The codedescribe and codelisting Packages
Version 1.24

Alceu Frigeri*

February 2026

Abstract

This package is designed to be as class independent as possible, depending only
on expl, scontents, listings, xpeekahead, pifont and xcolor. A minimal set of
macros/commands/environments is defined: most/all defined commands have an “ob-
ject type” as a keyval parameter, allowing for an easy expansion mechanism (instead
of the usual “one set of macros/environments” for each object type).

No assumption is made about page layout (besides “having a margin paragraph”),
or underlying macros, so it should be possible to use this with any/most document
classes.

Contents

1 Introduction
1.1 Single versus Multi-column Classes

2 codelisting Package
2.1 Package Options e
2.2 In Memory Code Storage e
2.3 Code Display/Demo e
2.3.1 Colors Customization,
232 CodeKeys

3 codedescribe Package
3.1 Package Options
3.2 Indexing
3.2.1 Imdex Keys o o e
3.3 Object Typekeys o . e
3.3.1 Format Keys
3.3.2 Format Groups
3.3.3 Object Types o o
3.3.4 Command List Keys
3.3.5 Customization
3.4 Locale
3.5 Environments oL e
3.6 Typeset Commands L
3.7 Note/Remark Commands
3.8 Shortcuts (experimental) L Lo
3.9 Auxiliary Commands and Environment

4 codelstlang Package

*https://github.com/alceu-frigeri/codedescribe

10
10
10
11
11
12
13
14
15
16
17
18
18

19

1 Introduction

This package aims at documenting both document level and package/class level commands.
It’s fully implemented using expl, requiring just an up to date kernel. scontents and listings
packages (see [4] and [5]) are used to typeset code snippets. The package pifont (see [8]) is
needed just to typeset those (open)stars, in case one wants to mark a command as (restricted)
expandable. xcolor (see [6]) is needed to switch colors, and xpeekahead (see [3]) for spacing
fine tuning. The package infograb (see [2]) is loaded for package’s documentation only.

No other package/class is needed, and it should be possible to use these packages with
most classes!, which allows to demonstrate document commands with any desired layout.

Generating an index is supported (since version 1.20, see 3.2 and 3.3.3) but no index
package is pre-loaded, leaving it to the end user.

codelisting defines a few macros to display and demonstrate IWTEX code (using listings
and scontents), codedescribe defines a series of macros to display/enumerate macros and
environments (somewhat resembling the doc3 style), including some shortcuts (active char-
acters, since version 1.23), and codelstlang defines a series of listings TEX dialects.

These packages are fairly stable, and given the (obj-type) mechanism (see 3.3) they can
be easily extended without changing their interface.

1.1 Single versus Multi-column Classes

This package “can” be used with multi-column classes, given that the \linewidth and
\columnsep are defined appropriately. \linewidth shall defaults to text/column real width,
whilst \columnsep, if needed (2 or more columns), shall be greater than \marginparwidth plus
\marginparsep.

Lf, by chance, a class with compatibility issues is found, just open an issue at https://github.com/
alceu-frigeri/codedescribe/issues to see what can be done

https://github.com/alceu-frigeri/codedescribe/issues
https://github.com/alceu-frigeri/codedescribe/issues

strict
suppress deprecated

colors

load xtra dialects

TeX dialects

codestore

2 codelisting Package

It loads: listings, scontents and xpeekahead, defines an environment: codestore and a few
commands for listing and demonstration of M TEX code.

2.1 Package Options
The following options can also be set via codedescribe package options, see 3.1.

Package Warnings will be reported as Package Errors.
Suppress the messages associated with deprecated commands/keys.

Possible values: black, default, brighter and darker. This will adjust the initial color
configuration for the many listings’ elements (used by \tscode and \tsdemo). black will
defaults all colors to black. default, brighter and darker are roughly the same color scheme.
The default scheme is the one used in this document. With brighter the colors are brighter
than the default, and with darker the colors will be darker, but not black.

(defaults to false) If set, it will load the auxiliary package codelstlang (see 4), which just
defines a series of listings TeX dialects.

This will set which 1istings TeX dialects will be used when defining the listing style
codestyle. It defaults to doctools, which is derived from the [LaTeX]TeX dialect (this
contains the same set of commands used by the package doctools). One can use any valid
(TEX derived) 1istings dialect, including user defined ones, see [5] for details.

Besides those, one can use (if the load xtra dialects is set): 13kernelsign, 13expsign,
13amssign, 13pgfsign, 13bibtexsign, 13kernel, 13exp, 13ams, 13pgf, 13bibtex, kernel, xpacks,
ams, pgf, pgfplots, bibtex, babel and hyperref. See 4 for details on those dialects.

Note: TeX dialects is a comma separated list of the dialect’s name, without
the base language (internally it will be converted to [dialect]TeX).

For example:
%% could be \usepackagel[...]{codelisting}

\usepackage[load xtra dialects,
TeX dialects={doctools,l3kernel,l13ams}]{codedescribe}

W
%% assuming the user has defined a dialect, named: [my-own-set]TeX
YA
\usepackage [TeX dialects={doctools,my-own-set}]{codedescribe}
YA

2.2 In Memory Code Storage

Thanks to scontents, it’s possible to store IXTEX code snippets in an expl sequence variable.

\begin{codestore} [(stcontents-keys)]
\end{codestore}

This environment is an alias to scontents environment (from scontents, see [4]), all scontents
keys are valid, with two additional ones: st and store-at which are aliases to the store-env
key. If an “isolated” (st-name) is given (unknown key), it is assumed that the environment
body shall be stored in it (for use with \tscode, \tsmergedcode, \tsdemo, \tsresult and
\tsexec).

Note: From scontents, (st-name) is (index)ed (The code is stored in a se-
quence variable). It is possible to store as many code snippets as needed under
the same name. The first one will be (index)— 1, the second 2, and so on.

Warning: If explicitly using one of the store-env, st or store-at keys, the
storage name can be anything. BUT, due to changes (August 2025) in the latex
kernel keys processing, if an implicity key is used, then colons (:), besides a
comma and equal signs, aren’t allowed.

