
The codedescribe and codelisting Packages
Version 1.24

Alceu Frigeri∗

February 2026

Abstract
This package is designed to be as class independent as possible, depending only

on expl, scontents, listings, xpeekahead, pifont and xcolor. A minimal set of
macros/commands/environments is defined: most/all defined commands have an “ob-
ject type” as a keyval parameter, allowing for an easy expansion mechanism (instead
of the usual “one set of macros/environments” for each object type).

No assumption is made about page layout (besides “having a margin paragraph”),
or underlying macros, so it should be possible to use this with any/most document
classes.

Contents
1 Introduction 2

1.1 Single versus Multi-column Classes . 2

2 codelisting Package 3
2.1 Package Options . 3
2.2 In Memory Code Storage . 3
2.3 Code Display/Demo . 4

2.3.1 Colors Customization . 5
2.3.2 Code Keys . 6

3 codedescribe Package 8
3.1 Package Options . 8
3.2 Indexing . 8

3.2.1 Index Keys . 10
3.3 Object Type keys . 10

3.3.1 Format Keys . 10
3.3.2 Format Groups . 11
3.3.3 Object Types . 11
3.3.4 Command List Keys . 12
3.3.5 Customization . 13

3.4 Locale . 14
3.5 Environments . 15
3.6 Typeset Commands . 16
3.7 Note/Remark Commands . 17
3.8 Shortcuts (experimental) . 18
3.9 Auxiliary Commands and Environment . 18

4 codelstlang Package 19
∗https://github.com/alceu-frigeri/codedescribe

1

1 Introduction
This package aims at documenting both document level and package/class level commands.
It’s fully implemented using expl, requiring just an up to date kernel. scontents and listings
packages (see [4] and [5]) are used to typeset code snippets. The package pifont (see [8]) is
needed just to typeset those (open)stars, in case one wants to mark a command as (restricted)
expandable. xcolor (see [6]) is needed to switch colors, and xpeekahead (see [3]) for spacing
fine tuning. The package infograb (see [2]) is loaded for package’s documentation only.

No other package/class is needed, and it should be possible to use these packages with
most classes1, which allows to demonstrate document commands with any desired layout.

Generating an index is supported (since version 1.20, see 3.2 and 3.3.3) but no index
package is pre-loaded, leaving it to the end user.

codelisting defines a few macros to display and demonstrate LATEX code (using listings
and scontents), codedescribe defines a series of macros to display/enumerate macros and
environments (somewhat resembling the doc3 style), including some shortcuts (active char-
acters, since version 1.23), and codelstlang defines a series of listings TEX dialects.

These packages are fairly stable, and given the ⟨obj-type⟩ mechanism (see 3.3) they can
be easily extended without changing their interface.

1.1 Single versus Multi-column Classes
This package “can” be used with multi-column classes, given that the \linewidth and
\columnsep are defined appropriately. \linewidth shall defaults to text/column real width,
whilst \columnsep, if needed (2 or more columns), shall be greater than \marginparwidth plus
\marginparsep.

1If, by chance, a class with compatibility issues is found, just open an issue at https://github.com/
alceu-frigeri/codedescribe/issues to see what can be done

2

https://github.com/alceu-frigeri/codedescribe/issues
https://github.com/alceu-frigeri/codedescribe/issues

2 codelisting Package
It loads: listings, scontents and xpeekahead, defines an environment: codestore and a few
commands for listing and demonstration of LATEX code.

2.1 Package Options
The following options can also be set via codedescribe package options, see 3.1.

Package Warnings will be reported as Package Errors.strict

Suppress the messages associated with deprecated commands/keys.suppress deprecated

Possible values: black, default, brighter and darker. This will adjust the initial color
configuration for the many listings’ elements (used by \tscode and \tsdemo). black will
defaults all colors to black. default, brighter and darker are roughly the same color scheme.
The default scheme is the one used in this document. With brighter the colors are brighter
than the default, and with darker the colors will be darker, but not black.

colors

(defaults to false) If set, it will load the auxiliary package codelstlang (see 4), which just
defines a series of listings TeX dialects.

load xtra dialects

This will set which listings TeX dialects will be used when defining the listing style
codestyle. It defaults to doctools, which is derived from the [LaTeX]TeX dialect (this
contains the same set of commands used by the package doctools). One can use any valid
(TEX derived) listings dialect, including user defined ones, see [5] for details.

Besides those, one can use (if the load xtra dialects is set): l3kernelsign, l3expsign,
l3amssign, l3pgfsign, l3bibtexsign, l3kernel, l3exp, l3ams, l3pgf, l3bibtex, kernel, xpacks,
ams, pgf, pgfplots, bibtex, babel and hyperref. See 4 for details on those dialects.

TeX dialects

Note: TeX dialects is a comma separated list of the dialect’s name, without
the base language (internally it will be converted to [dialect]TeX).

For example:

%% could be \usepackage[...]{codelisting}
\usepackage[load xtra dialects,

TeX dialects={doctools,l3kernel,l3ams}]{codedescribe}
%%
%% assuming the user has defined a dialect, named: [my-own-set]TeX
%%

\usepackage[TeX dialects={doctools,my-own-set}]{codedescribe}
%%

2.2 In Memory Code Storage
Thanks to scontents, it’s possible to store LATEX code snippets in an expl sequence variable.

\begin{codestore} [⟨stcontents-keys⟩]
\end{codestore}

This environment is an alias to scontents environment (from scontents, see [4]), all scontents
keys are valid, with two additional ones: st and store-at which are aliases to the store-env
key. If an “isolated” ⟨st-name⟩ is given (unknown key), it is assumed that the environment
body shall be stored in it (for use with \tscode, \tsmergedcode, \tsdemo, \tsresult and
\tsexec).

codestore

Note: From scontents, ⟨st-name⟩ is ⟨index⟩ed (The code is stored in a se-
quence variable). It is possible to store as many code snippets as needed under
the same name. The first one will be ⟨index⟩→ 1, the second 2, and so on.
Warning: If explicitly using one of the store-env, st or store-at keys, the
storage name can be anything. BUT, due to changes (August 2025) in the latex
kernel keys processing, if an implicity key is used, then colons (:), besides a
comma and equal signs, aren’t allowed.

