shift (multiplies by 2 for each shift position)
<<=
left-shift-equal
let "wvar <<= 2" resultsin var left-shifted 2 bits (multiplied by 4)
>>
bitwise right shift (divides by 2 for each shift position)
>>=
right-shift-equal (inverse of <<=)
&
bitwise AND
&=
bitwise AND-equal
I
bitwise OR
|=
bitwise OR-equal
bitwise NOT
AN
bitwise XOR
N—

bitwise XOR-equal

logical (boolean) operators

!

NOT
if [! —-f SFILENAME]
then
&&
AND
if [Sconditionl] && [Scondition2]
Same as: 1if [Sconditionl —-a S$Scondition2]

Returns true if both conditionl and condition2 hold true...

if [[Sconditionl && Scondition2 1] # Also works.
Note that && operator not permitted inside brackets
#+ of [...] construct.

B " && may also be used, depending on context, in an and list to concatenate commands.

Chapter 8. Operations and Related Topics 76

Advanced Bash-Scripting Guide

OR
if [Sconditionl] || [Scondition2]
Same as: 1f [$Sconditionl -o S$condition2]

Returns true if either conditionl or condition2 holds true...

if [[$Sconditionl || S$condition2]] # Also works.
Note that || operator not permitted inside brackets
#+ of a [...] construct.

&) Bash tests the exit status of each statement linked with a logical operator.

Example 8-3. Compound Condition Tests Using && and ||

#!/bin/bash

a=24
b=47

if ["Sa" -eq 24] && ["Sb" -eqg 47]

then
echo "Test #1 succeeds."
else
echo "Test #1 fails."
fi
ERROR: if ["$a" -eqg 24 && "Sb" -eqg 47]
#+ attempts to execute ' ["$a" -eq 24 '
#+ and fails to finding matching ']'.
#

Note: if [[$a —-eq 24 && Sb -eq 24]] works.
The double-bracket if-test is more flexible
#+ than the single-bracket version.

(The "&&" has a different meaning in line 17 than in line 6.)
Thanks, Stephane Chazelas, for pointing this out.
if ["Sa" -eq 98] || ["S$b" -eq 47]
then
echo "Test #2 succeeds."
else
echo "Test #2 fails."
fi

The -a and -o options provide
#+ an alternative compound condition test.
Thanks to Patrick Callahan for pointing this out.

if ["$a" -eq 24 -a "$b" -eq 47]

then

echo "Test #3 succeeds."
else

echo "Test #3 fails."
fi

Chapter 8. Operations and Related Topics

77

Advanced Bash-Scripting Guide

if ["Sa" -eq 98 -o "Sb" -eqg 47]
then
echo "Test #4 succeeds."
else
echo "Test #4 fails."
fi
a=rhino
b=crocodile
if ["$a" = rhino] && ["S$b" = crocodile]
then
echo "Test #5 succeeds."
else
echo "Test #5 fails."
fi
exit O

The && and Il operators also find use in an arithmetic context.

bash$ echo $((1 && 2)) $((3 & 0)) $((4 || 0)) $((0 || 0))
1010

miscellaneous operators

Comma operator

The comma operator chains together two or more arithmetic operations. All the operations are
evaluated (with possible side effects. [39]

let "tl = ((5 + 3, 7 -1, 15 = 4))"
echo "tl = $tl1" Annann £l = 11
Here tl is set to the result of the last operation. Why?

let "t2 = ((a =9, 15 / 3))" # Set "a" and calculate "t2".
echo "t2 = $t2 a = $a" # t2 =5 a =9

The comma operator finds use mainly in for loops. See Example 11-13.

8.2. Numerical Constants

A shell script interprets a number as decimal (base 10), unless that number has a special prefix or notation. A
number preceded by a 0 is octal (base 8). A number preceded by 0x is hexadecimal (base 16). A
number with an embedded # evaluates as BASE#NUMBER (with range and notational restrictions).

Example 8-4. Representation of numerical constants

#!/bin/bash
numbers.sh: Representation of numbers in different bases.

Decimal: the default

let "dec = 32"
echo "decimal number = S$dec" # 32

Chapter 8. Operations and Related Topics 78

Advanced Bash-Scripting Guide

Nothing out of the ordinary here.

Octal: numbers preceded by '0' (zero)
let "oct = 032"

echo "octal number = S$oct" # 26
Expresses result in decimal.

Hexadecimal: numbers preceded by 'Ox' or '0X'
let "hex = 0x32"

echo "hexadecimal number = Shex" # 50
echo $((0x9%9abc)) # 39612
an an double-parentheses arithmetic expansion/evaluation

Expresses result in decimal.

Other bases: BASE#NUMBER
BASE between 2 and 64.
NUMBER must use symbols within the BASE range, see below.

let "bin = 2#111100111001101"
echo "binary number = S$bin" # 31181

let "b32 = 32#77"

echo "base-32 number = S$b32" # 231

let "b64 = 64#@_"

echo "base-64 number = S$bo64" # 4031

This notation only works for a limited range (2 - 64) of ASCII characters.

10 digits + 26 lowercase characters + 26 uppercase characters + @ + _

echo

echo $((36#zz)) $((2#10101010)) S ((L6#AF16)) S ((53#1ad))
1295 170 44822 3375

Important note:

e

Using a digit out of range of the specified base notation
#+ gives an error message.

let "bad_oct = 081"
(Partial) error message output:

Dbad_oct = 081l: value too great for base (error token is "081")
Octal numbers use only digits in the range 0 - 7.
exit $7? # Exit value = 1 (error)

Thanks, Rich Bartell and Stephane Chazelas, for clarification.

Chapter 8. Operations and Related Topics

79

Advanced Bash-Scripting Guide
8.3. The Double-Parentheses Construct

Similar to the let command, the ((...)) construct permits arithmetic expansion and evaluation. In its simplest
form,a=$((5 + 3)) wouldsetato5 + 3, or 8. However, this double-parentheses construct is also a
mechanism for allowing C-style manipulation of variables in Bash, for example, ((var++)).

Example 8-5. C-style manipulation of variables

#!/bin/bash
c-vars.sh
Manipulating a variable, C-style, using the ((...)) construct.

echo

((a=23)) # Setting a value, C-style,
#+ with spaces on both sides of the "=".

echo "a (initial wvalue) = $a" # 23

((a++)) # Post-increment 'a', C-style.
echo "a (after a++) = $a" # 24

((a=—)) # Post-decrement 'a', C-style.
echo "a (after a—--) = $a" # 23

((++a)) # Pre-increment 'a', C-style.
echo "a (after ++a) = $a" # 24

((——a)) # Pre-decrement 'a', C-style.
echo "a (after --a) = $a" # 23

echo

FHAFEHS A
Note that, as in C, pre- and post-decrement operators
#+ have different side—-effects.

echo "False" # False

=1; let --n && echo "True"
1 echo "False" # True

; let n—— && echo "True"

(i
(i
Thanks, Jeroen Domburg.

B o

echo

((t = a<45?27:11)) # C-style trinary operator.

A A A

echo "If a < 45, then t = 7, else t = 11." # a = 23
echo "t = St " # t =7
echo

Easter Egg alert!

Chapter 8. Operations and Related Topics 80

Advanced Bash-Scripting Guide

Chet Ramey seems to have snuck a bunch of undocumented C-style
#+ constructs into Bash (actually adapted from ksh, pretty much).
In the Bash docs, Ramey calls ((...)) shell arithmetic,

#+ but it goes far beyond that.

Sorry, Chet,

See also "for"

and "while" loops using the ((...))

the secret is out.

These work only with version 2.04 or later of Bash.

exit

See also Example 11-13 and Example 8-4.

construct.

8.4. Operator Precedence

In a script, operations execute in order of precedence: the higher precedence operations execute before the

lower precedence ones. [40]

Table 8-1. Operator Precedence

Operator Meaning Comments
HIGHEST PRECEDENCE
var++ var—- post-increment, post-decrement |C-style operators
++var —--var pre-increment, pre-decrement
I~ negation logical / bitwise, inverts sense of
following operator
*x exponentiation arithmetic operation
* /0% multiplication, division, modulo |arithmetic operation
+ - addition, subtraction arithmetic operation
<< >> left, right shift bitwise
-z -n unary comparison string is/is-not null
-e -f -t -x, etc. unary comparison file-test
< -1t > —gt <= -le >= -ge |compound comparison string and integer
-nt —ot -ef compound comparison file-test
== -eq l= -ne equality / inequality test operators, string and integer
& AND bitwise
~ XOR exclusive OR, bitwise
OR bitwise

Chapter 8. Operations and Related Topics

81

Advanced Bash-Scripting Guide

&§& —a AND logical, compound comparison

|| -o OR logical, compound comparison

?: trinary operator C-style

= assignment (do not confuse with equality
test)

*= /= %= += —= <<= >>= &= |combination assignment times-equal, divide-equal,
mod-equal, etc.

, comma links a sequence of operations
LOWEST PRECEDENCE

In practice, all you really need to remember is the following:

¢ The "My Dear Aunt Sally" mantra (multiply, divide, add, subtract) for the familiar arithmetic

operations.
® The compound logical operators, &&, Il, -a, and -o have low precedence.

¢ The order of evaluation of equal-precedence operators is usually left-to-right.

Now, let's utilize our knowledge of operator precedence to analyze a couple of lines from the
/etc/init.d/functions file, as found in the Fedora Core Linux distro.

while [-n "S$remaining" -a "Sretry" -gt 0]; do
This looks rather daunting at first glance.

Separate the conditions:

while [-n "S$remaining" -a "Sretry" -gt 0]; do

—-—condition 1-—- " —-condition 2-

If variable "S$remaining" is not zero length

#+ AND (-a)

#+ variable "Sretry" is greater-than zero

#+ then

#+ the [expresion-within-condition-brackets] returns success (0)
#+ and the while-loop executes an iteration.

#

Evaluate "condition 1" and "condition 2" ***before***

#+ ANDing them. Why? Because the AND (-a) has a lower precedence
#+ than the -n and -gt operators,

#+ and therefore gets evaluated *last*.

FHAHEH S H AR A A A A
if [-f /etc/sysconfig/il8n —-a -z "${NOLOCALE:-}"] ; then

Again, separate the conditions:

if [-f /etc/sysconfig/il8n —-a -z "${NOLOCALE:-}"] ; then

——condition 1-————————— A~ ——condition 2-————-

If file "/etc/sysconfig/il8n" exists

#+ AND (-a)
#+ variable S$SNOLOCALE is zero length
#+ then

Chapter 8. Operations and Related Topics

82

Advanced Bash-Scripting Guide

the [test-expresion-within-condition-brackets] returns success (0)
and the commands following execute.

As before, the AND (-a) gets evaluated *last*
because it has the lowest precedence of the operators within
the test brackets.

Note:

S{NOLOCALE:-} is a parameter expansion that seems redundant.
But, if SNOLOCALE has not been declared, it gets set to *null~*,
in effect declaring it.

This makes a difference in some contexts.

To avoid confusion or error in a complex sequence of test operators, break up the sequence into
bracketed sections.

if ["S$vI" —-gt "Sv2" -o "Svl" -1t "$v2" -a -e "S$filename"]
Unclear what's going on here...

if [["$v1" —gt "S$v2" 1] || [["Svl" -1t "$v2"]] && [[—-e "Sfilename"]]
Much better -- the condition tests are grouped in logical sections.

Chapter 8. Operations and Related Topics

83

Part 3. Beyond the Basics

Table of Contents
9. Another Look at Variables
9.1. Internal Variables

9.2. Typing variables: declare or typeset
9.3. SRANDOM: generate random integer
10. Manipulating Variables
10.1. Manipulating Strings
10.2. Parameter Substitution
11. Loops and Branches
11.1. Loops
11.2. Nested Loops
11.3. Loop Control
11.4. Testing and Branching
12. Command Substitution

13. Arithmetic Expansion
14. Recess Time

Part 3. Beyond the Basics

84

Chapter 9. Another Look at Variables

Used properly, variables can add power and flexibility to scripts. This requires learning their subtleties and
nuances.

9.1. Internal Variables

Builtin variables:

variables affecting bash script behavior
SBASH

The path to the Bash binary itself

bash$ echo $BASH
/bin/bash

$BASH ENV

An environmental variable pointing to a Bash startup file to be read when a script is invoked
$BASH_SUBSHELL

A variable indicating the subshell level. This is a new addition to Bash, version 3.

See Example 21-1 for usage.

$BASHPID
Process ID of the current instance of Bash. This is not the same as the $$ variable, but it often gives
the same result.

bash4$ echo $$
11015

bash4$ echo $BASHPID
11015

bash4$ ps ax | grep bash4
11015 pts/2 R 0:00 bash4

But ...

#!/bin/bash4

echo "\S$\$ outside of subshell = S" # 9602

echo "\S$SBASH_SUBSHELL outside of subshell = $BASH_SUBSHELL" # 0

echo "\$BASHPID outside of subshell = S$SBASHPID" # 9602

echo

(echo "\\S inside of subshell = s" # 9602
echo "\S$SBASH_SUBSHELL inside of subshell = $BASH_SUBSHELL" # 1
echo "\S$SBASHPID inside of subshell = $BASHPID") # 9603

Note that $$ returns PID of parent process.
SBASH_VERSINFO[n]

A 6-element array containing version information about the installed release of Bash. This is similar
to SBASH_VERSION, below, but a bit more detailed.

Chapter 9. Another Look at Variables 85

Advanced Bash-Scripting Guide
Bash version info:

for n in 0 1 2 3 4 5

do

echo "BASH_VERSINFO[Sn] = ${BASH VERSINFO[Sn]}"
done
BASH_VERSINFO[0] = 3 # Major version no.
BASH_VERSINFO[1] = 00 # Minor version no.
BASH_VERSINFO[2] = 14 # Patch level.
BASH_VERSINFO[3] = 1 # Build version.
BASH_VERSINFO[4] = release # Release status.
BASH_VERSINFO[5] = i386-redhat-linux-gnu # Architecture

(same as SMACHTYPE) .

SBASH_VERSION
The version of Bash installed on the system

bash$ echo $BASH VERSION
3.2.25(1)-release

tcsh% echo $BASH VERSION
BASH_VERSION: Undefined variable.

Checking $BASH_VERSION is a good method of determining which shell is running. $SHELL does
not necessarily give the correct answer.

$CDPATH
A colon-separated list of search paths available to the ¢cd command, similar in function to the $PATH
variable for binaries. The SCDPATH variable may be set in the local ~/ . bashrc file.

bash$ ed bash-doc
bash: cd: bash-doc: No such file or directory

bash$ CDPATH=/usr/share/doc
bash$ ed bash-doc
/usr/share/doc/bash-doc

bash$S echo $PWD
/usr/share/doc/bash-doc

SDIRSTACK
The top value in the directory stack [41] (affected by pushd and popd)

This builtin variable corresponds to the dirs command, however dirs shows the entire contents of the
directory stack.
SEDITOR
The default editor invoked by a script, usually vi or emacs.
SEUID
"effective" user ID number

Identification number of whatever identity the current user has assumed, perhaps by means of su.

<1 The SEUID is not necessarily the same as the $UID.

Chapter 9. Another Look at Variables 86

Advanced Bash-Scripting Guide

SFUNCNAME
Name of the current function

xyz23 ()
{
echo "SFUNCNAME now executing." # xyz23 now executing.
}
xyz23
echo "FUNCNAME = S$SFUNCNAME" # FUNCNAME =

Null value outside a function.

See also Example A-50.

SGLOBIGNORE
A list of filename patterns to be excluded from matching in globbing.
SGROUPS

Groups current user belongs to

This is a listing (array) of the group id numbers for current user, as recorded in /et c/passwd and
/etc/group.

root# echo $GROUPS
0

root# echo ${GROUPS[1]}
1

root# echo ${GROUPS[5]}
6

SHOME

Home directory of the user, usually /home /username (see Example 10-7)
SHOSTNAME

The hostname command assigns the system host name at bootup in an init script. However, the

gethostname () function sets the Bash internal variable SHOSTNAME. See also Example 10-7.
SHOSTTYPE

host type

Like SMACHTYPE, identifies the system hardware.

bash$ echo $HOSTTYPE
1686

SIFS
internal field separator

This variable determines how Bash recognizes fields, or word boundaries, when it interprets character
strings.

$IFS defaults to whitespace (space, tab, and newline), but may be changed, for example, to parse a
comma-separated data file. Note that $* uses the first character held in $IFS. See Example 5-1.

Chapter 9. Another Look at Variables 87

Advanced Bash-Scripting Guide

bash$S echo "$IFS"

(With $IFS set to default, a blank line displays.)
bash$ echo "$IFS" | cat -vte

/\Is

$

(Show whitespace: here a single space, "I [horizontal tab],
and newline, and display "$" at end-of-line.)

bash$ bash -c 'set w x y z; IFS=":—;"; echo "$*"'
WiX:iy:z
(Read commands from string and assign any arguments to pos params.)

Set S$TIF'S to eliminate whitespace in pathnames.

IFS="S$ (printf '\n\t')" # Per David Wheeler.

<1 SIFS does not handle whitespace the same as it does other characters.
Example 9-1. $IFS and whitespace

#!/bin/bash
ifs.sh

varl="a+b+c"
var2="d-e—-f"
var3="g,h,i"

IFS=+

The plus sign will be interpreted as a separator.
echo $varl # a bc

echo $var2 # d-e-f

echo $var3 # g,h,1

echo

IFS="7'I

The plus sign reverts to default interpretation.
The minus sign will be interpreted as a separator.

echo
echo
echo

echo

TES="

Svarl
Svar?2
Svar3

"
’

#
#
#

The comma will

The
echo
echo
echo

echo

Chapter 9. Another Look at Variables

minus
Svarl
Svar?2
Svar3

sign
#
#
#

atb+c
d e f
g,h,1

be interpreted as a separator.
reverts to default interpretation.

atb+c
d-e—-f
g h i

88

Advanced Bash-Scripting Guide

IFg=" "
The space character will be interpreted as a separator.
The comma reverts to default interpretation.

echo $varl # atb+c
echo S$Svar2 # d-e-f
echo S$var3 # g,h, 1
#

However
SIFS treats whitespace differently than other characters.

output_args_one_per_line ()
{
for arg
do
echo "[Sargl"
done # * ” Embed within brackets, for your viewing pleasure.

}

echo; echo "IFS=\" \""
echo "-—————- "

IFS=" "

var=" a b c "

A AN AAN

output_args_one_per_line $var # output_args_one_per_line ‘echo " a b c W=
[a]

[b]

[cl

echo; echo "IFS=:"
echo "—-————— "

IFS=:

var=":a::b:c:::" # Same pattern as above,

Noan AAN #+ but substituting ":" for " "
output_args_one_per_line Svar

[1]
]

[
[
[
[b]
[c]
[

[

HH= = = = H T

a
]
b
e
]
]

4=

Note "empty" brackets.
The same thing happens with the "FS" field separator in awk.

4=

echo

exit

(Many thanks, Stéphane Chazelas, for clarification and above examples.)

See also Example 16-41, Example 11-8, and Example 19-14 for instructive examples of using $IFS.
SIGNOREEOF

Ignore EOF: how many end-of-files (control-D) the shell will ignore before logging out.
SLC_COLLATE

Chapter 9. Another Look at Variables 89

Advanced Bash-Scripting Guide

Often set in the _bashrc or /etc/profile files, this variable controls collation order in filename
expansion and pattern matching. If mishandled, LC_COLLATE can cause unexpected results in

filename globbing.

5 " As of version 2.05 of Bash, filename globbing no longer distinguishes between
~ lowercase and uppercase letters in a character range between brackets. For example, s
[A-M]* would match both Filel.txt and filel.txt. Torevert to the customary
behavior of bracket matching, set LC_COLLATE to C by an export
LC_COLLATE=Cin /etc/profile and/or ~/ .bashrec.

SLC_CTYPE

This internal variable controls character interpretation in globbing and pattern matching.

SLINENO

This variable is the line number of the shell script in which this variable appears. It has significance
only within the script in which it appears, and is chiefly useful for debugging purposes.

*** BEGIN DEBUG BLOCK ***
last_cmd_arg=S$_ # Save it.

echo "At line number SLINENO, variable \"v1\" = $v1"
echo "Last command argument processed = S$last_cmd_arg"
*** END DEBUG BLOCK ***

SMACHTYPE

machine type

Identifies the system hardware.

bash$ echo $MACHTYPE
1686

SOLDPWD

Old working directory ("OLD-Print-Working-Directory", previous directory you were in).

SOSTYPE

SPATH

operating system type

bash$S echo $OSTYPE
linux

Path to binaries, usually /usr/bin/, /usr/X11R6/bin/, /usr/local/bin, etc.

When given a command, the shell automatically does a hash table search on the directories listed in
the path for the executable. The path is stored in the environmental variable, SPATH, a list of
directories, separated by colons. Normally, the system stores the SPATH definition in

/etc/profile and/or ~/ .bashrc (see Appendix H).

bash$ echo $PATH
/bin:/usr/bin:/usr/local/bin:/usr/X11R6/bin:/sbin:/usr/sbin

PATH=$ {PATH} : /opt/bin appends the /opt /bin directory to the current path. In a script, it
may be expedient to temporarily add a directory to the path in this way. When the script exits, this
restores the original $PATH (a child process, such as a script, may not change the environment of the
parent process, the shell).

Chapter 9. Another Look at Variables 90

L

Advanced Bash-Scripting Guide

The current "working directory", . /, is usually omitted from the $PATH as a security
measure.

SPIPESTATUS
Array variable holding exit status(es) of last executed foreground pipe.

0

127

127

bash$ echo $PIPESTATUS

bash$ 1s —al | bogus_command
bash: bogus_command: command not found
bash$ echo ${PIPESTATUS[1]}

bash$ 1s —al | bogus_command
bash: bogus_command: command not found
bash$ echo $?

The members of the SPTPESTATUS array hold the exit status of each respective command executed
in a pipe. SPIPESTATUS [0] holds the exit status of the first command in the pipe,
SPIPESTATUS [1] the exit status of the second command, and so on.

The $SPIPESTATUS variable may contain an erroneous O value in a login shell (in
releases prior to 3.0 of Bash).

tcsh% bash

bash$ who | grep nobody | sort
bash$ echo ${PIPESTATUS[*]}
0

The above lines contained in a script would produce the expected 0 1 0 output.

Thank you, Wayne Pollock for pointing this out and supplying the above example.

The SPIPESTATUS variable gives unexpected results in some contexts.

bash$S echo $BASH VERSION
3.00.14 (1) -release

bash$ $§ 1s | bogus_command | wc
bash: bogus_command: command not found
0 0 0

bash$ echo ${PIPESTATUSI[@Q]}
141 127 0

Chet Ramey attributes the above output to the behavior of Is. If Is writes to a pipe
whose output is not read, then STGPIPE Kkills it, and its exit status is 141. Otherwise
its exit status is 0, as expected. This likewise is the case for tr.

SPIPESTATUS is a "volatile" variable. It needs to be captured immediately after the
pipe in question, before any other command intervenes.

Chapter 9. Another Look at Variables

91

SPPID

Advanced Bash-Scripting Guide

bash$ $ 1ls | bogus_command | wc
bash: bogus_command: command not found
0 0 0

bash$ echo ${PIPESTATUS[Q]}
0 127 O

bash$ echo ${PIPESTATUS[Q]}
0

<& The pipefail option may be useful in cases where SPTPESTATUS does not give the
desired information.

The $PPID of a process is the process ID (pid) of its parent process. [42]

Compare this with the pidof command.

SPROMPT_COMMAND

SPS1

SPS2

SPS3

SPS4

SPWD

A variable holding a command to be executed just before the primary prompt, SPS1 is to be
displayed.

This is the main prompt, seen at the command-line.
The secondary prompt, seen when additional input is expected. It displays as ">".

The tertiary prompt, displayed in a select loop (see Example 11-30).

The quartenary prompt, shown at the beginning of each line of output when invoking a script with the

"no,n

-x [verbose trace] option. It displays as "+".
As a debugging aid, it may be useful to embed diagnostic information in $PS4.

P4='$ (read time junk < /proc/$$/schedstat; echo "@QRQR Stime @@Q@ ")'
Per suggestion by Erik Brandsberg.

set -x

Various commands follow ...

Working directory (directory you are in at the time)

This is the analog to the pwd builtin command.

#!/bin/bash

E_WRONG_DIRECTORY=85

clear # Clear the screen.
TargetDirectory=/home/bozo/projects/GreatAmericanNovel

cd $TargetDirectory
echo "Deleting stale files in $TargetDirectory."

if ["SPWD" != "STargetDirectory"]
then # Keep from wiping out wrong directory by accident.

Chapter 9. Another Look at Variables 92

Advanced Bash-Scripting Guide

echo "Wrong directory!"
echo "In $PWD, rather than $TargetDirectory!"
echo "Bailing out!"
exit S$E_WRONG_DIRECTORY
fi

rm —-rf *

rm .[A-Za-z0-9]* # Delete dotfiles.

rm —-f .[~.]F L.2% to remove filenames beginning with multiple dots.
(shopt -s dotglob; rm —-f *) will also work.

Thanks, S.C. for pointing this out.

A filename (basename’) may contain all characters in the 0 - 255 range,

#+ except "/".
Deleting files beginning with weird characters, such as -

#+ is left as an exercise. (Hint: rm ./-weirdname or rm —-- -—-weirdname)
result=$? # Result of delete operations. If successful = 0.

echo

ls -al # Any files left?

echo "Done."
echo "Old files deleted in $TargetDirectory."
echo

Various other operations here, as necessary.

exit S$result

SREPLY
The default value when a variable is not supplied to read. Also applicable to select menus
supplies the item number of the variable chosen, not the value of the variable itself.

#!/bin/bash
reply.sh

REPLY is the default value for a 'read' command.

echo
echo —-n "What is your favorite vegetable? "
read

echo "Your favorite vegetable is $REPLY."
REPLY holds the value of last "read" if and only if
#+ no variable supplied.

echo

echo —n "What is your favorite fruit? "

read fruit

echo "Your favorite fruit is S$fruit."

echo "but..."

echo "Value of \SREPLY is still SREPLY."