\tscodex*
\tsdemox*
\tsresul

t*

updated:
updated:

2024/01/06
2025/04/29

ETEXCode:

%The code will be stored as 'store:A'
\begin{codestore} [store-env = store:A]

\end{codestore}

%Same
\begin{codestore}[st = store:A]

\end{codestore}

%The code will be stored as 'storeA'
\begin{codestore} [storeA]

\end{codestore}

%This might raises an error.
%It will be stored as 'store' (not as 'store:A')
\begin{codestore} [store:A]

\end{codestore}

2.3 Code Display/Demo

\tscode* [(code-keys)] {(st-name)} [(index)]
\tsdemo* [(code-keys)] {(st-name)} [(index)]
\tsresult* [(code-keys)] {(st-name)} [(index)]

\tscode* just typesets (st-name) (created with codestore) verbatim with syntax highlight
(from 1listings package [5]). The non-star version centers it and use just half of the base
line. The star version uses the full text width.

\tsdemox first typesets (st-name), as above, then executes it. The non-start version place
them side-by-side, whilst the star version places one following the other.

(new 2024/01/06) \tsresult* only ezecutes it. The non-start version centers it and use just
half of the base line, whilst the star version uses the full text width.

Note: (from stcontents package) (index) can be from 1 up to the number of
stored codes under the same (st-name). Defaults to 1.

Note: All are executed in a local group which is discarded at the end. This
is to avoid unwanted side effects, but might disrupt code execution that, for
instance, depends on local variables being set. That for, see \tsexec below.

For Example:
ETEXCode:

\begin{codestore} [stmetal
Some \LaTeX{} coding, for example: \ldots.
\end{codestore}

This will just typesets \tsobj[key,no index]{stmeta}:
\tscode* [codeprefix={Sample Code:}] {stmeta}

and this will demonstrate it, side by side with source code:
\tsdemo [numbers=left,firstnumber=5,ruleht=0.5,
codeprefix={inner sample codel},
resultprefix={inner sample result}] {stmeta}

ETEXResult:
This will just typesets stmeta:

Sample Code:
Some \LaTeX{} coding, for example: \ldots.
and this will demonstrate it, side by side with source code:

inner sample code inner sample result
Some \LaTeX{} coding, for example: \ldots. Some LﬁIE?(coding, for example:

\tsmergedcode*

new: 2025/04/29

\tsexec

new: 2025/04/29

\tsmergedcode* [(code-keys)] {(st-name-index list)}

This will typeset (as \tscode) the merged contents from (st-name-index list). The list
syntax comes from scontents (command \mergesc), where it is possible to refer to a single
index {(st-name A)} [(index)], a index range {(st-name B)} [(indexA-indexB)], or all indexes
from a (st-name), {(st-name C)} [(1-end)]. The special index (i-end) refers to all indexes
stored under a given (st-name).

Note: The brackets aren’t optional. For instance \tsmergedcode* [(code-keys)]
{ {(st-name A)} [(index)] , {(st-name B)} [(indexA-indexB)] , {(st-name
C)} [(1-end)] }

\tsexec {(st-name)} [(index)]

Unlike the previous commands which are all executed in a local group (discarded at the end)
this will execute the code stored at (st-name) [(index)] in the current ITEX group.

2.3.1 Colors Customization

\setlistcolorscheme \setlistcolorscheme {(color-key-list)}

new:

2025/12/14

This allows to customize the default colors used by \tscode and \tsdemo when typesetting
(assuming the default listings’s style is being used). Note that the given colors will be mixed
with black. The key brightness set’s the mixing proportion. The changes become effective
at the point of use.

(color-key-list) can be any combination of:

bckgnd (default: black) Sets the background base color. Note this is mixed with
white, not black as the others.

string (default: teal) Sets the string base color

comment (default: green) Sets the comment base color

texcs (default: blue) Sets the texcs (TEX commands) base color

keywd (default: cyan) Sets the keywd (keywords) base color

emph (default: red) Sets the emph (emphasis) base color

rule (default: gray) Sets the rule (unused by now) base color. Note this is mixed
with white, not black as the others.

number (default: gray) Sets the (small line) numbers base color. Note this is mixed

with white, not black as the others.
brightness (default: 1) Sets the mixing proportion between each base color and black.

scheme (Defaults to scheme=default) Selects a pre-set color scheme, see below, the
default scheme sets all of the above to their default value.

\newlistcolorscheme \newlistcolorscheme {(new-scheme)} {(color-key-list)}

new:

2025/12/14

This creates/defines a (new-scheme) ((color-key-list) as above) which can be later used as
\setlistcolorscheme{scheme=new-scheme}

2.3.2 Code Keys

\setcodekeys \setcodekeys {(code-keys)}

One has the option to set (code-keys) per \tscode, \tsmergedcode, \tsdemo and \tsresult
call (see 2.3), or globally, better said, in the called context group .
N.B.: All \tscode and \tsdemo commands create a local group in which
the (code-keys) are defined, and discarded once said local group is closed.
\setcodekeys defines those keys in the current context (which might be global
or not, the declarations are always local).

\newcodekey \newcodekey {(new-key)} {(code-keys)}

new: 2025/05/01 This will define a new key (new-key), which can be used with \tscode, \tsmergedcode, \tsdemo
updated: 2025/12/23 . . :
and \tsresult. (code-keys) can be any of the following ones, including other (new-key)s. Be
careful not to create a definition loop.

Note: The old \setnewcodekey is (now) an alias to this, and will raise a warning
if called (deprecation).

lststyle 1ststyle = {(listings style)}

new: 2025/11/12 This sets the base style to be used. It defaults to codestyle, and the user can use this
(codestyle) as the base style for his own one (and avoid having to define every single aspect
of it). For example:
\1stdefinestyle{my-own}{ 7/, see the listings manual for a complete list of keywords
style=codestyle,

texcsstyle = * {\bfseries\color{red}}
}

\tscodex [1ststyle=my-own]{demo-X}

settexcs settexcs = [(num)] {(csv-list)}
texcs texcs = [(num)] {(csv-list)}
texcsstyle texcsstyle = [(num)] {(style)}

updated: 2025/05/01 These define sets of IMTEX commands (csnames, sans the preceding slash bar), the settexcs
updated: 2025/12/29
initialize/redefine those sets (an empty list, clears the set), while texcs extend those sets.
The texcsstyle redefines the display style. (num) can be any number, though, currently, only
1 to 8 have a pre-defined style associated with them.

