Providing some UTF-8 support via inputenc

David Carlisle Frank Mittelbach Chris Rowley*
v1.3c 2022/06/07 printed January 25, 2026

This file is maintained by the KTEX Project team.
Bug reports can be opened (category latex) at
https://latex-project.org/bugs.html.

Contents

1 Introduction
1.1 Background and general stuff 000,
1.2 More specificstuff oo
1.3 Notes o e
1.4 Basic operation of thecode

2 Coding
2.1 Housekeeping
2.2 Parsing UTF-8input
2.3 Mapping Unicode codes to ITEX internal forms
2.4 Loading Unicode mappings at begin document

3 Mapping characters —

based on font (glyph) encodings

3.1 About the table itself 0oL
3.2 The mapping table oo oo
3.3 Notes o e
3.4 Mappings for OT1 glyphs
3.5 Mappings for OMS glyphs
3.6 Mappings for TS1 glyphs L.
3.7 Mappings for latex.ltx glyphs
3.8 Old utf8.def file as a temp fix for pTEX and friends

4 A test document

W wN NN

INGEN-II NG NGTN

15
16
28
28
29
29
29
30

35

*Borrowing heavily from tables by Sebastian Rahtz; some table and code cleanup by Javier

Bezos

https://latex-project.org/bugs.html

1 Introduction

1.1 Background and general stuff

For many reasons what this package provides is a long way from any type of
‘Unicode compliance’.

In stark contrast to 8-bit character sets, with 16 or more bits it can easily be
very inefficient to support the full range.! Moreover, useful support of character
input by a typesetting system overwhelmingly means finding an acceptable vi-
sual representation of a sequence of characters and this, for IATEX, means having
available a suitably encoded 8-bit font.

Unfortunately it is not possible to predict exactly what valid UTF-8 octet
sequences will appear in a particular file so it is best to make all the unsupported
but valid sequences produce a reasonably clear and noticeable error message.

There are two directions from which to approach the question of what to load.
One is to specify the ranges of Unicode characters that will result in some sensible
typesetting; this requires the provider to ensure that suitable fonts are loaded and
that these input characters generate the correct typesetting via the encodings of
those fonts. The other is to inspect the font encodings to be used and use these
to define which input Unicode characters should be supported.

For Western European languages, at least, going in either direction leads to
many straightforward decisions and a few that are more subjective. In both cases
some of the specifications are TEX specific whilst most are independent of the
particular typesetting software in use.

As we have argued elsewhere, I¥TEX needs to refer to characters via ‘seven-bit-
text’ names and, so far, these have been chosen by reference to historical sources
such as Plain TEX or Adobe encoding descriptions. It is unclear whether this ad
hoc naming structure should simply be extended or whether it would be useful to
supplement it with standardised internal Unicode character names such as one or
more of the following:?

\1ltxutwochar <4 hex digits>

\1ltxuchar {<hex digits>}
BHURRR

\ltxueightchartwo <2 utf8 octets as 8-bit char tokens>
\1ltxueightcharthree <3 utf8 octets ...>
\1ltxueightcharfour <4 utf8 octets ...>

1.2 More specific stuff

In addition to setting up the mechanism for reading UTF-8 characters and spec-
ifying the I#TEX-level support available, this package contains support for some
default historically expected TEX-related characters and some example ‘Unicode
definition files’ for standard font encodings.

Mn fact, IATEX’s current 8-bit support does not go so far as to make all 8-bit characters into
valid input.
2Burkhard und Holger Mittelbach spielen mit mir! Sie haben etwas hier geschrieben.

1.3 Notes

This package does not support Unicode combining characters as TEX is not really
equipped to make this possible.

No attempt is made to be useful beyond Latin, and maybe Cyrillic, for Euro-
pean languages (as of now).

1.4 Basic operation of the code

The inputenc package makes the upper 8-bit characters active and assigns to all
of them an error message. It then waits for the input encoding files to change this
set-up. Similarly, whenever \inputencoding is encountered in a document, first
the upper 8-bit characters are set back to produce an error and then the definitions
for the new input encoding are loaded, changing some of the previous settings.

The 8-bit input encodings currently supported by inputenc all use declarations
such as \DeclareInputText and the like to map an 8-bit number to some ITEX
internal form, e.g. to \"a.

The situation when supporting UTF-8 as the input encoding is different, how-
ever. Here we only have to set up the actions of those 8-bit numbers that can be
the first octet in a UTF-8 representation of a Unicode character. But we cannot
simply set this to some internal IATEX form since the Unicode character consists
of more than one octet; instead we have to define this starting octet to parse the
right number of further octets that together form the UTF-8 representation of
some Unicode character.

Therefore when switching to utf8 within the inputenc framework the charac-
ters with numbers (hex) from "C2 to "DF are defined to parse for a second octet
following, the characters from "EO to "EF are defined to parse for two more octets
and finally the characters from "FO to "F4 are defined to parse for three additional
octets. These additional octets are always in the range "80 to "BF.

Thus, when such a character is encountered in the document (so long as expan-
sion is not prohibited) a defined number of additional octets (8-bit characters) are
read and from them a unique control sequence name is immediately constructed.

This control sequence is either defined (good) or undefined (likely); in the latter
case the user gets an error message saying that this UTF-8 sequence (or, better,
Unicode character) is not supported.