3

LATEXCode:
%The code will be stored as 'store:A'
\begin{codestore}[store-env = store:A]
...
\end{codestore}

%Same
\begin{codestore}[st = store:A]
...
\end{codestore}

%The code will be stored as 'storeA'
\begin{codestore}[storeA]
...
\end{codestore}

%This might raises an error.
%It will be stored as 'store' (not as 'store:A')
\begin{codestore}[store:A]
...
\end{codestore}

2.3 Code Display/Demo

\tscode* [⟨code-keys⟩] {⟨st-name⟩} [⟨index⟩]
\tsdemo* [⟨code-keys⟩] {⟨st-name⟩} [⟨index⟩]
\tsresult* [⟨code-keys⟩] {⟨st-name⟩} [⟨index⟩]

\tscode* just typesets ⟨st-name⟩ (created with codestore) verbatim with syntax highlight
(from listings package [5]). The non-star version centers it and use just half of the base
line. The star version uses the full text width.
\tsdemo* first typesets ⟨st-name⟩, as above, then executes it. The non-start version place
them side-by-side, whilst the star version places one following the other.
(new 2024/01/06) \tsresult* only executes it. The non-start version centers it and use just
half of the base line, whilst the star version uses the full text width.

\tscode*
\tsdemo*
\tsresult*

updated: 2024/01/06
updated: 2025/04/29

Note: (from stcontents package) ⟨index⟩ can be from 1 up to the number of
stored codes under the same ⟨st-name⟩. Defaults to 1.
Note: All are executed in a local group which is discarded at the end. This
is to avoid unwanted side effects, but might disrupt code execution that, for
instance, depends on local variables being set. That for, see \tsexec below.

For Example:
LATEXCode:
\begin{codestore}[stmeta]

Some \LaTeX{} coding, for example: \ldots.
\end{codestore}

This will just typesets \tsobj[key,no index]{stmeta}:
\tscode*[codeprefix={Sample Code:}] {stmeta}

and this will demonstrate it, side by side with source code:
\tsdemo[numbers=left,firstnumber=5,ruleht=0.5,

codeprefix={inner sample code},
resultprefix={inner sample result}] {stmeta}

LATEXResult:
This will just typesets stmeta:

Sample Code:
Some \LaTeX{} coding, for example: \ldots.

and this will demonstrate it, side by side with source code:

inner sample code inner sample result
5 Some \LaTeX{} coding, for example: \ldots. Some LATEX coding, for example:

4

\tsmergedcode* [⟨code-keys⟩] {⟨st-name-index list⟩}

This will typeset (as \tscode) the merged contents from ⟨st-name-index list⟩. The list
syntax comes from scontents (command \mergesc), where it is possible to refer to a single
index {⟨st-name A⟩} [⟨index⟩], a index range {⟨st-name B⟩} [⟨indexA-indexB⟩], or all indexes
from a ⟨st-name⟩, {⟨st-name C⟩} [⟨1-end⟩]. The special index ⟨1-end⟩ refers to all indexes
stored under a given ⟨st-name⟩.

\tsmergedcode*

new: 2025/04/29

Note: The brackets aren’t optional. For instance \tsmergedcode* [⟨code-keys⟩]
{ {⟨st-name A⟩} [⟨index⟩] , {⟨st-name B⟩} [⟨indexA-indexB⟩] , {⟨st-name
C⟩} [⟨1-end⟩] }

\tsexec {⟨st-name⟩} [⟨index⟩]

Unlike the previous commands which are all executed in a local group (discarded at the end)
this will execute the code stored at ⟨st-name⟩ [⟨index⟩] in the current LATEX group.

\tsexec

new: 2025/04/29

2.3.1 Colors Customization

\setlistcolorscheme {⟨color-key-list⟩}\setlistcolorscheme

new: 2025/12/14

This allows to customize the default colors used by \tscode and \tsdemo when typesetting
(assuming the default listings’s style is being used). Note that the given colors will be mixed
with black. The key brightness set’s the mixing proportion. The changes become effective
at the point of use.

⟨color-key-list⟩ can be any combination of:

(default: black) Sets the background base color. Note this is mixed with
white, not black as the others.

bckgnd

(default: teal) Sets the string base colorstring

(default: green) Sets the comment base colorcomment

(default: blue) Sets the texcs (TEX commands) base colortexcs

(default: cyan) Sets the keywd (keywords) base colorkeywd

(default: red) Sets the emph (emphasis) base coloremph

(default: gray) Sets the rule (unused by now) base color. Note this is mixed
with white, not black as the others.

rule

(default: gray) Sets the (small line) numbers base color. Note this is mixed
with white, not black as the others.

number

(default: 1) Sets the mixing proportion between each base color and black.brightness

(Defaults to scheme=default) Selects a pre-set color scheme, see below, the
default scheme sets all of the above to their default value.

scheme

\newlistcolorscheme {⟨new-scheme⟩} {⟨color-key-list⟩}\newlistcolorscheme

new: 2025/12/14

This creates/defines a ⟨new-scheme⟩ (⟨color-key-list⟩ as above) which can be later used as
\setlistcolorscheme{scheme=new-scheme}

5

2.3.2 Code Keys

\setcodekeys {⟨code-keys⟩}

One has the option to set ⟨code-keys⟩ per \tscode, \tsmergedcode, \tsdemo and \tsresult
call (see 2.3), or globally, better said, in the called context group .

N.B.: All \tscode and \tsdemo commands create a local group in which
the ⟨code-keys⟩ are defined, and discarded once said local group is closed.
\setcodekeys defines those keys in the current context (which might be global
or not, the declarations are always local).

\setcodekeys

\newcodekey {⟨new-key⟩} {⟨code-keys⟩}

This will define a new key ⟨new-key⟩, which can be used with \tscode, \tsmergedcode, \tsdemo
and \tsresult. ⟨code-keys⟩ can be any of the following ones, including other ⟨new-key⟩s. Be
careful not to create a definition loop.

\newcodekey

new: 2025/05/01
updated: 2025/12/23

Note: The old \setnewcodekey is (now) an alias to this, and will raise a warning
if called (deprecation).

lststyle = {⟨listings style⟩}

This sets the base style to be used. It defaults to codestyle, and the user can use this
(codestyle) as the base style for his own one (and avoid having to define every single aspect
of it). For example:

lststyle

new: 2025/11/12

\lstdefinestyle{my-own}{ % see the listings manual for a complete list of keywords
style=codestyle,
texcsstyle = * {\bfseries\color{red}}

}

\tscode*[lststyle=my-own]{demo-X}

settexcs = [⟨num⟩] {⟨csv-list⟩}
texcs = [⟨num⟩] {⟨csv-list⟩}
texcsstyle = [⟨num⟩] {⟨style⟩}

These define sets of LATEX commands (csnames, sans the preceding slash bar), the settexcs
initialize/redefine those sets (an empty list, clears the set), while texcs extend those sets.
The texcsstyle redefines the display style. ⟨num⟩ can be any number, though, currently, only
1 to 8 have a pre-defined style associated with them.

settexcs
texcs
texcsstyle

updated: 2025/05/01
updated: 2025/12/29

Note: The old keys settexcs2, settexcs3, settexcs4, texcs2, texcs3, texcs4,
texcs2style, texcs3style and texcs4style still work, but will raise a warning
(deprecation), if used.

setkeywd = [⟨num⟩] {⟨csv-list⟩}
keywd = [⟨num⟩] {⟨csv-list⟩}
keywdstyle = [⟨num⟩] {⟨style⟩}

Same for other keywords sets.

setkeywd
keywd
keywdstyle

updated: 2025/05/01
updated: 2025/12/29

Note: The old keys setkeywd2, setkeywd3, setkeywd4, keywd2, keywd3, keywd4,
keywd2style, keywd3style and keywd4style still work, but will raise a warning
(deprecation), if used.

setemph = [⟨num⟩] {⟨csv-list⟩}
emph = [⟨num⟩] {⟨csv-list⟩}
emphstyle = [⟨num⟩] {⟨style⟩}

for some extra emphasis sets.

setemph
emph
emphstyle

updated: 2025/05/01
updated: 2025/12/29

Note: The old keys setemph2, setemph3, setemph4, emph2, emph3, emph4,
emph2style, emph3style and emph4style still work, but will raise a warning
(deprecation), if used.