SREPLY is still set to its previous value because
#+ the variable S$fruit absorbed the new "read" value.

echo

exit O
SSECONDS
The number of seconds the script has been running.

#!/bin/bash

Chapter 9. Another Look at Variables

, but only

93

Advanced Bash-Scripting Guide

TIME_LIMIT=10

INTERVAL=1
echo
echo "Hit Control-C to exit before STIME_LIMIT seconds."
echo
while ["$SECONDS" -le "S$TIME_LIMIT"]
do # SSECONDS is an internal shell variable.
if ["SSECONDS" -eq 1]
then
units=second
else
units=seconds
fi

echo "This script has been running $SECONDS S$units."
On a slow or overburdened machine, the script may skip a count
#+ every once in a while.
sleep $INTERVAL
done

echo -e "\a" # Beep!

exit O
SSHELLOPTS
The list of enabled shell options, a readonly variable.

bash$S echo $SHELLOPTS
braceexpand:hashall:histexpand:monitor:history:interactive—-comments:emacs

$SHLVL
Shell level, how deeply Bash is nested. [43] If, at the command-line, $SSHLVL is 1, then in a script it
will increment to 2.

&) This variable is _not affected by subshells. Use $BASH SUBSHELL when you need
an indication of subshell nesting.

$STMOUT
If the $TMOUT environmental variable is set to a non-zero value t ime, then the shell prompt will
time out after $t ime seconds. This will cause a logout.

As of version 2.05b of Bash, it is now possible to use $TMOUT in a script in combination with read.

Works in scripts for Bash, versions 2.05b and later.
TMOUT=3 # Prompt times out at three seconds.
echo "What is your favorite song?"

echo "Quickly now, you only have $TMOUT seconds to answer!"
read song

if [-z "$song"]
then
song=" (no answer)"
Default response.
fi

Chapter 9. Another Look at Variables 94

Advanced Bash-Scripting Guide
echo "Your favorite song is $song."
There are other, more complex, ways of implementing timed input in a script. One alternative is to set

up a timing loop to signal the script when it times out. This also requires a signal handling routine to
trap (see Example 32-5) the interrupt generated by the timing loop (whew!).

Example 9-2. Timed Input

#!/bin/bash
timed-input.sh

TMOUT=3 Also works, as of newer versions of Bash.
TIMER_INTERRUPT=14

TIMELIMIT=3 # Three seconds in this instance.
May be set to different value.

PrintAnswer ()
{
if ["Sanswer" = TIMEOUT]
then
echo $answer
else # Don't want to mix up the two instances.
echo "Your favorite veggie is S$Sanswer"
kill $! # Kills no-longer-needed TimerOn function
#+ running in background.
$! is PID of last job running in background.
fi
}
TimerOn ()

{
sleep STIMELIMIT && kill -s 14 $$ &
Waits 3 seconds, then sends sigalarm to script.

Intl4Vector ()

{
answer="TIMEOUT"
PrintAnswer
exit STIMER_INTERRUPT

trap Intl4Vector S$TIMER _INTERRUPT
Timer interrupt (14) subverted for our purposes.

echo "What is your favorite vegetable "

TimerOn

read answer

PrintAnswer

Admittedly, this is a kludgy implementation of timed input.
However, the "-t" option to "read" simplifies this task.

See the "t-out.sh" script.

However, what about timing not just single user input,

Chapter 9. Another Look at Variables 95

Advanced Bash-Scripting Guide
#+ but an entire script?

If you need something really elegant
#+ consider writing the application in C or C++,
#+ using appropriate library functions, such as 'alarm' and 'setitimer.'

exit O

An alternative is using stty.

Example 9-3. Once more, timed input

#!/bin/bash
timeout.sh

Written by Stephane Chazelas,
#+ and modified by the document author.

INTERVAL=5 # timeout interval

timedout_read () {
timeout=5$1
varname=3$2
old_tty_settings="stty -g’
stty —icanon min 0 time ${timeout}O
eval read S$varname # or just read S$varname
stty "Sold_tty_settings"
See man page for "stty."

echo; echo —-n "What's your name? Quick! "
timedout_read $INTERVAL your_name

This may not work on every terminal type.
The maximum timeout depends on the terminal.
#+ (it is often 25.5 seconds).

echo
if [! -z "$your_name"] # If name input before timeout
then
echo "Your name is $your_name."
else
echo "Timed out."
fi
echo

The behavior of this script differs somewhat from "timed-input.sh."
At each keystroke, the counter resets.

exit O

Perhaps the simplest method is using the —t option to read.

Example 9-4. Timed read

#!/bin/bash

Chapter 9. Another Look at Variables

SUID

Advanced Bash-Scripting Guide

t-out.sh [time-out]
Inspired by a suggestion from "syngin seven" (thanks).

TIMELIMIT=4 # 4 seconds

read -t S$STIMELIMIT variable <&l

AAA

In this instance, "<&l1" is needed for Bash 1.x and 2.x,
but unnecessary for Bash 3+.

echo
if [-z "S$variable"] # Is null?
then
echo "Timed out, variable still unset."
else
echo "variable = S$Svariable"
fi
exit O

User ID number

Current user's user identification number, as recorded in /et c/passwd

This is the current user's real id, even if she has temporarily assumed another identity through su.
SUID is a readonly variable, not subject to change from the command line or within a script, and is
the counterpart to the id builtin.

Example 9-5. Am I root?

#!/bin/bash
am—-i-root.sh: Am I root or not?

ROOT_UID=0 # Root has SUID 0.

if ["SUID" -eqg "S$ROOT_UID"] # Will the real "root" please stand up?
then

echo "You are root."
else

echo "You are just an ordinary user (but mom loves you Jjust the same) ."
fi

exit O

#
Code below will not execute, because the script already exited.

An alternate method of getting to the root of matters:

ROOTUSER_NAME=root

username="id -nu’ # Or... username="whoami"
if ["Susername" = "SROOTUSER_NAME"]
then

echo "Rooty, toot, toot. You are root."

Chapter 9. Another Look at Variables

97

Advanced Bash-Scripting Guide

else

echo "You are just a regular fella."
fi

See also Example 2-3.

- The variables SENV, SLOGNAME, SMAIL, STERM, SUSER, and SUSERNAME are not
Bash builtins. These are, however, often set as environmental variables in one of the
Bash or login startup files. $SHELL, the name of the user's login shell, may be set
from /etc/passwd or in an "init" script, and it is likewise not a Bash builtin.

tcsh% echo $LOGNAME
bozo

tcsh% echo $SHELL
/bin/tcsh

tcsh% echo $TERM
rxvt

bash$ echo $LOGNAME
bozo

bash$ echo $SHELL
/bin/tcsh

bash$ echo $TERM
rxvt

Positional Parameters

$0, $1, $2, etc.
Positional parameters, passed from command line to script, passed to a function, or set to a variable
(see Example 4-5 and Example 15-16)

S#
Number of command-line arguments [44] or positional parameters (see Example 36-2)
$ *
All of the positional parameters, seen as a single word
&) "$*" must be quoted.
s@

Same as $*, but each parameter is a quoted string, that is, the parameters are passed on intact, without

interpretation or expansion. This means, among other things, that each parameter in the argument list
is seen as a separate word.

&) Of course, "$@" should be quoted.

Example 9-6. arglist: Listing arguments with $* and $@

#!/bin/bash
arglist.sh
Invoke this script with several arguments, such as "one two three"

E_BADARGS=85
if [! -n "S$1"]

then
echo "Usage: "basename $0° argumentl argument2 etc."

Chapter 9. Another Look at Variables 98

Advanced Bash-Scripting Guide

exit S$E_BADARGS
fi

echo
index=1 # Initialize count.

echo "Listing args with \"\S$*\":"
for arg in "$*" # Doesn't work properly if "$*" isn't quoted.
do
echo "Arg #Sindex = Sarg"
let "index+=1"
done # $* sees all arguments as single word.
echo "Entire arg list seen as single word."

echo

index=1 # Reset count.
What happens if you forget to do this?

echo "Listing args with \"\S@\":"
for arg in "S$@"
do
echo "Arg #Sindex = Sarg"
let "index+=1"
done # S@ sees arguments as separate words.
echo "Arg list seen as separate words."

echo
index=1 # Reset count.

echo "Listing args with \$* (unquoted) :"
for arg in $*
do
echo "Arg #Sindex = Sarg"
let "index+=1"
done # Unquoted $* sees arguments as separate words.
echo "Arg list seen as separate words."

exit O
Following a shift, the $@ holds the remaining command-line parameters, lacking the previous $1,
which was lost.

#!/bin/bash
Invoke with ./scriptname 1 2 3 4 5

echo "s@" # 12 345
shift

echo "s@" # 2 3 45
shift

echo "s@" # 345

Each "shift" loses parameter $1.
"S$Q" then contains the remaining parameters.

The $@ special parameter finds use as a tool for filtering input into shell scripts. The cat ""$@"'
construction accepts input to a script either from stdin or from files given as parameters to the

script. See Example 16-24 and Example 16-25.

Chapter 9. Another Look at Variables

Advanced Bash-Scripting Guide

<1> The $* and $@ parameters sometimes display inconsistent and puzzling behavior,
depending on the setting of $IFS.

Example 9-7. Inconsistent $* and $@ behavior

#!/bin/bash
Erratic behavior of the "$*" and "$Q@" internal Bash variables,

#+ depending on whether or not they are quoted.
Demonstrates inconsistent handling of word splitting and linefeeds.

set —— "First one" "second" "third:one"™ "" "Fifth: :one"
Setting the script arguments, $1, $2, $3, etc.
echo

echo 'IFS unchanged, using "$*"!

c=0

for i in "s*" # quoted

do echo "$((c+=1)): [Si]" # This line remains the same in every instance.
Echo args.

done

echo ——-

echo 'IFS unchanged, using $*'

c=0

for i in $* # unquoted
do echo "$((c+=1)): [S1i]"

done

echo ——-

echo 'IFS unchanged, using "s$@"'
c=0

for i in "s$@"

do echo "$((c+=1)): [$i]"

done

echo ——-

echo 'IFS unchanged, using $Q@'
c=0

for i in $Q@

do echo "$((c+=1)): [S1i]"

done

echo ———

IFS=:

echo 'IFS=":", using "S$*"!'
c=0

for 1 in "S$*"

do echo "$((c+=1)): [S1i]"
done

echo ——-

echo '"IFS=":", using S$*'
c=0

for i in $*

do echo "$((c+=1)): [S1i]"
done

echo ———

Chapter 9. Another Look at Variables 100

Advanced Bash-Scripting Guide

var=$*

echo 'IFS=":", using "Svar" (var=S$*)"'
c=0

for i in "Svar"

do echo "$((c+=1)): [Si]"

done

echo ——-

echo 'IFS=":", using Svar (var=s$*)'
c=0

for 1 in S$var

do echo "$((c+=1)): [Si]"

done

echo ——-

var="s*"

echo 'IFS=":", using S$var (var="$*")"'
c=0

for 1 in $var

do echo "$((c+=1)): [Si]"

done

echo ——-

echo 'IFS=":", using "S$var" (var="$*")'
c=0

for i in "Svar"

do echo "$((c+=1)): [Si]"

done

echo ——-

echo 'IFS=":", using "S$@"'

c=0

for i in "s$@"

do echo "S$((c+=1)): [Si]"

done

echo ——-

echo 'IFS=":", using $Q'

c=0

for i in $@

do echo "$((c+=1)): [Si]"

done

echo ——-

var=s@

echo '"IFS=":", using S$var (var=$Q)'
c=0

for 1 in $var

do echo "S$((c+=1)): [Si]"

done

echo ——-

echo '"IFS=":", using "S$Svar" (var=$Q)"'
c=0

for i in "Svar"

do echo "$((c+=1)): [Si]"

done

echo ——-

var="s@"

echo '"IFS=":", using "Svar" (var="s@")'
c=0

Chapter 9. Another Look at Variables

101

for i in "Svar"

Advanced Bash-Scripting Guide

do echo "$((c+=1)): [Si]"

done
echo ———

echo 'IFS=":", using S$var (var="$@")'

c=0
for 1 in $var

do echo "$((c+=1)): [Si]"

done

echo

Try this script with ksh or zsh -y.

exit O

This example script written by Stephane Chazelas,
#+ and slightly modified by the document author.

&) The $@ and $* parameters differ only when between double quotes.

Example 9-8. $* and $@ when $IFS is empty

#!/bin/bash

If SIFS set,

mecho () #
{
echo "$1,$2,$3";
}

IFS="" #
set a b c #
mecho Hs*" #
#

mecho $* #
mecho $Q@ #
mecho "$Q@" #

The behavior of $* and $@ when S$IFS is empty depends
#+ on which Bash or sh version being run.
It is therefore inadvisable to depend on this

but empty,
#+ then "$*" and "$Q@" do not echo positional params as expected.

Echo positional parameters.

Set, but empty.
Positional parameters.

abc, ,

AN

a,b,c

a,b,c
a,b,c

Thanks, Stephane Chazelas.

exit
Other Special Parameters

$_

Flags passed to script (using set). See Example 15-16.

Chapter 9. Another Look at Variables

"feature" in a script.

102

Advanced Bash-Scripting Guide

<1 This was originally a ksh construct adopted into Bash, and unfortunately it does not
seem to work reliably in Bash scripts. One possible use for it is to have a script
self-test whether it is interactive.

PID (process ID) of last job run in background

LOG=$0.1log
COMMAND1="sleep 100"

echo "Logging PIDs background commands for script: $0" >> "SLOG"
So they can be monitored, and killed as necessary.
echo >> "$SLOG"

Logging commands.

echo —n "PID of \"$COMMANDI\": " >> "SLOG"
${COMMAND1} &

echo $! >> "SLOG"

PID of "sleep 100": 1506

Thank you, Jacques Lederer, for suggesting this.

Using $! for job control:

possibly_hanging_job & { sleep ${TIMEOUT}; eval 'kill -9 $!' &> /dev/null; }
Forces completion of an ill-behaved program.
Useful, for example, in init scripts.

Thank you, Sylvain Fourmanoit, for this creative use of the "!" wvariable.

Or, alternately:

This example by Matthew Sage.
Used with permission.

TIMEOUT=30 # Timeout value in seconds
count=0

possibly_hanging_Jjob & {

while ((count < TIMEOUT)); do
eval '[! -d "/proc/$!"] && ((count = TIMEOUT))'
/proc is where information about running processes is found.
"-d" tests whether it exists (whether directory exists).
So, we're waiting for the job in question to show up.
((count++))
sleep 1

done

eval '[-d "/proc/$!"] && kill -15 $!'!

If the hanging job is running, kill it.

However, this may not not work as specified if another process
#+ begins to run after the "hanging_job" . . .

In such a case, the wrong job may be killed.

Ariel Meragelman suggests the following fix.

TIMEOUT=30
count=0

Chapter 9. Another Look at Variables 103

Advanced Bash-Scripting Guide

Timeout value in seconds
possibly_hanging_job & {

while ((count < TIMEOUT)); do

eval '[! -d "/proc/$lastjob"] && ((count = TIMEOUT))'
lastjob=$"!
((count++))
sleep 1
done
eval '[-d "/proc/S$lastjob"] && kill -15 S$lastjob'
}
exit
$_
Special variable set to final argument of previous command executed.
Example 9-9. Underscore variable
#!/bin/bash
echo $_ # /bin/bash
Just called /bin/bash to run the script.
Note that this will vary according to
#+ how the script is invoked.
du >/dev/null # So no output from command.
echo S$_ # du
1ls —al >/dev/null # So no output from command.
echo S$_ # -al (last argument)
echo S$_ #
$?
Exit status of a command, function, or the script itself (see Example 24-7)
$S

Process ID (PID) of the script itself. [45] The $$ variable often finds use in scripts to construct
"unique" temp file names (see Example 32-6, Example 16-31, and Example 15-27). This is usually
simpler than invoking mktemp.

9.2. Typing variables: declare or typeset

The declare or typeset builtins, which are exact synonyms, permit modifying the properties of variables. This
is a very weak form of the typing [46] available in certain programming languages. The declare command is
specific to version 2 or later of Bash. The typeset command also works in ksh scripts.

declare/typeset options

-r readonly
(declare -r varl works the same as readonly varl)

Chapter 9. Another Look at Variables 104

Advanced Bash-Scripting Guide

This is the rough equivalent of the C const type qualifier. An attempt to change the value of a
readonly variable fails with an error message.

declare -r varl=l
echo "varl = Svarl" #

((varl++)) #

-i integer

declare —-i number
The script will treat

number=3
echo "Number = $number"

number=three

echo "Number = S$number"
Tries to evaluate the
Certain arithmetic operations
let.

n=6/3
echo "n = $n" # n

declare -i n
n=6/3
echo "n = $n" # n

-aarray

declare -a indices

varl = 1

x.sh: line 4: varl: readonly variable

subsequent occurrences of "number" as an integer.

|
w

Number =

Number = 0
string "three" as an integer.

are permitted for declared integer variables without the need for expr or

The variable i ndices will be treated as an array.

-f function(s)

declare -f

A declare -f line with no arguments in a script causes a listing of all the functions previously

defined in that script.

declare —-f function_name

A declare —-f function_name in a script lists just the function named.

-X export

declare —-x var3

This declares a variable as available for exporting outside the environment of the script itself.

-x var=$value

declare —-x var3=373

The declare command permits assigning a value to a variable in the same statement as setting its

properties.

Example 9-10. Using declare to type variables

#!/bin/bash

Chapter 9. Another Look at Variables

Advanced Bash-Scripting Guide

funcl ()
{

echo This is a function.

declare -f # Lists the function above.

echo

declare -i varl # varl is an integer.

varl=2367

echo "varl declared as S$varl"

varl=varl+1l # Integer declaration eliminates the need for 'let'.

echo "varl incremented by 1 is S$Svarl."

Attempt to change variable declared as integer.

echo "Attempting to change varl to floating point value, 2367.1."
varl=2367.1 # Results in error message, with no change to variable.
echo "varl is still S$varl"

echo
declare -r var2=13.36 # 'declare' permits setting a variable property

#+ and simultaneously assigning it a value.
echo "var2 declared as $var2" # Attempt to change readonly variable.

var2=13.37 # Generates error message, and exit from script.
echo "var2 is still S$var2" # This line will not execute.
exit 0 # Script will not exit here.

<1> Using the declare builtin restricts the scope of a variable.

foo ()

{
FOO="bar"

}

bar ()
{

foo
echo S$FOO
}

bar # Prints bar.

However. ..

foo (){
declare FOO="bar"
}

bar ()
{

foo
echo $FOO
}

bar # Prints nothing.

Thank you, Michael Iatrou, for pointing this out.

Chapter 9. Another Look at Variables

106

Advanced Bash-Scripting Guide

9.2.1. Another use for declare

The declare command can be helpful in identifying variables, environmental or otherwise. This can be
especially useful with arrays.

bash$ declare | grep HOME
HOME=/home/bozo

bash$ zzy=68
bash$ declare | grep zzy
zzy=68

bash$ Colors=([0]="purple" [l]="reddish-orange" [2]="1light green")
bash$ echo ${Colors[@]}

purple reddish-orange light green

bash$ declare | grep Colors

Colors=([0]="purple" [l]="reddish-orange" [2]="1light green")

9.3. SRANDOM: generate random integer

Anyone who attempts to generate random
numbers by deterministic means is, of course,
living in a state of sin.

--John von Neumann

SRANDOM is an internal Bash function (not a constant) that returns a pseudorandom [47] integer in the range 0
- 32767. It should not be used to generate an encryption key.

Example 9-11. Generating random numbers

#!/bin/bash

SRANDOM returns a different random integer at each invocation.
Nominal range: 0 - 32767 (signed 1l6-bit integer).

MAXCOUNT=10
count=1

echo
echo "$MAXCOUNT random numbers:"
CENE Yo—m=———=mm=m==m=== "
while ["Scount" —-le $SMAXCOUNT] # Generate 10 (SMAXCOUNT) random integers.
do
number=$RANDOM
echo S$number
let "count += 1" # Increment count.
done
CENE Yo—m=———=mm=m==m=== "

If you need a random int within a certain range, use the 'modulo' operator.

Chapter 9. Another Look at Variables 107

Advanced Bash-Scripting Guide
This returns the remainder of a division operation.
RANGE=500
echo

number=$RANDOM
let "number %= SRANGE"

AN
echo "Random number less than $SRANGE —-—-- S$number"
echo

If you need a random integer greater than a lower bound,
#+ then set up a test to discard all numbers below that.

FLOOR=200
number=0 #initialize
while ["Snumber" -le SFLOOR]
do
number=$RANDOM
done
echo "Random number greater than $FLOOR —--- S$number"
echo
Let's examine a simple alternative to the above loop, namely
let "number = S$SRANDOM + SFLOOR"
That would eliminate the while-loop and run faster.
But, there might be a problem with that. What is it?

Combine above two techniques to retrieve random number between two limits.
number=0 #initialize
while ["Snumber" -le $SFLOOR]
do
number=$RANDOM
let "number %= SRANGE" # Scales S$number down within S$SRANGE.
done
echo "Random number between $FLOOR and SRANGE --- Snumber"
echo

Generate binary choice, that is, "true" or "false" value.
BINARY=2

T=1

number=$RANDOM

let "number %= S$SBINARY"

Note that let "number >>= 14" gives a better random distribution
#+ (right shifts out everything except last binary digit).
if ["Snumber" -eq ST]
then
echo "TRUE"
else
echo "FALSE"
fi

Chapter 9. Another Look at Variables 108

Advanced Bash-Scripting Guide

echo

Generate a toss of the dice.
SPOTS=6 # Modulo 6 gives range 0 - 5.
Incrementing by 1 gives desired range of 1 - 6.
Thanks, Paulo Marcel Coelho Aragao, for the simplification.
diel=0
die2=0
Would it be better to just set SPOTS=7 and not add 1? Why or why not?

Tosses each die separately, and so gives correct odds.
let "diel = SRANDOM % S$SPOTS +1" # Roll first one.
let "die2 = SRANDOM % $SPOTS +1" # Roll second one.

Which arithmetic operation, above, has greater precedence —-—
#+ modulo (%) or addition (+)?2

let "throw = $diel + $die2"
echo "Throw of the dice = $throw"
echo

exit O

Example 9-12. Picking a random card from a deck

#!/bin/bash
pick-card.sh

This is an example of choosing random elements of an array.

Pick a card, any card.

Suites="Clubs
Diamonds
Hearts
Spades"

Denominations="2

O J o U b W

9

10
Jack
Queen
King
Ace"

Note variables spread over multiple lines.

suite=($Suites) # Read into array variable.
denomination= ($Denominations)

Chapter 9. Another Look at Variables 109

Advanced Bash-Scripting Guide

num_suites=S${#suite[*]} # Count how many elements.
num_denominations=${#denomination[*]}

echo —n "${denomination[$ ((RANDOM$num_denominations))]} of "
echo ${suite[$ ((RANDOM%num_suites))]}

Sbozo sh pick-cards.sh
Jack of Clubs

Thank you, "jipe," for pointing out this use of $RANDOM.
exit O

Example 9-13. Brownian Motion Simulation

#!/bin/bash

brownian.sh

Author: Mendel Cooper
Reldate: 10/26/07

License: GPL3

This script models Brownian motion:

#+ the random wanderings of tiny particles in a fluid,

#+ as they are buffeted by random currents and collisions.
#+ This is colloquially known as the "Drunkard's Walk."

It can also be considered as a stripped-down simulation of a
#+ Galton Board, a slanted board with a pattern of pegs,

#+ down which rolls a succession of marbles, one at a time.

#+ At the bottom is a row of slots or catch basins in which

#+ the marbles come to rest at the end of their Jjourney.

Think of it as a kind of bare-bones Pachinko game.

As you see by running the script,

#+ most of the marbles cluster around the center slot.

#+ This is consistent with the expected binomial distribution.
As a Galton Board simulation, the script

#+ disregards such parameters as

#+ board tilt-angle, rolling friction of the marbles,

#+ angles of impact, and elasticity of the pegs.

To what extent does this affect the accuracy of the simulation?

,,
PASSES=500 # Number of particle interactions / marbles.
ROWS=10 # Number of "collisions" (or horiz. peg rows).
RANGE=3 # 0 - 2 output range from S$SRANDOM.
POS=0 # Left/right position.
RANDOM=§$ # Seeds the random number generator from PID
#+ of script.

declare —-a Slots # Array holding cumulative results of passes.
NUMSLOTS=21 # Number of slots at bottom of board.
Initialize_Slots () { # Zero out all elements of the array.
for i in $(seq S$NUMSLOTS)
do

Slots[$1]=0
done

Chapter 9. Another Look at Variables 110

echo

Advanced Bash-Scripting Guide

Blank line at beginning of run.

Show_Slots () {

echo; echo
echo -n " "
for i in $(seg S$SNUMSLOTS) # Pretty-print array elements.
do
printf "%3d" S${Slots[$i]} # Allot three spaces per result.
done
echo # Row of slots:
echo " |__|__ ||| ||| ||| ||| || [[l |"
echo " ["
echo # Note that if the count within any particular slot exceeds 99,
#+ it messes up the display.
Running only(!) 500 passes usually avoids this.
}
Move () { # Move one unit right / left, or stay put.
Move=$RANDOM # How random is SRANDOM? Well, let's see
let

"Move %= RANGE" # Normalize into range of 0 - 2.

case "SMove" in

0Oy gz # Do nothing, i.e., stay in place.
1) ((POS—--));; # Left.
2) ((POS++));; # Right.
*) echo -n "Error ";; # Anomaly! (Should never occur.)
esac
}
Play () { # Single pass (inner loop) .
1i=0
while ["$i" -1t "SROWS"] # One event per row.
do
Move
((i++));
done
SHIFT=11 # Why 11, and not 107
let "POS += SSHIFT" # Shift "zero position" to center.
((Slots[SPOS]++)) # DEBUG: echo S$POS

echo —-n "$POS "

Run
p=0

(

) | # Outer loop.

while ["Sp" -1t "SPASSES" |

do

Play

(C pt+t)
POS=0 # Reset to zero. Why?

done

}

Chapter 9. Another Look at Variables

111

Advanced Bash-Scripting Guide

main ()

Initialize_Slots

Run

Show_Slots

exit $7

Exercises:

1) Show the results in a vertical bar graph, or as an alternative,
#+ a scattergram.