If the control sequence is set up to do something useful then it will expand to
a IWTEX internal form: e.g. for the utf8 sequence of two octets "C3 "A4 we get
\"a as the internal form which then, depending on the font encoding, eventually
resolves to the single glyph ‘latin-a-umlaut’ or to the composite glyph ‘latin-a with
an umlaut accent’.

These mappings from (UTF-8 encoded) Unicode characters to IBTEX in-
ternal forms are made indirectly. —The code below provides a declaration
\DeclareUnicodeCharacter which maps Unicode numbers (as hexadecimal) to
TEX internal forms.

This mapping needs to be set up only once so it is done at \begin{document}
by looking at the list of font encodings that are loaded by the document and
providing mappings related to those font encodings whenever these are available.
Thus at most only those Unicode characters that can be represented by the glyphs
available in these encodings will be defined.

Technically this is done by loading one file per encoding, if available, that is
supposed to provide the necessary mapping information.

2 Coding
2.1 Housekeeping

The usual introductory bits and pieces:

1 (utf8)\ProvidesFile{utf8.def}

2 (test)\ProvidesFile{utf8-test.tex}

(+lcy) \ProvidesFile{lcyenc.dfu}

(+1lyl) \ProvidesFile{lylenc.dfu}

(+oms) \ProvidesFile{omsenc.dfu}

(4otl) \ProvidesFile{otlenc.dfu}

(4+ot2) \ProvidesFile{ot2enc.dfu}

(+t1) \ProvidesFile{tlenc.dfu}

(+t2a) \ProvidesFile{t2aenc.dfu}

(+t2b) \ProvidesFile{t2benc.dfu}

(4+t2c) \ProvidesFile{t2cenc.dfu}

(+tsl) \ProvidesFile{tslenc.dfu}

(+x2) \ProvidesFile{x2enc.dfu}

(4ally \ProvidesFile{utf8enc.dfu}

5 (-utf8-2018) [2022/06/07 v1.3c UTF-8 support]
(

3
4
5
6
7
8
9
10
11
12
13
14
1

16 (*utf8)

This is a temporary fix for the e-pTEX / e-upTEX engines that do not yet have a
\ifincsname primitive. Once this is available the extra file will be dropped.

17 \ifx\ifincsname\@undefined % old e-pTeX or e-upTeX engines

18 \input utf8-2018.def

19 \expandafter\@firstofone

20 \else

21 \expandafter\@gobble

22 \fi

23 \endinput

24 \makeatletter

We restore the \catcode of space (which is set to ignore in inputenc) while
reading .def files. Otherwise we would need to explicitly use \space all over the
place in error and log messages.

25 \catcode‘\ \saved@space@catcode

2.2 Parsing UTF-8 input

A UTF-8 char (that is not actually a 7-bit char, i.e. a single octet) is parsed as fol-
lows: each starting octet is an active TEX character token; each of these is defined
below to be a macro with one to three arguments nominally (depending on the
starting octet). It calls one of \UTFviii@two@octets, \UTFviii@threeQoctets,
or \UTFviii@four@octets which then actually picks up the remaining octets as
the argument(s).

e When typesetting we pick up the necessary number of additional octets,
check if they form a command that KTEX knows about (via \csname
u8:\string #1\string #2...\endcsname) and if so use that for typeset-
ting. \string is needed as the octets may (all?) be active and we want the
literal values in the name.

e If the UTF-8 character is going to be part of a label, then it is essentially
becoming part of some csname and with the test \ifincsname we can find
this out. If so, we render the whole sequence off octets harmless by using
\string too when the starting octet executes (\UTF@. . .Qoctets@string).

e Another possible case is that \protect has not the meaning of \typeset@protect.

In that case we may do a \write or we may do a \protected@edef or ...
In all such cases we want to keep the sequence of octets unchanged, but we
can’t use \string this time, since at least in the case of \protect@edef
the result may later be typeset after all (in fact that is quite likely) and
so at that point the starting octet needs to be an active character again
(the others could be stringified). So for this case we use \noexpand
((\UTF@. . .s@octets@noexpand).

\UTFviii@two@octets Putting that all together the code for a start octet of a two byte sequence would
then look like this:

26 \long\def\UTFviii@two@octets{)
27 \ifincsname

28 \expandafter \UTF@twoQ@octets@string

20 \else

30 \ifx \protect\@typeset@protect \else

31 \expandafter\expandafter\expandafter \UTF@twoQoctets@noexpand
32 \fi

33 \fi

34 \UTFviii@twoQoctets@combine

35}

\ifcsname is tested first because that can be true even if we are otherwise
doing typesetting. If this is the case we use \string on the whole octet sequence.
\UTF@two@octets@string not only does this but also gets rid of the command
\UTFviii@two@octets@combine in the input stream by picking it up as a first
argument and dropping it.

If this is not the case and we are doing typesetting (i.e., \protect is
\typeset@protect), then we execute \UTFviii@twoQoctets@combine which
picks up all octets and typesets the character (or generates an error if it doesn’t
know how to typeset it).

However, if we are not doing typesetting, then we execute the command
\UTFviii@two@octets@noexpand which works like \UTF@twoQoctets@string but
uses \noexpand instead of \string. This way the sequence is temporary rendered
harmless, e.g., would display as is or stays put inside a \protected@edef. But
if the result is later reused the starting octet is still active and so will be able to
construct the UTF-8 character again.

\UTFviii@three@octets The definitions for the other starting octets are the same except that they pick up
\UTFviii@four@octets more octets after them.