Note: The old keys settexcs2, settexcs3, settexcs4, texcs2, texcs3, texcs4,
texcs2style, texcs3style and texcs4style still work, but will raise a warning
(deprecation), if used.

setkeywd setkeywd = [(num)] {(csv-list)}
keywd keywd = [(num)] {(csv-1list)}
keywdstyle keywdstyle = [(num)] {(style)}

updated: 2025/05/01 Same for other keywords sets.
updated: 2025/12/29

Note: The old keys setkeywd2, setkeywd3, setkeywd4, keywd2, keywd3, keywd4,
keywd2style, keywd3style and keywd4style still work, but will raise a warning
(deprecation), if used.

setemph setemph = [(num)] {(csv-list)}
emph emph = [(num)] {(csv-list)}
emphstyle emphstyle = [(num)] {(style)}

updated: 2025/05/01 for some extra emphasis sets.
updated: 2025/12/29

Note: The old keys setemph2, setemph3, setemph4, emph2, emph3, emph4,
emph2style, emph3style and emph4style still work, but will raise a warning
(deprecation), if used.

letter
other

new: 2025/05/13

numbers
numberstyle
firstnumber

updated: 2025/12/16

stringstyle
commentstyle

bckgndcolor

codeprefix
resultprefix

parindent

ruleht

basicstyle

new: 2023/11/18

letter = {(csv-list)}
other = {(csv-list)}
These allow to redefine what a letter or other are (they correspond to the alsoletter and

alsoother keys from listings). The default value for the letter includes (sans the comma)
@ : _ , whilst other’s default value is an empty list.

Note: You might want to consider setting letter to just letter={@,_J} so you
don’t have to list all expl variants of a command, but just the base name of
them.

numbers = {(none)} | {(left)}
numberstyle = {(style)}
firstnumber = {(num)}

numbers possible values are none (package’s default) and 1eft (key default value, to add tinny
numbers to the left of the listing). With numberstyle one can redefine the numbering style.
firstnumber sets the numbering start, it can be any number, last or auto. It’s initialized
with last (see [5] for details).

stringstyle = {(style)}
commentstyle = {(style)}

to redefine strings and comments formatting style.

bckgndcolor = {(color)}

to change the listing background’s color.
codeprefix = {(string)}

resultprefix = {(string)}

those set the codeprefix (initial value: WTEX Code:) and resultprefix (initial value: IATEX
Result:)

parindent = {(indent)}

Sets the indentation to be used when ‘demonstrating’ INTEXcode (\tsdemo). It’s initialized
with whatever value \parindent was when the package was first loaded.

ruleht = {(scale)}
When typesetting the ‘code demo’ (\tsdemo) a set of rules are drawn. It’s initialized with 1
(scaling factor, equals to \arrayrulewidth, usually 0.4pt).

basicstyle = {(style)}

Sets the base font style used when typesetting the ‘code demo’, default being \footnotesize
\ttfamily

nolisting

label set

base skip

strict

suppress deprecated

silence

describe keys

index

colors

codelisting

infograb

3 codedescribe Package

This package aims at minimizing the number of commands, being the object kind (if a
command, environment, key etc.) a parameter, allowing for a simple extension mechanism:
other object types can be easily introduced without having to change, or add commands.

3.1 Package Options

Will suppress the codelisting package load. In case it isn’t needed or another listing package
will be used.

(new: 2025/11/22) This allows to pre-select a label set, see 3.4. Currently, the possible values
are english, german and french, the ones present in the auxiliary package codedescsets.

Changes the base skip, all skips (used by the environments at 3.5) are scaled up from this.
It defaults to the font size at load time.

Package Warnings will be reported as Package Errors. This will be passed over to codelisting
as well.

(new: 2025/12/30) Suppress the messages associated with deprecated commands/keys. This
will be passed over to codelisting as well.

(new: 2025/11/22, defaults to 18.89999pt) This will suppress some annoying bad boxes
warnings. Given the way environments at 3.5 are defined, with expl coffins, TEX sometimes
thinks they are too wide, when they are not. This just sets \hfuzz to the given value.

(defaults to grouped) This sets the way the keys new, update and note are listed in a
codedescribe environment, see 3.5. Possible values are grouped or as is. By default keys
are grouped together, with as is keys will respect the used sequence.

(new: 2025/12/15) This will enable the many index keys and set the default of some object
groups to index. This won’t load any index package, but just change some objects’ default
behaviour (see 3.2 and 3.3). If not set, all index keys will be silently ignored.

Possible values: black, default, brighter and darker. This will adjust the initial color
configuration for the many format groups/objects (see 3.3.1). black will defaults all \tsobj
colors to black. default, brighter and darker are roughly the same color scheme. The
default scheme is the one used in this document. With brighter the colors are brighter
than the default, and with darker the colors will be darker, but not black.

The argument of this (it’s value) will be passed over to codelisting as package options (if
loaded). For example: code listing = {colors=brighter, load xtra dialects}. See 2.1.

This will enable the document level, INTEX2e, aliases from the package pkginfograb [2].

Note: In case of an unknown label set, an error will be risen, and all known
sets will be listed in the log file and terminal.

3.2 Indexing

It’s up to the user to choose a companion package to format and display index entries,
though a very simple setup, using xindex’s defaults, could just be:

% in the document's preamble
\usepackage{xindex}
\makeindex

% at the document's end
\printindex

Similarly, given the many index package variants (specially how index entries shall be
created), the user is expected to supply an index generating command (key index fmt, see
3.3.1), which shall absorb 4 parameters. This user supplied command will be used by the
command \tsobj and environments codedescribe and describelist to create index entries.

This package offers four such auxiliary commands, for some common cases.

Note: The package option index won’t load any index package, but just set
the defaults of some format groups (see 3.3.2) to generate index entries.

\indexfmtraw
\indexfmtrawat
\indexfmtcsraw
\indexfmtcsrawat

new:

2025/12/19

\indexgenkey

new:

2025/12/23

\indexcodesetup

new:

2025/12/21

\indexfmtraw {(name)} {(prefix)} {(group)} {(item)}
\indexfmtrawat {(name)} {(prefix)} {(group)} {(item)}
\indexfmtcsraw {(name)} {(prefix)} {(group)} {(item)}
\indexfmtcsrawat {(name)} {(prefix)} {(group)} {(item)}

(item) is the item (from \tsobj or codedescribe or describelist) to be indexed. (group)
corresponds to the key index group. (prefix) corresponds to the key index prefix. Finally,
(name) (which corresponds to the key index name) if not empty, will be enclosed in brack-
ets, for instance, \tsobj[indexname={some}, code]{\cmd} will result in (with everything at its
default value) \indexfmtcsrawat{[some]}{}{}{\cmd}. This allows to avoid testing the first
parameter value, and use it ‘as is”: If the index name isn’t set, (name) will be empty.