2) Alter the script to use /dev/urandom instead of S$RANDOM.
Will this make the results more random?

3) Provide some sort of "animation" or graphic output

for each marble played.

Jipe points out a set of techniques for generating random numbers within a range.

Generate random number between 6 and 30.
rnumber=$ ((RANDOM%25+6))

Generate random number in the same 6 - 30 range,
but the number must be evenly divisible by 3.
rnumber=S$ (((RANDOM%$30/3+1) *3))

Note that this will not work all the time.
It fails if SRANDOM%30 returns 0.

Frank Wang suggests the following alternative:
rnumber=S$ ((RANDOM%27/3*3+6))

Bill Gradwohl came up with an improved formula that works for positive numbers.

rnumber=3$ (((RANDOMS (max-min+divisibleBy)) /divisibleBy*divisibleBy+min))
Here Bill presents a versatile function that returns a random number between two specified values.

Example 9-14. Random between values

#!

H o o

/bin/bash

random-between. sh

Random number between two specified values.

Script by Bill Gradwohl, with minor modifications by the document author.
Corrections in lines 187 and 189 by Anthony Le Clezio.

Used with permission.

randomBetween () {

Generates a positive or negative random number

#+ between $min and S$max

#+ and divisible by $divisibleBy.

Gives a "reasonably random" distribution of return values.
#

Bill Gradwohl - Oct 1, 2003

syntax () {
Function embedded within function.
echo
echo "Syntax: randomBetween [min] [max] [multiple]"

Chapter 9. Another Look at Variables 112

Advanced Bash-Scripting Guide

echo

echo —-n "Expects up to 3 passed parameters, "

echo "but all are completely optional."

echo "min is the minimum value"

echo "max i1s the maximum value"

echo —n "multiple specifies that the answer must be "

echo "a multiple of this value."

echo " i.e. answer must be evenly divisible by this number."
echo

echo "If any value is missing, defaults area supplied as: 0 32767 1"
echo -n "Successful completion returns 0, "

echo "unsuccessful completion returns"

echo "function syntax and 1."

echo —-n "The answer is returned in the global variable "

echo "randomBetweenAnswer"

echo -n "Negative values for any passed parameter are "

echo "handled correctly."

local min=${1:-0}

local max=${2:-32767}

local divisibleBy=${3:-1}

Default values assigned, in case parameters not passed to function.

local x
local spread

Let's make sure the divisibleBy value is positive.
[${divisibleBy} -1t 0] && divisibleBy=$ ((0-divisibleBy))

Sanity check.

if [$# —-gt 3 -o ${divisibleBy} -eq 0 -o ${min} -eq ${max}]; then
syntax
return 1

fi

See if the min and max are reversed.
if [${min} -gt ${max}]; then

Swap them.

x=${min}

min=${max}

max=3${x}

If min is itself not evenly divisible by $divisibleBy,
#+ then fix the min to be within range.
if [$((min/divisibleBy*divisibleBy)) -ne ${min}]; then
if [${min} -1t 0]; then
min=$ ((min/divisibleBy*divisibleBy))
else
min=$ ((((min/divisibleBy)+1) *divisibleBy))
fi

If max is itself not evenly divisible by $divisibleBy,
#+ then fix the max to be within range.
if [$((max/divisibleBy*divisibleBy)) -ne ${max}]; then
if [S$S{max} -1t 0]; then
max=$ ((((max/divisibleBy)-1) *divisibleBy))
else
max=$ ((max/divisibleBy*divisibleBy))
fi

Chapter 9. Another Look at Variables 113

Advanced Bash-Scripting Guide

Note that to get a proper distribution for the end points,
#+ the range of random values has to be allowed to go between
#+ 0 and abs (max-min)+divisibleBy, not just abs (max-min)+1.

The slight increase will produce the proper distribution for the
#+ end points.

Changing the formula to use abs(max-min)+1 will still produce

#+ correct answers, but the randomness of those answers is faulty in

#+ that the number of times the end points (Smin and S$max) are returned
#+ is considerably lower than when the correct formula is used.

spread=$ ((max-min))

Omair Eshkenazi points out that this test is unnecessary,

#+ since max and min have already been switched around.

[${spread} -1t 0] && spread=$((0-spread))

let spread+=divisibleBy
randomBetweenAnswer=S$ (((RANDOMS$spread) /divisibleBy*divisibleBy+min))

return 0
However, Paulo Marcel Coelho Aragao points out that
when $max and $min are not divisible by $divisibleBy,

the formula fails.

He suggests instead the following formula:
rnumber = $(((RANDOM% (max-min+1)+min) /divisibleBy*divisibleBy))

HH= = = FH= H T

Let's test the function.
min=-14

max=20

divisibleBy=3

Generate an array of expected answers and check to make sure we get
#+ at least one of each answer if we loop long enough.

declare —-a answer
minimum=${min}
maximum=$ {max}
if [$((minimum/divisibleBy*divisibleBy)) —-ne ${minimum}]; then
if [${minimum} -1t O]; then
minimum=$ ((minimum/divisibleBy*divisibleBy))
else
minimum=$ ((((minimum/divisibleBy)+1) *divisibleBy))
fi

If max is itself not evenly divisible by $divisibleBy,
#+ then fix the max to be within range.

if [$((maximum/divisibleBy*divisibleBy)) —-ne ${maximum}]; then
if [${maximum} -1t O]; then

Chapter 9. Another Look at Variables

114

Advanced Bash-Scripting Guide

maximum=$ ((((maximum/divisibleBy)-1) *divisibleBy))
else

maximum=$ ((maximum/divisibleBy*divisibleBy))
fi

We need to generate only positive array subscripts,
#+ so we need a displacement that that will guarantee
#+ positive results.

disp=5$ ((0-minimum))

for ((i=${minimum}; i<=${maximum}; i+=divisibleBy)); do
answer [1+disp]=0

done

Now loop a large number of times to see what we get.
loopIt=1000 # The script author suggests 100000,
#+ but that takes a good long while.

for ((i=0; i<S${loopIt}; ++1i)); do

Note that we are specifying min and max in reversed order here to
#+ make the function correct for this case.

randomBetween ${max} ${min} S${divisibleBy}

Report an error if an answer 1is unexpected.

[${randomBetweenAnswer} -1t ${min} -o ${randomBetweenAnswer} —-gt ${max}] \
&& echo MIN or MAX error — ${randomBetweenAnswer}!

[$((randomBetweenAnswer%S${divisibleBy})) -ne 0] \

&& echo DIVISIBLE BY error - ${randomBetweenAnswer}!

Store the answer away statistically.
answer [randomBetweenAnswer+disp]=$ ((answer [randomBetweenAnswer+disp]+1))
done

Let's check the results

for ((i=${minimum}; i<=${maximum}; i+=divisibleBy)); do
[S{answer[i+displ} —-eq 0] \
&& echo "We never got an answer of $i." \
|| echo "${i} occurred S${answer[it+disp]} times."
done

exit O
Just how random is SRANDOM? The best way to test this is to write a script that tracks the distribution of
"random" numbers generated by SRANDOM. Let's roll a SRANDOM die a few times . . .

Example 9-15. Rolling a single die with RANDOM

#!/bin/bash
How random is RANDOM?

RANDOM=S$$ # Reseed the random number generator using script process ID.

Chapter 9. Another Look at Variables 115

Advanced Bash-Scripting Guide

PIPS=6 # A die has 6 pips.

MAXTHROWS=600 # Increase this if you have nothing better to do with your time.
throw=0 # Number of times the dice have been cast.

ones=0 # Must initialize counts to zero,

twos=0 #+ since an uninitialized variable is null, NOT zero.

threes=0

fours=0

fives=0

sixes=0

print_result ()

{

echo

echo "ones = Sones"
echo "twos = Stwos"
echo "threes = $threes"
echo "fours = S$fours"
echo "fives = S$fives"
echo "sixes = S$sixes"
echo

}
update_count ()

case "$1" in

0) ((ones++));; # Since a die has no "zero", this corresponds to 1.
1) ((twos++));; # And this to 2.
2) ((threes++));; # And so forth.
3) ((fours++));;
4) ((fives++));;
5) ((sixes++));;
esac
}
echo

while ["Sthrow" -1t "SMAXTHROWS"]
do
let "diel = RANDOM % S$SPIPS"
update_count $diel
let "throw += 1"
done

print_result

exit $?

The scores should distribute evenly, assuming RANDOM is random.
With SMAXTHROWS at 600, all should cluster around 100,

#+ plus—or—-minus 20 or so.

Keep in mind that RANDOM is a ***pseudorandom*** generator,
#+ and not a spectacularly good one at that.

Randomness i1s a deep and complex subject.
Sufficiently long "random" sequences may exhibit

#+ chaotic and other "non-random" behavior.

Exercise (easy):

Chapter 9. Another Look at Variables 116

Advanced Bash-Scripting Guide

Rewrite this script to flip a coin 1000 times.
Choices are "HEADS" and "TAILS."

As we have seen in the last example, it is best to reseed the RANDOM generator each time it is invoked. Using
the same seed for RANDOM repeats the same series of numbers. [48] (This mirrors the behavior of the
random () function in C.)

Example 9-16. Reseeding RANDOM

#!/bin/bash
seeding-random.sh: Seeding the RANDOM variable.
v 1.1, reldate 09 Feb 2013

MAXCOUNT=25 # How many numbers to generate.
SEED=

random_numbers ()
{

local count=0
local number

while ["Scount" -1t "S$SMAXCOUNT"]
do

number=$RANDOM

echo —n "S$number "

let "count++"
done

}

echo; echo

SEED=1

RANDOM=$SEED # Setting RANDOM seeds the random number generator.
echo "Random seed = SSEED"

random_numbers

RANDOM=S$SEED # Same seed for RANDOM
echo; echo "Again, with same random seed

echo "Random seed = S$SSEED"
random_numbers # reproduces the exact same number series.
#
When is it useful to duplicate a "random" series?
echo; echo
SEED=2
RANDOM=$SEED # Trying again, but with a different seed
echo "Random seed = S$SSEED"
random_numbers # . . . gives a different number series.

echo; echo

RANDOM=S$$ seeds RANDOM from process id of script.
It is also possible to seed RANDOM from 'time' or 'date' commands.

Getting fancy...

SEED=S (head -1 /dev/urandom | od -N 1 | awk '{ print $2 }'| sed s/"~0%*//)
Pseudo-random output fetched

Chapter 9. Another Look at Variables 117

Advanced Bash-Scripting Guide

#+ from /dev/urandom (system pseudo-random device-file),

#+ then converted to line of printable (octal) numbers by "od",
#+ then "awk" retrieves just one number for SEED,

#+ finally "sed" removes any leading zeros.

RANDOM=S$SEED

echo "Random seed = S$SSEED"

random_numbers

echo; echo

exit O

) The /dev/urandom pseudo-device file provides a method of generating much more "random"
pseudorandom numbers than the $SRANDOM variable. dd if=/dev/urandom of=targetfile
bs=1 count=XX creates a file of well-scattered pseudorandom numbers. However, assigning these
numbers to a variable in a script requires a workaround, such as filtering through od (as in above

example, Example 16-14, and Example A-36), or even piping to mdSsum (see Example 36-16).

There are also other ways to generate pseudorandom numbers in a script. Awk provides a convenient
means of doing this.

Example 9-17. Pseudorandom numbers, using awk

#!/bin/bash

random2.sh: Returns a pseudorandom number in the range 0 - 1,
#+ to 6 decimal places. For example: 0.822725

Uses the awk rand() function.

AWKSCRIPT=' { srand(); print rand() } '
Command (s) /parameters passed to awk
Note that srand() reseeds awk's random number generator.

echo -n "Random number between 0 and 1 = "

echo | awk "SAWKSCRIPT"
What happens if you leave out the 'echo'?

exit O
Exercises:

1) Using a loop construct, print out 10 different random numbers.
(Hint: you must reseed the srand() function with a different seed
#+ in each pass through the loop. What happens if you omit this?)

2) Using an integer multiplier as a scaling factor, generate random numbers
#+ in the range of 10 to 100.

3) Same as exercise #2, above, but generate random integers this time.

The date command also lends itself to generating pseudorandom integer sequences.

Chapter 9. Another Look at Variables 118

Chapter 10. Manipulating Variables
10.1. Manipulating Strings

Bash supports a surprising number of string manipulation operations. Unfortunately, these tools lack a unified
focus. Some are a subset of parameter substitution, and others fall under the functionality of the UNIX expr

command. This results in inconsistent command syntax and overlap of functionality, not to mention

confusion.
String Length
${#string}
expr length $string
These are the equivalent of strlen() in C.

expr "$string” : "'

stringZ=abcABC1l23ABCabc

echo S${#stringZz} # 15
echo "expr length $stringZ’ # 15
echo “expr "S$stringz" : '.*'° # 15

Example 10-1. Inserting a blank line between paragraphs in a text file

#!/bin/bash
paragraph-space.sh
Ver. 2.1, Reldate 29Jull2 [fixup]

Inserts a blank line between paragraphs of a single-spaced text file.

Usage: $0 <FILENAME

MINLEN=60 # Change this value? It's a judgment call.
Assume lines shorter than SMINLEN characters ending in a period
#+ terminate a paragraph. See exercises below.

while read line # For as many lines as the input file has
do
echo "$line" # Output the line itself.

len=${#line}

if [["$len" -1t "SMINLEN" && "S$line" =~ [*{\.}1$ 1]
1if [["S$len" -1t "SMINLEN" && "$line" =~ \[*\.\] 11
An update to Bash broke the previous version of this script. Ouch!
Thank you, Halim Srama, for pointing this out and suggesting a fix.
then echo # Add a blank line immediately
fi #+ after a short line terminated by a period.
done
exit

Exercises:

1) The script usually inserts a blank line at the end

Chapter 10. Manipulating Variables

119

Advanced Bash-Scripting Guide

of the target file. Fix this.
Line 17 only considers periods as sentence terminators.

Modify this to include other common end-of-sentence characters,
such as ?, !, and ".

Length of Matching Substring at Beginning of String

expr match "$string" '$substring'

Ssubstringis aregular expression.

expr "$string" : '$substring'

Index

Ssubstringis aregular expression.

stringZ=abcABC1l23ABCabc
12345678

echo "expr match "S$stringzZ" 'abc[A-Z]*.2'"
echo "expr "S$stringz" : 'abc[A-Z]*.2'"

expr index $string $substring
Numerical position in $string of first character in $substring that matches.

stringZ=abcABC1l23ABCabc
123456
echo ‘expr index "S$stringz" C12°

echo ‘expr index "S$stringzZ" 1lc®

'c' (in #3 position) matches before '1'.

This is the near equivalent of strchr() in C.

Substring Extraction

${string:position}

Extracts substring from $stringat Sposition.

#
#

#

8
8

6
C position.

3

If the $string parameter is "*" or "@", then this extracts the positional parameters, [49] starting at

S$position.

${string:position:length}
Extracts $1ength characters of substring from Sstringat Sposition.

stringZ=abcABC1l23ABCabc
0123456789.....
0-based indexing.

echo ${stringz:0}
echo ${stringz:1}
echo ${stringz:7}

echo ${stringZ:7:3}

Chapter 10. Manipulating Variables

abcABC123ABCabc
bcABC123ABCabc
23ABCabc

23A
Three characters of substring.

120

Advanced Bash-Scripting Guide

Is it possible to index from the right end of the string?

echo S${stringZ:-4} # abcABCl23ABCabc
Defaults to full string, as in ${parameter:-default}.
However

echo ${stringZ: (-4)} # Cabc

echo S${stringZ: -4} # Cabc

Now, it works.

Parentheses or added space "escape" the position parameter.

Thank you, Dan Jacobson, for pointing this out.
The position and length arguments can be "parameterized," that is, represented as a variable, rather
than as a numerical constant.

Example 10-2. Generating an 8-character '"'random' string

#!/bin/bash
rand-string.sh
Generating an 8-character "random" string.

if [-n "$1"] # If command-line argument present,

then #+ then set start-string to it.
str0="Ss1"

else # Else use PID of script as start-string.
str0="ss$"

fi

POS=2 # Starting from position 2 in the string.
LEN=8 # Extract eight characters.

strl=$(echo "$str0" | md5sum | md5sum)
Doubly scramble ANNNNA ANNAAA

#+ by piping and repiping to md5sum.

randstring="${strl:$POS:SLEN}"
Can parameterize """~ AN

echo "S$randstring"
exit $°?

bozo$./rand-string.sh my-password
1bdd88c4

No, this is is not recommended
#+ as a method of generating hack-proof passwords.

If the $string parameter is "*" or "@", then this extracts a maximum of $1ength positional
parameters, starting at Sposition.

echo ${*:2} # Echoes second and following positional parameters.
echo ${@:2} # Same as above.
echo ${*:2:3} # Echoes three positional parameters, starting at second.

expr substr $string $position $length

Chapter 10. Manipulating Variables 121

Advanced Bash-Scripting Guide

Extracts S1ength characters from $string starting at Sposition.

stringZ=abcABC1l23ABCabc

123456789......

l-based indexing.

echo "expr substr S$stringZ 1 2° # ab
echo "expr substr S$stringZ 4 3° # ABC

expr match "$string" "\($substring\)’

Extracts Ssubstring at beginning of Sstring, where Ssubstringis a regular expression.

expr "$string” : "\($substring\)’

Extracts Ssubstring at beginning of Sstring, where Ssubstringis aregular expression.

stringZ=abcABC1l23ABCabc

4 .
echo "expr match "$stringz" '\ (.[b-c]*[A-Z]..[0-9]\)"'" # abcABC1l
echo “expr "S$stringzZ" : '\ (.[b-c]l*[A-Z]..[0-9]\)"" # abcABC1l
echo ‘expr "S$stringzZ" : '"\(....... \) " # abcABC1l

All of the above forms give an identical result.

expr match "$string" '.*\($substring\)'

Extracts Ssubstringatend of Sstring, where Ssubstringis aregular expression.

expr "$string” : . *\($substring\)’

Extracts Ssubstringatend of Sstring, where Ssubstringis aregular expression.

stringZ=abcABC1l23ABCabc

n e
echo "expr match "$stringz" '.*\([A-C][A-C][A-C][a-c]*\)"'" # ABCabc
echo “expr "S$stringz" : ' *\(...... \) " # ABCabc

Substring Removal

${string#substring }

Deletes shortest match of Ssubstring from front of $string.
${string##substring }

Deletes longest match of Ssubstring from front of Sstring.

stringZ=abcABC123ABCabc

|====]| shortest
[————— | longest
echo ${stringZ#a*C} # 123ABCabc

Strip out shortest match between 'a' and 'C'.

echo ${stringZ##a*C} # abc
Strip out longest match between 'a' and 'C'.

You can parameterize the substrings.

X="a*C'
echo ${stringZ#S$X} # 123ABCabc
echo ${stringZ##S$X} # abc

As above.

Chapter 10. Manipulating Variables

122

Advanced Bash-Scripting Guide

${string%substring }
Deletes shortest match of Ssubstring from back of Sstring.

For example:

Rename all filenames in S$PWD with "TXT" suffix to a "txt" suffix.
For example, "filel.TXT" becomes "filel.txt"

SUFF=TXT
suff=txt

for 1 in $(ls *.S$SUFF)

do
mv —f $i ${i%.$SUFF}.Ssuff
Leave unchanged everything *except* the shortest pattern match
#+ starting from the right-hand-side of the variable $i

done ### This could be condensed into a "one-liner" if desired.

Thank you, Rory Winston.
${string%%substring }
Deletes longest match of Ssubstring from back of $string.

stringZ=abcABC1l23ABCabc

|| shortest
| -——————————— | longest
echo ${stringZ%b*c} # abcABCl23ABCa

Strip out shortest match between 'b' and 'c', from back of $stringZ.

echo ${stringZ%%b*c} # a

Strip out longest match between 'b' and 'c', from back of $stringz.

This operator is useful for generating filenames.

Example 10-3. Converting graphic file formats, with filename change

#!/bin/bash
cvt.sh:

Converts all the MacPaint image files in a directory to "pbm" format.

Uses the "macptopbm" binary from the "netpbm" package,

#+ which is maintained by Brian Henderson (bryanh@giraffe-data.com) .

Netpbm is a standard part of most Linux distros.

OPERATION=macptopbm

SUFF IX=pbm # New filename suffix.
if [-n "S$1"]
then
directory=5$1 # If directory name given as a script argument...
else
directory=$PWD # Otherwise use current working directory.
fi

Assumes all files in the target directory are MacPaint image files,

#+ with a ".mac" filename suffix.

for file in $directory/* # Filename globbing.
do

Chapter 10. Manipulating Variables

123

Advanced Bash-Scripting Guide

filename=${file%.*c} # Strip ".mac" suffix off filename
#+ ('.*c' matches everything
#+ between '.' and 'c', inclusive).

SOPERATION S$file > "S$filename.S$SSUFFIX"
Redirect conversion to new filename.

rm —-f S$file # Delete original files after converting.
echo "S$filename.S$SSUFFIX" # Log what is happening to stdout.

done

exit O

Exercise:
As it stands, this script converts *all* the files in the current

#+ working directory.
Modify it to work *only* on files with a ".mac" suffix.

*** And here's another way to do it. ***
#!/bin/bash
Batch convert into different graphic formats.

Assumes imagemagick installed (standard in most Linux distros) .

INFMT=png # Can be tif, jpg, gif, etc.
OUTFMT=pdf # Can be tif, Jpg, gif, pdf, etc.

for pic in *"SINEFMT"

do
p2=S$(ls "S$pic" | sed -e s/\.SINEMT//)
echo $p2
convert "S$pic" S$p2.SOUTEMT
done
exit $?

Example 10-4. Converting streaming audio files to ogg

#!/bin/bash
ra2ogg.sh: Convert streaming audio files (*.ra) to ogg.

Uses the "mplayer" media player program:

http://www.mplayerhqg.hu/homepage

Uses the "ogg" library and "oggenc":

http://www.xiph.org/

#

This script may need appropriate codecs installed, such as sipr.so
Possibly also the compat-libstdc++ package.

OFILEPREF=S${1%%ra} # Strip off the "ra" suffix.

OFILESUFF=wav # Suffix for wav file.

OUTFILE="SOFILEPREF""SOFILESUFFE"
E_NOARGS=85

if [-z "sS1v] # Must specify a filename to convert.
then

echo "Usage: “basename $0° [filename]"

exit SE_NOARGS
fi

Chapter 10. Manipulating Variables 124

Advanced Bash-Scripting Guide

G o i ki i
mplayer "$1" -ao pcm:file=SOUTFILE

oggenc "SOUTFILE" # Correct file extension automatically added by oggenc.
G i o i ki i

rm "SOUTFILE" # Delete intermediate *.wav file.
If you want to keep it, comment out above line.

exit $?

Note:

————

On a Website, simply clicking on a *.ram streaming audio file
#+ usually only downloads the URL of the actual *.ra audio file.
You can then use "wget" or something similar

#+ to download the *.ra file itself.

Exercises:

As is, this script converts only *.ra filenames.

Add flexibility by permitting use of *.ram and other filenames.

#

If you're really ambitious, expand the script

#+ to do automatic downloads and conversions of streaming audio files.
Given a URL, batch download streaming audio files (using "wget")

#+ and convert them on the fly.

A simple emulation of getopt using substring-extraction constructs.

Example 10-5. Emulating getopt

#!/bin/bash

getopt-simple.sh

Author: Chris Morgan

Used in the ABS Guide with permission.

getopt_simple ()

{
echo "getopt_simple ()"
echo "Parameters are 'S$*'"
until [—z "S1"]

do
echo "Processing parameter of: '$S1'"
if [${1:0:1} = "'/']
then
tmp=${1:1} # Strip off leading '/'
parameter=${tmp%%=*} # Extract name.
value=$ {tmp##*=} # Extract value.
echo "Parameter: 'Sparameter', value: 'Svalue'"
eval S$parameter=$value
fi
shift
done

Chapter 10. Manipulating Variables 125

Advanced Bash-Scripting Guide

Pass all options to getopt_simple() .
getopt_simple $*

echo "test is 'Stest'"
echo "test2 is 'Stest2'"

exit 0 # See also, UseGetOpt.sh, a modified version of this script.

sh getopt_example.sh /test=valuel /test2=value2

Parameters are '/test=valuel /test2=valuel'

Processing parameter of: '/test=valuel'
Parameter: 'test', wvalue: 'valuel'
Processing parameter of: '/test2=value2'
Parameter: 'test2', value: 'value2'

test is 'valuel'
test2 is 'value2'

Substring Replacement

${string/substring/replacement }

Replace first match of Ssubstring with Sreplacement. [50]
${string//substring/replacement }

Replace all matches of Ssubstringwith Sreplacement.

stringZ=abcABCl23ABCabc

echo ${stringZ/abc/xyz} # xyzABC123ABCabc
Replaces first match of 'abc' with 'xyz'.

echo ${stringZ//abc/xyz} # xyzABC123ABCxyz
Replaces all matches of 'abc' with # 'xyz'.

echo -—————————————-
echo "S$stringz" # abcABC123ABCabc
echo -—————————————-
The string itself is not altered!

Can the match and replacement strings be parameterized?
match=abc

repl=000

echo ${stringZ/Smatch/Srepl} # 000ABC123ABCabc
A A AANANAN

echo ${stringZ//$match/Srepl} # 000ABC123ABCO000
echo

What happens if no Sreplacement string is supplied?

echo ${stringZ/abc} # ABC123ABCabc

echo ${stringZz//abc} # ABC123ABC

A simple deletion takes place.
${string/#substring/replacement }

If $substring matches front end of Sstring, substitute Sreplacement for Ssubstring.
${string/%substring/replacement }

If Ssubstring matches back end of Sstring, substitute Sreplacement for Ssubstring.

Chapter 10. Manipulating Variables 126

Advanced Bash-Scripting Guide
stringZ=abcABC1l23ABCabc

echo ${stringZ/#abc/XYZ} # XYZABC1l23ABCabc
Replaces front-end match of 'abc' with 'XYZ'.

echo ${stringZ/%abc/XYZ} # abcABC123ABCXYZ
Replaces back-end match of 'abc' with 'XYZ'.