36 \long\def\UTFviii@threeQoctets{/

37 \ifincsname

38 \expandafter \UTF@three@octets@string

39 \else

40 \ifx \protect\@typeset@protect \else

41 \expandafter\expandafter\expandafter \UTF@three@octets@noexpand
42 \fi

43 \fi

44 \UTFviii@three@octets@combine

45 }

46 \long\def\UTFviii@four@octets{/,

47 \ifincsname

48 \expandafter \UTF@four@octets@string

49 \else

50 \ifx \protect\@typeset@protect \else

51 \expandafter\expandafter\expandafter \UTF@four@octets@noexpand
52 \fi

53 \fi

54 \UTFviii@four@octets@combine

55 }

\UTFviii@two@octets@noexpand These temporarily prevent the active chars from expanding.
\UTFviii@three@octets@noexpand 55 \long\def\UTF@two@octets@noexpand#1#2#3{ \unexpanded{#2#3}}

\UTFviii@four@octets@noexpand 57 \long\def\UTF@threeQoctets@noexpand#1#2#3#4{\unexpanded{#2#3#4}}
58 \long\def\UTF@four@octets@noexpand#1#2#3#4#5{\unexpanded{#2#3#4#5}}

\UTFviii@two@octets@string And the same with \string for use in \csname constructions.
\UTFviii@threeQoctets@string 59 \long\def\UTF@two@octets@string#i#2#3{\detokenize{#2#3}}
\UTFviii@four@octets@string 60 \long\def\UTF@three@octets@string#1#2#3#4{\detokenize{#2#3#4}}
61 \long\def\UTF@fourQ@octets@string#1#2#3#4#5{\detokenize{#2#3#4#5}}

\UTFviii@two@octets@combine From the arguments a control sequence with a name of the form u8:#1#2... is

\UTFviii@three@octets@combine constructed where the #i (i > 1) are the arguments and #1 is the starting octet

\UTFviii@four@octets@combine (as a TEX active character token). Since some or even all of these characters are
active we need to use \string when building the \csname.

The \csname thus constructed can of course be undefined but to avoid produc-
ing an unhelpful low-level undefined command error we pass it to \UTFviii@defined
which is responsible for producing a more sensible error message (not yet donel!!).
If, however, it is defined we simply execute the thing (which should then expand
to an encoding specific internal ¥ TEX form).

62 \long\def\UTFviii@two@octets@combine#1#2{\expandafter

63

\UTFviii@defined\csname u8:\string#1\string#2\endcsname}

64 \long\def\UTFviii@three@octets@combine#1#2#3{\expandafter

65

\UTFviii@defined\csname u8:\string#l\string#2\string#3\endcsname}

66 \long\def\UTFviii@fourQoctets@combine#1#2#3#4{\expandafter

67

\UTFviii@defined\csname u8:\string#l\string#2\string#3\string#4\endcsname}

\UTFviii@defined This tests whether its argument is different from \relax: it either calls for a
sensible error message (not done), or it gets the \fi out of the way (in case the
command has arguments) and executes it.

68 \def\UTFviii@defined#1{%

69

\ifx#1\relax

Test if the sequence is invalid UTF-8 or valid UTF-8 but without a EXTEX defini-
tion.

70 \if\relax\expandafter\UTFviii@checkseq\string#1\relax\relax

The endline character has a special definition within the inputenc package (it is
gobbling spaces). For this reason we can’t produce multiline strings without some

precaution.
71 \UTFviii@undefined@err{#1}%
72 \else
73 \@latex@error{Invalid UTF-8 byte sequence (\expandafter
74 \@gobblefour\string#1)1}/
75 \UTFviii@invalid@help
76 \fi
77 \else\expandafter
78 #17,
79 \fi
80 }

\UTFviii@invalid@err

\UTFviii@invalidGhelp g \def\UTFviii@invalid@err#1{Y
82 \@latex@error{Invalid UTF-8 byte "\UTFviiiGhexnumber{‘#1}}J

83 \UTFviii@invalid@help}

84 \def\UTFviii@invalid@help{%

85 The document does not appear to be in UTF-8 encoding.\MessageBreak

86 Try adding \noexpand\UseRawInputEncoding as the first line of the file\MessageBreak
87 or specify an encoding such as \noexpand\usepackage[latinl]{inputenc}\MessageBreak
88 in the document preamble.\MessageBreak

89 Alternatively, save the file in UTF-8 using your editor or another tool}

\UTFviii@undefined@err

90 \def\UTFviiiQundefinedQerr#1{J
91 \@latex@error{Unicode character \expandafter

92 \UTFviii@splitcsname\string#1\relax

93 \MessageBreak

94 not set up for use with LaTeX}/

95 {You may provide a definition with\MessageBreak
96 \noexpand\DeclareUnicodeCharacterl},

97 }

\UTFviii@checkseq Check that the csname consists of a valid UTF-8 sequence.
\UTFviii@checkQcontinue g9g \def\UTFviiiQcheckseq#l:#2#3{Y
99 \ifnum‘#2<"80 ¥
100 \ifx\relax#3\elsel\fi

101 \else

102 \ifnum‘#2<"CO %

103 1%

104 \else

105 \expandafter\expandafter\expandafter\UTFviii@check@continue
106 \expandafter\expandafter\expandafter#3J,

107 \fi

108 \fi}

109 \def\UTFviii@check@continue#1{/

110
111
112
113
114

115 }

\ifx\relax#1%

\else

\ifnum‘#1<"80 1\else\ifnum‘#1>"BF 1\fi\fi
\expandafter\UTFviii@check@continue

\fi

\UTFviii@loop This bit of code derived from xmltex defines the active character corresponding
to starting octets to call \UTFviii@two@octets etc as appropriate. The starting
octet itself is passed directly as the first argument, the others are picked up later
en route.