6

letter = {⟨csv-list⟩}
other = {⟨csv-list⟩}

These allow to redefine what a letter or other are (they correspond to the alsoletter and
alsoother keys from listings). The default value for the letter includes (sans the comma)
@ : _ , whilst other’s default value is an empty list.

Note: You might want to consider setting letter to just letter={@,_} so you
don’t have to list all expl variants of a command, but just the base name of
them.

letter
other

new: 2025/05/13

numbers = {⟨none⟩} | {⟨left⟩}
numberstyle = {⟨style⟩}
firstnumber = {⟨num⟩}

numbers possible values are none (package’s default) and left (key default value, to add tinny
numbers to the left of the listing). With numberstyle one can redefine the numbering style.
firstnumber sets the numbering start, it can be any number, last or auto. It’s initialized
with last (see [5] for details).

numbers
numberstyle
firstnumber

updated: 2025/12/16

stringstyle = {⟨style⟩}
commentstyle = {⟨style⟩}

to redefine strings and comments formatting style.

stringstyle
commentstyle

bckgndcolor = {⟨color⟩}

to change the listing background’s color.
bckgndcolor

codeprefix = {⟨string⟩}
resultprefix = {⟨string⟩}

those set the codeprefix (initial value: LATEX Code:) and resultprefix (initial value: LATEX
Result:)

codeprefix
resultprefix

parindent = {⟨indent⟩}

Sets the indentation to be used when ‘demonstrating’ LATEXcode (\tsdemo). It’s initialized
with whatever value \parindent was when the package was first loaded.

parindent

ruleht = {⟨scale⟩}

When typesetting the ‘code demo’ (\tsdemo) a set of rules are drawn. It’s initialized with 1
(scaling factor, equals to \arrayrulewidth, usually 0.4pt).

ruleht

basicstyle = {⟨style⟩}

Sets the base font style used when typesetting the ‘code demo’, default being \footnotesize
\ttfamily

basicstyle

new: 2023/11/18

7

3 codedescribe Package
This package aims at minimizing the number of commands, being the object kind (if a
command, environment, key etc.) a parameter, allowing for a simple extension mechanism:
other object types can be easily introduced without having to change, or add commands.

3.1 Package Options

Will suppress the codelisting package load. In case it isn’t needed or another listing package
will be used.

nolisting

(new: 2025/11/22) This allows to pre-select a label set, see 3.4. Currently, the possible values
are english, german and french, the ones present in the auxiliary package codedescsets.

label set

Changes the base skip, all skips (used by the environments at 3.5) are scaled up from this.
It defaults to the font size at load time.

base skip

Package Warnings will be reported as Package Errors. This will be passed over to codelisting
as well.

strict

(new: 2025/12/30) Suppress the messages associated with deprecated commands/keys. This
will be passed over to codelisting as well.

suppress deprecated

(new: 2025/11/22, defaults to 18.89999pt) This will suppress some annoying bad boxes
warnings. Given the way environments at 3.5 are defined, with expl coffins, TEX sometimes
thinks they are too wide, when they are not. This just sets \hfuzz to the given value.

silence

(defaults to grouped) This sets the way the keys new, update and note are listed in a
codedescribe environment, see 3.5. Possible values are grouped or as is. By default keys
are grouped together, with as is keys will respect the used sequence.

describe keys

(new: 2025/12/15) This will enable the many index keys and set the default of some object
groups to index. This won’t load any index package, but just change some objects’ default
behaviour (see 3.2 and 3.3). If not set, all index keys will be silently ignored.

index

Possible values: black, default, brighter and darker. This will adjust the initial color
configuration for the many format groups/objects (see 3.3.1). black will defaults all \tsobj
colors to black. default, brighter and darker are roughly the same color scheme. The
default scheme is the one used in this document. With brighter the colors are brighter
than the default, and with darker the colors will be darker, but not black.

colors

The argument of this (it’s value) will be passed over to codelisting as package options (if
loaded). For example: code listing = {colors=brighter, load xtra dialects}. See 2.1.

codelisting

This will enable the document level, LATEX2e, aliases from the package pkginfograb [2].infograb

Note: In case of an unknown label set, an error will be risen, and all known
sets will be listed in the log file and terminal.

3.2 Indexing
It’s up to the user to choose a companion package to format and display index entries,
though a very simple setup, using xindex’s defaults, could just be:

% in the document's preamble
\usepackage{xindex}
\makeindex
...

% at the document's end
\printindex

Similarly, given the many index package variants (specially how index entries shall be
created), the user is expected to supply an index generating command (key index fmt, see
3.3.1), which shall absorb 4 parameters. This user supplied command will be used by the
command \tsobj and environments codedescribe and describelist to create index entries.

This package offers four such auxiliary commands, for some common cases.
Note: The package option index won’t load any index package, but just set
the defaults of some format groups (see 3.3.2) to generate index entries.

8

\indexfmtraw {⟨name⟩} {⟨prefix⟩} {⟨group⟩} {⟨item⟩}
\indexfmtrawat {⟨name⟩} {⟨prefix⟩} {⟨group⟩} {⟨item⟩}
\indexfmtcsraw {⟨name⟩} {⟨prefix⟩} {⟨group⟩} {⟨item⟩}
\indexfmtcsrawat {⟨name⟩} {⟨prefix⟩} {⟨group⟩} {⟨item⟩}

⟨item⟩ is the item (from \tsobj or codedescribe or describelist) to be indexed. ⟨group⟩
corresponds to the key index group. ⟨prefix⟩ corresponds to the key index prefix. Finally,
⟨name⟩ (which corresponds to the key index name) if not empty, will be enclosed in brack-
ets, for instance, \tsobj[indexname={some},code]{\cmd} will result in (with everything at its
default value) \indexfmtcsrawat{[some]}{}{}{\cmd}. This allows to avoid testing the first
parameter value, and use it ‘as is’: If the index name isn’t set, ⟨name⟩ will be empty.