10.1.1. Manipulating strings using awk

A Bash script may invoke the string manipulation facilities of awk as an alternative to using its built-in
operations.

Example 10-6. Alternate ways of extracting and locating substrings

#!/bin/bash
substring-extraction.sh

String=23skidool

012345678 Bash

123456789 awk

Note different string indexing system:

Bash numbers first character of string as 0.
Awk numbers first character of string as 1.

echo ${String:2:4} # position 3 (0-1-2), 4 characters long
skid

The awk equivalent of ${string:pos:length} is substr(string,pos, length).
echo | awk '

{ print substr("'"${String}"'",3,4) # skid

}

v

Piping an empty "echo" to awk gives it dummy input,
#+ and thus makes it unnecessary to supply a filename.

echo "——-"
And likewise:

echo | awk '
{ print index("'"${String}"'", "skid")
}

! # The awk equivalent of "expr index"

3
#

skid starts at position 3)

exit O

10.1.2. Further Reference

For more on string manipulation in scripts, refer to Section 10.2 and the relevant section of the expr command
listing.

Script examples:

Chapter 10. Manipulating Variables 127

Advanced Bash-Scripting Guide

1. Example 16-9
2. Example 10-9
3. Example 10-10
4. Example 10-11
5. Example 10-13
6. Example A-36
7. Example A-41

10.2. Parameter Substitution

Manipulating and/or expanding variables

${parameter}
Same as Sparameter, i.e., value of the variable parameter. In certain contexts, only the less
ambiguous ${parameter} form works.

May be used for concatenating variables with strings.

your_1id=${USER}-on-${HOSTNAME }
echo "S$your_id"
#
echo "0Old \S$PATH = $PATH"
PATH=${PATH}:/opt/bin # Add /opt/bin to $PATH for duration of script.
echo "New \S$PATH = S$SPATH"
${parameter—-default}, ${parameter:-default}

If parameter not set, use default.

varl=1
var2=2
var3 is unset.

echo ${varl-Svar2} # 1
echo ${var3-Svar2} # 2
A Note the $ prefix.

echo S${username-' whoami' }
Echoes the result of ‘whoami®, if variable Susername is still unset.

& S{parameter—-default} and ${parameter:—-default } are almost
equivalent. The extra : makes a difference only when parameter has been declared,
but is null.

#!/bin/bash
param-sub.sh

Whether a variable has been declared

#+ affects triggering of the default option
#+ even if the variable is null.

username(=

echo "username(O has been declared, but is set to null."

Chapter 10. Manipulating Variables

128

Advanced Bash-Scripting Guide

echo "username(O = ${usernameO- whoami }"
Will not echo.

echo
echo usernamel has not been declared.

echo "usernamel = ${usernamel- whoami }"
Will echo.

usernamez=

echo "username2 has been declared, but is set to null."

echo "username2 = ${username2:- whoami }"

+ N

Will echo because of :- rather than just - in condition test.

Compare to first instance, above.

#
Once again:

variable=
variable has been declared, but is set to null.

echo "${variable-0}" # (no output)
echo "${variable:-1}" # 1

A

unset variable

echo "${variable-2}" # 2

echo "${variable:-3}" + 3

exit O

The default parameter construct finds use in providing "missing" command-line arguments in scripts.

DEFAULT_FILENAME=generic.data

filename=${1:-$DEFAULT_FILENAME }

If not otherwise specified, the following command block operates
#+ on the file "generic.data".

Begin-Command-Block

#

#

...

End-Command-Block

From "hanoi2.bash" example:

DISKS=S${1l:-E_NOPARAM} # Must specify how many disks.
Set SDISKS to $1 command-line-parameter,

#+ or to SE_NOPARAM if that is unset.

See also Example 3-4, Example 31-2, and Example A-6.

Compare this method with using an and list to supply a default command-line argument.
${parameter=default}, ${parameter:=default}

If parameter not set, set it to default.

Chapter 10. Manipulating Variables 129

Advanced Bash-Scripting Guide

Both forms nearly equivalent. The : makes a difference only when Sparameter has been declared
and is null, [51] as above.

echo ${var=abc} # abc
echo ${var=xyz} # abc
Svar had already been set to abc, so it did not change.

${parameter+alt_value}, ${parameter:+alt_value}
If parameter set, use alt_value, else use null string.

Both forms nearly equivalent. The : makes a difference only when parameter has been declared
and is null, see below.

echo "###### \S{parameter+alt_value} ####HH4#4"
echo

a=${paraml+xyz}

echo "a = $a" # a =

param2=

a=${param2+xyz}

echo "a = $a" # a = xyz

param3=123

a=${param3+xyz}

echo "a = $a" # a = xyz

echo

echo "###### \S{parameter:+alt_value} #H#####H#"
echo

a=${paramé:+xyz}

echo "a = $a" # a =
paramb=

a=${paramb:+xyz}

echo "a = $a" # a =

Different result from a=${param5+xyz}

param6=123
a=${paramb6:+xyz}
echo "a = $a" # a = xyz
${parameter?err_msg}, ${parameter:?err_msg}
If parameter set, use it, else print err_msg and abort the script with an exit status of 1.

Both forms nearly equivalent. The : makes a difference only when parameter has been declared
and is null, as above.

Example 10-7. Using parameter substitution and error messages

#!/bin/bash

Check some of the system's environmental variables.

This is good preventative maintenance.

If, for example, S$USER, the name of the person at the console, is not set,
+ the machine will not recognize you.

R

Chapter 10. Manipulating Variables 130

Advanced Bash-Scripting Guide

S{HOSTNAME?} S${USER?} S${HOME?} S${MAIL?}
echo

echo "Name of the machine is $HOSTNAME."
echo "You are SUSER."

echo "Your home directory is $SHOME."

echo "Your mail INBOX is located in S$MAIL."
echo

echo "If you are reading this message,"
echo "critical environmental variables have been set."
echo

echo

The S${variablename?} construction can also check
#+ for variables set within the script.

ThisVariable=Value-of-ThisVariable

Note, by the way, that string variables may be set

#+ to characters disallowed in their names.
${ThisVariable?}

echo "Value of ThisVariable is $ThisVariable".

echo; echo
${ZZXy23AB?"ZZXy23AB has not been set."}
Since ZZXy23AB has not been set,
#+ then the script terminates with an error message.
You can specify the error message.

: S{variablename?"ERROR MESSAGE"}

Same result with: dummy_variable=${ZZXy23AB?}
#

#

echo ${ZZXy23AB?} >/dev/null

Compare these methods of checking whether a variable has been set
#+ with "set -u"

echo "You will not see this message, because script already terminated.”

HERE=0
exit SHERE # Will NOT exit here.

In fact, this script will return an exit status (echo $?) of 1.
Example 10-8. Parameter substitution and "usage'' messages

#!/bin/bash
usage-message.sh

${1?"Usage: $0 ARGUMENT"}
Script exits here if command-line parameter absent,
#+ with following error message.
usage-message.sh: 1: Usage: usage-message.sh ARGUMENT

Chapter 10. Manipulating Variables

dummy_variable=${ZZXy23AB?"ZXy23AB has not been set."}

131

Advanced Bash-Scripting Guide

echo "These two lines echo only if command-line parameter given."
echo "command-line parameter = \"S$1\""

exit 0 # Will exit here only if command-line parameter present.

Check the exit status, both with and without command-line parameter.
If command-line parameter present, then "$?" is O.
If not, then "$?" is 1.

Parameter substitution and/or expansion. The following expressions are the complement to the match in
expr string operations (see Example 16-9). These particular ones are used mostly in parsing file path names.

Variable length / Substring removal

${#var}
String length (number of characters in $var). For an array, ${#array} is the length of the first

element in the array.

=& Exceptions:

¢
${#*} and ${#@} give the number of positional parameters.

O For an array, ${#array[*]} and ${#array[@]} give the number of elements in
the array.

Example 10-9. Length of a variable

#!/bin/bash
length.sh

E_NO_ARGS=65

if [$# -eq 0] # Must have command-line args to demo script.

then
echo "Please invoke this script with one or more command-line arguments."
exit S$E_NO_ARGS

fi

var0l=abcdEFGH281]

echo "var0l = ${varO01l}"

echo "Length of var0l = ${#var01l}"
Now, let's try embedding a space.
var02="abcd EFGH28ij"

echo "var02 = ${var02}"

echo "Length of var02 = ${#var02}"

echo "Number of command-line arguments passed to script = ${#Q}"
echo "Number of command-line arguments passed to script = ${#*}"
exit O

${var#Pattern}, ${vari#i#Pattern}

${var#Pattern} Remove from $Svar the shortest part of SPattern that matches the front end
of Svar.

Chapter 10. Manipulating Variables 132

Advanced Bash-Scripting Guide

${var##Pattern} Remove from Svar the longest part of SPattern that matches the front end

of Svar.

A usage illustration from Example A-7:

Function from "days-between.sh" example.
Strips leading zero(s) from argument passed.

strip_leading_zero () # Strip possible leading zero(s)
{ #+ from argument passed.
return=${1#0} # The "1" refers to "$1" -- passed arg.
} # The "0" is what to remove from "$1" -- strips zeros.

Manfred Schwarb's more elaborate variation of the above:

strip_leading_zero2 ()

shopt -s extglob

Strip possible leading zero(s),
{ # Bash will interpret such numbers as octal values.

Turn on extended globbing.
local val=${1##+(0)} # Use local variable,

shopt —-u extglob # Turn off extended globbing.
_strip_leading_zero2=${val:-0}
If input was 0, return 0 instead of "".

}
Another usage illustration:

echo "basename $PWD®

echo "S{PWD##*/}"
echo

echo "basename $0°
echo $0

echo "S${O##*/}"
echo

filename=test.data
echo "$S{filename##*.}"

${var%Pattern}, ${var%sPattern}

#
#

Basename of current working directory.
Basename of current working directory.

Name of script.
Name of script.
Name of script.

data
Extension of filename.

since otherwise

longest matching series of 0's.

${var%Pattern} Remove from S$var the shortest part of SPattern that matches the back end

of Svar.

${var % %Pattern} Remove from Svar the longest part of SPattern that matches the back end

of Svar.

Version 2 of Bash added additional options.

Example 10-10. Pattern matching in parameter substitution

#!/bin/bash
patt-matching.sh

Pattern matching wusing the #

varl=abcdl2345abc6789

s
)

%% parameter substitution operators.

patternl=a*c # * (wild card) matches everything between a - c.

Chapter 10. Manipulating Variables

133

Advanced Bash-Scripting Guide

echo
echo "varl = S$varl" # abcdl2345abc6789
echo "varl = ${varl}" # abcdl2345abc6789

(alternate form)
echo "Number of characters in ${varl} = S${#varl}"
echo
echo "patternl = S$patternl" # a*c (everything between 'a' and 'c')
echo w._ Al
echo 'S${varl#S$Spatternl} =' "S${varl#Spatternl}" # dl2345abc6789
Shortest possible match, strips out first 3 characters abcdl2345abc6789
AAAAA |_|
echo 'S$S{varl##Spatternl} =' "S{varl##Spatternl}" # 6789
Longest possible match, strips out first 12 characters abcdl2345abc6789
AAAAA | __________ I

echo; echo; echo

pattern2=b*9 # everything between 'b' and '9'

echo "varl = S$varl" # Still abcdl2345abc6789

echo

echo "pattern2 = S$pattern2"

echo "-————-———————— "

echo 'S${varl%$pattern2} =' "S{varl%Spattern2}" # abcdl2345a

Shortest possible match, strips out last 6 characters abcdl2345abc6789
Anan ===
echo 'S${varl%%pattern2} =' "${varl%%Spattern2}" # a

Longest possible match, strips out last 12 characters abcdl2345abc6789
aann [=mmmm |

Remember, # and ## work from the left end (beginning) of string,

% and %% work from the right end.
echo
exit O

Example 10-11. Renaming file extensions:

#!/bin/bash
rfe.sh: Renaming file extensions.

#

rfe old_extension new_extension

#

Example:

To rename all *.gif files in working directory to *.jpg,
rfe gif jpg

E_BADARGS=65

case S$# in
0]1) # The vertical bar means "or" in this context.
echo "Usage: "basename $0° old_file suffix new_file_suffix"
exit $E_BADARGS # If 0 or 1 arg, then bail out.
rs

esac

for filename in *.$1
Traverse list of files ending with 1lst argument.

Chapter 10. Manipulating Variables

134

do
mv
#
#+

done

exit

Advanced Bash-Scripting Guide

Sfilename ${filename%$1}S$2
Strip off part of filename matching 1lst argument,
then append 2nd argument.

Variable expansion / Substring replacement

These constructs have been adopted from ksh.

${var:pos}

Variable var expanded, starting from offset pos.

${var:pos:len}
Expansion to a max of Ien characters of variable var, from offset pos. See Example A-13 for an

example of the creative use of this operator.

${var/Pattern/Replacement}

First match of Pattern, within var replaced with Replacement.

If Replacement is omitted, then the first match of Pat tern is replaced by nothing, that is,

deleted.

${var//Pattern/Replacement}
Global replacement. All matches of Pattern, within var replaced with Replacement.

As above, if Replacement is omitted, then all occurrences of Pat tern are replaced by nothing,

that is, deleted.

Example 10-12. Using pattern matching to parse arbitrary strings

#!/bin/bash

varl=abcd-1234-defg
echo "varl = S$varl"

t=S$S{varl#*—*}

echo "varl (with everything, up to and including first - stripped out)
t=S${varl#*-} works just the same,

#+ since # matches the shortest string,

#+ and * matches everything preceding, including an empty string.

(Thanks, Stephane Chazelas, for pointing this out.)

t=S{varl##*—*}
echo "If varl contains a \"-\", returns empty string... varl = st"

t=${varls*—*}

echo "varl (with everything from the last - on stripped out) = $t"
echo

,,,
path_name=/home/bozo/ideas/thoughts.for.today

,,,

echo "path_name = S$path_name"

t=${path_name##/*/}

echo "path_name, stripped of prefixes = $t"

Same effect as t="basename S$path_name’ in this particular case.

Chapter 10. Manipulating Variables

$t"

135

Advanced Bash-Scripting Guide

t=S{path_name%/}; t=S{t##*/} is a more general solution,
#+ but still fails sometimes.

If Spath_name ends with a newline, then “basename S$path_name’ will not work,

#+ but the above expression will.
(Thanks, S.C.)

t=${path_name%/*.*}

Same effect as t="dirname S$path_name’
echo "path_name, stripped of suffixes = S$t"
These will fail in some cases, such as "../", "/foo////", # "foo/",

Removing suffixes, especially when the basename has no suffix,
#+ but the dirname does, also complicates matters.
(Thanks, S.C.)

echo

t=${path_name:11}

echo "S$path_name, with first 11 chars stripped off = $t"
t=${path_name:11:5}

echo "S$Spath_name, with first 11 chars stripped off, length 5 = $t"

echo

t=${path_name/bozo/clown}

echo "$path_name with \"bozo\" replaced by \"clown\" = $t"
t=${path_name/today/}

echo "S$path_name with \"today\" deleted = S$t"
t=${path_name//0/0}

echo "S$path_name with all o's capitalized = s$t"
t=${path_name//o/}

echo "S$path_name with all o's deleted = $t"

exit O

${var/#Pattern/Replacement}

If prefix of var matches Pattern, then substitute Replacement for Pattern.

${var/%Pattern/Replacement}

If suffix of var matches Pattern, then substitute Replacement for Pattern.

Example 10-13. Matching patterns at prefix or suffix of string

#!/bin/bash
var-match.sh:
Demo of pattern replacement at prefix / suffix of string.

vO0=abcl234zipl234abc # Original variable.
echo "v0 = S$vO" # abcl234zipl234abc
echo

Match at prefix (beginning) of string.

v1=${v0/#abc/ABCDEF} # abcl234zipl234abc
-
echo "vl1 = S$v1" # ABCDEF1234zipl234abc
it ===l
Match at suffix (end) of string.
v2=${v0/%abc/ABCDEF} # abcl234zipl23abc
[
echo "v2 = $v2" # abcl234zipl234ABCDEF
[————1

Chapter 10. Manipulating Variables

136

Advanced Bash-Scripting Guide

Must match at beginning / end of string,
#+ otherwise no replacement results.
__

v3=${v0/#123/000}
echo "v3 = $v3"

v4=${v0/%123/000}
echo "v4 = $v4"

exit O

Matches, but not at beginning.
abcl234zipl234abc

NO REPLACEMENT.

Matches, but not at end.
abcl234zipl234abc

NO REPLACEMENT.

${!varprefix*}, ${!varprefix@}
Matches names of all previously declared variables beginning with varprefix.

This is a variation
Bash, version 2.04,

xyz23=whatever

xyz24=
a=S${!xyz*}
#/\/\ A
echo "a = $a"
a=S${!xyz@}
echo "a = $a"
echo "——-"

abc23=something_else

b=${!abc*}
echo "b = S$b"
c=5${!b}

echo S$c

#
#
#

on indirect reference, but with a * or Q.
adds this feature.

Expands to *names* of declared variables
beginning with "xyz"

a = xyz23 xyz24

Same as above.

a = xyz23 xyz24

b = abc23

Now, the more familiar type of indirect reference.

something_else

Chapter 10. Manipulating Variables

137

Chapter 11. Loops and Branches

What needs this iteration, woman?
--Shakespeare, Othello

Operations on code blocks are the key to structured and organized shell scripts. Looping and branching
constructs provide the tools for accomplishing this.

11.1. Loops

A loop is a block of code that iterates [52] a list of commands as long as the loop control condition is true.

for loops

for argin [1list]
This is the basic looping construct. It differs significantly from its C counterpart.

for argin[1ist]
do

command (s) ...
done

=& During each pass through the loop, arg takes on the value of each successive variable
inthe 1ist.

for arg in "S$varl" "S$var2" "Svar3" ... "SvarN"
In pass 1 of the loop, arg = $varl

In pass 2 of the loop, arg = $var2

In pass 3 of the loop, arg = $var3

...

In pass N of the loop, arg = $varN

Arguments in [list] quoted to prevent possible word splitting.
The argument 11 st may contain wild cards.

If do is on same line as for, there needs to be a semicolon after list.

for argin[list];do

Example 11-1. Simple for loops

#!/bin/bash
Listing the planets.

for planet in Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto

do
echo $planet # Each planet on a separate line.

Chapter 11. Loops and Branches

138

Advanced Bash-Scripting Guide
done
echo; echo

for planet in "Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto"
All planets on same line.
Entire 'list' enclosed in quotes creates a single variable.
Why? Whitespace incorporated into the variable.
do
echo S$planet
done

echo; echo "Whoops! Pluto is no longer a planet!"

exit O

Each [1ist] element may contain multiple parameters. This is useful when processing parameters
in groups. In such cases, use the set command (see Example 15-16) to force parsing of each [1ist]
element and assignment of each component to the positional parameters.

Example 11-2. for loop with two parameters in each [list] element

#!/bin/bash
Planets revisited.

Associate the name of each planet with its distance from the sun.

for planet in "Mercury 36" "Venus 67" "Earth 93" "Mars 142" "Jupiter 483"
do
set —— S$planet # Parses variable "planet"
#+ and sets positional parameters.
The "--" prevents nasty surprises if S$planet is null or
#+ begins with a dash.

May need to save original positional parameters,
#+ since they get overwritten.
One way of doing this is to use an array,

original_params=("$Q@")

echo "S$1 $2,000,000 miles from the sun"

e two tabs---concatenate zeroes onto parameter $2
done

(Thanks, S.C., for additional clarification.)

exit O

A variable may supply the [1ist] in a for loop.

Example 11-3. Fileinfo: operating on a file list contained in a variable

#!/bin/bash
fileinfo.sh

FILES="/usr/sbin/accept
/usr/sbin/pwck

Chapter 11. Loops and Branches 139

Advanced Bash-Scripting Guide

/usr/sbin/chroot
/usr/bin/fakefile
/sbin/badblocks
/sbin/ypbind" # List of files you are curious about.
Threw in a dummy file, /usr/bin/fakefile.
echo

for file in S$SFILES

do
if [! —e "S$file"] # Check 1if file exists.
then
echo "$file does not exist."; echo
continue # On to next.
fi
ls -1 S$file | awk '{ print $8 " file size: " S$5 }' # Print 2 fields.
whatis "basename $file’ # File info.

Note that the whatis database needs to have been set up for this to work.
To do this, as root run /usr/bin/makewhatis.
echo

done

exit O

The [1ist] in a for loop may be parameterized.

Example 11-4. Operating on a parameterized file list

#!/bin/bash
filename="*txt"

for file in $filename
do

echo "Contents of $file"
echo "-——-"

cat "S$file"

echo
done

If the [1ist] in afor loop contains wild cards (* and ?) used in filename expansion, then globbing
takes place.

Example 11-5. Operating on files with a for loop

#!/bin/bash
list-glob.sh: Generating [list] in a for-loop, using "globbing"
Globbing = filename expansion.

echo

for file in *

~ Bash performs filename expansion
#+ on expressions that globbing recognizes.
do

Chapter 11. Loops and Branches 140

Advanced Bash-Scripting Guide

1ls -1 "S$file" # Lists all files in $PWD (current directory).
Recall that the wild card character "*" matches every filename,
#+ however, in "globbing," it doesn't match dot-files.

If the pattern matches no file, it is expanded to itself.
To prevent this, set the nullglob option

#+ (shopt -s nullglob) .
Thanks, S.C.
done

echo; echo

for file in [Jx]*

do
rm —-f S$file # Removes only files beginning with "j" or "x" in $PWD.
echo "Removed file \"S$file\"".

done

echo

exit O

Omitting the in [1list] part of a for loop causes the loop to operate on $@ -- the positional
parameters. A particularly clever illustration of this is Example A-15. See also Example 15-17.

Example 11-6. Missing in [list] in a for loop

#!/bin/bash

Invoke this script both with and without arguments,
#+ and see what happens.

for a
do
echo -n "$a "

done

The 'in list' missing, therefore the loop operates on 'S$Q@'
#+ (command-line argument list, including whitespace) .

echo

exit O

It is possible to use command substitution to generate the [1ist] in a for loop. See also Example
16-54, Example 11-11 and Example 16-48.

Example 11-7. Generating the [1ist] in a for loop with command substitution

#!/bin/bash
for-loopcmd.sh: for-loop with [list]
#+ generated by command substitution.

NUMBERS="9 7 3 8 37.53"

for number in “echo $NUMBERS' # for number in 9 7 3 8 37.53

Chapter 11. Loops and Branches 141

Advanced Bash-Scripting Guide

do
echo —n "S$number "
done

echo
exit O

Here is a somewhat more complex example of using command substitution to create the [1ist].

Example 11-8. A grep replacement for binary files

#!/bin/bash
bin-grep.sh: Locates matching strings in a binary file.

A "grep" replacement for binary files.
Similar effect to "grep -a"

E_BADARGS=65
E_NOFILE=66

if [S$# -ne 2]

then
echo "Usage: "basename $0° search_string filename"
exit SE_BADARGS

fi

if [0 -f "s2"]

then
echo "File \"$2\" does not exist."
exit SE_NOFILE

fi

IFS=$'\012" # Per suggestion of Anton Filippov.
was: IFS="\n"

for word in $(strings "$2" | grep "S$1")

The "strings" command lists strings in binary files.
Output then piped to "grep", which tests for desired string.
do
echo $word
done

As S.C. points out, lines 23 - 30 could be replaced with the simpler
strings "$2" | grep "$1" | tr —-s "SIFS" '[\n*]'
Try something like "./bin-grep.sh mem /bin/1ls"

#+ to exercise this script.

exit O

More of the same.

Example 11-9. Listing all users on the system

#!/bin/bash
userlist.sh

PASSWORD_FILE=/etc/passwd

Chapter 11. Loops and Branches 142

Advanced Bash-Scripting Guide

n=1 # User number

for name in $(awk 'BEGIN{FS=":"}{print $1}' < "SPASSWORD_FILE"
Field separator = 9 AAAAAA

Print first field AAAAAAAA

Get input from password file /etc/passwd ~ANANAANANAAAAAAAA
do

echo "USER #$n = S$name"

let "n += 1"
done

USER #1 = root

USER #2 = bin
USER #3 = daemon
#

USER #33 = bozo
exit $7?
Discussion:

How is it that an ordinary user, or a script run by same,

#+ can read /etc/passwd? (Hint: Check the /etc/passwd file permissions.)

Is this a security hole? Why or why not?
Yet another example of the [1ist] resulting from command substitution.

Example 11-10. Checking all the binaries in a directory for authorship

#!/bin/bash
findstring.sh:

Find a particular string in the binaries in a specified directory.

directory=/usr/bin/

fstring="Free Software Foundation" # See which files come from the FSF.
for file in $(find $directory -type f -name '*' | sort)
do

strings —-f $file | grep "Sfstring" | sed -e "s%Sdirectory%$"

In the "sed" expression,

#+ it is necessary to substitute for the normal "/" delimiter
#+ because "/" happens to be one of the characters filtered out.

Failure to do so gives an error message. (Try it.)
done

exit $°?

Exercise (easy):

,,,,,,,,,,,,,,,

Convert this script to take command-line parameters
#+ for $directory and S$fstring.

A final example of [1ist] / command substitution, but this time the "command" is a function.

generate_list ()

{

echo "one two three"

for word in $ (generate_list) # Let "word" grab output of function.

Chapter 11. Loops and Branches

143

Advanced Bash-Scripting Guide

do
echo "Sword"
done

one
two
three

The output of a for loop may be piped to a command or commands.

Example 11-11. Listing the symbolic links in a directory

#!/bin/bash
symlinks.sh: Lists symbolic links in a directory.

directory=${1-"pwd’ }

Defaults to current working directory,
#+ 1f not otherwise specified.

Equivalent to code block below.

,,
ARGS=1 # Expect one command-line argument.
#

if [$# —-ne "SARGS"] # If not 1 arg...

then

directory="pwd’ # current working directory

else

directory=5$1

fi

,,

echo "symbolic links in directory \"$directory\""

for file in "$(find S$directory -type 1)" # —type 1 = symbolic links
do
echo "Sfile"
done | sort # Otherwise file list is unsorted.