The \UTFviii@loop loops through the numbers starting at \count@ and end-
ing at \@tempcnta — 1, each time executing the code in \UTFviii@tmp.
Store current settings so can restore after the loops without using a group
(gh/762).
116 \edef\reservedQa{
117 \catcode ‘\noexpand\~“=\the\catcode ‘\"\relax
118 \catcode ‘\noexpand\"=\the\catcode ‘\"\relax
119 \uccode ‘\noexpand\~“=\the\uccode ‘\"\relax
120 \count@=\the\count@\relax
121 \@tempcnta=\the\@tempcnta\relax
122 \let\noexpand\reserved@a\relax}

123 \catcode‘\~13
124 \catcode‘\"12

125 \def\UTFviii@loop{¥%

126
127
128
129
130
131

\uccode ‘\"\count@
\uppercase\expandafter{\UTFviii@tmp}J,
\advance\count@\@ne
\ifnum\count@<\@tempcnta
\expandafter\UTFviii@loop

\fi}

Handle the single byte control characters. CO controls are valid UTF-8 but
defined to give the “Character not defined error” They may be defined with
\DeclareUnicodeCharacter.

132

\def\UTFviii@tmp{\protected\edef~{\noexpand\UTFviii@undefined@err{:\string~}}}

133% 0 ~~@ null

134
135

\count@"1
\@tempcnta9

136 % 9 "I tab
137 % 10 ~~J nl
138 \UTFviii@loop

139 \count@11
140 \@tempcntal2
141 \UTFviii@loop
142 % 12 ~°L

143 % 13 °°M

144 \count@14
145 \@tempcnta32

146 \UTFviii@loop
Bytes with leading bits 10 are not valid UTF-8 starting bytes

\DeclareUnicodeCharacter

147
148
149

\count@"80
\@tempcnta"C2
\def\UTFviii@tmp{\protected\edef~{\noexpand\UTFviii@invalid@err\string~}}

150 \UTFviii@loop

Setting up 2-byte UTF-8: The starting bytes is passed as an active character
so that it can be reprocessed later!

151
152
153

\count@"C2
\@tempcnta"EO
\def\UTFviii@tmp{\protected\edef~{\noexpand\UTFviii@twoQoctets\noexpand~}}

154 \UTFviii@loop
Setting up 3-byte UTF-8:

155
156
157

\count@"EO
\@tempcnta"FO0
\def\UTFviii@tmp{\protected\edef~"{\noexpand\UTFviii@three@octets\noexpand~}}

158 \UTFviii@loop
Setting up 4-byte UTF-8:

159
160
161

\count@"F0
\@tempcnta"F5
\def\UTFviii@tmp{\protected\edef~{\noexpand\UTFviii@four@octets\noexpand~}}

162 \UTFviii@loop

Bytes above F4 are not valid UTF-8 starting bytes as they would encode num-
bers beyond the Unicode range

163
164
165

\count@"F5
\@tempcnta'"100
\def\UTFviii@tmp{\protected\edef~{\noexpand\UTFviii@invalid@err\string~}}

166 \UTFviii@loop

Restore values after the loops.

167 \reserved@a

For this case we must disable the warning generated by inputenc if it doesn’t
see any new \DeclareInputText commands.

168 \@inpenc@test

If this file (utf8.def) is not being read while setting up inputenc, i.e. in the
preamble, but when \inputencoding is called somewhere within the document,
we do not need to input the specific Unicode mappings again. We therefore stop
reading the file at this point.

169 \ifx\@begindocumenthook\@undefined

170

\makeatother

The \fi must be on the same line as \endinput or else it will never be seen!

171

\endinput \fi

2.3 Mapping Unicode codes to BTEX internal forms

The \DeclareUnicodeCharacter declaration defines a mapping from a Unicode
character code point to a INTEX internal form. The first argument is the Unicode
number as hexadecimal digits and the second is the actual ITEX internal form.

We start by making sure that some characters have the right \catcode when
they are used in the definitions below.

\parse@XML@charref

172 \begingroup

173 \catcode‘\"=12
174 \catcode ‘\<=12
175 \catcode‘\.=12
176 \catcode‘\,=12
177 \catcode‘\ ;=12
178 \catcode‘\!=12
179 \catcode‘\~=13

180 \gdef\DeclareUnicodeCharacter#1#2{/,

181 \count@"#1\relax

182 \wlog{ \space\space defining Unicode char U+#1 (decimal \the\count@)l}/

183 \begingroup
Next we do the parsing of the number stored in \count@ and assign the re-
sult to \UTFviii@tmp. Actually all this could be done in-line, the macro
\parse@XML@charref is only there to extend this code to parsing Unicode numbers
in other contexts one day (perhaps).

184 \parse@XMLQcharref

Here is an example of what is happening, for the pair "C2 "A3 (which is the utf8

representation for the character £). After \parse@XML@charref we have, stored
in \UTFviii@tmp, a single command with two character tokens as arguments:

[tc2 and t43 are the characters corresponding to these two octets]
\UTFviii@two@octets tcatas

what we actually need to produce is a definition of the form
\def\u8:tcotas {ETEX internal form} .