\indexfmtraw
\indexfmtrawat
\indexfmtcsraw
\indexfmtcsrawat

new: 2025/12/19

\indexfmtraw{name}{prefix}{group}{item} will ignore the 2nd and 3rd parameters, being
equivalent to \index{item} (or \index[name]{item}).

\indexfmtcsraw{name}{prefix}{group}{\cmd} will also ignore the 2nd and 3rd parameters,
being equivalent to \index{\string\cmd} (or \index[name]{\string\cmd}). The primitive
\string will precede the ⟨item⟩ (if it is a command).

The other two commands, \indexfmtrawat and \indexfmtcsrawat, will create index entries
as ⟨prefix⟩⟨item⟩@⟨group⟩!⟨item⟩. The backslash, if any, is removed from the first ⟨item⟩
(preceding the @) in \indexfmtcsrawat.

Note: The actual characters specifiers can be changed with the command
\indexcodesetup.
Note: Of course, ⟨name⟩ is useful only in case of packages like imakeidx or
splitindex, which allows multiple indexes. Don’t use/set index name, if you
aren’t using a multi-index aware package.

\indexgenkey {⟨tl-var⟩} {⟨terms-list⟩}

This auxiliary command will construct part of an index key from ⟨terms-list⟩. All terms
from ⟨terms-list⟩ will be concatenate using a level separator (normally a !) and the
result assigned to ⟨tl-var⟩. The actual level character being used can be changed with
\indexcodesetup. For example, \indexgenkey{\partkey}{a,b,c} will result in \partkey hav-
ing a!b!c, or \indexgenkey{\partkey}{a,b,c,{}} will result in \partkey having a!b!c!.

\indexgenkey

new: 2025/12/23

Note: ⟨terms-list⟩ will be fully expanded before being processed.

\indexcodesetup {⟨index-specs⟩}

This customize some aspects of the index code. ⟨index-specs⟩ can be any combination of
\indexcodesetup

new: 2025/12/21

In case the index package being used defines a distinct index command. This
set’s the actual index command, defaults to \index, used by the provided
auxiliary index commands (see above). The given command must adhere to
the same syntax of the original \index command (see [1]).

index cmd

This allows to change makeindex [1] character specifiers. This expects a set of
4 parameters (from makeindex: level, actual, encap and quote). Its default
is index specs = {{!}{@}{|}{"}}

index specs

This allows to change makeindex [1] open/close character specifiers. It expects
a set of 4 parameters (from makeindex: arg open, arg close, range open and
range close). Its default is index specs oc = {{\{}{\}}{(}{)}} . This isn’t
used, and is just a place holder in case further customization (indexes) is
needed.

index specs oc

This allows to change makeindex [1] others specifiers. It expects a set of
3 parameters (from makeindex: escape, page compositor and index command).
Its default is index specs others = {{\\}{-}{\indexentry }}. This isn’t used,
and is just a place holder in case further customization (indexes) is needed.

index specs others

Note: This can only be used in the document preamble. It will raise an error,
if used after \begin{document} .

9

3.2.1 Index Keys

When defining object types (see 3.3.3) or typesetting (see 3.5 and 3.6) the following keys
can be used:

To NOT include the items in the default index.no index
To include the items in the default index.index
Sets ⟨name⟩ for those items.index name

Sets ⟨group⟩ for those items.index group

Sets ⟨prefix⟩ for those items.index prefix

Sets ⟨group⟩, using \indexgenkey, for those items.index gen group

Sets ⟨prefix⟩, using \indexgenkey, for those items.index gen prefix

3.3 Object Type keys
⟨obj-types⟩ defines the applied format: font shape, bracketing, etc. to be applied. When
using an ⟨obj-type⟩, first the associated ⟨format-group⟩ is applied, then the particular (if
any) object format is applied.

3.3.1 Format Keys

Those are the primitive ⟨format-keys⟩ used when (re)defining ⟨format-groups⟩ and ⟨obj-types⟩
(see 3.3.5):

Sets base format to typeset between angles.meta

Sets base format to typeset *verbatim* between angles.xmeta

Sets base format to typeset *verbatim*.verb

Sets base format to typeset *verbatim*, no spaces.xverb

Sets base format to typeset *verbatim*, no spaces, replacing a TF by TF.code

In case of a redefinition, removes the base formatting. Note that, it only
makes sense if applied at the same level, meaning, if the format was originally
defined at group formatting level, it only can be removed at this level.

nofmt

Sets the base format. Possible values: meta, xmeta, verb, xverb, code, nofmt
or none, as above.

format

Note: The format Key is just an alternative way of setting the base formatting.
none is just an alias to nofmt.

To use a slanted font shape.slshape

To use an italic font shape.itshape

In case of a redefinition, removes the base shape. Note that, it only makes
sense if applied at the same level, meaning, if shape was originally defined at
group formatting level, it only can be removed at this level.

noshape

Sets the font shape. Possible values: itshape, italic, slshape, slanted,
noshape or none, as above.

shape

Note: The shape Key is just an alternative way of setting the font shape. none
is just an alias to noshape.

Adds a (thin) space before each term in \tsobj, see 3.6. Possible values: none,
very thin, thin or mid.

shape preadj

Adds a (thin) space after each term in \tsobj, see 3.6. Possible values: none,
very thin, thin or mid.

shape posadj

Note: These are meant for the case in which the italic or slanted shapes of the
used font renders a character too close to an upright character.

Sets the left bracket (when using \tsargs), see 3.6.lbracket

Sets the right bracket (when using \tsargs), see 3.6.rbracket

10

Sets the text color. NB: color’s name as understood by xcolor package.color

Defaults to \ttfamily. Sets font family.font

Defaults to \small. Sets font size.fsize

Note: font and fsize shall receive a single command that absorbs no tokens.

Sets the index generating command (see 3.2).index fmt

Note: Besides index fmt the other index keys (see 3.2.1) can also be used.
Important: Except for font, fsize and index fmt all other keys will be ex-
panded at definition time, including the others index keys.
Note: The index fmt command shall absorb 4 parameters, like \usercmd{name}
{⟨prefix⟩} {⟨group⟩} {⟨item⟩}. ⟨prefix⟩ will come from the key index prefix,
⟨group⟩ from the key index group and ⟨item⟩ will be the item to be indexed.
⟨name⟩ will come from the key index name (if not empty, ⟨name⟩ will be between
brackets).
For instance, having index fmt = \usercmd, \tsobj ⟨[index name=iname,
index prefix=pre, index group=grp]⟩ ⟨{\some }⟩ will result in the execu-
tion of \usercmd{[iname]}{pre}{grp}{\some}.