\indexfmtraw{name}{prefix}{group}{item} will ignore the 2nd and 3rd parameters, being
equivalent to \index{item} (or \index[name] {item}).

\indexfmtcsraw{name}{prefix}{group}{\cmd} will also ignore the 2nd and 3rd parameters,
being equivalent to \index{\string\cmd} (or \index[name]{\string\cmd}). The primitive
\string will precede the (item) (if it is a command).

The other two commands, \indexfmtrawat and \indexfmtcsrawat, will create index entries
as (prefix)(item)@(group)!(item). The backslash, if any, is removed from the first (item)
(preceding the @) in \indexfmtcsrawat.

Note: The actual characters specifiers can be changed with the command
\indexcodesetup.

Note: Of course, (name) is useful only in case of packages like imakeidx or
splitindex, which allows multiple indexes. Don’t use/set index name, if you
aren’t using a multi-index aware package.

\indexgenkey {(tl-var)} {(terms-list)}

This auxiliary command will construct part of an index key from (terms-list). All terms
from (terms-list) will be concatenate using a level separator (normally a !) and the
result assigned to (tl-var). The actual level character being used can be changed with
\indexcodesetup. For example, \indexgenkey{\partkey}{a,b,c} will result in \partkey hav-
ing a!b!c, or \indexgenkey{\partkey}{a,b,c,{}} will result in \partkey having a!b!c!.

Note: (terms-list) will be fully expanded before being processed.

\indexcodesetup {(index-specs)}

This customize some aspects of the index code. (index-specs) can be any combination of

index cmd In case the index package being used defines a distinct index command. This
set’s the actual index command, defaults to \index, used by the provided
auxiliary index commands (see above). The given command must adhere to
the same syntax of the original \index command (see [1]).

index specs This allows to change makeindex [1] character specifiers. This expects a set of
4 parameters (from makeindex: level, actual, encap and quote). Its default
is index specs = {{!}MHe}[H"}}

index specs oc This allows to change makeindex [1] open/close character specifiers. It expects

a set of 4 parameters (from makeindex: arg open, arg close, range open and
range close). Its default is index specs oc = {{\{}\}} (3{)}} . This isn’t
used, and is just a place holder in case further customization (indexes) is
needed.

index specs others This allows to change makeindex [1] others specifiers. It expects a set of

3 parameters (from makeindex: escape, page compositor and index command).
Its default is index specs others = {{\\}{-}{\indexentry }}. Thisisn’t used,
and is just a place holder in case further customization (indexes) is needed.

Note: This can only be used in the document preamble. It will raise an error,
if used after \begin{document} .

3.2.1

Index Keys

When defining object types (see 3.3.3) or typesetting (see 3.5 and 3.6) the following keys

can be used:

no index
index

index name
index group

index prefix

index gen group

index gen prefix

To NOT include the items in the default index.
To include the items in the default index.
Sets (name) for those items.

Sets (group) for those items.
Sets
Sets

prefix) for those items.

group), using \indexgenkey, for those items.

(
(
(
(

Sets (prefix), using \indexgenkey, for those items.

3.3 Object Type keys

(obj-types) defines the applied format: font shape, bracketing, etc. to be applied. When
using an (obj-type), first the associated (format-group) is applied, then the particular (if
any) object format is applied.

3.3.1 Format Keys

Those are the primitive (format-keys) used when (re)defining (format-groups) and (obj-types)

(see 3.3.5):
meta
xmeta
verb
xverb
code

nofmt

format

slshape

itshape

noshape

shape

shape preadj

shape posadj

lbracket

rbracket

Sets base format to typeset between angles.

Sets base format to typeset *verbatim* between angles.

Sets base format to typeset *verbatim®.

Sets base format to typeset *verbatim®*, no spaces.

Sets base format to typeset *verbatim*, no spaces, replacing a TF by TF.

In case of a redefinition, removes the base formatting. Note that, it only
makes sense if applied at the same level, meaning, if the format was originally
defined at group formatting level, it only can be removed at this level.

Sets the base format. Possible values: meta, xmeta, verb, xverb, code, nofmt
or none, as above.

Note: The format Key is just an alternative way of setting the base formatting.
none is just an alias to nofmt.

To use a slanted font shape.

To use an italic font shape.

In case of a redefinition, removes the base shape. Note that, it only makes
sense if applied at the same level, meaning, if shape was originally defined at
group formatting level, it only can be removed at this level.

Sets the font shape. Possible values:
noshape or none, as above.

itshape, italic, slshape, slanted,

Note: The shape Key is just an alternative way of setting the font shape. none
is just an alias to noshape.

Adds a (thin) space before each term in \tsobj, see 3.6. Possible values: none,
very thin, thin Or mid.

Adds a (thin) space after each term in \tsobj, see 3.6. Possible values: none,
very thin, thin Or mid.

Note: These are meant for the case in which the italic or slanted shapes of the
used font renders a character too close to an upright character.

Sets the left bracket (when using \tsargs), see 3.6.
Sets the right bracket (when using \tsargs), see 3.6.

10

color
font

fsize

index fmt

Sets the text color. NB: color’s name as understood by xcolor package.
Defaults to \ttfamily. Sets font family.
Defaults to \small. Sets font size.

Note: font and fsize shall receive a single command that absorbs no tokens.

Sets the index generating command (see 3.2).

Note: Besides index fmt the other index keys (see 3.2.1) can also be used.

Important: Except for font, fsize and index fmt all other keys will be ex-
panded at definition time, including the others index keys.

Note: The index fmt command shall absorb 4 parameters, like \usercmd{name}
{(prefix)} {(group)} {(item)}. (prefix) will come from the key index prefix,
(group) from the key index group and (item) will be the item to be indexed.
(name) will come from the key index name (if not empty, (name) will be between
brackets).