So here we temporarily redefine the prefix commands \UTFviii@two@octets,
etc. to generate the csname that we wish to define; the \strings are added in
case these tokens are still active.

185 \def\UTFviii@twoQoctets##1##2{\csname u8:##1\string##2\endcsnamely,
186 \def\UTFviii@threeQoctets##1##2##3{\csname u8:##1J,

187 \string##2\string##3\endcsnamel}j,
188 \def\UTFviii@fourQoctets##1##2##3##4{\csname u8:##17

189 \string##2\string##3\string##4\endcsnamel}’

Now we simply:-) need to use the right number of \expandafters to finally con-
struct the definition: expanding \UTFviii@tmp once to get its contents, a second
time to replace the prefix command by its \csname expansion, and a third time
to turn the expansion into a csname after which the \gdef finally gets applied.
We add an irrelevant \IeC and braces around the definition, in order to avoid any
space after the command being gobbled up when the text is written out to an
auxiliary file (see inputenc for further details

190 \expandafter\expandafter\expandafter
191 \expandafter\expandafter\expandafter
192 \expandafter

193 \gdef\UTFviii@tmp{\IeC{#2}}V

194 \endgroup

195 }

This macro parses a Unicode number (decimal) and returns its UTF-8 represen-
tation as a sequence of non-active TEX character tokens. In the original code it

10

had two arguments delimited by ; here, however, we supply the Unicode number
implicitly.
196 \gdef\parse@XML@charref{/,

We need to keep a few things local, mainly the \uccode’s that are set up below.
However, the group originally used here is actually unnecessary since we call this
macro only within another group; but it will be important to restore the group if
this macro gets used for other purposes.

197 % \begingroup

The original code from xmltex supported the convention that a Unicode slot
number could be given either as a decimal or as a hexadecimal (by starting with
x). We do not do this so this code is also removed. This could be reactivated
if one wants to support document commands that accept Unicode numbers (but
then the first case needs to be changed from an error message back to something
more useful again).

198 % \uppercase{\count@\if x\noexpand#1"\else#1\fi#2}\relax
As \count@ already contains the right value we make \parse@XML@charref
work without arguments. In the case single byte UTF-8 sequences, only allow
definition if the character os already active. The definition of \UTFviii@tmp
looks slightly strange but is designed for the sequence of \expandafter in
\DeclareUnicodeCharacter.

199 \ifnum\count@<"80\relax

200 \ifnum\catcode\count@=13

201 \uccode ‘\"=\count@\uppercase{\def \UTFviii@tmp{\Q@empty\@empty~}1}7
202 \else

203 \@latex@error{Cannot define non-active Unicode char value < 0080}%
204 \@eha

205 \def\UTFviii@tmp{\UTFviii@tmpl}’

206 \fi

The code below is derived from xmltex and generates the UTF-8 byte sequence
for the number in \count@.

The reverse operation (just used in error messages) has now been added as
\decode@UTFviii.

207 \else\ifnum\count@<"800\relax

208 \parse@UTFviii@a,

209 \parse@UTFviii@b C\UTFviii@two@octets.,%

210 \else\ifnum\count@<"10000\relax

211 \parse@UTFviii@a;J

212 \parse@UTFviii®a,%

213 \parse@UTFviii@b E\UTFviii@three@octets.{,;}%

214 \else

Test added here for out of range values, the 4-octet definitions are still set up
so that \DeclareUnicodeCharacter does something sensible if the user scrolls
past this error.

215 \ifnum\count@>"10FFFF\relax

216 \@latex@error

217 {\UTFviii@hexnumber\count@\space too large for Unicodel
218 {Values between O and 10FFFF are permitted}/

219 \fi

11

\parse@UTFviii@a

\parse@UTFviii@b

\decode@UTFviii

220 \parse@UTFviii®@a;¥%

221 \parseQUTFviii@a,?

222 \parse@UTFviii@a!Y

223 \parse@UTFviii@b F\UTFviii@four@octets.{!,;}%
224 \fi

225 \fi

226 \fi

227 % \endgroup

228 }

...s0 somebody else can document this part :-)
229 \gdef\parse@UTFviii@a#1{J

230 \@tempcnta\count@

231 \divide\count@ 64

232 \@tempcntb\count@

233 \multiply\count@ 64

234 \advance\@tempcnta-\count@

235 \advance\@tempcnta 128

236 \uccode ‘#1\@tempcnta

237 \count@\@tempcntb}

...same here

238 \gdef\parseQUTFviii@b#1#2#3#4{/,

239 \advance\count@ "#10\relax

240 \uccode ‘#3\count@

241 \uppercase{\gdef\UTFviiiQ@tmp{#2#3#4}}}

In the reverse direction, take a sequence of octets(bytes) representing a character
in UTF-8 and construct the Unicode number. The sequence is terminated by
\relax.

In this version, if the sequence is not valid UTF-8 you probably get a low level
arithmetic error from \numexpr or stray characters at the end. Getting a better
error message would be somewhat expensive. As the main use is for reporting
characters in messages, this is done just using expansion, so \numexpr is used, A
stub returning 0 is defined if \numexpr is not available.

242 \ifx\numexpr\Q@undefined
243 \gdef\decode@UTFviii#1{0}
244 \else

If the input is malformed UTF-8 there may not be enough closing) so add 5
so there are always some remaining then cleanup and remove any remaining ones
at the end. This avoids \numexpr parse errors while outputting a package error.