Strictly speaking, a loop isn't really necessary here,
#+ since the output of the "find" command is expanded into a single word.
However, it's easy to understand and illustrative this way.

As Dominik 'Aeneas' Schnitzer points out,

#+ failing to quote $(find S$directory -type 1)

#+ will choke on filenames with embedded whitespace.
containing whitespace.

exit O

Jean Helou proposes the following alternative:

echo "symbolic links in directory \"$directory\""

Backup of the current IFS. One can never be too cautious.
OLDIFS=S$IFS

TFE§=¢

for file in $(find S$directory —-type 1 —-printf "%pSIFS")

do # AAAAAAAAAAAAAAAA

Chapter 11. Loops and Branches 144

Advanced Bash-Scripting Guide

echo "$file"
done|sort

And, James "Mike" Conley suggests modifying Helou's code thusly:

OLDIFS=S$IFS

IFS='' # Null IFS means no word breaks
for file in $(find $directory -type 1)
do

echo S$file

done | sort

This works in the "pathological" case of a directory name having

#+ an embedded colon.

"This also fixes the pathological case of the directory name having
#+ a colon (or space in earlier example) as well."

The stdout of a loop may be redirected to a file, as this slight modification to the previous example
shows.

Example 11-12. Symbolic links in a directory, saved to a file

#!/bin/bash
symlinks.sh: Lists symbolic links in a directory.

OUTFILE=symlinks.list # save-file
directory=${1-"pwd’ }

Defaults to current working directory,
#+ 1f not otherwise specified.

echo "symbolic links in directory \"$directory\"" > "SOUTFILE"

echo M—————mmmmm " >> "SQUTFILE"
for file in "$(find S$directory —-type 1)" # —type 1 = symbolic links
do
echo "Sfile"
done | sort >> "SOUTFILE" # stdout of loop
AANNAANNNNNAN redirected to save file.

echo "Output file = SOUTFILE"
exit $°?

There is an alternative syntax to a for loop that will look very familiar to C programmers. This
requires double parentheses.

Example 11-13. A C-style for loop

#!/bin/bash
Multiple ways to count up to 10.

echo
Standard syntax.

for a in 1 2 345 6 7 8 9 10
do

Chapter 11. Loops and Branches 145

Advanced Bash-Scripting Guide

echo -n "$a "
done

echo; echo

+ i

Using "seq" ...
for a in “seq 10°
do

echo -n "$a "
done

echo; echo

+ i

Using brace expansion
Bash, version 3+.
for a in {1..10}
do
echo -n "$a "
done

echo; echo

+ i

Now, let's do the same, using C-like syntax.

LIMIT=10
for ((a=1; a <= LIMIT ; a++)) # Double parentheses, and naked "LIMIT"
do
echo -n "$a "
done # A construct borrowed from ksh93.

echo; echo

+ n
Let's use the C "comma operator" to increment two variables simultaneously.
for ((a=1, b=1l; a <= LIMIT ; a++, b++))
do # The comma concatenates operations.

echo -n "$a-$b "
done

echo; echo

exit O

See also Example 27-16, Example 27-17, and Example A-6.

Now, a for loop used in a "real-life" context.

Example 11-14. Using efax in batch mode

Chapter 11. Loops and Branches 146

Advanced Bash-Scripting Guide

#!/bin/bash
Faxing (must have 'efax' package installed).

EXPECTED_ARGS=2

E_BADARGS=85

MODEM_PORT="/dev/ttyS2" # May be different on your machine.
Annnn PCMCIA modem card default port.

if [$# -ne SEXPECTED_ARGS]
Check for proper number of command-line args.
then
echo "Usage: "basename $0° phone# text-file"
exit S$E_BADARGS

fi
if [! —-f "sS2"]
then
echo "File $2 is not a text file."
File is not a regular file, or does not exist.
exit S$E_BADARGS
fi
fax make $2 # Create fax-formatted files from text files.
for file in $(1ls $2.0%*) # Concatenate the converted files.
Uses wild card (filename "globbing")
#+ in variable list.
do
fil="$fil S$file"
done
efax -d "SMODEM_PORT" -t "TS$S1" S$fil # Finally, do the work.

Trying adding -0l if above line fails.

As S.C. points out, the for-loop can be eliminated with
efax -d /dev/ttyS2 -ol -t "TS$1" $2.0*
#+ but it's not quite as instructive [grin].

exit $? # Also, efax sends diagnostic messages to stdout.

=) The keywords do and done delineate the for-loop command block. However, these
may, in certain contexts, be omitted by framing the command block within curly
brackets

for ((n=1; n<=10; n++))
No do!
{

echo —n "* $n *"

—

No done!

Outputs:

*] Kk D kk 3 Kk [*xKk § *xk g x% T *x*x 8 *x 9 **x () *

4=

And, echo $? returns 0, so Bash does not register an error.

Chapter 11. Loops and Branches 147

Advanced Bash-Scripting Guide

echo

But, note that in a classic for-loop: for n in [list]
#+ a terminal semicolon is required.

for n in 1 2 3
{ echo -n "$n "; }
A

Thank you, YongYe, for pointing this out.
while
This construct tests for a condition at the top of a loop, and keeps looping as long as that condition is
true (returns a 0 exit status). In contrast to a for loop, a while loop finds use in situations where the
number of loop repetitions is not known beforehand.

while [condition]
do
command (s) ...
done
The bracket construct in a while loop is nothing more than our old friend, the test brackets used in an

if/then test. In fact, a while loop can legally use the more versatile double-brackets construct (while [[
condition]]).

As is the case with for loops, placing the do on the same line as the condition test requires a
semicolon.

while [condition];do

Note that the test brackets are not mandatory in a while loop. See, for example, the getopts construct.

Example 11-15. Simple while loop

#!/bin/bash

var0=0
LIMIT=10
while ["S$varQ" -1t "SLIMIT"]
A A
Spaces, because these are "test-brackets"
do
echo -n "$var0O " # -n suppresses newline.
~ Space, to separate printed out numbers.
var0="expr S$Svar0 + 1° # var0=S$((Svar0+1)) also works.
var0=$((var0 + 1)) also works.
let "varQ += 1" also works.
done # Various other methods also work.
echo

Chapter 11. Loops and Branches 148

Advanced Bash-Scripting Guide

exit O
Example 11-16. Another while loop

#!/bin/bash

echo
Equivalent to:
while ["Svarl" != "end"] # while test "S$varl" != "end"
do
echo "Input variable #1 (end to exit) "
read varl # Not 'read Svarl' (why?).
echo "variable #1 = S$varl" # Need quotes because of "#"

If input is 'end', echoes it here.
Does not test for termination condition until top of loop.
echo

done

exit O

A while loop may have multiple conditions. Only the final condition determines when the loop
terminates. This necessitates a slightly different loop syntax, however.

Example 11-17. while loop with multiple conditions

#!/bin/bash

varl=unset
previous=S$varl

while echo "previous-variable = $previous"
echo
previous=S$varl
["$varl" != end] # Keeps track of what S$varl was previously.

Four conditions on *while*, but only the final one controls loop.
The *last* exit status is the one that counts.
do
echo "Input variable #1 (end to exit)
read varl
echo "variable #1 = S$varl"
done

Try to figure out how this all works.
It's a wee bit tricky.

exit O

As with a for loop, a while loop may employ C-style syntax by using the double-parentheses construct
(see also Example 8-5).

Example 11-18. C-style syntax in a while loop

#!/bin/bash

wh-loopc.sh: Count to 10 in a "while" loop.

Chapter 11. Loops and Branches 149

Advanced Bash-Scripting Guide

LIMIT=10 # 10 iterations.
a=1

while ["$a" -le SLIMIT]

do
echo -n "$a "
let "a+=1"
done # No surprises, so far.

echo; echo

+
Now, we'll repeat with C-like syntax.

((a = 1)) # a=1

Double parentheses permit space when setting a variable,

while ((a <= LIMIT)) # Double parentheses,

do #+ and no "S$" preceding variables.

echo -n "$a "
((a += 1)) # let "a+=1"
Yes, indeed.

Double parentheses permit incrementing a variable with C-like syntax.

done

echo

C and Java programmers can feel right at home in Bash.

exit O
Inside its test brackets, a while loop can call a function.

t=0
condition ()
{

((t++))

if [$t -1t 5]

then

return 0 # true
else

return 1 # false
fi

while condition

AAAAAAAAN
Function call -- four loop iterations.
do
echo "Still going: t = S$t"
done

Still going:
Still going:
Still going:
Still going:

t ct of ot
Il
Sw NP

as in C.

Chapter 11. Loops and Branches

150

Advanced Bash-Scripting Guide

Similar to the if-test construct, a while loop can omit the test brackets.

while condition
do

command (s)
done

By coupling the power of the read command with a while loop, we get the handy while read construct,
useful for reading and parsing files.

cat $filename | # Supply input from a file.
while read line # As long as there is another line to read ...

while read value # Read one data point at a time.
do

rt=$ (echo "scale=$SC; S$rt + S$value" | bc)

((ct++))
done

am=$ (echo "scale=$SC; S$rt / S$ct" | bc)

echo $am; return S$ct # This function "returns" TWO values!
Caution: This little trick will not work if S$ct > 255!
To handle a larger number of data points,
#+ simply comment out the "return $ct" above.
} <"Sdatafile" # Feed in data file.

<& A while loop may have its stdin redirected to a file by a < at its end.

A while loop may have its stdin _supplied by a pipe.
until

This construct tests for a condition at the top of a loop, and keeps looping as long as that condition is
false (opposite of while loop).

until [condition—-is-true |

do

command (s)...
done

Note that an until loop tests for the terminating condition at the fop of the loop, differing from a
similar construct in some programming languages.

As is the case with for loops, placing the do on the same line as the condition test requires a
semicolon.

until [condition-is-true];do

Example 11-19. until loop

Chapter 11. Loops and Branches 151

Advanced Bash-Scripting Guide
#!/bin/bash

END_CONDITION=end

until ["$varl" = "S$END_CONDITION"]
Tests condition here, at top of loop.
do

echo "Input variable #1 "
echo " (SEND_CONDITION to exit)"
read varl
echo "variable #1 = S$varl"
echo
done

-

As with "for" and "while" loops,
#+ an "until" loop permits C-like test constructs.

LIMIT=10
var=0

until ((var > LIMIT))

do # "~ 7 A AN No brackets, no $ prefixing variables.
echo -n "$var "
((var++))

done #012 345678910

exit O

How to choose between a for loop or a while loop or until loop? In C, you would typically use a for loop
when the number of loop iterations is known beforehand. With Bash, however, the situation is fuzzier. The
Bash for loop is more loosely structured and more flexible than its equivalent in other languages. Therefore,

feel free

to use whatever type of loop gets the job done in the simplest way.

11.2.

Nested Loops

A nested loop is a loop within a loop, an inner loop within the body of an outer one. How this works is that
the first pass of the outer loop triggers the inner loop, which executes to completion. Then the second pass of
the outer loop triggers the inner loop again. This repeats until the outer loop finishes. Of course, a break
within either the inner or outer loop would interrupt this process.

Example 11-20. Nested Loop

#!/bin/

bash

nested-loop.sh: Nested "for" loops.

outer=1

Set outer loop counter.

Beginning of outer loop.
for a in 1 2 3 4 5

do
echo

"Pass Souter in outer loop."

Chapter 11. Loops and Branches 152

Advanced Bash-Scripting Guide

inner=1 # Reset inner loop counter.

#

Beginning of inner loop.
for b in 1 2 3 4 5

do
echo "Pass $inner in inner loop."
let "inner+=1" # Increment inner loop counter.
done
End of inner loop.
#
let "outer+=1" # Increment outer loop counter.
echo # Space between output blocks in pass of outer loop.
done

End of outer loop.

exit O

See Example 27-11 for an illustration of nested while loops, and Example 27-13 to see a while loop nested
inside an until loop.

11.3. Loop Control

Tournez cent tours, tournez mille tours,
Tournez souvent et tournez toujours . . .

--Verlaine, "Chevaux de bois"

Commands affecting loop behavior

break, continue

The break and continue loop control commands [53] correspond exactly to their counterparts in other
programming languages. The break command terminates the loop (breaks out of it), while continue
causes a jump to the next iteration of the loop, skipping all the remaining commands in that particular
loop cycle.

Example 11-21. Effects of break and continue in a loop

#!/bin/bash
LIMIT=19 # Upper limit

echo
echo "Printing Numbers 1 through 20 (but not 3 and 11)."

a=0

while [$a -le "SLIMIT"]

do
a=s$((sa+l))
if ["S$a" -eq 3] || ["$a" -eqg 11] # Excludes 3 and 11.
then
continue # Skip rest of this particular loop iteration.

Chapter 11. Loops and Branches 153

Advanced Bash-Scripting Guide
fi

echo —n "$a " # This will not execute for 3 and 11.
done

Exercise:
Why does the loop print up to 207

echo; echo

echo Printing Numbers 1 through 20, but something happens after 2.
FHA A
Same loop, but substituting 'break' for 'continue'.

a=0
while ["$a" -le "SLIMIT"]

do

a=s$((sa+l))

if ["S$a" -gt 2]

then

break # Skip entire rest of loop.

fi

echo —n "$a "
done

echo; echo; echo

exit O

The break command may optionally take a parameter. A plain break terminates only the innermost
loop in which it is embedded, but a break N breaks out of N levels of loop.

Example 11-22. Breaking out of multiple loop levels

#!/bin/bash
break-levels.sh: Breaking out of loops.

"break N" breaks out of N level loops.
for outerloop in 1 2 3 4 5

do
echo -n "Group S$outerloop: "

,,
for innerloop in 1 2 3 4 5
do

echo -n "S$innerloop "

if ["Sinnerloop" -eq 3]

then

break # Try break 2 to see what happens.
("Breaks" out of both inner and outer loops.)

fi

done

Chapter 11. Loops and Branches 154

Advanced Bash-Scripting Guide

echo
done

echo

exit O

The continue command, similar to break, optionally takes a parameter. A plain continue cuts short
the current iteration within its loop and begins the next. A continue N terminates all remaining
iterations at its loop level and continues with the next iteration at the loop, N levels above.

Example 11-23. Continuing at a higher loop level

#!/bin/bash
The "continue N" command, continuing at the Nth level loop.

for outer in I II III IV V # outer loop
do
echo; echo -n "Group Souter: "

,,
for inner in 1 2 3 4 5 6 7 8 9 10 # inner loop
do
if [["Sinner" -eq 7 && "Souter" = "III"]]
then
continue 2 # Continue at loop on 2nd level, that is "outer loop".
Replace above line with a simple "continue"
to see normal loop behavior.
fi
echo -n "$inner " # 7 8 9 10 will not echo on "Group III."
done
,,
done

echo; echo

Exercise:
Come up with a meaningful use for "continue N" in a script.

exit O
Example 11-24. Using continue N in an actual task

Albert Reiner gives an example of how to use "continue N":

Suppose I have a large number of jobs that need to be run, with
#+ any data that is to be treated in files of a given name pattern
#+ in a directory. There are several machines that access

#+ this directory, and I want to distribute the work over these

#+ different boxen.

Then I usually nohup something like the following on every box:

while true

Chapter 11. Loops and Branches 155

Advanced Bash-Scripting Guide

do
for n in .iso.*
do
["$Sn" = ".iso.opts"] && continue
beta=${n#.iso.}
[—-r .Iso.S$beta] && continue
[-r .lock.S$beta] && sleep 10 && continue
lockfile -r0 .lock.Sbeta || continue
echo -n "S$beta: " “date’
run—-isotherm S$Sbeta
date
1ls —-alF .Iso.S$beta
[-r .Iso.$beta] && rm —-f .lock.Sbeta
continue 2
done
break
done
exit O

The details, in particular the sleep N, are particular to my
#+ application, but the general pattern is:

while true

do
for job in {pattern}
do
{job already done or running} && continue
{mark job as running, do job, mark job as done}
continue 2
done
break # Or something like “sleep 600' to avoid termination.
done

This way the script will stop only when there are no more jobs to do
#+ (including jobs that were added during runtime). Through the use

#+ of appropriate lockfiles it can be run on several machines

#+ concurrently without duplication of calculations [which run a couple
#+ of hours in my case, so I really want to avoid this]. Also, as search
#+ always starts again from the beginning, one can encode priorities in
#+ the file names. Of course, one could also do this without ‘continue 2°',
#+ but then one would have to actually check whether or not some job

#+ was done (so that we should immediately look for the next job) or not
#+ (in which case we terminate or sleep for a long time before checking
#+ for a new job).

<1> The continue N construct is difficult to understand and tricky to use in any
meaningful context. It is probably best avoided.

11.4. Testing and Branching

The case and select constructs are technically not loops, since they do not iterate the execution of a code
block. Like loops, however, they direct program flow according to conditions at the top or bottom of the

block.

Controlling program flow in a code block

case (in) / esac

Chapter 11. Loops and Branches

156

Advanced Bash-Scripting Guide

The case construct is the shell scripting analog to switch in C/C++. It permits branching to one of a
number of code blocks, depending on condition tests. It serves as a kind of shorthand for multiple
if/then/else statements and is an appropriate tool for creating menus.

case "$variable" in

"$conditionl")
command...

L]

"$condition2")
command...

L]

esac

¢ Quoting the variables is not mandatory, since word splitting does not take
place.

¢ Each test line ends with a right paren). [54]

¢ Each condition block ends with a double semicolon ;;.

O If a condition tests true, then the associated commands execute and the case
block terminates.

O The entire case block ends with an esac (case spelled backwards).

Example 11-25. Using case

#!/bin/bash
Testing ranges of characters.

echo; echo "Hit a key, then hit return."
read Keypress

case "SKeypress" in

[[:1lower:]]) echo "Lowercase letter";;

[[:upper:]]) echo "Uppercase letter";;

[0-9]) echo "Digit";;

%5) echo "Punctuation, whitespace, or other";;
esac # Allows ranges of characters in [square brackets],

#+ or POSIX ranges in [[double square brackets.

In the first version of this example,

#+ the tests for lowercase and uppercase characters were

#+ [a—-z] and [A-Z].

This no longer works in certain locales and/or Linux distros.
POSIX is more portable.

Thanks to Frank Wang for pointing this out.

Exercise:
As the script stands, it accepts a single keystroke, then terminates.
Change the script so it accepts repeated input,

#+ reports on each keystroke, and terminates only when "X" is hit.
Hint: enclose everything in a "while" loop.

Chapter 11. Loops and Branches 157

Advanced Bash-Scripting Guide

exit O
Example 11-26. Creating menus using case

#!/bin/bash
Crude address database

clear # Clear the screen.

echo " Contact List"

echo " = @ ———— —— "

echo "Choose one of the following persons:
echo

echo "[E]vans, Roland"

echo "[J]ones, Mildred"

echo "[S]mith, Julie"

echo "[Z]ane, Morris"

echo

read person

case "Sperson" in
Note variable is quoted.

"E" | "e")

Accept upper or lowercase input.
echo

echo "Roland Evans"

echo "4321 Flash Dr."

echo "Hardscrabble, CO 80753"

echo " (303) 734-9874"

echo " (303) 734-9892 fax"

echo "revans@zzy.net"

echo "Business partner & old friend"

rr

Note double semicolon to terminate each option.

gt "3t)

echo

echo "Mildred Jones"

echo "249 E. 7th St., Apt. 19"
echo "New York, NY 10009"

echo " (212) 533-2814"

echo " (212) 533-9972 fax"

echo "milliej@loisaida.com"
echo "Ex-girlfriend"

echo "Birthday: Feb. 11"

I
Add info for Smith & Zane later.

*)
Default option.

Empty input (hitting RETURN) fits here,

echo
echo "Not yet in database."

rr

esac

Chapter 11. Loops and Branches

too.

158

Advanced Bash-Scripting Guide
echo
Exercise:

Change the script so it accepts multiple inputs,
#+ instead of terminating after displaying just one address.

exit O

An exceptionally clever use of case involves testing for command-line parameters.

#! /bin/bash

case "$1" in
"") echo "Usage: ${0##*/} <filename>"; exit S$SE_PARANM; ;
No command-line parameters,
or first parameter empty.
Note that S${0##*/} is S${var#f#pattern} param substitution.
Net result is $0.

—*) FILENAME=./$1;; # If filename passed as argument ($1)
#+ starts with a dash,
#+ replace it with ./$1
#+ so further commands don't interpret it
#+ as an option.

*) FILENAME=S1;; # Otherwise, $1.
esac

Here is a more straightforward example of command-line parameter handling:

#! /bin/bash

while [$# -gt 0]; do # Until you run out of parameters
case "$1" in
—d|-—-debug)
"-d" or "--debug" parameter?
DEBUG=1
I
-c|—--conf)
CONFFILE="S2"
shift
if [! —f SCONFFILE]; then
echo "Error: Supplied file doesn't exist!"
exit $E_CONFFILE # File not found error.
fi
i
esac
shift # Check next set of parameters.
done

From Stefano Falsetto's "Log2Rot" script,
#+ part of his "rottlog" package.
Used with permission.

Example 11-27. Using command substitution to generate the case variable

#!/bin/bash

case-cmd.sh: Using command substitution to generate a "case" variable.

Chapter 11. Loops and Branches

159

Advanced Bash-Scripting Guide

case $(arch) in # $(arch) returns machine architecture.
Equivalent to 'uname -m'

1386) echo "80386-based machine";;
1486) echo "80486-based machine";;
i586) echo "Pentium-based machine";;
1686) echo "Pentium2+-based machine";;
%5) echo "Other type of machine";;
esac
exit O

A case construct can filter strings for globbing patterns.

Example 11-28. Simple string matching

#!/bin/bash
match-string.sh: Simple string matching
using a 'case' construct.

match_string ()
{ # Exact string match.
MATCH=0
E_NOMATCH=90
PARAMS=2 # Function requires 2 arguments.
E_BAD_PARAMS=91

[$# —eq SPARAMS] || return $E_BAD_PARAMS
case "$1" in
"$2") return SMATCH;;

%) return S$E_NOMATCH; ;
esac

a=one
b=two
c=three
d=two

match_string $a # wrong number of parameters
echo $7? # 91

match_string $a $b # no match
echo $? # 90

match_string $b $d # match
echo $? # 0

exit O

Example 11-29. Checking for alphabetic input

#!/bin/bash

Chapter 11. Loops and Branches 160

Advanced Bash-Scripting Guide
isalpha.sh: Using a "case" structure to filter a string.
SUCCESS=0

FAILURE=1 # Was FAILURE=-1,
#+ but Bash no longer allows negative return value.

isalpha () # Tests whether *first character* of input string is alphabetic.
{
if [-z "s1"] # No argument passed?
then
return SFAILURE
fi

case "$1" in
[a—zA-Z]*) return S$SUCCESS;; # Begins with a letter?

w3) return SFAILURE;;
esac
} # Compare this with "isalpha ()" function in C.
isalpha2 () # Tests whether *entire string* is alphabetic.
{

[$# —eq 1] || return $SFAILURE

case $1 in
[la-zA-Z]|"") return SFAILURE;;
*) return S$SSUCCESS;;

esac
}
isdigit () # Tests whether *entire string* is numerical.
{ # In other words, tests for integer variable.
[$# —eq 1] || return $SFAILURE

case $1 in
[10-9]1|"") return SFAILURE;;
*) return S$SUCCESS;;
esac

check_var () # Front-end to isalpha ().

{

if isalpha "$@"

then
echo "\"$*\" begins with an alpha character."
if isalpha2 "s@"

then # No point in testing if first char is non-alpha.
echo "\"$*\" contains only alpha characters."
else
echo "\"$*\" contains at least one non-alpha character."
fi
else

echo "\"$*\" begins with a non-alpha character."
Also "non-alpha" if no argument passed.
fi

echo

Chapter 11. Loops and Branches 161

select

Advanced Bash-Scripting Guide

digit_check () # Front-end to isdigit ().
{
if isdigit "g@"
then
echo "\"$*\" contains only digits [0 - 9]."
else
echo "\"$*\" has at least one non-digit character."
fi

echo

}

a=23skidoo

b=H311lo

c=-What?

d=What?

e=$ (echo $b) # Command substitution.
f=AbcDef

g=27234

h=27a34

i=27.34

check_var $a
check_var $b
check_var $c
check_var $d
check_var $e
check_var $f
check_var # No argument passed, so what happens?
#

digit_check $g
digit_check $h
digit_check $i

exit 0 # Script improved by S.C.

Exercise:

Write an 'isfloat ()' function that tests for floating point numbers.
Hint: The function duplicates 'isdigit ()',

#+ but adds a test for a mandatory decimal point.
The select construct, adopted from the Korn Shell, is yet another tool for building menus.

select variable [in 1ist]
do

command...

break

done

This prompts the user to enter one of the choices presented in the variable list. Note that select uses
the $PS3 prompt (4 ?) by default, but this may be changed.

Example 11-30. Creating menus using select

Chapter 11. Loops and Branches 162

Advanced Bash-Scripting Guide
#!/bin/bash

PS3='Choose your favorite vegetable: ' # Sets the prompt string.
Otherwise it defaults to #7?

echo

select vegetable in "beans" "carrots" "potatoes" "onions" "rutabagas"
do

echo

echo "Your favorite veggie is S$Svegetable."

echo "Yuck!"

echo

break # What happens if there is no 'break' here?
done

exit
Exercise:

Fix this script to accept user input not specified in

#+ the "select" statement.

For example, if the user inputs "peas,"

#+ the script would respond "Sorry. That is not on the menu."

If in list is omitted, then select uses the list of command line arguments ($@) passed to the script
or the function containing the select construct.

Compare this to the behavior of a

for variable [in 1ist]

construct with the in 1ist omitted.

Example 11-31. Creating menus using select in a function

#!/bin/bash
PS3="'Choose your favorite vegetable: '
echo

choice_of ()
{
select vegetable
[in list] omitted, so 'select' uses arguments passed to function.
do
echo
echo "Your favorite veggie is S$Svegetable."
echo "Yuck!"
echo
break
done

}

choice_of beans rice carrots radishes rutabaga spinach
S$1 $2 $3 $4 $5 $6
passed to choice_of () function

Chapter 11. Loops and Branches 163

Advanced Bash-Scripting Guide

exit O

See also Example 37-3.