For instance, having index fmt = \usercmd, \tsobj ([index name=iname,
index prefix=pre, index group=grp]) ({\some }) will result in the execu-
tion of \usercmd{ [iname] }{pre}{grp}{\some}

3.3.2 Format Groups

Using \defgroupfmt (see 3.3.5) one can (re-)define custom (format-groups). Predefined ones:

meta
verb

code
oarg
syntax
env
pkg
option
keys
values

defaul

tval

which sets meta and color
which sets color

which sets code, color and index (index fmt = \indexfmtcsraw)
which sets meta and color

which sets color

which sets slshape, color and index (index fmt = \indexfmtraw)
which sets slshape and color

which sets color and index (index fmt = \indexfmtraw)

which semsslshape,coloz'and,index(index fmt ::\indexfmtraw)
which sets slshape and color

which sets color

Note: color was used in the list above just as a ‘reminder’ that a color is
defined /associated with the given group, it can be changed with \defgroupfmt.

Note: index and index fmt will only be set if the option index was used when
loading this package, see 3.1.

3.3.3 Object Types

Object types are the (keys) used with \tsobj (and friends, see 3.6) defining the specific
format to be used. With \defobjectfmt (see 3.3.5) one can (re-)define custom (obj-types).
Predefined ones:

arg, m

eta

verb, xverb

marg

oarg, parg, xarg

code, macro, function

syntax

keyval, key, keys

value,

values

based on meta

group
group
group
group
group
group
group

group

based on verb plus verb or xverb

based on meta plus brackets
based on oarg plus brackets
based on code
based on

based on

AAAA/\AAA
S N T o i

based on values

11

option based on (group

) option
group) defaultval

)

)

defaultval based on

env based on env

group
group) pkg

~ o~~~

pkg, pack based on

3.3.4 Command List Keys

The following keys are just some “sugar syntax” (to reduce a few keyboard strokes), and
only make sense when typesetting (see 3.6) or describing (see 3.5) expl commands. They
are only applied in case the base format (object type, see 3.3.1) is code, in which case a
command (an item from (csv-list)) can be any of the following:

1. \(cmd)
2. \(cmd):(signature)
3. \(cmd):(base-signature) {(variants-list)}

In the first two cases, they will always be handle “as is”. The third case depends on how
the key variants is set (see below). Besides that, the keys TF, noTF, pTF and nopTF “helps”
defining conditional variants of a base command.

Attention: The keys bellow won’t check for any expl convention. It’s up to
the user to use them correctly.

variants (new 2026/02/12) Defaults to none. This will set how the 3rd case is pro-
cessed. Possible values are:

none The items (in a {csv-1list)) will be handled “as is” (no further
special treatment). That’s the default behaviour.

list A first entry will be generate with \(cmd):(base-signature) then
for each (sig-item) in (variants-list) an entry \(cmd):(sig-item)
will be generated. For example,
\tsobj[code,variants=1ist]{\exp_cmd:Nn{cn,cV}} is equivalent
to \tsobj{\exp_cmd:Nn,\exp_cmd:cn,\exp_cmd:Cv}

compact A first entry will be generate with \ (cmd):(base-signature) then
a second (or more, see remark below) entry will generated as
\ (cmd):((bnf-or)). For example,
\tsobj[code,variants=compact] {\exp_cmd:Nn{cn,cV}} is equiv-
alent to \tsobj{\exp_cmd:Nn,\exp_cmd: (cnlcV)}

Note: In the compact case, a dash “-” item will break down the
“bnf or” in two entries at the dash entry. This helps avoiding extra-
long entries. In the 1ist case, a dash “-” item will be ignored.

Note: In case of 1ist or compact the generated entries will use a
slightly fainted color (the color defined by the object type mixed
with white)

TF This will add a trailing TF to all items. The base name won’t be listed as an
item.

noTF This will preserve the base(s) name and add the TF variant to all items.

pTF This will add a trailing TF and a predicate _p: variant, to all items, and

mark them as EXP. The base name won’t be listed as an item.

nopTF This will preserve the base(s) name and add the TF and predicate _p: variants
to all items. Marking them as EXP.

Note: The pTF and nopTF also implies EXP since the predicate variants must be
expandable (see 3.5).

12

\defgroupfmt

new: 2023/05/16

\dupgroupfmt

new: 2025/12/11

\defobjectfmt

new: 2023/05/16

\setcolorscheme

new: 2025/12/14

\newcolorscheme

new: 2025/12/14

3.3.5 Customization

To create user defined groups/objects or change the predefined ones:

\defgroupfmt {(format-group)} {(format-keys)}

(format-group) is the name of the new group (or the one being redefined, which can be one
of the standard ones). (format-keys) is any combination of the keys from 3.3.1

For example, to change the color of all obj-types based on the code group (code, macro
and function objects) to red, it’s enought to \defgroupfmt{code}{color=red}.

\dupgroupfmt {(new-group)} {(org-group)}

(new-group) will be a copy of (org-group) definition at time of use. Both can be later
chaged /re-defined independently of each other.

\defobjectfmt {(obj-type)} {(format-group)} {(format-keys)}

(obj-type) is the name of the new (object) being defined (or redefined), (format-group) is
the base group to be used (see 3.3.2). (format-keys) (see 3.3.1) allows further differentiation.

For instance, the many optional (xarg) are defined as follow:
\colorlet {c__codedesc_oarg_color} { gray!90!black }
\defgroupfmt {oarg} { meta , color=c__codedesc_oarg_color }

\defobjectfmt {oarg} {oarg} { lbracket={[} , rbracket={]} }
\defobjectfmt {parg} {oarg} { lbracket={(} , rbracket={)} }
\defobjectfmt {xarg} {oarg} { lbracket={<} , rbracket={>} }

\setcolorscheme {(color-key-list)}

This allows to customize the default colors used by the many object types and format groups.
Note that the given colors will be mixed with black. The key brightness set’s the mixing
proportion. The changes become effective at the point of use.

(color-key-list) can be any combination of:

error (default: red) Sets the error base color
verb (default: black) Sets the verb base color
args (default: white) Sets the args base color
code (default: blue) Sets the code base color
keys (default: teal) Sets the keys base color
values (default: green) Sets the values base color
env (default: green) Sets the env base color
pack (default: green) Sets the pack base color

brightness (default: 1) Sets the mixing proportion between each base color and black.

scheme (Defaults to scheme=default) Selects a pre-set color scheme, see below, the
default scheme sets all of the above to their default value.