3.3.2 Format Groups

Using \defgroupfmt (see 3.3.5) one can (re-)define custom ⟨format-groups⟩. Predefined ones:

which sets meta and colormeta
which sets colorverb

which sets code, color and index (index fmt = \indexfmtcsraw)code

which sets meta and coloroarg
which sets colorsyntax

which sets slshape, color and index (index fmt = \indexfmtraw)env

which sets slshape and colorpkg

which sets color and index (index fmt = \indexfmtraw)option

which sets slshape, color and index (index fmt = \indexfmtraw)keys

which sets slshape and colorvalues

which sets colordefaultval

Note: color was used in the list above just as a ‘reminder’ that a color is
defined/associated with the given group, it can be changed with \defgroupfmt.
Note: index and index fmt will only be set if the option index was used when
loading this package, see 3.1.

3.3.3 Object Types

Object types are the ⟨keys⟩ used with \tsobj (and friends, see 3.6) defining the specific
format to be used. With \defobjectfmt (see 3.3.5) one can (re-)define custom ⟨obj-types⟩.
Predefined ones:

based on (group) metaarg, meta

based on (group) verb plus verb or xverbverb, xverb

based on (group) meta plus bracketsmarg

based on (group) oarg plus bracketsoarg, parg, xarg

based on (group) codecode, macro, function

based on (group) syntaxsyntax

based on (group) keyskeyval, key, keys

based on (group) valuesvalue, values

11

based on (group) optionoption

based on (group) defaultvaldefaultval

based on (group) envenv

based on (group) pkgpkg, pack

3.3.4 Command List Keys

The following keys are just some “sugar syntax” (to reduce a few keyboard strokes), and
only make sense when typesetting (see 3.6) or describing (see 3.5) expl commands. They
are only applied in case the base format (object type, see 3.3.1) is code, in which case a
command (an item from ⟨csv-list⟩) can be any of the following:

1. \⟨cmd⟩
2. \⟨cmd⟩:⟨signature⟩
3. \⟨cmd⟩:⟨base-signature⟩ {⟨variants-list⟩}

In the first two cases, they will always be handle “as is”. The third case depends on how
the key variants is set (see below). Besides that, the keys TF, noTF, pTF and nopTF “helps”
defining conditional variants of a base command.

Attention: The keys bellow won’t check for any expl convention. It’s up to
the user to use them correctly.

(new 2026/02/12) Defaults to none. This will set how the 3rd case is pro-
cessed. Possible values are:

The items (in a ⟨csv-list⟩) will be handled “as is” (no further
special treatment). That’s the default behaviour.

none

A first entry will be generate with \⟨cmd⟩:⟨base-signature⟩ then
for each ⟨sig-item⟩ in ⟨variants-list⟩ an entry \⟨cmd⟩:⟨sig-item⟩
will be generated. For example,
\tsobj[code,variants=list]{\exp_cmd:Nn{cn,cV}} is equivalent
to \tsobj{\exp_cmd:Nn,\exp_cmd:cn,\exp_cmd:Cv}

list

A first entry will be generate with \⟨cmd⟩:⟨base-signature⟩ then
a second (or more, see remark below) entry will generated as
\⟨cmd⟩:(⟨bnf-or⟩). For example,
\tsobj[code,variants=compact]{\exp_cmd:Nn{cn,cV}} is equiv-
alent to \tsobj{\exp_cmd:Nn,\exp_cmd:(cn|cV)}

compact

Note: In the compact case, a dash “-” item will break down the
“bnf or” in two entries at the dash entry. This helps avoiding extra-
long entries. In the list case, a dash “-” item will be ignored.
Note: In case of list or compact the generated entries will use a
slightly fainted color (the color defined by the object type mixed
with white)

variants

This will add a trailing TF to all items. The base name won’t be listed as an
item.

TF

This will preserve the base(s) name and add the TF variant to all items.noTF

This will add a trailing TF and a predicate _p: variant, to all items, and
mark them as EXP. The base name won’t be listed as an item.

pTF

This will preserve the base(s) name and add the TF and predicate _p: variants
to all items. Marking them as EXP.

nopTF

Note: The pTF and nopTF also implies EXP since the predicate variants must be
expandable (see 3.5).

12

3.3.5 Customization

To create user defined groups/objects or change the predefined ones:

\defgroupfmt {⟨format-group⟩} {⟨format-keys⟩}

⟨format-group⟩ is the name of the new group (or the one being redefined, which can be one
of the standard ones). ⟨format-keys⟩ is any combination of the keys from 3.3.1

\defgroupfmt

new: 2023/05/16

For example, to change the color of all obj-types based on the code group (code, macro
and function objects) to red, it’s enought to \defgroupfmt{code}{color=red}.

\dupgroupfmt {⟨new-group⟩} {⟨org-group⟩}

⟨new-group⟩ will be a copy of ⟨org-group⟩ definition at time of use. Both can be later
chaged/re-defined independently of each other.

\dupgroupfmt

new: 2025/12/11

\defobjectfmt {⟨obj-type⟩} {⟨format-group⟩} {⟨format-keys⟩}

⟨obj-type⟩ is the name of the new ⟨object⟩ being defined (or redefined), ⟨format-group⟩ is
the base group to be used (see 3.3.2). ⟨format-keys⟩ (see 3.3.1) allows further differentiation.

\defobjectfmt

new: 2023/05/16

For instance, the many optional ⟨*arg⟩ are defined as follow:

\colorlet {c__codedesc_oarg_color} { gray!90!black }

\defgroupfmt {oarg} { meta , color=c__codedesc_oarg_color }

\defobjectfmt {oarg} {oarg} { lbracket={[} , rbracket={]} }
\defobjectfmt {parg} {oarg} { lbracket={(} , rbracket={)} }
\defobjectfmt {xarg} {oarg} { lbracket={<} , rbracket={>} }

\setcolorscheme {⟨color-key-list⟩}

This allows to customize the default colors used by the many object types and format groups.
Note that the given colors will be mixed with black. The key brightness set’s the mixing
proportion. The changes become effective at the point of use.

\setcolorscheme

new: 2025/12/14

⟨color-key-list⟩ can be any combination of:

(default: red) Sets the error base colorerror

(default: black) Sets the verb base colorverb

(default: white) Sets the args base colorargs

(default: blue) Sets the code base colorcode

(default: teal) Sets the keys base colorkeys

(default: green) Sets the values base colorvalues

(default: green) Sets the env base colorenv

(default: green) Sets the pack base colorpack

(default: 1) Sets the mixing proportion between each base color and black.brightness

(Defaults to scheme=default) Selects a pre-set color scheme, see below, the
default scheme sets all of the above to their default value.

scheme

\newcolorscheme {⟨new-scheme⟩} {⟨color-key-list⟩}

This creates/defines a ⟨new-scheme⟩ (⟨color-key-list⟩ as above) which can be later used as
\setcolorscheme{scheme=new-scheme}

\newcolorscheme

new: 2025/12/14

13

3.4 Locale
The following commands allows to customize the many ‘labels’ in use, in particular the
auxiliary package codedescsets holds a few locale sets, the user is invited to submit trans-
lations for a specific case/language via a PR (Push Request) at https://github.com/
alceu-frigeri/codedescribe

\setcodelabels {⟨labels-list⟩}

\setcodelabels allows to change the many ‘labels’ used (like ‘updated’ in the codedescribe
environment). See below for a complete list of possible labels.