245 \gdef\decode@UTFviii#1\relax{J

246 \expandafter\UTFviii@cleanup
247 \the\numexpr\dec@de@UTFviii#l\relax)))))\Q@empty}

248 \gdef\UTFviii@cleanup#1)#2\@empty{#1}

249 \gdef\dec@deQUTFviii#1{}
250 \ifx\relax#1J

251 \else
252 \ifnum‘#1>"EF
253 (CCC#1-"FO) %

12

254 \else

255 \ifnum‘#1>"DF

256 ((C‘#1-"E0) %

257 \else

258 \ifnum°‘#1>"BF

259 ((‘#1-"C0O)%

260 \else

261 \ifnum‘#1>"7F
262)*64+(‘#1-"80)%
263 \else

264 +#1 %

265 \fi

266 \fi

267 \fi

268 \fi

269 \expandafter\dec@de@QUTFviii
270 \fi}

271 \fi

\UTFviiiGhexnumber Convert a number to a sequence of uppercase hex digits. If \numexpr is not
available, it returns its argument unchanged.

272 \ifx\numexpr\Q@undefined

273 \global\let\UTFviii@hexnumber\@firstofone
274 \global\UTFviii@hexdigit\hexnumber®@

275 \else

276 \gdef\UTFviii@hexnumber#1{%

277 \ifnum#1>15 %

278 \expandafter\UTFviii@hexnumber\expandafter{\the\numexpr (#1-8)/16\relax}’,
279 \fi

280 \UTFviii@hexdigit{\numexpr#1\ifnum#1>0-((#1-8)/16)*16\fi\relaxl}’,

281 }

Almost but not quite \hexnumber@.

282 \gdef\UTFviii@hexdigit#1{\ifcase\numexpr#1i\relax
283 O0\or1\or2\or3\or4\or5\or6\or7\or8\or9\or
284 A\or B\or C\or D\or E\or F\fi}

285 \fi

\UTFviii@splitcsname Split a csname representing a unicode character and return the character and the
\UTFviii@hexcodepoint unicode number in hex.

286 \gdef\UTFviii@hexcodepoint#1{U+}

287 \ifnum#1<16 O\fi

288 \ifnum#1<256 O\fi

289 \ifnum#1<4096 O\fi

290 \UTFviii@hexnumber{#1}}

291 }%

292 \gdef\UTFviii@splitcsname#1:#2\relax{/

Need to pre-expand the argument to ensure cleanup in case of mal-formed UTF-8.

293 #2 (\expandafter\UTFviii@hexcodepoint\expandafter{’,
294 \the\numexpr\decodeQUTFviii#2\relax})%
295 }

13

296 \endgroup
297 \@onlypreamble\DeclareUnicodeCharacter

These are preamble only as long as we don’t support Unicode charrefs in docu-
ments.

298 \@onlypreamble\parse@XMLOcharref

299 \@onlypreamble\parse@UTFviii@a

300 \@onlypreamble\parse@UTFviii@b

2.4 Loading Unicode mappings at begin document

The original plan was to set up the UTF-8 support at \begin{document}; but

then any text characters used in the preamble (as people do even though advised

against it) would fail in one way or the other. So the implementation was changed

and the Unicode definition files for already defined encodings are loaded here.
We loop through all defined font encodings (stored in \cdp@list) and for

each load a file nameenc.dfu if it exist. That file is then supposed to contain

\DeclareUnicodeCharacter declarations.

301 \begingroup

302 \def\cdpQelt#1#2#3#4{},

303 \wlog{Now handling font encoding #1 ...}

304 \lowercase{’,

305 \InputIfFileExists{#lenc.dful}}’%

306 {\wlog{... processing UTF-8 mapping file for font ¥%
307 encoding #13},

The previous line is written to the log with the newline char being ignored (thus
not producing a space). Therefore either everything has to be on a single input
line or some special care must be taken. From this point on we ignore spaces
again, i.e., while we are reading the .dfu file. The \endgroup below will restore
it again.

308 \catcode‘\ 9\relaxl}y
309 {\wlog{... no UTF-8 mapping file for font encoding #1}1}
310}

311 \cdp@list
312 \endgroup

However, we don’t know if there are font encodings still to be loaded (either with
fontenc or directly with \input by some package). Font encoding files are loaded
only if the corresponding encoding has not been loaded yet, and they always begin
with \DeclareFontEncoding. We now redefine the internal kernel version of the
latter to load the Unicode file if available.

313 \def\DeclareFontEncoding@#1#2#3{Y
314 \expandafter
315 \ifx\csname T@#1\endcsname\relax

316 \def\cdp@elt{\noexpand\cdp@elt},

317 \xdef\cdp@list{\cdp@list\cdpQelt{#1}/

318 {\default@family}{\default@series}/,
319 {\default@shape}}%

320 \expandafter\let\csname#1-cmd\endcsname\@changed@cmd
321 \begingroup

322 \wlog{Now handling font encoding #1 ...}

323 \lowercase{%

14

324 \InputIfFileExists{#lenc.dfu}}

325 {\wlog{... processing UTF-8 mapping file for font %

326 encoding #13}}%

327 {\wlog{... no UTF-8 mapping file for font encoding #1}1}/
328 \endgroup

320 \else

330 \@font@info{Redeclaring font encoding #1}J,

331 \fi

332 \global\@namedef{T@#1}{#2}%

333 \global\@namedef{M@#1}{\default@M#3}/
334 \xdef\LastDeclaredEncoding{#1}/,

335 }

336 (/utf8)

3 Mapping characters —
based on font (glyph) encodings

This section is a first attempt to provide Unicode definitions for characters whose
standard glyphs are currently provided by the standard IXTEX font-encodings T1,
0T1, etc. They are by no means completed and need checking.