\newcolorscheme {(new-scheme)} {(color-key-list)}

This creates/defines a (new-scheme) ((color-key-list) as above) which can be later used as
\setcolorscheme{scheme=new-scheme}

13

\setcodelabels

new:

\newlabelset

new:

2025/11/22

2025/11/22

3.4 Locale

The following commands allows to customize the many ‘labels’ in use, in particular the
auxiliary package codedescsets holds a few locale sets, the user is invited to submit trans-
lations for a specific case/language via a PR (Push Request) at https://github.com/
alceu-frigeri/codedescribe

\setcodelabels {(labels-list)}

\setcodelabels allows to change the many ‘labels’ used (like ‘updated’ in the codedescribe
environment). See below for a complete list of possible labels.

The (labels-list) can be any combination of:

new It set’s the ‘new’ label used in the codedescribe environment.

update It set’s the ‘update’ label used in the codedescribe environment.

note It set’s the ‘note’ label used in the codedescribe environment.

and It set’s the ‘and’ label used by \tsobj (hint: last item separator).

or It set’s the ‘or’ label used by \tsobj (hint: last item separator).

months It set’s the month list used by \tsdate, see 3.9. NB.: it expects a list of names

starting at ‘January’ and ending at ‘December’.

label set Selects a given set. No default. see below.

Note: The given (labels-1list) doesn’t need to be complete, though, only the
given labels will be changed.

Note: The old \selectlabelset{lang} is (now) an alias to \setcodelabels
{label set=lang}, and will raise a warning if called (deprecation).

\newlabelset {(lang)} {(labels-list)}

This creates/defines a new label’s set (named as (1ang)), (labels-1list) as above, which can
be later used as \setcodelabels{labelset=lang}
Note: \newlabelset is used in the auxiliary package codedescsets to pre-
define some sets, which can then be used as a package option, see 3.1.

Note: \newlabelset can be used to redefine a given set, though, if doing so,
one has to provide all labels. The old (if any) definitions will be erased. No
warnings given.

For example, this sets a new label set for German. In fact, since this is defined in the
package codedescsets this label set can be used at load time, see 3.1.

\newlabelset {german}

{
new = neu 5
update = aktualisiert ,
note = NB s
remark = Hinweis 5
and = und .
or = oder 5
months =
{
Januar, Februar, Marz, April,
Mai, Juni, Juli, August,
September, Oktober, November, Dezember
}
}

14

https://github.com/alceu-frigeri/codedescribe
https://github.com/alceu-frigeri/codedescribe

codedescribe

new: 2023/05/01

updated:
updated:
updated:

2023/05/01
2024/02/16
2025/09/25

NB: a note example

codesyntax
updated: 2025/09/25
updated: 2025/11/25

3.5 Environments

\begin{codedescribe} [(obj-keys)] {(csv-1list)}

\end{codedescribe}

This is the main environment to describe Commands, Variables, Environments, etc. (csv-list)
items will be listed in the left margin. The codesyntax will be attached to it’s right, and
the rest of the text will be below them, with the usual text width. The optional (obj-keys)
defaults to just code, it can be any object type as defined at 3.3.3 (and 3.3.5), index keys
(see 3.2.1), command list keys (see 3.3.4) or the following:

new To add a new line.

update To add an updated line.

note To add a NB line.

keys seq Possible values are grouped or as is. By default the keys new, update and

note are grouped together, first all new keys, then all update keys and lastly
all note keys. With as is keys will respect the used sequence. The default
can be changed with the package option describe keys, see 3.1.

rulecolor For instance \begin{codedescribe} [rulecolor=white] will suppress the rules.

EXP A star % will be added to all items, signaling the commands are fully expand-
able.

rEXP A hollow star ¥ will be added to all items, signaling the commands are

restricted expandable.

force margin If set, (csv-list) items will be listed in the margin, regardless of their width.

Note: The keys new, update and note can be used multiple times. (2024/02/16)

Note: If using one of these keys the user must also provide an object type.
code is the solely default IF nothing else is provided.

Attention: The codedescribe environment ‘acts’ as a single block! That as-
sures the margin block, the codesyntax environment (block) and the following
text (inside the codedescribe environment) will always stay in the same page.
Attention: If the items don’t fit in the margin, the (csv-1list) will advance
towards the text window (up to approximately half of text width plus margin
width), reducing the horizontal space of the codesyntax block. This can be
changed with the force margin, in which case the (csv-list) will always be
at the margin, growing leftwards (might end outside the page).

Note: With the strict package option, an error will be raised if used inside
another codedescribe environment. Otherwise a warning will be raised. (it’s
safe to do so, but it doesn’t make much sense).

\begin{codesyntax} [(obj-type)]

\end{codesyntax}

The codesyntax environment sets the fontsize and activates \obeylines, \obeyspaces, SO one
can list macros/cmds/keys use, one per line. The content will be formatted as defined by
(obj-type) (defaults to syntax). (obj-type) can be any object from 3.3.3 (or 3.3.5). For a
verbatim alternative, see codesyntax* below.

Note: codesyntax and/or codesyntax* environments shall appear only once,
inside of a codedescribe environment. Remember, this is not a verbatim envi-
ronment!

Note: With the strict package option an error will be raised if used outside
a codedescribe environment, or more than once inside. Otherwise a warning
will be raised.

For example, the code for codedescribe (previous entry) is:

15

codesyntaxx*

new:

2025/12/18

describelist
describelist*

\describe

\typesetobj

\tsobj

updated:

2025/05/29

\begin{codedescribe}[env , new=2023/05/01, update=2023/05/01, note={a note example}, update
=2024/02/16, update=2025/09/25]{codedescribe}
\begin{codesyntax}
\tsmacro{\begin{codedescribe}} [obj-typel{csv-1list}
\1ldots
\tsmacro{\end{codedescribe}}{}
\end{codesyntax}
This is the main ...
\end{codedescribe}

\begin{codesyntax*} [(code-keys)]

\end{codesyntax*}

The codesyntax* is a true verbatim environment (derived from listings package, see [5]).
(code-keys) can be any valid code key from 2.3.2, and syntax highlight will be applied (see
2.3). The background color will always be white, whilst line numbering will be suppressed.
For a non wverbatim alternative, see codesyntax above.

Note: If nolisting package option is set, this environment won’t be defined.
Note: codesyntax and/or codesyntax* environments shall appear only once,
inside of a codedescribe environment.