\setcodelabels

new: 2025/11/22

The ⟨labels-list⟩ can be any combination of:

It set’s the ‘new’ label used in the codedescribe environment.new
It set’s the ‘update’ label used in the codedescribe environment.update

It set’s the ‘note’ label used in the codedescribe environment.note

It set’s the ‘and’ label used by \tsobj (hint: last item separator).and

It set’s the ‘or’ label used by \tsobj (hint: last item separator).or

It set’s the month list used by \tsdate, see 3.9. NB.: it expects a list of names
starting at ‘January’ and ending at ‘December’.

months

Selects a given set. No default. see below.label set

Note: The given ⟨labels-list⟩ doesn’t need to be complete, though, only the
given labels will be changed.
Note: The old \selectlabelset{lang} is (now) an alias to \setcodelabels
{label set=lang}, and will raise a warning if called (deprecation).

\newlabelset {⟨lang⟩} {⟨labels-list⟩}

This creates/defines a new label’s set (named as ⟨lang⟩), ⟨labels-list⟩ as above, which can
be later used as \setcodelabels{labelset=lang}

\newlabelset

new: 2025/11/22

Note: \newlabelset is used in the auxiliary package codedescsets to pre-
define some sets, which can then be used as a package option, see 3.1.
Note: \newlabelset can be used to redefine a given set, though, if doing so,
one has to provide all labels. The old (if any) definitions will be erased. No
warnings given.

For example, this sets a new label set for German. In fact, since this is defined in the
package codedescsets this label set can be used at load time, see 3.1.

\newlabelset {german}
{

new = neu ,
update = aktualisiert ,
note = NB ,
remark = Hinweis ,
and = und ,
or = oder ,
months =

{
Januar, Februar, März, April,
Mai, Juni, Juli, August,
September, Oktober, November, Dezember

}
}

14

https://github.com/alceu-frigeri/codedescribe
https://github.com/alceu-frigeri/codedescribe

3.5 Environments

\begin{codedescribe} [⟨obj-keys⟩] {⟨csv-list⟩}
...
\end{codedescribe}

This is the main environment to describe Commands, Variables, Environments, etc. ⟨csv-list⟩
items will be listed in the left margin. The codesyntax will be attached to it’s right, and
the rest of the text will be below them, with the usual text width. The optional ⟨obj-keys⟩
defaults to just code, it can be any object type as defined at 3.3.3 (and 3.3.5), index keys
(see 3.2.1), command list keys (see 3.3.4) or the following:

codedescribe

new: 2023/05/01
updated: 2023/05/01
updated: 2024/02/16
updated: 2025/09/25
NB: a note example

To add a new line.new
To add an updated line.update

To add a NB line.note
Possible values are grouped or as is. By default the keys new, update and
note are grouped together, first all new keys, then all update keys and lastly
all note keys. With as is keys will respect the used sequence. The default
can be changed with the package option describe keys, see 3.1.

keys seq

For instance \begin{codedescribe}[rulecolor=white] will suppress the rules.rulecolor

A star ★ will be added to all items, signaling the commands are fully expand-
able.

EXP

A hollow star ✩ will be added to all items, signaling the commands are
restricted expandable.

rEXP

If set, ⟨csv-list⟩ items will be listed in the margin, regardless of their width.force margin

Note: The keys new, update and note can be used multiple times. (2024/02/16)
Note: If using one of these keys the user must also provide an object type.
code is the solely default IF nothing else is provided.
Attention: The codedescribe environment ‘acts’ as a single block! That as-
sures the margin block, the codesyntax environment (block) and the following
text (inside the codedescribe environment) will always stay in the same page.
Attention: If the items don’t fit in the margin, the ⟨csv-list⟩ will advance
towards the text window (up to approximately half of text width plus margin
width), reducing the horizontal space of the codesyntax block. This can be
changed with the force margin, in which case the ⟨csv-list⟩ will always be
at the margin, growing leftwards (might end outside the page).
Note: With the strict package option, an error will be raised if used inside
another codedescribe environment. Otherwise a warning will be raised. (it’s
safe to do so, but it doesn’t make much sense).

\begin{codesyntax} [⟨obj-type⟩]
...
\end{codesyntax}

The codesyntax environment sets the fontsize and activates \obeylines, \obeyspaces , so one
can list macros/cmds/keys use, one per line. The content will be formatted as defined by
⟨obj-type⟩ (defaults to syntax). ⟨obj-type⟩ can be any object from 3.3.3 (or 3.3.5). For a
verbatim alternative, see codesyntax* below.

codesyntax

updated: 2025/09/25
updated: 2025/11/25

Note: codesyntax and/or codesyntax* environments shall appear only once,
inside of a codedescribe environment. Remember, this is not a verbatim envi-
ronment!
Note: With the strict package option an error will be raised if used outside
a codedescribe environment, or more than once inside. Otherwise a warning
will be raised.

For example, the code for codedescribe (previous entry) is:

15

\begin{codedescribe}[env , new=2023/05/01, update=2023/05/01, note={a note example}, update
=2024/02/16, update=2025/09/25]{codedescribe}

\begin{codesyntax}
\tsmacro{\begin{codedescribe}}[obj-type]{csv-list}
\ldots
\tsmacro{\end{codedescribe}}{}

\end{codesyntax}
This is the main ...

\end{codedescribe}

\begin{codesyntax*} [⟨code-keys⟩]
...
\end{codesyntax*}

The codesyntax* is a true verbatim environment (derived from listings package, see [5]).
⟨code-keys⟩ can be any valid code key from 2.3.2, and syntax highlight will be applied (see
2.3). The background color will always be white, whilst line numbering will be suppressed.
For a non verbatim alternative, see codesyntax above.

codesyntax*

new: 2025/12/18

Note: If nolisting package option is set, this environment won’t be defined.
Note: codesyntax and/or codesyntax* environments shall appear only once,
inside of a codedescribe environment.
Note: With the strict package option an error will be raised if used outside
a codedescribe environment, or more than once inside. Otherwise a warning
will be raised.

\begin{describelist} [⟨item-indent⟩] {⟨obj-type⟩}
\describe {⟨item-name⟩} {⟨item-description⟩}
\describe {⟨item-name⟩} {⟨item-description⟩}

\end{describelist}

This sets a description like ‘list’. In the non-star version the ⟨items-name⟩ will be typeset
on the margin. In the star version, ⟨item-description⟩ will be indented by ⟨item-indent⟩
(defaults to: 20mm). ⟨obj-type⟩ defines the object-type format used to typeset ⟨item-name⟩,
it can be any object from 3.3.3 (or 3.3.5) and index keys (see 3.2.1).

describelist
describelist*

\describe {⟨item-name⟩} {⟨item-description⟩}

This is the describelist companion macro. In case of the describe*, ⟨item-name⟩ will be
typeset in a box ⟨item-indent⟩ wide, so that ⟨item-description⟩ will be fully indented,
otherwise ⟨item-name⟩ will be typed at the margin.