For example, one should check the already existing input encodings for glyphs
that may in fact be available and required, e.g. latin4 has a number of glyphs
with the \= accent. Since the T1 encoding does not provide such glyphs, these
characters are not listed below (yet).

The list below was generated by looking at the current KTEX font en-
coding files, e.g., tlenc.def and using the work by Sebastian Rahtz (in
ucharacters.sty) with a few modifications. In combinations such as \~\i the
preferred form is that and not \"1i.

This list has been built from several sources, obviously including the Uni-
code Standard itself. These sources include Passive TEX by Sebastian Rahtz, the
unicode package by Dominique P. G. Unruh (mainly for Latin encodings) and
text4ht by Eitan Gurari (for Cyrillic ones).

Note that it strictly follows the Mittelbach principles for input character en-
codings: thus it offers no support for using utf8 representations of math symbols
such as x or + (in math mode).

3.1 About the table itself

In addition to generating individual files, the table below is, at present, a one-
one (we think) partial relationship between the (ill-defined) set of LICRs and the
Unicode slots 70080 to "FFFF. At present these entries are used only to define a
collection of partial mappings from Unicode slots to LICRs; each of these mappings
becomes full if we add an exception value (‘not defined’) to the set of LICRs.

It is probably not essential for the relationship in the full table to be one-one;
this raises questions such as: the exact role of LICRs; the formal relationships
on the set of LICRs; the (non-mathematical) relationship between LICRs and
Unicode (which has its own somewhat fuzzy equivalences); and ultimately what a
character is and what a character representation and/or name is.

It is unclear the extent to which entries in this table should resemble the closely
related ones in the 8-bit inputenc files. The Unicode standard claims that the

15

first 256 slots ‘are’ ASCII and Latin-1.

Of course, TEX itself typically does not treat even many perfectly ‘normal text’
7-bit slots as text characters, so it is unclear whether IXTEX should even attempt
to deal in any consistent way with those Unicode slots that are not definitive text
characters.

3.2 The mapping table

Note that the first argument must be a hex-digit number greater than 00BF and
at most 10FFFF.
There are few notes about inconsistencies etc at the end of the table.

337 (all, t1, otl, lyl)\DeclareUnicodeCharacter{00A0}{\nobreakspace}

338 (all, t1, ot1, lyl)\DeclareUnicodeCharacter{00A1}{\textexclamdown}

339 (all, ts1,lyl)\DeclareUnicodeCharacter{00A2}{\textcent}

340 (all, ts1,t1, otl, lyl)\DeclareUnicodeCharacter{00A3}{\textsterling}

341 (all, x2, ts1, t2¢, t2b, t2a, lyl, Icy)\DeclareUnicodeCharacter{00A4}{\textcurrency}
342 (all, ts1, lyl)\DeclareUnicodeCharacter{00A5}{\textyen}

343 (all, ts1,lyl)\DeclareUnicodeCharacter{00A6}{\textbrokenbar}

344 (all, x2, ts1, t2c, t2b, t2a, oms, lyl)\DeclareUnicodeCharacter{00A7}{\textsection}
345 (all, ts1)\DeclareUnicodeCharacter{00A8}{\textasciidieresis}

346 (all, ts1, utf8)\DeclareUnicodeCharacter{00A9}{\textcopyright}

347 (all, ts1, lyl, utf8)\DeclareUnicodeCharacter{00AA}{\textordfeminine}

348 (xall, x2, t2¢, t2b, t2a, t1, ot2, Iy1, Icy)

349 %\DeclareUnicodeCharacter{00AB}{\guillemotleft} % wrong Adobe name

350 \DeclareUnicodeCharacter{00AB}{\guillemetleft}

351 (/all, x2, t2¢, t2b, t2a, t1, ot2, Iy1, Icy)

352 (all, ts1)\DeclareUnicodeCharacter{00AC}{\textlnot}

353 (all, t1, ot1, lyl)\DeclareUnicodeCharacter{00AD}{\-}

354 (all, ts1, lyl, utf8)\DeclareUnicodeCharacter{00AE}{\textregistered}
355 (all, ts1)\DeclareUnicodeCharacter{00AF}{\textasciimacron}