Note: With the strict package option an error will be raised if used outside
a codedescribe environment, or more than once inside. Otherwise a warning
will be raised.

\begin{describelist} [(item-indent)] {(obj-type)}

\describe {(item-name)} {(item-description)}

\describe {(item-name)} {(item-description)}
\end{describelist}
This sets a description like ‘list’. In the non-star version the (items-name) will be typeset
on the margin. In the star version, (item-description) will be indented by (item-indent)
(defaults to: 20mm). (obj-type) defines the object-type format used to typeset (item-name),
it can be any object from 3.3.3 (or 3.3.5) and index keys (see 3.2.1).

\describe {(item-name)} {(item-description)}

This is the describelist companion macro. In case of the describe*, (item-name) will be
typeset in a box (item-indent) wide, so that (item-description) will be fully indented,
otherwise (item-name) will be typed at the margin.

Note: An error will be raised (undefined control sequence) if called outside of
a describelist or describelist* environment.

3.6 Typeset Commands

\typesetobj [{obj-type)] {(csv-list)}

\tsobj [(obj-type)] {(csv-1ist)}

This is the main typesetting command, each term of (csv-list) will be separated by a
comma and formatted as defined by (obj-type) (defaults to code). (obj-type) can be any
object from 3.3.3 (or 3.3.5), index keys (see 3.2.1) and the following keys:

mid sep To change the item separator. Defaults to a comma, can be anything.
comma To set the separator between the last two items to a comma.

sep To change the separator between the last two items. Defaults to “and”.
or To set the separator between the last two items to “or”.

bnf or To produce a bnf style or list, like [abc|xdh|htf|hrf].

meta or To produce a bnf style or list between angles, like (abc|xdh|htf|hrf).

par or To produce a bnf style or list between parentheses, like (abc|xdh|htf|hrf).

16

\typesetargs
\tsargs

\typesetmacro
\tsmacro

\typesetmeta
\tsmeta

\typesetverb
\tsverb

Note: If shape preadj and/or shape posadj are set (see 3.3.1, a (thin) space
will be added before and/or after each term of (csv-1list).

\typesetargs [(obj-type)] {(csv-1list)}

\tsargs [(obj-type)] {(csv-list)}

These will typeset (csv-list) as a list of parameters, like [{arg1)] [(arg2)] [(arg3)], or
{(argl)} {(arg2)} {(arg3)}, etc. (obj-type) defines the formating AND kind of brackets used
(see 3.3): [1 for optional arguments (oarg), {} for mandatory arguments (marg), and so on.

\typesetmacro {(macro-list)} [(cargs-list)] {(margs-1list)}

\tsmacro {(macro-list)} [(ocargs-1list)] {(margs-list)}

These are just short-cuts for

\tsobj[code] {macro-list} \tsargs[oarg]{oargs-1list} \tsargs[marg]{margs-1list}.

\typesetmeta {(name)}
\tsmeta {(name)}

These will just typeset (name) between left /right ‘angles’ (no further formatting).

\typesetverb [(obj-type)] {(verbatim text)}
\tsverb [(obj-type)] {(verbatim text)}

Typesets (verbatim text) as is. (obj-type) defines the used format. The difference with
\tsobj [verb] {something} is that (verbatim text) can contain commas (which, otherwise,
would be interpreted as a list separator by \tsobj.

Note: This is meant for short expressions, and not multi-line, complex code
(one is better of, then, using 2.3). (verbatim text) must be balanced !

3.7 Note/Remark Commands

\typesetmarginnote \typesetmarginnote {(note)}

\tsmarginnote

\tsmarginnote {(note)}
Typesets a small note at the margin.

Note: Don’t try to use these inside one of this packages environments, like
tsremark or codedescribe, given the way they are constructed (expl coffins)
it will result in a Float(s) lost error.

tsremark \begin{tsremark} [(NB)]

\end{tsremark}

The environment body will be typeset as a text note. (NB) (defaults to Note:) is the note
begin (in boldface). For instance:

Sample text. Sample test.

\begin{tsremark}[N.B.] Sample text. Sample test.
[[hich sganjezanplel N.B. This is an example.
\end{tsremark}

17

\tsOn
\tsOff

|-
[N
!
e
[
e

new: 2025/12/29

updated:

2026/02/12

NB: active char

\typesettitle
\tstitle

tsabstract

\typesetdate

\tsdate

new:

2023/05/16

3.8 Shortcuts (experimental)

This is marked as experimental because the actual chosen short cuts might change, for
instance, if it crashes badly with some other package. As of now, the current implementation
tries to minimize any side effect, only kicking in if, and only if, one of the given patterns is
found. Moreover, once deactivated, \ts0ff, any previous code is fully restored.

\tsOn

\ts0ff

This will switch the ‘shortcuts’ on and off. Currently, only the character is affected.

\tsOn preserves its status (if active or not, and related code, if any), so that \ts0ff can

restore its full definition and status.
Note: \tsOn won’t try to patch the current (if any) active definition of ‘I’, but
just save it (to be restored by \ts0ff), before setting its own code. Moreover,
whilst active, if the use don’t fit any of the given patterns (below), the previous
active code (if any, and active) will be executed, or just ‘I’ if it wasn’t active.

L'?

Note: If ‘I’ already had an associated code, a warning will be raised, showing
the previous code.

!:([obj-typel{csv-1ist}) <> \tsobj
1::([obj-typel{csv-1list}) <> \tsargs

11 ([obj-typel{verbatim text}) <> \tsverb

11:({name}) <> \tsmeta

11::({note}) <> \tsmarginnote
117({macro-list}[oargs-list]{margs-1list}) <> \tsmacro

Once active (\tsOn), !: is a shortcut for \tsobj, including it’s optional parameter. Same for
1:: (\tsargs), and the others.

Note: To reduce undesirable side effects, no space (or any other character
besides the ones shown) is allowed between the first ‘I’ and either the ‘[’ or ‘{’,
for instance !!:{some} will typeset (some), but not !!:{some} or !!:{some} or
!l :some.

Note: If none of these patterns are recognized it will either leave the
acter or execute its previous code (if it was active). Same for the companions
colon, ¢’, and question mark, ‘?’, peeked in the process.

‘I’ char-

3.9 Auxiliary Commands and Environment

In case the Document Class being used redefines the \maketitle command and/or abstract
environment, alternatives are provided (based on the article class).

\typesettitle {(title-keys)}
\tstitle {(title-keys)}

This is based on the \maketitle from the article class. The (title-keys) are:

title The title.
author Author’s name. It’s possible to use the \footnote command in it.
date Title’s date.