\describe

Note: An error will be raised (undefined control sequence) if called outside of
a describelist or describelist* environment.

3.6 Typeset Commands

\typesetobj [⟨obj-type⟩] {⟨csv-list⟩}
\tsobj [⟨obj-type⟩] {⟨csv-list⟩}

This is the main typesetting command, each term of ⟨csv-list⟩ will be separated by a
comma and formatted as defined by ⟨obj-type⟩ (defaults to code). ⟨obj-type⟩ can be any
object from 3.3.3 (or 3.3.5), index keys (see 3.2.1) and the following keys:

\typesetobj
\tsobj

updated: 2025/05/29

To change the item separator. Defaults to a comma, can be anything.mid sep

To set the separator between the last two items to a comma.comma

To change the separator between the last two items. Defaults to “and”.sep

To set the separator between the last two items to “or”.or

To produce a bnf style or list, like [abc|xdh|htf|hrf].bnf or

To produce a bnf style or list between angles, like ⟨abc|xdh|htf|hrf⟩.meta or

To produce a bnf style or list between parentheses, like (abc|xdh|htf|hrf).par or

16

Note: If shape preadj and/or shape posadj are set (see 3.3.1, a (thin) space
will be added before and/or after each term of ⟨csv-list⟩.

\typesetargs [⟨obj-type⟩] {⟨csv-list⟩}
\tsargs [⟨obj-type⟩] {⟨csv-list⟩}

These will typeset ⟨csv-list⟩ as a list of parameters, like [⟨arg1⟩] [⟨arg2⟩] [⟨arg3⟩], or
{⟨arg1⟩} {⟨arg2⟩} {⟨arg3⟩}, etc. ⟨obj-type⟩ defines the formating AND kind of brackets used
(see 3.3): [] for optional arguments (oarg), {} for mandatory arguments (marg), and so on.

\typesetargs
\tsargs

\typesetmacro {⟨macro-list⟩} [⟨oargs-list⟩] {⟨margs-list⟩}
\tsmacro {⟨macro-list⟩} [⟨oargs-list⟩] {⟨margs-list⟩}

These are just short-cuts for
\tsobj[code]{macro-list} \tsargs[oarg]{oargs-list} \tsargs[marg]{margs-list}.

\typesetmacro
\tsmacro

\typesetmeta {⟨name⟩}
\tsmeta {⟨name⟩}

These will just typeset ⟨name⟩ between left/right ‘angles’ (no further formatting).

\typesetmeta
\tsmeta

\typesetverb [⟨obj-type⟩] {⟨verbatim text⟩}
\tsverb [⟨obj-type⟩] {⟨verbatim text⟩}

Typesets ⟨verbatim text⟩ as is. ⟨obj-type⟩ defines the used format. The difference with
\tsobj[verb]{something} is that ⟨verbatim text⟩ can contain commas (which, otherwise,
would be interpreted as a list separator by \tsobj.

Note: This is meant for short expressions, and not multi-line, complex code
(one is better of, then, using 2.3). ⟨verbatim text⟩ must be balanced !

\typesetverb
\tsverb

3.7 Note/Remark Commands

\typesetmarginnote {⟨note⟩}
\tsmarginnote {⟨note⟩}

\typesetmarginnote
\tsmarginnote

Typesets a small note at the margin.
Note: Don’t try to use these inside one of this packages environments, like
tsremark or codedescribe, given the way they are constructed (expl coffins)
it will result in a Float(s) lost error.

\begin{tsremark} [⟨NB⟩]
\end{tsremark}

The environment body will be typeset as a text note. ⟨NB⟩ (defaults to Note:) is the note
begin (in boldface). For instance:

Sample text. Sample test.
\begin{tsremark}[N.B.]

This is an example.
\end{tsremark}

Sample text. Sample test.
N.B. This is an example.

tsremark

17

3.8 Shortcuts (experimental)
This is marked as experimental because the actual chosen short cuts might change, for
instance, if it crashes badly with some other package. As of now, the current implementation
tries to minimize any side effect, only kicking in if, and only if, one of the given patterns is
found. Moreover, once deactivated, \tsOff, any previous code is fully restored.

\tsOn
\tsOff

This will switch the ‘shortcuts’ on and off. Currently, only the character ‘!’ is affected.
\tsOn preserves its status (if active or not, and related code, if any), so that \tsOff can
restore its full definition and status.

Note: \tsOn won’t try to patch the current (if any) active definition of ‘!’, but
just save it (to be restored by \tsOff), before setting its own code. Moreover,
whilst active, if the use don’t fit any of the given patterns (below), the previous
active code (if any, and active) will be executed, or just ‘!’ if it wasn’t active.
Note: If ‘!’ already had an associated code, a warning will be raised, showing
the previous code.

\tsOn
\tsOff

!:⟨[obj-type]{csv-list}⟩ ↔ \tsobj
!::⟨[obj-type]{csv-list}⟩ ↔ \tsargs
!!⟨[obj-type]{verbatim text}⟩ ↔ \tsverb
!!:⟨{name}⟩ ↔ \tsmeta
!!::⟨{note}⟩ ↔ \tsmarginnote
!!?⟨{macro-list}[oargs-list]{margs-list}⟩ ↔ \tsmacro

Once active (\tsOn), !: is a shortcut for \tsobj, including it’s optional parameter. Same for
!:: (\tsargs), and the others.

!:
!::
!!
!!:
!!::
!!?

new: 2025/12/29
updated: 2026/02/12
NB: active char

Note: To reduce undesirable side effects, no space (or any other character
besides the ones shown) is allowed between the first ‘!’ and either the ‘[’ or ‘{’,
for instance !!:{some} will typeset ⟨some⟩, but not !!:{some} or !!:{some} or
!!:some.
Note: If none of these patterns are recognized it will either leave the ‘!’ char-
acter or execute its previous code (if it was active). Same for the companions
colon, ‘:’, and question mark, ‘?’, peeked in the process.