Chapter 11. Loops and Branches 164

Chapter 12. Command Substitution

Command substitution reassigns the output of a command [55] or even multiple commands; it literally plugs
the command output into another context. [56

The classic form of command substitution uses backquotes ("..."). Commands within backquotes (backticks)
generate command-line text.

script_name="basename $0°

echo "The name of this script is $script_name."

The output of commands can be used as arguments to another command, to set a variable, and even for
generating the argument list in a for loop.

rm "cat filename’ # "filename" contains a list of files to delete.
#

S. C. points out that "arg list too long" error might result.

Better is xargs rm —— < filename

(—— covers those cases where "filename" begins with a "-")

textfile_listing="1ls *.txt’
Variable contains names of all *.txt files in current working directory.
echo $textfile_ listing

textfile_listing2=$(ls *.txt) # The alternative form of command substitution.
echo $textfile_ listing2

Same result.

A possible problem with putting a list of files into a single string
is that a newline may creep in.

A safer way to assign a list of files to a parameter is with an array.
shopt -s nullglob # If no match, filename expands to nothing.

#
#
#
#
#
textfile_listing=(*.txt)
#

#

Thanks, S.C.

&) Command substitution invokes a subshell.

<1> Command substitution may result in word splitting.

COMMAND ‘“echo a b’ # 2 args: a and b
COMMAND "‘echo a b " # 1 arg: "a b"
COMMAND " echo’ # no arg

COMMAND "'echo™" # one empty arg

Thanks, S.C.

Even when there is no word splitting, command substitution can remove trailing newlines.

cd "‘pwd'" # This should always work.
However...

Chapter 12. Command Substitution 165

Advanced Bash-Scripting Guide

mkdir 'dir with trailing newline
A\l

cd 'dir with trailing newline
A\l

cd "'pwd' " # Error message:
bash: cd: /tmp/file with trailing newline: No such file or directory

cd "SPWD" # Works fine.
old_tty_setting=$(stty -g) # Save old terminal setting.
echo "Hit a key "
stty —icanon —echo # Disable "canonical" mode for terminal.
Also, disable *local* echo.
key=$ (dd bs=1 count=1 2> /dev/null) # Using 'dd' to get a keypress.
stty "Sold_tty_setting" # Restore old setting.
echo "You hit ${#key} key." # S${#variable} = number of characters in S$Svariable
#

Hit any key except RETURN, and the output is "You hit 1 key."
Hit RETURN, and it's "You hit 0 key."

The newline gets eaten in the command substitution.

#Code snippet by Stéphane Chazelas.

<1 Using echo to output an unquoted variable set with command substitution removes trailing newlines
characters from the output of the reassigned command(s). This can cause unpleasant surprises.

dir_listing="1ls -1°
echo $dir_listing # unquoted

Expecting a nicely ordered directory listing.
However, what you get is:
total 3 -rw-rw-r—- 1 bozo bozo 30 May 13 17:15 1l.txt -rw-rw-r-- 1 bozo

bozo 51 May 15 20:57 t2.sh -rwxr-xr-x 1 bozo bozo 217 Mar 5 21:13 wi.sh

The newlines disappeared.

echo "$dir_listing" # quoted

—rw-rw-r—— 1 bozo 30 May 13 17:15 1l.txt
—rw-rw-r—— 1 bozo 51 May 15 20:57 t2.sh
—IrwWXr—-xr-x 1 bozo 217 Mar 5 21:13 wi.sh

Command substitution even permits setting a variable to the contents of a file, using either redirection or the
cat command.

variablel="<filel"
variable2="cat file2"

Set "variablel" to contents of "filel".
Set "variable2" to contents of "file2".
This, however, forks a new process,
+ so the line of code executes slower than the above version.

H o

Note that the variables may contain embedded whitespace,
#+ or even (horrors), control characters.

Chapter 12. Command Substitution 166

Advanced Bash-Scripting Guide

It is not necessary to explicitly assign a variable.
echo "° <$S0O°" # Echoes the script itself to stdout.

Excerpts from system file, /etc/rc.d/rc.sysinit
#+ (on a Red Hat Linux installation)

if [-f /fsckoptions]; then
fsckoptions="cat /fsckoptions®

#
#
if [-e "/proc/ide/${disk[$device]}/media"] ; then
hdmedia="cat /proc/ide/${disk[Sdevice]}/media’
fi
#
#
if [! -n ""uname -r | grep —— "-"""]; then
ktag=""cat /proc/version'"

fi
#
#
if [Susb = "1"]; then

sleep 5

mouseoutput="cat /proc/bus/usb/devices 2>/dev/null|grep -E "~I.*Cls=03.*Prot=02""

kbdoutput="cat /proc/bus/usb/devices 2>/dev/null|grep -E ""I.*Cls=03.*Prot=01""
fi

<1 Do not set a variable to the contents of a long text file unless you have a very good reason for doing so.
Do not set a variable to the contents of a binary file, even as a joke.

Example 12-1. Stupid script tricks

#!/bin/bash
stupid-script-tricks.sh: Don't try this at home, folks.
From "Stupid Script Tricks," Volume I.

exit 99 ### Comment out this line if you dare.

dangerous_variable="cat /boot/vmlinuz’ # The compressed Linux kernel itself.
echo "string-length of \$dangerous_variable = ${#dangerous_variable}"

string-length of $dangerous_variable = 794151

(Newer kernels are bigger.)

Does not give same count as 'wc —-c /boot/vmlinuz'.

echo "S$dangerous_variable"

Don't try this! It would hang the script.

The document author is aware of no useful applications for
#+ setting a variable to the contents of a binary file.

Chapter 12. Command Substitution 167

Advanced Bash-Scripting Guide

exit O

Notice that a buffer overrun does not occur. This is one instance where an interpreted language, such as
Bash, provides more protection from programmer mistakes than a compiled language.

Command substitution permits setting a variable to the output of a loop. The key to this is grabbing the output
of an echo command within the loop.

Example 12-2. Generating a variable from a loop

#!/bin/bash
csubloop.sh: Setting a variable to the output of a loop.

variablel="for i in 1 2 3 4 5
do

echo -n "$i" # The 'echo' command is critical
done” #+ to command substitution here.

echo "variablel = $variablel" # variablel = 12345

1i=0

variable2="while ["$i" -1t 10]

do
echo —-n "$i" # Again, the necessary 'echo'.
let "1 += 1" # Increment.

done”

echo "variable2 = S$Svariable2" # variable2 = 0123456789

Demonstrates that it's possible to embed a loop
#+ inside a variable declaration.

exit O

Command substitution makes it possible to extend the toolset available to Bash. It is simply a matter of

writing a program or script that outputs to stdout (like a well-behaved UNIX tool should) and assigning
that output to a variable.

#include <stdio.h>
/* "Hello, world." C program */

int main ()

{
printf("Hello, world.\n");
return (0);

}
bash$ gcec -o hello hello.c

#!/bin/bash
hello.sh

greeting="./hello"’

Chapter 12. Command Substitution 168

Advanced Bash-Scripting Guide

echo $greeting

bash$ sh hello.sh
Hello, world.

& The $(...) form has superseded backticks for command substitution.

output=$(sed -n /"$1"/p $file) # From "grp.sh" example.

Setting a variable to the contents of a text file.
File_contentsl=$(cat $filel)
File_contents2=$(<$file2) # Bash permits this also.

The $(...) form of command substitution treats a double backslash in a different way than "...".

bash$ echo “echo \\°

bashS echo $(echo \\)
\

The $(...) form of command substitution permits nesting. [57]

word_count=$(wc -w $(echo * | awk '{print $8}'))

Or, for something a bit more elaborate . . .

Example 12-3. Finding anagrams

#!/bin/bash
agram2.sh
Example of nested command substitution.

Uses "anagram" utility

#+ that is part of the author's "yawl" word list package.
http://ibiblio.org/pub/Linux/libs/yawl-0.3.2.tar.gz

http://bash.deta.in/yawl-0.3.2.tar.gz

E_NOARGS=86
E_BADARG=87

MINLEN=7
if [-z "S1"]
then
echo "Usage $0 LETTERSET"
exit S$E_NOARGS # Script needs a command-line argument.
elif [${#1} -1t SMINLEN]
then

echo "Argument must have at least SMINLEN letters."
exit S$E_BADARG
fi

FILTER='....... ! # Must have at least 7 letters.
1234567
Anagrams=($(echo $(anagram $1 | grep SFILTER)))

Chapter 12. Command Substitution

169

Advanced Bash-Scripting Guide

S ($(nested command sub.))

(array assignment)
echo

echo "S${#Anagrams[*]} 7+ letter anagrams found"
echo

echo ${Anagrams[0]
echo ${Anagrams([1]

First anagram.
Second anagram.
Etc.

}
}

echo "${Anagrams[*]}" # To list all the anagrams in a single line .

Look ahead to the Arrays chapter for enlightenment on
#+ what's going on here.

See also the agram.sh script for an exercise in anagram finding.

exit $°?

Examples of command substitution in shell scripts:

. Example 11-8
. Example 11-27
. Example 9-16
. Example 16-3
. Example 16-22
. Example 16-17
. Example 16-54
.Example 11-14
9. Example 11-11
10. Example 16-32
11. Example 20-8
12. Example A-16
13. Example 29-3
14. Example 16-47
15. Example 16-48
16. Example 16-49

01NN kW=

Chapter 12. Command Substitution 170

Chapter 13. Arithmetic Expansion

Arithmetic expansion provides a powerful tool for performing (integer) arithmetic operations in scripts.

Translating a string into a numerical expression is relatively straightforward using backticks, double
parentheses, or let.

Variations
Arithmetic expansion with backticks (often used in conjunction with expr)

z="expr $z + 3° # The 'expr' command performs the expansion.

Arithmetic expansion with double parentheses, and using let

The use of backticks (backquotes) in arithmetic expansion has been superseded by double parentheses

- ((...))and $((...)) -- and also by the very convenient let construction.
z=$(($z+3))
z=$ ((z+3)) # Also correct.

Within double parentheses,
#+ parameter dereferencing
#+ is optional.

S ((EXPRESSION)) is arithmetic expansion. # Not to be confused with
#+ command substitution.

You may also use operations within double parentheses without assignment.

n=0
echo "n = $n" # n=0
((n +=1)) # Increment.
((Sn += 1)) is incorrect!
echo "n = $n" # n=1
let z=z+3
let "z += 3" # Quotes permit the use of spaces in variable assignment.

The 'let' operator actually performs arithmetic evaluation,
#+ rather than expansion.

Examples of arithmetic expansion in scripts:

1. Example 16-9
2. Example 11-15
3. Example 27-1
4. Example 27-11
5. Example A-16

Chapter 13. Arithmetic Expansion

171

Chapter 14. Recess Time

This bizarre little intermission gives the reader a chance to relax and maybe laugh a bit.

Fellow Linux user, greetings! You are reading something which
will bring you luck and good fortune. Just e-mail a copy of
this document to 10 of your friends. Before making the copies,
send a 100-1line Bash script to the first person on the list
at the bottom of this letter. Then delete their name and add
yours to the bottom of the list.

Don't break the chain! Make the copies within 48 hours.
Wilfred P. of Brooklyn failed to send out his ten copies and
woke the next morning to find his job description changed

to "COBOL programmer." Howard L. of Newport News sent

out his ten copies and within a month had enough hardware

to build a 100-node Beowulf cluster dedicated to playing
Tuxracer. Amelia V. of Chicago laughed at this letter

and broke the chain. Shortly thereafter, a fire broke out

in her terminal and she now spends her days writing
documentation for MS Windows.

Don't break the chain! Send out your ten copies today!

Courtesy 'NIX "fortune cookies", with some alterations and many apologies

Chapter 14. Recess Time 172

Part 4. Commands

Mastering the commands on your Linux machine is an indispensable prelude to writing effective shell scripts.

This section covers the following commands:

e . (See also source)

® ac

e adduser

® agett

® agre

®ar

® arch

e at

e autoload

® awk (See also Using awk for math operations)
e badblocks

® banner

® basename

® batch

® bc

[]
 bind

* bison
® builtin
® bzgre
® bzip2
®cal

e caller
cat

5

3

® 6 6 o6 o o o o o o o o o o o
l
=
=
O
O
=

o
o
c.
=
=i
=3

e comm
e command
e compgen

O

Part 4. Commands 173

Advanced Bash-Scripting Guide

e complete
® compress
® coproc
*cp

® cpio

® cron

® crypt

e csplit
®cu

e cut

* date

e dc

e dd

e debugfs
e declare
e depmod
o df

e dialo

o diff

o diff3

e diffstat
o di

e dirname
® dirs

enable
enscript

® 6 6 o o o o o o ©o ©°o o o o o o o
(]
l
=
]

exit (Related topic: exit status)
e expand
® export
o EXpr
* factor
e false
e fdformat
e fdisk
of
e fore
e file

Part 4. Commands 174

Advanced Bash-Scripting Guide

® find

e finger

® flex

® flock

* fmt

e fold

® free

® fsck

o ft

* fuser

e getfacl

® getopt

® getopts

® gettext

® oeft

® gnome-mount
® gre

e oroff

¢ groupmod
e groups (Related topic: the SGROUPS variable)
*gs

L VA

® halt

® hash

e hdparm

® head

® hel

® hexdum
® host

® hostid

e hostname (Related topic: the SHOSTNAME variable)
® hwclock
® iconv

¢ id (Related topic: the $UID variable)
e ifconfi

¢ info

e infocm

® init

e insmod

e install
°ip

e ipcalc

e iptables

e iwconfi

® jobs

® join

® jot

° kill

® killall

® last

e Jastcomm

Part 4. Commands 175

Advanced Bash-Scripting Guide

e Jastlo
*ldd

® less
® let
ex

id

In
locate
lockfile
ogge
ogname
ogou
ogrotate
look

osetu

i [—

fifi

I”E[

—_
2
|oR
]
<

73
=i
O
(oW

—
|
z

& 12

® 6 6 o o o o o o o o o o°o ©o ©o ©°o ©°o ©°o ©°o ©o ©o ©°o ©°o ©°o ©°o ©°o ©°o ©°o o o o
73
O
s}

=
o7
=
B

® mes

® mimencode
e mkbootdisk
e mkdir

e mkdosfs

e mke2fs

¢ mkfifo

e mkisofs

e mknod

® mkswa

e mktem

® mmencode
¢ modinfo

® modprobe

Part 4. Commands 176

Advanced Bash-Scripting Guide

¢ more

® mount

* msgfmt
* mv

®nc

® netconfi
® petstat
® new

® nice
*nl

¢ nm

® Nma;

® nohu

¢ nslooku
® objdum;
*od

® openssl
® passwd
® paste

e patch (Related topic: diff)
e pathchk
® pax

¢ pgrep

° Im’

® pin

® pkill

* popd

¢ pr

® printenv
e printf

¢ procinfo
®ps

® pstree

® ptx

¢ pushd

¢ pwd (Related topic: the $PWD variable)
® quota
®rc

* rdev

® rdist
read
readelf
readlink

Part 4. Commands 177

Advanced Bash-Scripting Guide

® rpm2cpio
® rsh

® rsync

¢ runlevel
® run-parts
®Ix

1z

® sar

® scp

® script

o sdiff
®sed

¢ seq

® service
® set

e setfacl

® setquota
e setserial
® setterm
e shalsum
® shar

e shopt

o shred

¢ shutdown
® size

o skill

e slee

® slocate

® snice

72)
]
=
=

v

72}
=
=

C e
()
(¢

ource

>
C
[<

2
2
=

72}
=
o

=3

e 6 o o o
(I)I(I)(I)(I)(I)
ckelEiEE
(= =
=) =

2

E

uspend
e swapoff

[J
2

Part 4. Commands 178

Advanced Bash-Scripting Guide

® swapon
® sX

° sync

® Sz

® tac

® tail

e tar

* tbl

e tcpdum
® tee

® telinit

® telnet

e Tex

® fexexec
® time

® times

e tmpwatch
* top

® touch

* tput

e tr

e traceroute
® true

e tset

® tsort

o ity

e tune2fs
* type

® typeset
e ulimit

® umask

® umount
® uname

® unarc

® unarj

® uncompress
¢ unexpand
® uni

® units

® unlzma
® unrar

® unset

® uns

® unzi

® uptime
¢ usbmodules
e useradd
e userdel
e usermod
® users

® uslee

Part 4. Commands 179

Advanced Bash-Scripting Guide

® uuc

¢ yudecode
® yuencode
® uux

® vacation
* vdir

e vmstat

o vrf’

® wait

* wall

e watch

* we

* wget

e whatis
e whereis
which

K
jav)
5’-&
o I
=

|><
e IN
e}

N]<
o |on
=

N

(=N
=
=

[] [] [] []
NN [N
’—h@él.
=]

o | B

zgre
® zip

Table of Contents
15. Internal Commands and Builtins
15.1. Job Control Commands

16. External Filters. Programs and Commands
16.1. Basic Commands

16.2. Complex Commands
16.3. Time / Date Commands
16.4. Text Processing Commands

16.5. File and Archiving Commands
16.6. Communications Commands

16.7. Terminal Control Commands
16.8. Math Commands
16.9. Miscellaneous Commands

17. System and Administrative Commands
17.1. Analyzing a System Script

Part 4. Commands

180

Chapter 15. Internal Commands and Builtins

A builtin is a command contained within the Bash tool set, literally built in. This is either for performance
reasons -- builtins execute faster than external commands, which usually require forking off [58] a separate
process -- or because a particular builtin needs direct access to the shell internals.

When a command or the shell itself initiates (or spawns) a new subprocess to carry out a task, this is called
forking. This new process is the child, and the process that forked it off is the parent. While the child
process is doing its work, the parent process is still executing.

Note that while a parent process gets the process ID of the child process, and can thus pass arguments to it,
the reverse is not true. This can create problems that are subtle and hard to track down.
Example 15-1. A script that spawns multiple instances of itself

#!/bin/bash
spawn.sh

PIDS=$ (pidof sh $0) # Process IDs of the various instances of this script.
P_array=(SPIDS) # Put them in an array (why?).

echo $PIDS # Show process IDs of parent and child processes.

let "instances = S${#P_array[*]} - 1" # Count elements, less 1.

Why subtract 1?2
echo "S$instances instance(s) of this script running."

echo "[Hit Ctl-C to exit.]"; echo

sleep 1 # Wait.

sh $0 # Play it again, Sam.

exit O # Not necessary; script will never get to here.
Why not?

After exiting with a Ctl-C,
#+ do all the spawned instances of the script die?
If so, why?

Be careful not to run this script too long.
It will eventually eat up too many system resources.

.

Is having a script spawn multiple instances of itself
#+ an advisable scripting technique.
Why or why not?

Generally, a Bash builtin does not fork a subprocess when it executes within a script. An external system
command or filter in a script usually will fork a subprocess.

A builtin may be a synonym to a system command of the same name, but Bash reimplements it internally. For
example, the Bash echo command is not the same as /bin/echo, although their behavior is almost
identical.

Chapter 15. Internal Commands and Builtins 181

Advanced Bash-Scripting Guide
#!/bin/bash

echo "This line uses the \"echo\" builtin."
/bin/echo "This line uses the /bin/echo system command."

A keyword is a reserved word, token or operator. Keywords have a special meaning to the shell, and indeed
are the building blocks of the shell's syntax. As examples, for, while, do, and ! are keywords. Similar to a
builtin, a keyword is hard-coded into Bash, but unlike a builtin, a keyword is not in itself a command, but a
subunit of a command construct. [59]

/0

echo
prints (to stdout) an expression or variable (see Example 4-1).

echo Hello
echo $a

An echo requires the —e option to print escaped characters. See Example 5-2.

Normally, each echo command prints a terminal newline, but the —n option suppresses this.

<) An echo can be used to feed a sequence of commands down a pipe.

if echo "SVAR" | grep —-g txt # if [[SVAR = *txt*]]
then

echo "S$VAR contains the substring sequence \"txt\""
fi

&) An echo, in combination with command substitution can set a variable.
a="echo "HELLO" | tr A-Z a-z

See also Example 16-22, Example 16-3, Example 16-47, and Example 16-48.
Be aware that echo “command” deletes any linefeeds that the output of command generates.

The $IES (internal field separator) variable normally contains \n (linefeed) as one of its set of
whitespace characters. Bash therefore splits the output of command at linefeeds into arguments to
echo. Then echo outputs these arguments, separated by spaces.

bash$ 1s -1 /usr/share/apps/kjezz/sounds
—YwW—r——r—-— 1 root root 1407 Nov 7 2000 reflect.au
—rW—r——r—— 1 root root 362 Nov 7 2000 seconds.au

bash$ echo “1ls -1 /usr/share/apps/kjezz/sounds’
total 40 -rw-r—--r——- 1 root root 716 Nov 7 2000 reflect.au -rw-r—--r—-—- 1 root root

So, how can we embed a linefeed within an echoed character string?

Embedding a linefeed?
echo "Why doesn't this string \n split on two lines?"
Doesn't split.

Chapter 15. Internal Commands and Builtins 182

printf

Advanced Bash-Scripting Guide

Let's try something else.
echo

echo $"A line of text containing

a linefeed."

Prints as two distinct lines (embedded linefeed) .
But, is the "$" variable prefix really necessary?

echo

echo "This string splits
on two lines."
No, the "S$" is not needed.

echo
echo w___ "
echo

echo -n $"Another line of text containing

a linefeed."

Prints as two distinct lines (embedded linefeed) .

Even the -n option fails to suppress the linefeed here.

echo
echo
eehe Vos=cscmso=o=o== "
echo
echo

However, the following doesn't work as expected.
Why not? Hint: Assignment to a variable.
stringl=$"Yet another line of text containing

a linefeed (maybe) ."

echo $stringl

Yet another line of text containing a linefeed (maybe).
+ ~

Linefeed becomes a space.

Thanks, Steve Parker, for pointing this out.

=) This command is a shell builtin, and not the same as /bin/echo, although its
behavior is similar.

bash$ type —-a echo
echo is a shell builtin
echo is /bin/echo

The printf, formatted print, command is an enhanced echo. It is a limited variant of the C language
printf () library function, and its syntax is somewhat different.

printf format-string... parameter...

This is the Bash builtin version of the /bin/printf or /usr/bin/printf command. See the
printf manpage (of the system command) for in-depth coverage.

Chapter 15. Internal Commands and Builtins 183

Advanced Bash-Scripting Guide

<1 Older versions of Bash may not support printf.

Example 15-2. printf in action

#!/bin/bash
printf demo

declare -r PI=3.14159265358979 # Read-only variable, i.e., a constant.
declare —-r DecimalConstant=31373

Messagel="Greetings, "
Message2="Earthling."

echo
printf "Pi to 2 decimal places = $1.2f" SPI
echo

printf "Pi to 9 decimal places = $1.9f" $SPI # It even rounds off correctly.

printf "\n" # Prints a line feed,
Equivalent to 'echo'

printf "Constant = \t%d\n" S$DecimalConstant # Inserts tab (\t).
printf "%s %s \n" $Messagel S$Message?

echo

#

Simulation of C function, sprintf().
Loading a variable with a formatted string.

echo

Pil2=$ (printf "$1.12f" $PI)
echo "Pi to 12 decimal places = $Pil2" # Roundoff error!

Msg="printf "%s %s \n" $Messagel S$Message2’
echo $Msg; echo $Msg

As it happens, the 'sprintf' function can now be accessed
#+ as a loadable module to Bash,
#+ but this is not portable.

exit O

Formatting error messages is a useful application of printf

E_BADDIR=85
var=nonexistent_directory

error ()
{
printf "$@" >g&2
Formats positional params passed, and sends them to stderr.
echo
exit $E_BADDIR

cd Svar || error $"Can't cd to %s." "Svar"

Chapter 15. Internal Commands and Builtins 184

read

Advanced Bash-Scripting Guide

Thanks, S.C.
See also Example 36-17.

"Reads" the value of a variable from stdin, that is, interactively fetches input from the keyboard.

The —a option lets read get array variables (see Example 27-6).

Example 15-3. Variable assignment, using read

#!/bin/bash
"Reading" variables.

echo —-n "Enter the value of variable 'varl': "
The -n option to echo suppresses newline.

read varl
Note no '$' in front of varl, since it is being set.

echo "varl = Svarl"

echo

A single 'read' statement can set multiple variables.
echo —-n "Enter the values of variables 'var2' and 'var3' "

echo =n " (separated by a space or tab): "
read var2 var3
echo "var2 = $var?2 var3 = $var3"

If you input only one value,
#+ the other variable(s) will remain unset (null).

exit O

A read without an associated variable assigns its input to the dedicated variable SREPLY.

Example 15-4. What happens when read has no variable

#!/bin/bash
read-novar.sh

echo

echo -n "Enter a value:
read var

echo ll\llvar\ll = "$Va]’_‘" A\l

Everything as expected here.

i Se—oseeeeeeseesoeee e e ees #

echo

i e e e e e e e e e e e e e e e e e S #
echo —-n "Enter another value: "

read # No variable supplied for 'read', therefore...

#+ Input to 'read' assigned to default variable, S$REPLY.
var="SREPLY"
echo ll\llvar\" = "$Va]’.‘" "
This is equivalent to the first code block.

Chapter 15. Internal Commands and Builtins

185

Advanced Bash-Scripting Guide

echo
echo " "
echo

This example is similar to the "reply.sh" script.
However, this one shows that S$SREPLY is available
#+ even after a 'read' to a variable in the conventional way.

In some instances, you might wish to discard the first value read.
In such cases, simply ignore the $REPLY variable.

{ # Code block.

read # Line 1, to be discarded.
read line2 # Line 2, saved in variable.
} <S0
echo "Line 2 of this script is:"
echo "$line2" # # read-novar.sh
echo # #!/bin/bash line discarded.

See also the soundcard-on.sh script.

exit O
Normally, inputting a \ suppresses a newline during input to a read. The —r option causes an
inputted \ to be interpreted literally.