Note: The \footnote (inside this) will use an uniquely assigned counter, start-
ing at one, each time this is used (to avoid hyperref warnings).

\begin{tsabstract}

\end{tsabstract}
This is the abstract environment from the article class.

\typesetdate
\tsdate

This provides the current date (in Month Year format).

18

[13kernelsign] TeX

[13expsign] TeX
[13amssign] TeX

[13pgfsign] TeX

[13bibtexsign] TeX

[13kernel] TeX
[13exp] TeX
[13ams]TeX
[13pgf]TeX

[13bibtex] TeX

[kernel] TeX
[xpacks] TeX
[ams] TeX
[pgf]TeX
[pgfplots] TeX
[bibtex]TeX
[babel] TeX
[hyperref]TeX

4 codelstlang Package

This is an auxiliary package (which can be used on its own). It assumes the package 1istings
was already loaded, and just defines the following TEX dialects, all of them derived from
listings [LaTeX]TeX:

Most/all expl keys found in the 13kernel[7] packages, including signatures.

Most/all expl keys found in the 13kernel experimental packages, including signatures.
Most/all expl keys found in the ams, siunitx and related packages, including signatures.
Most/all expl keys found in the pgf and related packages, including signatures.

Most/all expl keys found in the bibtex, biblatex and related packages, including signatures.

[B]

Note: The underscore ‘_’ and colon ‘’ have to be defined as letters (letter
= { E

_ }, see 2.3.2). Take note that these dialects are quite large, due the
many signatures variants.
Most /all expl keys found in the 13kernel packages, without signatures.
Most/all expl keys found in the 13kernel experimental packages, without signatures.
Most/all expl keys found in the ams, siunitx and related packages, without signatures.
Most/all expl keys found in the pgf and related packages, without signatures.

Most /all expl keys found in the bibtex, biblatex and related packages, without signatures.

Note: The underscore ‘_’ has to be defined as letter (Ietter = { _ }, but not
the colon “:’; see 2.3.2). These are more compact versions of the previous ones.
Most/all document level keys found in the kernel packages.
Most/all document level keys found in the x* packages, like xkeyval, xpatch, xcolor etc.
Most/all document level keys found in the ams, siunitx and related packages.
Most/all document level keys found in the pgf and related packages.
Most/all document level keys found in the pgfplots and related packages.
Most/all document level keys found in the bibtex, biblatex and related packages.
Most/all document level keys found in the babel and related packages.
Most/all document level keys found in the hyperref and related packages.

Note: These are usual document level, BWTEX 2¢, commands. In particular none
of them includes any ‘Q’ symbol.

References
[1] Pehong Chen and Michael A. Harrison. “Index Preparation and Processing”. In: Soft-
ware: Practice and Experience vol.19 (Sept. 1988). Can be found at https://ctan.
org/tex-archive/indexing/makeindex/paper/ind.pdf. (Visited on 12/16/2025).

[2] Alceu Frigeri. The pkginfograb Package. 2025. URL: https://mirrors. ctan.org/
macros/latex/contrib/pkginfograb/doc/pkginfograb.pdf (visited on 12/16/2025).

[3] Alceu Frigeri. The zpeedahead Package. 2025. URL: https://mirrors. ctan. org/
macros/latex/contrib/xpeekahead/doc/xpeekahead.pdf (visited on 12/16/2025).

[4] Pablo Gonzélez. SCONTENTS - Stores LaTeX Contents. 2024. URL: https://mirrors.
ctan.org/macros/latex/contrib/scontents/scontents.pdf (visited on 03/10/2025).

[5] Jobst Hoffmann. The Listings Package. 2024. URL: https : //mirrors. ctan. org/
macros/latex/contrib/listings/listings.pdf (visited on 03/10/2025).

[6] Uwe Kern. Extending LaTeX’s color facilities: the xcolor package. 2024. URL: https:

//mirrors . ctan. org/macros/latex/contrib/xcolor/xcolor . pdf (visited on
11/20/2025).

19

https://ctan.org/tex-archive/indexing/makeindex/paper/ind.pdf
https://ctan.org/tex-archive/indexing/makeindex/paper/ind.pdf
https://mirrors.ctan.org/macros/latex/contrib/pkginfograb/doc/pkginfograb.pdf
https://mirrors.ctan.org/macros/latex/contrib/pkginfograb/doc/pkginfograb.pdf
https://mirrors.ctan.org/macros/latex/contrib/xpeekahead/doc/xpeekahead.pdf
https://mirrors.ctan.org/macros/latex/contrib/xpeekahead/doc/xpeekahead.pdf
https://mirrors.ctan.org/macros/latex/contrib/scontents/scontents.pdf
https://mirrors.ctan.org/macros/latex/contrib/scontents/scontents.pdf
https://mirrors.ctan.org/macros/latex/contrib/listings/listings.pdf
https://mirrors.ctan.org/macros/latex/contrib/listings/listings.pdf
https://mirrors.ctan.org/macros/latex/contrib/xcolor/xcolor.pdf
https://mirrors.ctan.org/macros/latex/contrib/xcolor/xcolor.pdf

[7] The LaTeX Project. The LaTeX8 Interfaces. 2025. URL: https://mirrors.ctan.org/
macros/latex/required/13kernel/interface3.pdf (visited on 11/20/2025).

[8] Walter Schmidt. Using common PostScript fonts with LaTeX. 2020. URL: https://
mirrors.ctan.org/macros/latex/required/psnfss/psnfss2e.pdf (visited on

11/20/2025).

20

https://mirrors.ctan.org/macros/latex/required/l3kernel/interface3.pdf
https://mirrors.ctan.org/macros/latex/required/l3kernel/interface3.pdf
https://mirrors.ctan.org/macros/latex/required/psnfss/psnfss2e.pdf
https://mirrors.ctan.org/macros/latex/required/psnfss/psnfss2e.pdf

	Introduction
	Single versus Multi-column Classes

	codelisting Package
	Package Options
	In Memory Code Storage
	Code Display/Demo
	Colors Customization
	Code Keys

	codedescribe Package
	Package Options
	Indexing
	Index Keys

	Object Type keys
	Format Keys
	Format Groups
	Object Types
	Command List Keys
	Customization

	Locale
	Environments
	Typeset Commands
	Note/Remark Commands
	Shortcuts (experimental)
	Auxiliary Commands and Environment

	codelstlang Package