3.9 Auxiliary Commands and Environment
In case the Document Class being used redefines the \maketitle command and/or abstract
environment, alternatives are provided (based on the article class).

\typesettitle {⟨title-keys⟩}
\tstitle {⟨title-keys⟩}

This is based on the \maketitle from the article class. The ⟨title-keys⟩ are:

\typesettitle
\tstitle

The title.title
Author’s name. It’s possible to use the \footnote command in it.author

Title’s date.date

Note: The \footnote (inside this) will use an uniquely assigned counter, start-
ing at one, each time this is used (to avoid hyperref warnings).

\begin{tsabstract}
...
\end{tsabstract}

This is the abstract environment from the article class.

tsabstract

\typesetdate
\tsdate

This provides the current date (in Month Year format).

\typesetdate
\tsdate

new: 2023/05/16

18

4 codelstlang Package
This is an auxiliary package (which can be used on its own). It assumes the package listings
was already loaded, and just defines the following TEX dialects, all of them derived from
listings [LaTeX]TeX:

Most/all expl keys found in the l3kernel[7] packages, including signatures.[l3kernelsign]TeX

Most/all expl keys found in the l3kernel experimental packages, including signatures.[l3expsign]TeX

Most/all expl keys found in the ams, siunitx and related packages, including signatures.[l3amssign]TeX

Most/all expl keys found in the pgf and related packages, including signatures.[l3pgfsign]TeX

Most/all expl keys found in the bibtex, biblatex and related packages, including signatures.[l3bibtexsign]TeX

Note: The underscore ‘_’ and colon ‘:’ have to be defined as letters (letter
= { _ , : }, see 2.3.2). Take note that these dialects are quite large, due the
many signatures variants.

Most/all expl keys found in the l3kernel packages, without signatures.[l3kernel]TeX

Most/all expl keys found in the l3kernel experimental packages, without signatures.[l3exp]TeX

Most/all expl keys found in the ams, siunitx and related packages, without signatures.[l3ams]TeX

Most/all expl keys found in the pgf and related packages, without signatures.[l3pgf]TeX

Most/all expl keys found in the bibtex, biblatex and related packages, without signatures.[l3bibtex]TeX

Note: The underscore ‘_’ has to be defined as letter (letter = { _ }, but not
the colon ‘:’, see 2.3.2). These are more compact versions of the previous ones.

Most/all document level keys found in the kernel packages.[kernel]TeX

Most/all document level keys found in the x* packages, like xkeyval, xpatch, xcolor etc.[xpacks]TeX

Most/all document level keys found in the ams, siunitx and related packages.[ams]TeX

Most/all document level keys found in the pgf and related packages.[pgf]TeX

Most/all document level keys found in the pgfplots and related packages.[pgfplots]TeX

Most/all document level keys found in the bibtex, biblatex and related packages.[bibtex]TeX

Most/all document level keys found in the babel and related packages.[babel]TeX

Most/all document level keys found in the hyperref and related packages.[hyperref]TeX

Note: These are usual document level, LATEX 2ε, commands. In particular none
of them includes any ‘@’ symbol.

References
[1] Pehong Chen and Michael A. Harrison. “Index Preparation and Processing”. In: Soft-

ware: Practice and Experience vol.19 (Sept. 1988). Can be found at https://ctan.
org/tex-archive/indexing/makeindex/paper/ind.pdf. (Visited on 12/16/2025).

[2] Alceu Frigeri. The pkginfograb Package. 2025. url: https://mirrors.ctan.org/
macros/latex/contrib/pkginfograb/doc/pkginfograb.pdf (visited on 12/16/2025).

[3] Alceu Frigeri. The xpeedahead Package. 2025. url: https://mirrors.ctan.org/
macros/latex/contrib/xpeekahead/doc/xpeekahead.pdf (visited on 12/16/2025).

[4] Pablo González. SCONTENTS - Stores LaTeX Contents. 2024. url: https://mirrors.
ctan.org/macros/latex/contrib/scontents/scontents.pdf (visited on 03/10/2025).

[5] Jobst Hoffmann. The Listings Package. 2024. url: https://mirrors.ctan.org/
macros/latex/contrib/listings/listings.pdf (visited on 03/10/2025).

[6] Uwe Kern. Extending LaTeX’s color facilities: the xcolor package. 2024. url: https:
/ / mirrors . ctan . org / macros / latex / contrib / xcolor / xcolor . pdf (visited on
11/20/2025).

19

https://ctan.org/tex-archive/indexing/makeindex/paper/ind.pdf
https://ctan.org/tex-archive/indexing/makeindex/paper/ind.pdf
https://mirrors.ctan.org/macros/latex/contrib/pkginfograb/doc/pkginfograb.pdf
https://mirrors.ctan.org/macros/latex/contrib/pkginfograb/doc/pkginfograb.pdf
https://mirrors.ctan.org/macros/latex/contrib/xpeekahead/doc/xpeekahead.pdf
https://mirrors.ctan.org/macros/latex/contrib/xpeekahead/doc/xpeekahead.pdf
https://mirrors.ctan.org/macros/latex/contrib/scontents/scontents.pdf
https://mirrors.ctan.org/macros/latex/contrib/scontents/scontents.pdf
https://mirrors.ctan.org/macros/latex/contrib/listings/listings.pdf
https://mirrors.ctan.org/macros/latex/contrib/listings/listings.pdf
https://mirrors.ctan.org/macros/latex/contrib/xcolor/xcolor.pdf
https://mirrors.ctan.org/macros/latex/contrib/xcolor/xcolor.pdf

[7] The LaTeX Project. The LaTeX3 Interfaces. 2025. url: https://mirrors.ctan.org/
macros/latex/required/l3kernel/interface3.pdf (visited on 11/20/2025).

[8] Walter Schmidt. Using common PostScript fonts with LaTeX. 2020. url: https://
mirrors.ctan.org/macros/latex/required/psnfss/psnfss2e.pdf (visited on
11/20/2025).

20

https://mirrors.ctan.org/macros/latex/required/l3kernel/interface3.pdf
https://mirrors.ctan.org/macros/latex/required/l3kernel/interface3.pdf
https://mirrors.ctan.org/macros/latex/required/psnfss/psnfss2e.pdf
https://mirrors.ctan.org/macros/latex/required/psnfss/psnfss2e.pdf

	Introduction
	Single versus Multi-column Classes

	codelisting Package
	Package Options
	In Memory Code Storage
	Code Display/Demo
	Colors Customization
	Code Keys

	codedescribe Package
	Package Options
	Indexing
	Index Keys

	Object Type keys
	Format Keys
	Format Groups
	Object Types
	Command List Keys
	Customization

	Locale
	Environments
	Typeset Commands
	Note/Remark Commands
	Shortcuts (experimental)
	Auxiliary Commands and Environment

	codelstlang Package