Example 15-5. Multi-line input to read

#!/bin/bash
echo

echo "Enter a string terminated by a \\, then press <ENTER>."
echo "Then, enter a second string (no \\ this time), and again press <ENTER>."

read varl # The "\" suppresses the newline, when reading $varl.
first line \
second line

echo "varl = S$varl"

varl first line second line

For each line terminated by a "\"
#+ you get a prompt on the next line to continue feeding characters into varl.

echo; echo
echo "Enter another string terminated by a \\ , then press <ENTER>."
read -r var2 # The -r option causes the "\" to be read literally.

first line \

echo "var2 = $var2"
var?2 first line \

Chapter 15. Internal Commands and Builtins 186

Advanced Bash-Scripting Guide
Data entry terminates with the first <ENTER>.
echo

exit O

The read command has some interesting options that permit echoing a prompt and even reading
keystrokes without hitting ENTER.

Read a keypress without hitting ENTER.

read -s —nl -p "Hit a key " keypress
echo; echo "Keypress was "\"S$keypress\""."

—-s option means do not echo input.
—n N option means accept only N characters of input.
—-p option means echo the following prompt before reading input.

Using these options is tricky, since they need to be in the correct order.

The —n option to read also allows detection of the arrow keys and certain of the other unusual keys.

Example 15-6. Detecting the arrow keys

#!/bin/bash
arrow-detect.sh: Detects the arrow keys, and a few more.
Thank you, Sandro Magi, for showing me how.

Character codes generated by the keypresses.
arrowup="\[A"

arrowdown="\ [B'

arrowrt="\[C"

arrowleft="'\[D'

insert="\[2"

delete="\[3"

SUCCESS=0
OTHER=65

echo -n "Press a key... "
May need to also press ENTER if a key not listed above pressed.

read —-n3 key # Read 3 characters.

echo -n "S$key" | grep "Sarrowup" #Check if character code detected.
if ["$?" -eq S$SUCCESS]

then

echo "Up-arrow key pressed."
exit $SUCCESS

fi

echo -n "S$key" | grep "S$Sarrowdown"
if ["$?" —eq S$SUCCESS]

then

echo "Down—-arrow key pressed."
exit $SUCCESS
fi

Chapter 15. Internal Commands and Builtins 187

Advanced Bash-Scripting Guide

echo -n "S$key" | grep "Sarrowrt"
if ["$?" -eqg S$SUCCESS |
then

echo "Right-arrow key pressed."
exit S$SUCCESS

fi

echo -n "S$key" | grep "Sarrowleft"
if ["$?" -eg $SUCCESS]

then

echo "Left-arrow key pressed."
exit S$SUCCESS

fi

echo -n "S$key" | grep "Sinsert"
if ["$?" -eqg S$SUCCESS |

then

echo "\"Insert\" key pressed."
exit $SUCCESS

fi

echo -n "Skey" | grep "Sdelete"
if ["$?" -—-eqg S$SSUCCESS]

then

echo "\"Delete\" key pressed."
exit S$SUCCESS

fi

echo " Some other key pressed."

exit S$SOTHER

#

Mark Alexander came up with a simplified
#+ version of the above script (Thank you!).
It eliminates the need for grep.

#!/bin/bash

uparrow=$"'\x1b[A"
downarrow=$"'\x1b[B"'
leftarrow=$'\x1b[D"'
rightarrow=$'\x1b[C'

read -s —n3 -p "Hit an arrow key: " x

case "$x" in

Suparrow)
echo "You pressed up-arrow"
I

Sdownarrow)
echo "You pressed down-arrow"
I

Sleftarrow)
echo "You pressed left-arrow"
I

Srightarrow)
echo "You pressed right-arrow"

rr

Chapter 15. Internal Commands and Builtins

188

Advanced Bash-Scripting Guide
esac

exit $°7?

#

Antonio Macchi has a simpler alternative.
#!/bin/bash

while true

do
read -snl a
test "$Sa" == ‘echo -en "\e"' || continue
read -snl a
test "$a" == "[" || continue

read -snl
case "$a" in
A) echo "up";;
B) echo "down";;
C) echo "right";;
D) echo "left";;
esac
done

Q

#

Exercise:

1) Add detection of the "Home," "End," "PgUp," and "PgDn" keys.

&) The —n option to read will not detect the ENTER (newline) key.

The -t option to read permits timed input (see Example 9-4 and Example A-41).

The —u option takes the file descriptor of the target file.

The read command may also "read" its variable value from a file redirected to stdin. If the file
contains more than one line, only the first line is assigned to the variable. If read has more than one
parameter, then each of these variables gets assigned a successive whitespace-delineated string.
Caution!

Example 15-7. Using read with file redirection

#!/bin/bash

read varl <data-file
echo "varl = S$varl"
varl set to the entire first line of the input file "data-file"

read var2 var3 <data-file

echo "var2 = $var2 var3 = Svar3"

Note non-intuitive behavior of "read" here.

1) Rewinds back to the beginning of input file.

2) Each variable is now set to a corresponding string,

separated by whitespace, rather than to an entire line of text.

Chapter 15. Internal Commands and Builtins 189

Advanced Bash-Scripting Guide

3) The final variable gets the remainder of the line.

4) If there are more variables to be set than whitespace-terminated strings
on the first line of the file, then the excess variables remain empty.
echo o "

How to resolve the above problem with a loop:
while read line
do
echo "$line"
done <data-file
Thanks, Heiner Steven for pointing this out.

Use SIFS (Internal Field Separator variable) to split a line of input to
"read", if you do not want the default to be whitespace.

echo "List of all users:"

OIFS=$IFS; IFS=: # /etc/passwd uses ":" for field separator.
while read name passwd uid gid fullname ignore
do

echo "$name (S$fullname)"
done </etc/passwd # I/0 redirection.
IFS=SOIFS # Restore original S$IFS.
This code snippet also by Heiner Steven.

Setting the $IFS variable within the loop itself

#+ eliminates the need for storing the original S$IFS

#+ in a temporary variable.

Thanks, Dim Segebart, for pointing this out.

echo "--———-"—"+"—>"—"7"-—H—>""-"—"""—-"—"—""""———— "
echo "List of all users:"

while IFS=: read name passwd uid gid fullname ignore
do

echo "$name ($fullname)"
done </etc/passwd # I/0 redirection.

echo
echo "\SIFS still S$IFS"

exit O

B
~ Piping output to a read, using echo to set variables will fail.

Yet, piping the output of cat seems to work.

cat filel file2 |
while read line
do

echo $line

done

However, as Bjon Eriksson shows:

Chapter 15. Internal Commands and Builtins 190

Advanced Bash-Scripting Guide

Example 15-8. Problems reading from a pipe

#!/bin/sh
readpipe.sh
This example contributed by Bjon Eriksson.

shopt —-s lastpipe

last=" (null)"
cat $0 |
while read line
do
echo "{$line}"
last=$1line
done

echo

echo "++++++++++++++++++++++"

printf "\nAll done, last: $last\n" # The output of this line
#+ changes if you uncomment line 5.
(Bash, version —-ge 4.2 required.)

exit 0 # End of code.

(Partial) output of script follows.
The 'echo' supplies extra brackets.

FHEHFF AR
./readpipe.sh

{#!/bin/sh}
{last="(null)"}

{cat SO [}
{while read line}
{do}

{echo "{$line}"}

{last=$1line}

{done}

{printf "nAll done, last: S$lastn"}

All done, last: (null)

The variable (last) is set within the loop/subshell
but its value does not persist outside the loop.

The gendiff script, usually found in /usr/bin on many Linux distros, pipes the
output of find to a while read construct.
find $1 \(—name "*$2" -0 —name ".*$2" \) -print |

while read f; do

i) It is possible to paste text into the input field of a read (but not multiple lines!). See
Example A-38.

Filesystem

cd

Chapter 15. Internal Commands and Builtins 191

Advanced Bash-Scripting Guide

The familiar cd change directory command finds use in scripts where execution of a command
requires being in a specified directory.

(cd /source/directory && tar cf — .) | (cd /dest/directory && tar xpvf -)
[from the previously cited example by Alan Cox]

The —P (physical) option to cd causes it to ignore symbolic links.
cd - changes to $OLDPWD, the previous working directory.

<1> The ed command does not function as expected when presented with two forward
slashes.

bash$ ed //
bash$ pwd
//

The output should, of course, be /. This is a problem both from the command-line and
in a script.
pwd
Print Working Directory. This gives the user's (or script's) current directory (see Example 15-9). The
effect is identical to reading the value of the builtin variable $PWD.
pushd, popd, dirs
This command set is a mechanism for bookmarking working directories, a means of moving back and
forth through directories in an orderly manner. A pushdown stack is used to keep track of directory
names. Options allow various manipulations of the directory stack.

pushd dir-name pushes the path di r—name onto the directory stack (to the top of the stack) and
simultaneously changes the current working directory to dir—name

popd removes (pops) the top directory path name off the directory stack and simultaneously changes
the current working directory to the directory now at the fop of the stack.

dirs lists the contents of the directory stack (compare this with the $DIRSTACK variable). A
successful pushd or popd will automatically invoke dirs.

Scripts that require various changes to the current working directory without hard-coding the
directory name changes can make good use of these commands. Note that the implicit $SDIRSTACK
array variable, accessible from within a script, holds the contents of the directory stack.

Example 15-9. Changing the current working directory

#!/bin/bash

dirl=/usr/local
dir2=/var/spool

pushd $dirl
Will do an automatic 'dirs' (list directory stack to stdout).
echo "Now in directory “pwd ." # Uses back-quoted 'pwd'.

Chapter 15. Internal Commands and Builtins 192

Now, do

Advanced Bash-Scripting Guide

some stuff in directory 'dirl'.

pushd $dir2

echo "Now

Now, do
echo "The
popd

echo "Now
Now, do
popd

echo "Now

exit O

in directory “pwd ."

some stuff in directory 'dir2'.
top entry in the DIRSTACK array is S$SDIRSTACK."

back in directory pwd ."
some more stuff in directory 'dirl'.

back in original working directory “pwd’ ."

What happens if you don't 'popd' -- then exit the script?
Which directory do you end up in? Why?

Variables

let

Example 15-10. Letting let do arithmetic.

#!/bin/bash

echo
let a=11 # Same as 'a=11"
let a=at5 # Equivalent to let "a = a + 5"
(Double quotes and spaces make it more readable.)
echo "11 + 5 = $a" # 16
let "a <<= 3" # Equivalent to let "a = a << 3"
echo "\"\$a\" (=16) left-shifted 3 places = $a"
128
let "a /= 4" # Equivalent to let "a = a / 4"
echo "128 / 4 = $a" # 32
let "a -= 5" # Equivalent to let "a = a - 5"

echo "32 - 5 = $a" # 27

let "a *=

10"

4

Equivalent to 1let "a = a * 10"

echo "27 * 10 = $Sa" # 270

let "a %=

8" # Equivalent to let "a = a % 8"

echo "270 modulo 8 = $Sa (270 / 8 = 33, remainder $a)"

6

Does "let" permit C-style operators?

Yes, just as the ((...)) double-parentheses construct does.
let a++ # C-style (post) increment.

echo "6++ = Sa" # 6++ = 7

let a—— # C-style decrement.

Chapter 15. Internal Commands and Builtins

The let command carries out arithmetic operations on variables. [60] In many cases, it functions as a
less complex version of expr.

193

eval

Advanced Bash-Scripting Guide

echo "7-- = $a" # 7-—- = 6
Of course, ++a, etc., also allowed
echo

Trinary operator.

Note that $a is 6, see above.
let "t = a<7?27:11" # True
echo st # 7

let a++

let "t = a<7?27:11" # False
echo $t # 11

exit

<I'> The let command can, in certain contexts, return a surprising exit status.

Evgeniy Ivanov points out:

var=0
echo $7? # 0
As expected.

let var++

echo $7? #1

The command was successful, so why isn't $?=0 2°?7?
Anomaly!

4=

let var++
echo $7? # 0
As expected.

Likewise

let var=0
echo $? #1
The command was successful, so why isn't $?=0 2°?°?

However, as Jeff Gorak points out,

#+ this is part of the design spec for 'let'

"If the last ARG evaluates to 0, let returns 1;
let returns 0 otherwise." ['help let']

eval argl [arg2] ... [argN]

Combines the arguments in an expression or list of expressions and evaluates them. Any variables
within the expression are expanded. The net result is to convert a string into a command.

i) The eval command can be used for code generation from the command-line or within
a script.

bash$ command string="ps ax"

bash$ process="ps ax"

bash$ eval "$command string" | grep "$process"
26973 pts/3 R+ 0:00 grep —--color ps ax

Chapter 15. Internal Commands and Builtins 194

Advanced Bash-Scripting Guide

26974 pts/3 R+ 0:00 ps ax

Each invocation of eval forces a re-evaluation of its arguments.

a='s$sb'
b="'Sc"
c=d
echo $a # Sb

First level.
eval echo $a # Sc

Second level.
eval eval echo $a # d

Third level.

Thank you, E. Choroba.

Example 15-11. Showing the effect of eval

#!/bin/bash
Exercising "eval"

y="eval 1ls -1° # Similar to y="1ls -1°

echo $y #+ but linefeeds removed because "echoed" variable is unquoted.
echo
echo "Sy" # Linefeeds preserved when variable is quoted.

echo; echo

y="eval df°’ # Similar to y="df°’
echo $y #+ but linefeeds removed.

When LF's not preserved, it may make it easier to parse output,
#+ using utilities such as "awk".

echo
echo " "
echo

eval "'seq 3 | sed -e 's/.*/echo var&=ABCDEFGHIJ/'""
varl=ABCDEFGHIJ
var2=ABCDEFGHIJ
var3=ABCDEFGHIJ

echo
echo " "
echo

Now, showing how to do something useful with "eval"
(Thank you, E. Choroba!)

version=3.4 # Can we split the version into major and minor
#+ part in one command?
echo "version = $version"
eval major=${version/./;minor=} # Replaces '.' in version by ';minor='

The substitution yields '3; minor=4'
#+ so eval does minor=4, major=3

Chapter 15. Internal Commands and Builtins 195

Advanced Bash-Scripting Guide

echo Major: S$major, minor: Sminor # Major: 3, minor: 4

Example 15-12. Using eval to select among variables

#!/bin/bash
arr—-choice.sh

Passing arguments to a function to select
#+ one particular variable out of a group.

arrO=(10 11 12 13 14 15)
arrl=(20 21 22 23 24 25)
arr2=(30 31 32 33 34 35)
0O 1 2 3 4 5 Element number (zero—indexed)

choose_array ()

{

eval array_member=\${arr${array_number} [element_number] }

A AAAAAAAAAAAA

Using eval to construct the name of a variable,
#+ in this particular case, an array name.

echo "Element S$element_number of array $array_number is S$array_member"
} # Function can be rewritten to take parameters.

array_number=0 # First array.

element_number=3

choose_array # 13

array_number=2 # Third array.

element_number=4

choose_array # 34

array_number=3 # Null array (arr3 not allocated).
element_number=4

choose_array # (null)

Thank you, Antonio Macchi, for pointing this out.
Example 15-13. Echoing the command-line parameters

#!/bin/bash
echo—-params.sh

Call this script with a few command-line parameters.
For example:

sh echo-params.sh first second third fourth fifth
params=S# # Number of command-line parameters.
param=1 # Start at first command-line param.
while ["Sparam" -le "S$params"]

do

echo —n "Command-line parameter "

echo -n \$$param Gives only the *name* of variable.
ann $1, $2, $3, etc.
Why?
\$ escapes the first "s"

H= H H H

Chapter 15. Internal Commands and Builtins 196

echo -n "
eval echo

AAAA

((param ++
done

exit $°7?

\Sparam

AAA

))

Advanced Bash-Scripting Guide

#+
#+
#+

#
#
#+
#+

so it echoes literally,
and S$param dereferences "S$param"
as expected.

Gives the *value* of variable.

Th
of

e "eval"

\$$

forces the *evaluation*

as an indirect variable reference.

On to the next.

#

$ sh echo-params.sh first
parameter $1
parameter $2
parameter $3
parameter $4
parameter $5

Command-1line
Command-1line
Command-1line
Command-1line
Command-1line

SIS

cond third fourth fifth
= first

second
third
fourth
fifth

Example 15-14. Forcing a log-off

#!/bin/bash

Killing ppp to force a log-off.
For dialup connection,

of course.

Script should be run as root user.

SERPORT=ttyS

3

Depending on the hardware and even the kernel version,
#+ the modem port on your machine may be different —-
#+ /dev/ttySl or /dev/ttyS2.

killppp="eval kill -9

#

$killppp

‘ps ax

| awk '/ppp/ { print $1 }'°"

This variable is now a command.

process ID of ppp ———————

The following operations must be done as root user.

chmod 666 /dev/S$SERPORT

Restore r+w permissions,
Since doing a SIGKILL on ppp changed the permissions on the serial port,

#+ we restore permissions to previous state.

rm /var/lock/LCK..S$SSERPORT

exit $°?

Exercises:

Remove the serial port lock file. Why?

1) Have script check whether root user is invoking it.
2) Do a check on whether the process to be killed
#+ is actually running before attempting to kill it.

3) Write an alternate version of this script based on
then

#+ if [

fuser —-s /dev/modem];

Chapter 15. Internal Commands and Builtins

or else what?

'fuser':

197

Advanced Bash-Scripting Guide

Example 15-15. A version of rot13

#!/bin/bash
A version of "rotl3" using 'eval'.
Compare to "rotl3.sh" example.

setvar_rot_13() # "rotl3" scrambling
{

local varname=$1 varvalue=$2

eval S$Svarname='S$ (echo "S$varvalue" | tr a-z n-za-m)'
}
setvar_rot_13 var "foobar" # Run "foobar" through rotl3.
echo S$Svar # sbbone
setvar_rot_13 var "Svar" # Run "sbbone" through rotl3.
Back to original variable.
echo S$Svar # foobar

This example by Stephane Chazelas.
Modified by document author.

exit O

Here is another example of using eval to evaluate a complex expression, this one from an earlier
version of YongYe's Tetris game script.

eval ${1}+=\"S${x} S{y} \"
Example A-53 uses eval to convert array elements into a command list.

The eval command occurs in the older version of indirect referencing.

eval var=\Svar

i) The eval command can be used to parameterize brace expansion.

<1 The eval command can be risky, and normally should be avoided when there exists a
reasonable alternative. An eval $COMMANDS executes the contents of COMMANDS,
which may contain such unpleasant surprises as rm -rf *. Running an eval on
unfamiliar code written by persons unknown is living dangerously.
set
The set command changes the value of internal script variables/options. One use for this is to toggle
option flags which help determine the behavior of the script. Another application for it is to reset the
positional parameters that a script sees as the result of a command (set * command’). The script
can then parse the fields of the command output.

Example 15-16. Using set with positional parameters

#!/bin/bash
ex34.sh
Script "set-test™"

Invoke this script with three command-line parameters,
for example, "sh ex34.sh one two three".

Chapter 15. Internal Commands and Builtins 198

https://github.com/yongye/shell/blob/master/Tetris_Game.sh

Advanced Bash-Scripting Guide

echo

echo "Positional parameters before set \ uname -a\’® :"
echo "Command-line argument #1 = $1"

echo "Command-line argument #2 = $2"

echo "Command-line argument #3 = $3"

set ‘uname -a° # Sets the positional parameters to the output
of the command "“uname -a

echo

echo +++++

echo S$_ # +++++

Flags set in script.

echo $- # hB

Anomalous behavior?
echo

echo "Positional parameters after set \ uname -a\ = :"
$1, $2, $3, etc. reinitialized to result of “uname -a°

echo "Field #1 of 'uname -a' = S$1"
echo "Field #2 of 'uname -a' = $2"
echo "Field #3 of 'uname -a' = $3"
echo \#\#\#

echo $_ # #44

echo

exit O

More fun with positional parameters.

Example 15-17. Reversing the positional parameters

#!/bin/bash
revposparams.sh: Reverse positional parameters.
Script by Dan Jacobson, with stylistic revisions by document author.

set a\ b c d\ e;

" A Spaces escaped

~on Spaces not escaped

OIFS=$IFS; IFS=:;

A Saving old IFS and setting new one.
echo

until [$# -eq 0]

do # Step through positional parameters.
echo "### k0O = "Sk"" # Before
k=$1:8k; # Append each pos param to loop variable.
A
echo "### k = "sk"" # After
echo
shift;
done

set Sk # Set new positional parameters.
echo -

echo $# # Count of positional parameters.
echo -

Chapter 15. Internal Commands and Builtins 199

Advanced Bash-Scripting Guide

echo
for i # Omitting the "in list" sets the variable —- i ——
#+ to the positional parameters.
do
echo $1 # Display new positional parameters.
done

IFS=SOIFS # Restore IFS.

Question:

Is it necessary to set an new IFS, internal field separator,
#+ in order for this script to work properly?

What happens if you don't? Try it.

And, why use the new IFS -- a colon —-- in line 17,

#+ to append to the loop variable?

What is the purpose of this?

exit O
$./revposparams.sh

k0 =
k = a b

k
k
#H4#

k
k

d e
©
a b

Invoking set without any options or arguments simply lists all the environmental and other variables
that have been initialized.

bash$ set

AUTHORCOPY=/home/bozo/posts
BASH=/bin/bash
BASH_VERSION=$'2.05.8 (1) -release'

XAUTHORITY=/home/bozo/.Xauthority
_=/etc/bashrc

variable22=abc

variable23=xzy

Using set with the —— option explicitly assigns the contents of a variable to the positional parameters.
If no variable follows the —— it unsets the positional parameters.

Example 15-18. Reassigning the positional parameters

#!/bin/bash

Chapter 15. Internal Commands and Builtins 200

Advanced Bash-Scripting Guide

variable="one two three four five"

set ——- S$variable

Sets positional parameters to the contents of "S$variable".

first_param=$1
second_param=$2

shift; shift # Shift past first two positional params.

shift 2 also works.
remaining_params="$*"

echo

echo "first parameter = S$first_param" # one
echo "second parameter = $second_param" # two
echo "remaining parameters = $remaining params" # three four five
echo; echo

Again.

set —-- S$Svariable

first_param=$1

second_param=$2

echo "first parameter = S$first_param" # one
echo "second parameter = $second_param" # two
#

set —-—

Unsets positional parameters if no variable specified.

first_param=$1
second_param=$2

echo "first parameter = $first_param"
echo "second parameter = S$second_param"
exit O

See also Example 11-2 and Example 16-56.
unset

The unset command deletes a shell variable, effectively setting it to null. Note that this command

does not affect positional parameters.

(null value)

#
(null value)

bash$ unset PATH

bash$ echo $PATH

bash$

Example 15-19. "Unsetting'' a variable

#!/bin/bash
unset.sh: Unsetting a variable.

variable=hello
echo "variable = $variable"

unset variable

echo " (unset) variable = S$variable"

Chapter 15. Internal Commands and Builtins

Initialized.

Unset.

In this particular context,
same effect as: variable=

Svariable is null.

201

Advanced Bash-Scripting Guide

if [-z "Svariable"] # Try a string-length test.
then
echo "\S$variable has zero length."
fi
exit O

=& In most contexts, an undeclared variable and one that has been unset are equivalent.
However, the _${parameter:-default} parameter substitution construct can distinguish
between the two.

export

The export [61] command makes available variables to all child processes of the running script or
shell. One important use of the export command is in startup files, to initialize and make accessible
environmental variables to subsequent user processes.

A Unfortunately, _there is no way to export variables back to the parent process, to the
process that called or invoked the script or shell.

Example 15-20. Using export to pass a variable to an embedded awk script

#!/bin/bash

Yet another version of the "column totaler" script (col-totaler.sh)
#+ that adds up a specified column (of numbers) in the target file.

This uses the environment to pass a script variable to 'awk'

#+ and places the awk script in a variable.

ARGS=2
E_WRONGARGS=85

if [$# -ne "SARGS"] # Check for proper number of command-line args.
then

echo "Usage: "basename $0° filename column-number"

exit S$E_WRONGARGS
fi

filename=5$1
column_number=3$2

#===== Same as original script, up to this point =====#

export column_number
Export column number to environment, so it's available for retrieval.

awkscript='{ total += SENVIRON["column_number"] }
END { print total }'
Yes, a variable can hold an awk script.

Now, run the awk script.
awk "Sawkscript" "S$filename"

Thanks, Stephane Chazelas.

Chapter 15. Internal Commands and Builtins 202

Advanced Bash-Scripting Guide
exit O

i) It is possible to initialize and export variables in the same operation, as in export
varl=xxx.

However, as Greg Keraunen points out, in certain situations this may have a different
effect than setting a variable, then exporting it.

bash$ export var=(a b); echo ${var[0]}
(a b)

bash$ var=(a b); export var; echo ${var[0]}
a

&) A variable to be exported may require special treatment. See Example M-2.

declare, typeset
The declare and typeset commands specify and/or restrict properties of variables.
readonly
Same as declare -1, sets a variable as read-only, or, in effect, as a constant. Attempts to change the
variable fail with an error message. This is the shell analog of the C language const type qualifier.
getopts
This powerful tool parses command-line arguments passed to the script. This is the Bash analog of the
getopt external command and the getopt library function familiar to C programmers. It permits
passing and concatenating multiple options [62] and associated arguments to a script (for example
scriptname -abc -e /usr/local).

The getopts construct uses two implicit variables. SOPTIND is the argument pointer (OPTion INDex)
and $SOPTARG (OPTion ARGument) the (optional) argument attached to an option. A colon following
the option name in the declaration tags that option as having an associated argument.

A getopts construct usually comes packaged in a while loop, which processes the options and
arguments one at a time, then increments the implicit SOPTIND variable to point to the next.

=

1. The arguments passed from the command-line to the script must be preceded
by a dash (-). It is the prefixed — that lets getopts recognize command-line
arguments as options. In fact, getopts will not process arguments without the
prefixed —, and will terminate option processing at the first argument
encountered lacking them.

2. The getopts template differs slightly from the standard while loop, in that it
lacks condition brackets.

3. The getopts construct is a highly functional replacement for the traditional
getopt external command.

while getopts ":abcde:fg" Option
Initial declaration.
a, b, ¢, d, e, f, and g are the options (flags) expected.

Chapter 15. Internal Commands and Builtins 203

#
do

do
sh

Advanced Bash-Scripting Guide
The : after option 'e' shows it will have an argument passed with it.

case $Option in
a) # Do something with variable 'a'.
b) # Do something with variable 'b'.

e) # Do something with 'e', and also with S$SOPTARG,
which is the associated argument passed with option 'e'.

g) # Do something with variable 'g'.
esac
ne
ift $((SOPTIND - 1))

Move argument pointer to next.

All this is not nearly as complicated as it looks <grin>.

Example 15-21. Using getopts to read the options/arguments passed to a script

#!/bin/bash
ex33.sh: Exercising getopts and OPTIND
Script modified 10/09/03 at the suggestion of Bill Gradwohl.
Here we observe how 'getopts' processes command-line arguments to script.
The arguments are parsed as "options" (flags) and associated arguments.
Try invoking this script with:
'scriptname -mn'
'scriptname -og gOption' (gOption can be some arbitrary string.)
'scriptname —gXXX -r'
#
'scriptname —qgr'
#+ — Unexpected result, takes "r" as the argument to option "g"
'scriptname —-q -r'
#+ — Unexpected result, same as above
'scriptname -mnop -mnop' - Unexpected result
(OPTIND is unreliable at stating where an option came from.)
#
If an option expects an argument ("flag:"), then it will grab
#+ whatever is next on the command-line.
NO_ARGS=0
E_OPTERROR=85
if [$# —-eqg "SNO_ARGS"] # Script invoked with no command-line args-?
then
echo "Usage: "basename $0° options (—-mnopgrs)"
exit S$E_OPTERROR # Exit and explain usage.
Usage: scriptname -options
Note: dash (-) necessary
fi
while getopts ":mnopg:rs" Option
do
case $Option in
m) echo "Scenario #1: option -m- [OPTIND=S${OPTIND}]";;
n | o) echo "Scenario #2: option -$Option-— [OPTIND=S${OPTIND}]";;
jo)) echo "Scenario #3: option -p- [OPTIND=S${OPTIND}]";;
a) echo "Scenario #4: option —g-\

Chapter 1

5. Internal Commands and Builtins

204

Advanced Bash-Scripting Guide

with argument \"$SOPTARG\" [OPTIND=S${OPTIND}]";;
Note that option 'g' must have an associated argument,
#+ otherwise it falls through to the default.

r | s) echo "Scenario #5: option -$Option-";;
w3) echo "Unimplemented option chosen.";; # Default.
esac
done

shift $((SOPTIND - 1))

Decrements the argument pointer so it points to next argument.

S$1 now references the first non-option item supplied on the command-line
#+ if one exists.

exit $°7?

As Bill Gradwohl states,

"The getopts mechanism allows one to specify: scriptname -mnop -mnop
#+ Dbut there is no reliable way to differentiate what came

#+ from where by using OPTIND."

There are, however, workarounds.

Script Behavior

source, . (dot command)
This command, when invoked from the command-line, executes a script. Within a script, a source
file—name loads the file £ile—-name. Sourcing a file (dot-command) imports code into the script,
appending to the script (same effect as the #include directive in a C program). The net result is the
same as if the "sourced" lines of code were physically present in the body of the script. This is useful
in situations when multiple scripts use a common data file or function library.

Example 15-22. "Including' a data file

#!/bin/bash
Note that this example must be invoked with bash, i.e., bash ex38.sh
#+ not sh ex38.sh !

data-file # Load a data file.
Same effect as "source data-file", but more portable.

The file "data-file" must be present in current working directory,
#+ since it is referred to by its basename.

Now, let's reference some data from that file.

echo "variablel (from data—-file) = $variablel"

echo "variable3 (from data—-file) = S$variable3"

let "sum = S$Svariable2 + Svariable4d"

echo "Sum of variable2 + variable4 (from data-file) = S$sum"
echo "messagel (from data-file) is \"S$messagel\""

Escaped quotes

echo "message2 (from data-file) is \"S$message2\""

print_message This is the message-print function in the data-file.

exit $°?

Chapter 15. Internal Commands and Builtins 205

Advanced Bash-Scripting Guide
File data—-f1ile for Example 15-22, above. Must be present in same directory.

This is a data file loaded by a script.
Files of this type may contain variables, functions, etc.
It loads with a 'source' or '.' command from a shell script.

4

Let's initialize some variables.

variablel=23
variable2=474
variable3=5
variabled4=97

messagel="Greetings from *** line SLINENO *** of the data file!"
message2="Enough for now. Goodbye."

print_message ()
{ # Echoes any message passed to it.

if [-z "s1"]
then

return 1 # Error, if argument missing.
fi

echo

until [-z "$1"]

do # Step through arguments passed to function.
echo -n "$1" # Echo args one at a time, suppressing line feeds.
echo -n " " # Insert spaces between words.
shift # Next one.

done

echo

return 0O

}
If the sourced file is itself an executable script, then it will run, then return control to the script that
called it. A sourced executable script may use a return for this purpose.

Arguments may be (optionally) passed to the sourced file as positional parameters.

source S$filename $argl arg2
It is even possible for a script to source itself, though this does not seem to have any practical
applications.

Example 15-23. A (useless) script that sources itself

#!/bin/bash
self-source.sh: a script sourcing itself "recursively."
From "Stupid Script Tricks," Volume II.

MAXPASSCNT=100 # Maximum number of execution passes.

echo -n "$pass_count "
At first execution pass, this just echoes two blank spaces,

Chapter 15. Internal Commands and Builtins 206

Advanced Bash-Scripting Guide
#+ since S$pass_count still uninitialized.

let "pass_count += 1"

Assumes the uninitialized variable S$pass_count

#+ can be incremented the first time around.

This works with Bash and pdksh, but

#+ it relies on non-portable (and possibly dangerous) behavior.

Better would be to initialize S$pass_count to 0 before incrementing.

while ["S$pass_count" -le SMAXPASSCNT]
do
=10) # Script "sources" itself, rather than calling itself.
./$0 (which would be true recursion) doesn't work here. Why?
done

What occurs here is not actually recursion,

#+ since the script effectively "expands" itself, i.e.,

#+ generates a new section of code

#+ with each pass through the 'while' loop',

with each 'source' in line 20.

#

Of course, the script interprets each newly 'sourced' "#!" line
#+ as a comment, and not as the start of a new script.

echo

exit O # The net effect is counting from 1 to 100.
Very impressive.

Exercise:

Write a script that uses this trick to actually do something useful.

exit
Unconditionally terminates a script. [63] The exit command may optionally take an integer argument,
which is returned to the shell as the exit status of the script. It is good practice to end all but the
simplest scripts with an exit O, indicating a successful run.

=& If a script terminates with an exit lacking an argument, the exit status of the script is
the exit status of the last command executed in the script, not counting the exit. This is
equivalent to an exit $?.

=& An exit command may also be used to terminate a subshell.

exec
This shell builtin replaces the current process with a specified command. Normally, when the shell
encounters a command, it forks off a child process to actually execute the command. Using the exec
builtin, the shell does not fork, and the command exec'ed replaces the shell. When used in a script,
therefore, it forces an exit from the script when the exec'ed command terminates. [64]

Example 15-24. Effects of exec

#!/bin/bash

exec echo "Exiting \"$0\" at line S$LINENO." # Exit from script here.
SLINENO is an internal Bash variable set to the line number it's on.

Chapter 15. Internal Commands and Builtins 207

shopt

caller

Advanced Bash-Scripting Guide
The following lines never execute.
echo "This echo fails to echo."
exit 99 # This script will not exit here.
Check exit value after script terminates

#+ with an 'echo $?2'.
It will *not* be 99.

Example 15-25. A script that exec's itself

#!/bin/bash
self-exec.sh

Note: Set permissions on this script to 555 or 755,
then call it with ./self-exec.sh or sh ./self-exec.sh.

echo

echo "This line appears ONCE in the script, yet it keeps echoing."
echo "The PID of this instance of the script is still S."

Demonstrates that a subshell is not forked off.

echo " Hit Ctl-C to exit "
sleep 1

exec $0 # Spawns another instance of this same script

#+ that replaces the previous one.
echo "This line will never echo!" # Why not?

exit 99 # Will not exit here!
Exit code will not be 99!

An exec also serves to reassign file descriptors. For example, exec <zzz-file replaces stdin

with the file zzz—-file.

- The —exec option to find is not the same as the exec shell builtin.

This command permits changing shell options on the fly (see Example 25-1 and Example 25-2). It

often appears in the Bash startup files, but also has its uses in scripts. Needs version 2 or later of Bash.

shopt —-s cdspell
Allows minor misspelling of directory names with 'cd'
Option -s sets, —u unsets.

cd /hpme # Oops! Mistyped '/home'.
pwd # /home
The shell corrected the misspelling.

Putting a caller command inside a function echoes to st dout information about the caller of that

function.

#!/bin/bash

functionl ()

{

Chapter 15. Internal Commands and Builtins

208

Advanced Bash-Scripting Guide

Inside functionl ().
caller 0 # Tell me about it.

functionl # Line 9 of script.

9 main test.sh

7 Line number that the function was called from.
AAAA Invoked from "main" part of script.

ANNAANN Name of calling script.

caller O # Has no effect because it's not inside a function.

A caller command can also return caller information from a script sourced within another script.

Analogous to a function, this is a "subroutine call."

You may find this command useful in debugging.

Commands

true

false

A command that returns a successful (zero) exit status, but does nothing else.

bash$ true
bash$ echo $?
0

Endless loop
while true # alias for ":
do

operation-1
operation-2

operation—-n
Need a way to break out of loop or script will hang.
done

A command that returns an unsuccessful exit status, but does nothing else.

bash$ false
bash$ echo $?
1

Testing "false"

if false
then

echo "false evaluates \"true\""
else

echo "false evaluates \"false\""
fi

false evaluates "false"

Looping while "false" (null loop)
while false
do
The following code will not execute.

Chapter 15. Internal Commands and Builtins

209

Advanced Bash-Scripting Guide

operation-1
operation-2

operation—-n
Nothing happens!
done
type [cmd]
Similar to the which external command, type cmd identifies "cmd." Unlike which, type is a Bash
builtin. The useful —a option to type identifies keywords and builtins, and also locates system
commands with identical names.

bash$ type '['

[is a shell builtin

bash$ type -a '['

[is a shell builtin
[is /usr/bin/|

bash$ type type
type is a shell builtin

The type command can be useful for testing whether a certain command exists.

hash [cmds]
Records the path name of specified commands -- in the shell hash table [65] -- so the shell or script
will not need to search the SPATH on subsequent calls to those commands. When hash is called with
no arguments, it simply lists the commands that have been hashed. The —r option resets the hash
table.

bind
The bind builtin displays or modifies readline [66] key bindings.

help
Gets a short usage summary of a shell builtin. This is the counterpart to whatis, but for builtins. The
display of help information got a much-needed update in the version 4 release of Bash.

bash$ help exit

exit: exit [n]
Exit the shell with a status of N. If N is omitted, the exit status
is that of the last command executed.

15.1. Job Control Commands

Certain of the following job control commands take a job identifier as an argument. See the table at end of the
chapter.

jobs
Lists the jobs running in the background, giving the job number. Not as useful as ps.

<& It is all too easy to confuse jobs and processes. Certain builtins, such as kill, disown,
and wait accept either a job number or a process number as an argument. The fg, bg
and jobs commands accept only a job number.

bash$ sleep 100 &
[1] 1384

Chapter 15. Internal Commands and Builtins 210

Advanced Bash-Scripting Guide

bash $ jobs

[1]+ Running sleep 100 &

"1" is the job number (jobs are maintained by the current shell). "1384" is the PID or
process ID number (processes are maintained by the system). To kill this job/process,
either a kill %1 or a kill 1384 works.

Thanks, S.C.

disown
Remove job(s) from the shell's table of active jobs.

fg, bg
The fg command switches a job running in the background into the foreground. The bg command
restarts a suspended job, and runs it in the background. If no job number is specified, then the fg or bg
command acts upon the currently running job.

wait
Suspend script execution until all jobs running in background have terminated, or until the job number
or process ID specified as an option terminates. Returns the exit status of waited-for command.

You may use the wait command to prevent a script from exiting before a background job finishes
executing (this would create a dreaded orphan process).

Example 15-26. Waiting for a process to finish before proceeding

#!/bin/bash

ROOT_UID=0 # Only users with $UID 0 have root privileges.
E_NOTROOT=65
E_NOPARAMS=66

if ["SUID" -ne "SROOT_UID"]

then
echo "Must be root to run this script."
"Run along kid, it's past your bedtime."
exit $E_NOTROOT

fi

if [-z "S$1"]

then
echo "Usage: "basename $0° find-string"
exit S$E_NOPARAMS

fi

echo "Updating 'locate' database..."
echo "This may take a while."
updatedb /usr & # Must be run as root.

wait

Don't run the rest of the script until 'updatedb' finished.

You want the the database updated before looking up the file name.
locate $1

Without the 'wait' command, in the worse case scenario,

#+ the script would exit while 'updatedb' was still running,
#+ leaving it as an orphan process.

Chapter 15. Internal Commands and Builtins 211

Advanced Bash-Scripting Guide

exit O
Optionally, wait can take a job identifier as an argument, for example, wait $1 or wait SPPID.
[67] See the job id table.

i) Within a script, running a command in the background with an ampersand (&) may cause the script to har
ENTER is hit. This seems to occur with commands that write to stdout. It can be a major annoyance.

#!/bin/bash
test.sh

1ls -1 &
echo "Done."

bash$./test.sh

Done.
[bozo@localhost test-scripts]$ total 1
—YWXr—XIr—X 1 bozo bozo 34 Oct 11 15:09 test.sh

As Walter Brameld IV explains it:

As far as I can tell, such scripts don't actually hang. It ju
seems that they do because the background command writes text
the console after the prompt. The user gets the impression th
the prompt was never displayed. Here's the sequence of events

Script launches background command.

Script exits.

Shell displays the prompt.

Background command continues running and writing text to t
console.

Background command finishes.

6. User doesn't see a prompt at the bottom of the output, thi
is hanging.

W N

(&)}

Placing a wait after the background command seems to remedy this.

#!/bin/bash

test.sh
1ls -1 &
echo "Done."
wait
bash$./test.sh
Done.
[bozo@localhost test-scripts]$ total 1
—IWXIr—XIr—X 1 bozo bozo 34 Oct 11 15:09 test.sh

Redirecting the output of the command to a file or even to /dev/null also takes care of this problem.
suspend
This has a similar effect to Control-Z, but it suspends the shell (the shell's parent process should
resume it at an appropriate time).

Chapter 15. Internal Commands and Builtins 212

Advanced Bash-Scripting Guide

logout
Exit a login shell, optionally specifying an exit status.
times
Gives statistics on the system time elapsed when executing commands, in the following form:
|Om0.020s 0m0.020s |
This capability is of relatively limited value, since it is not common to profile and benchmark shell
scripts.
kill
Forcibly terminate a process by sending it an appropriate terminate signal (see Example 17-6).
Example 15-27. A script that kills itself
#!/bin/bash
self-destruct.sh
kill $$ # Script kills its own process here.
Recall that "$$" is the script's PID.
echo "This line will not echo."
Instead, the shell sends a "Terminated" message to stdout.
exit O # Normal exit? No!
After this script terminates prematurely,
#+ what exit status does it return?
#
sh self-destruct.sh
echo $7?
143
#
143 = 128 + 15
TERM signal
& kill -1 lists all the signals (as does the file /usr/include/asm/signal.h).
A kill -9 is asure kill, which will usually terminate a process that stubbornly
refuses to die with a plain Kill. Sometimes, a kill -15 works. A zombie process,
that is, a child process that has terminated, but that the parent process has not (yet)
killed, cannot be killed by a logged-on user -- you can't kill something that is already
dead -- but init will generally clean it up sooner or later.
killall
The killall command kills a running process by name, rather than by process ID. If there are multiple
instances of a particular command running, then doing a killall on that command will terminate them
all.
&) This refers to the killall command in /usr/bin, not the killall script in
/etc/rc.d/init.d.
command

The command directive disables aliases and functions for the command immediately following it.

bash$ command 1s

Chapter 15. Internal Commands and Builtins 213

Advanced Bash-Scripting Guide

&) This is one of three shell directives that effect script command processing. The others
are builtin and enable.

builtin
Invoking builtin BUILTIN_COMMAND runs the command BUILTIN_COMMAND as a shell

builtin, temporarily disabling both functions and external system commands with the same name.
enable

This either enables or disables a shell builtin command. As an example, enable -n kill disables

the shell builtin kill, so that when Bash subsequently encounters kill, it invokes the external command
/bin/kill.

The —a option to enable lists all the shell builtins, indicating whether or not they are enabled. The — £
filename option lets enable load a builtin as a shared library (DLL) module from a properly
compiled object file. [68].

autoload
This is a port to Bash of the ksh autoloader. With autoload in place, a function with an autoload
declaration will load from an external file at its first invocation. [69] This saves system resources.

Note that autoload is not a part of the core Bash installation. It needs to be loaded in with enable
—I (see above).

Table 15-1. Job identifiers

Notation [Meaning

SN Job number [N]

%S Invocation (command-line) of job begins with string S

%25 Invocation (command-line) of job contains within it string S

%% "current” job (last job stopped in foreground or started in background)
%+ "current” job (last job stopped in foreground or started in background)
%— Last job

S Last background process

Chapter 15. Internal Commands and Builtins 214

Chapter 16. External Filters, Programs and

Commands

Standard UNIX commands make shell scripts more versatile. The power of scripts comes from coupling

system commands and shell directives with simple programming constructs.

16.1. Basic Commands

The first commands a novice learns

Is

The basic file "list" command. It is all too easy to underestimate the power of this humble command.

For example, using the —R, recursive option, Is provides a tree-like listing of a directory structure.
Other useful options are - S, sort listing by file size, —t, sort by file modification time, —v, sort by

(numerical) version numbers embedded in the filenames, [70] —b, show escape characters, and -1,

show file inodes (see Example 16-4).

bash$ 1s -1
—-rw—-rw-r—— 1 bozo bozo 0
—-rw—-rw-r—— 1 bozo bozo 0
—-rw—rw-r—— 1 bozo bozo 0
—-rw—rw-r—— 1 bozo bozo 0
—-rw—-rw-r—— 1 bozo bozo 0
—-rw—-rw-r—— 1 bozo bozo 0
—-rw—-rw-r—— 1 bozo bozo 0

bash$ 1s -1v
total 0
—-rw—-rw-r—— 1 bozo bozo 0
—-rw—rw-r—— 1 bozo bozo 0
—-rw—-rw-r—— 1 bozo bozo 0
—-rw—-rw-r—— 1 bozo bozo 0
—-rw—-rw-r—— 1 bozo bozo 0
—-rw—-rw-r—— 1 bozo bozo 0
—-rw—-rw-r—— 1 bozo bozo 0
—-rw—rw-r—— 1 bozo bozo 0

Sep
Sep
Sep
Sep
Sep
Sep
Sep

Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep

14
14
14
14
14
14
14

14
14
14
14
14
14
14
14

18:
18:
18:
18:
18:
18:
18:
18:

44
44
44
44
44
49
49

49
49
44
44
44
44
44
44

—rw-rw-r—— 1 bozo bozo 0 Sep 14 18:44 chapterlO.txt
18:
18:
18:
18:
18:
18:
18:

chapterll.txt
chapterl2.txt
chapterl.txt
chapter2.txt
chapter3.txt
Chapter_headings.txt
Preface.txt

Chapter_headings.txt
Preface.txt
chapterl.txt
chapter2.txt
chapter3.txt
chapterl0.txt
chapterll.txt
chapterl2.txt

i | The /s command returns a non-zero exit status when attempting to list a non-existent

file.

bash$ 1ls abc

bash$ echo $?
2

ls: abc: No such file or directory

Example 16-1. Using Is to create a table of contents for burning a CDR disk

Chapter 16. External Filters, Programs and Commands

215

cat, tac

Advanced Bash-Scripting Guide

#!/bin/bash
ex40.sh (burn-cd.sh)
Script to automate burning a CDR.

SPEED=10 # May use higher speed if your hardware supports it.

IMAGEFILE=cdimage.iso

CONTENTSFILE=contents

DEVICE=/dev/cdrom For older versions of cdrecord

DEVICE="1,0,0"

DEFAULTDIR=/opt # This is the directory containing the data to be burned.
Make sure it exists.
Exercise: Add a test for this.

Uses Joerg Schilling's "cdrecord" package:
http://www.fokus.fhg.de/usr/schilling/cdrecord.html

If this script invoked as an ordinary user, may need to suid cdrecord
#+ chmod u+s /usr/bin/cdrecord, as root.
Of course, this creates a security hole, though a relatively minor one.

if [-z "S$1"]
then
IMAGE_DIRECTORY=$DEFAULTDIR
Default directory, if not specified on command-line.
else
IMAGE_DIRECTORY=S$1
fi

Create a "table of contents" file.

ls -1RF SIMAGE_DIRECTORY > S$IMAGE_DIRECTORY/SCONTENTSFILE

The "1" option gives a "long" file listing.

The "R" option makes the listing recursive.

The "F" option marks the file types (directories get a trailing /).
echo "Creating table of contents."

Create an image file preparatory to burning it onto the CDR.
mkisofs -r -o S$SIMAGEFILE S$SIMAGE_DIRECTORY
echo "Creating IS09660 file system image (S$SIMAGEFILE)."

Burn the CDR.

echo "Burning the disk."

echo "Please be patient, this will take a while."

wodim -v -isosize dev=S$DEVICE S$IMAGEFILE

In newer Linux distros, the "wodim" utility assumes the
#+ functionality of "cdrecord."

exitcode=$?

echo "Exit code = S$Sexitcode"

exit S$Sexitcode

cat, an acronym for concatenate, lists a file to st dout. When combined with redirection (> or >>), it

is commonly used to concatenate files.

Uses of 'cat'
cat filename # Lists the file.

cat file.l file.2 file.3 > file.123 # Combines three files into one.

The —n option to cat inserts consecutive numbers before all lines of the target file(s). The —~b option
numbers only the non-blank lines. The —v option echoes nonprintable characters, using * notation.

Chapter 16. External Filters, Programs and Commands

216

Advanced Bash-Scripting Guide

The —s option squeezes multiple consecutive blank lines into a single blank line.

See also Example 16-28 and Example 16-24.

=& In a pipe, it may be more efficient to redirect the st din to a file, rather than to cat
the file.

cat filename | tr a-z A-Z

tr a-z A-7Z < filename # Same effect, but starts one less process,
#+ and also dispenses with the pipe.

tac, is the inverse of cat, listing a file backwards from its end.
rev

reverses each line of a file, and outputs to st dout. This does not have the same effect as tac, as it
preserves the order of the lines, but flips each one around (mirror image).

bashS$ cat filel.txt
This is line 1.
This is line 2.

bash$ tac filel.txt
This is line 2.
This is line 1.

bash$ rev filel.txt
.1 enil si sihT
.2 enil si sihT

cp
This is the file copy command. cp filel file2 copies filel to file2, overwriting file2 if
it already exists (see Example 16-6).

j) Particularly useful are the —a archive flag (for copying an entire directory tree), the

—u update flag (which prevents overwriting identically-named newer files), and the
—-r and —-R recursive flags.

cp -u source_dir/* dest_dir
"Synchronize" dest_dir to source_dir
#+ by copying over all newer and not previously existing files.

This is the file move command. It is equivalent to a combination of ¢p and rm. It may be used to
move multiple files to a directory, or even to rename a directory. For some examples of using mv in a
script, see Example 10-11 and Example A-2.

=) When used in a non-interactive script, mv takes the —f (force) option to bypass user
input.

When a directory is moved to a preexisting directory, it becomes a subdirectory of the
destination directory.

bash$ mv source_directory target_directory

Chapter 16. External Filters, Programs and Commands 217

rm

rmdir

mkdir

chmod

Advanced Bash-Scripting Guide

bash$ 1ls -1F target_directory
total 1
Adrwxrwxr—x 2 bozo bozo 1024 May 28 19:20 source_directory/

Delete (remove) a file or files. The —f option forces removal of even readonly files, and is useful for
bypassing user input in a script.

&
The rm command will, by itself, fail to remove filenames beginning with a dash.
Why? Because rm sees a dash-prefixed filename as an option.

bash$ rm -badname

rm: invalid option —-- b

Try "rm —-help' for more information.
One clever workaround is to precede the filename with a " -- " (the end-of-options
flag).

|bash$ rm —— -badname |
Another method to is to preface the filename to be removed with a dot-slash.

|bash$ rm ./-badname |

When used with the recursive flag —r, this command removes files all the way down
the directory tree from the current directory. A careless rm -rf * can wipe out a big
chunk of a directory structure.

Remove directory. The directory must be empty of all files -- including "invisible" dotfiles [71] -- for
this command to succeed.

Make directory, creates a new directory. For example, mkdir -p
project/programs/December creates the named directory. The —p option automatically
creates any necessary parent directories.

Changes the attributes of an existing file or directory (see Example 15-14).

chmod +x filename
Makes "filename" executable for all users.

chmod u+s filename

Sets "suid" bit on "filename" permissions.

An ordinary user may execute "filename" with same privileges as the file's owner.
(This does not apply to shell scripts.)

chmod 644 filename
Makes "filename" readable/writable to owner, readable to others
#+ (octal mode) .

chmod 444 filename

Makes "filename" read-only for all.

Modifying the file (for example, with a text editor)

#+ not allowed for a user who does not own the file (except for root),
#+ and even the file owner must force a file-save

#+ if she modifies the file.

Chapter 16. External Filters, Programs and Commands 218

Advanced Bash-Scripting Guide

Same restrictions apply for deleting the file.

chmod 1777 directory-name

Gives everyone read, write, and execute permission in directory,
#+ however also sets the "sticky bit".

This means that only the owner of the directory,

#+ owner of the file, and, of course, root

#+ can delete any particular file in that directory.

chmod 111 directory-name

Gives everyone execute-only permission in a directory.

This means that you can execute and READ the files in that directory

#+ (execute permission necessarily includes read permission

#+ because you can't execute a file without being able to read it).

But you can't list the files or search for them with the "find" command.
These restrictions do not apply to root.

chmod 000 directory-name

No permissions at all for that directory.

Can't read, write, or execute files in it.

Can't even list files in it or "cd" to it.

But, you can rename (mv) the director