356 (all, ts1, lyl)\DeclareUnicodeCharacter{00BO}{\textdegree}

357 (all, ts1)\DeclareUnicodeCharacter{00B1}{\textpm}

358 (all, ts1)\DeclareUnicodeCharacter{00B2}{\texttwosuperior}

359

360 (all, ts1)\DeclareUnicodeCharacter{00B4}{\textasciiacute}
361 (all, ts1,lyl)\DeclareUnicodeCharacter{00B5}{\textmu} % micro sign
362 (all, ts1, oms, lyl)\DeclareUnicodeCharacter{00B6}{\textparagraph}
363 (all, oms, tsl, lyl)\DeclareUnicodeCharacter{00B7}{\textperiodcentered}
364 (all, otl)\DeclareUnicodeCharacter{00B8}{\c\ }
365 (all, ts1)\DeclareUnicodeCharacter{00B9}{\textonesuperior}
366 (all, ts1, lyl, utf8)\DeclareUnicodeCharacter{00BA}{\textordmasculine}
367 (*all,x2, t2c, t2b, t2a, t1, ot2, Iy1, Icy)
368 %\DeclareUnicodeCharacter{00BB}{\guillemotright} % wrong Adobe name
369 \DeclareUnicodeCharacter{00BB}{\guillemetright}
370 (/all, x2, t2c, t2b, t2a, t1, ot2, Iy1, Icy)
371 (all, ts1, lyl)\DeclareUnicodeCharacter{00BC}{\textonequarter}
372 (all, ts1, lyl)\DeclareUnicodeCharacter{00BD}{\textonehalf}
373 (all, ts1,lyl)\DeclareUnicodeCharacter{00BE}{\textthreequarters}
374 (all, t1, ot1, lyl)\DeclareUnicodeCharacter{00BF}{\textquestiondown}
(
(
(
(

(
(
(
(
(
(
(
(all, ts1)\DeclareUnicodeCharacter{00B3}{\textthreesuperior}
(
(
(
(
(
(
(

375 (all, t1,lyl)\DeclareUnicodeCharacter{00C0}{\@tabacckludge ‘ A}
376 (all, t1,lyl)\DeclareUnicodeCharacter{00C1}{\@tabacckludge’A}
377 (all, t1,lyl)\DeclareUnicodeCharacter{00C2}{\"A}
378 (all, t1,lyl)\DeclareUnicodeCharacter{00C3}{\~A}

16

379 (all, t1,lyl)\DeclareUnicodeCharacter{00C4}{\"A}

380 (all, t1, ot1, lyl)\DeclareUnicodeCharacter{00C5}{\r A}

381 (all, t1, otl, lyl,lcy)\DeclareUnicodeCharacter{00C6}{\AE}

382 (all, t1,lyl)\DeclareUnicodeCharacter{00C7}{\c C}

383 (all, t1,lyl)\DeclareUnicodeCharacter{00C8}{\@tabacckludge ‘E}
384 (all, t1,lyl)\DeclareUnicodeCharacter{00C9}{\@tabacckludge’E}
385 (all, t1,lyl)\DeclareUnicodeCharacter{00CA}{\"E}

386 (all, t1,lyl)\DeclareUnicodeCharacter{00CB}{\"E}

387 (all, t1,lyl)\DeclareUnicodeCharacter{00CC}{\@tabacckludge ‘ I}
388 (all, t1,lyl)\DeclareUnicodeCharacter{00CD}{\@tabacckludge’I}
389 (all, t1,lyl)\DeclareUnicodeCharacter{00CE}\ "I}

390 (all, t1,lyl)\DeclareUnicodeCharacter{00CF}{\"I}

391 (all, t1,lyl)\DeclareUnicodeCharacter{00DO}{\DH}

392 (all, t1,lyl)\DeclareUnicodeCharacter{00D1}{\“N}

393 (all, t1,lyl)\DeclareUnicodeCharacter{00D2}{\@tabacckludge ‘ 0}
394 (all, t1,lyl)\DeclareUnicodeCharacter{00D3}{\@tabacckludge’0}
395 (all, t1,lyl)\DeclareUnicodeCharacter{00D4}{\~0}

396 (all, t1,lyl)\DeclareUnicodeCharacter{00D5}{\~0}

397 (all, t1,lyl)\DeclareUnicodeCharacter{00D6}{\"0}

398 (all, ts1)\DeclareUnicodeCharacter{00D7}{\texttimes}

399 (all, t1, 0tl, lyl,lcy)\DeclareUnicodeCharacter{00D8}{\0}

400 (all, t1,lyl)\DeclareUnicodeCharacter{00D9}{\@tabacckludge ‘U}
401 (all, t1,lyl)\DeclareUnicodeCharacter{00DA}{\@tabacckludge’U}
402 (all, t1,lyl)\DeclareUnicodeCharacter{00DB}{\ U}

403 (all, t1,lyl)\DeclareUnicodeCharacter{00DC}{\"U}

404 (all, t1,lyl)\DeclareUnicodeCharacter{00DD}{\@tabacckludge’Y}

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
E
405 (all, t1,lyl)\DeclareUnicodeCharacter{0ODE}{\TH}
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

— ~— ~— ~— ~— ~—

406 (all, t1,0tl, lyl,lcy)\DeclareUnicodeCharacter{0ODF}{\ss}

407 (all, t1,lyl)\DeclareUnicodeCharacter{00EO}{\@tabacckludge ‘a}
408 (all, t1,lyl)\DeclareUnicodeCharacter{00E1}{\@tabacckludge’a}
409 (all, t1,lyl)\DeclareUnicodeCharacter{00E2}{\ ~a}

410 (all, t1,lyl)\DeclareUnicodeCharacter{00E3}{\~a}

411 (all, t1,lyl)\DeclareUnicodeCharacter{00E4}{\"a}

412 (all, t1,lyl)\DeclareUnicodeCharacter{00E5}{\r a}

413 (all, t1, 0tl, lyl,lcy)\DeclareUnicodeCharacter{00E6}{\ae}

414 (all, t1,lyl)\DeclareUnicodeCharacter{00E7}{\c c}

415 (all, t1,lyl)\DeclareUnicodeCharacter{00E8}{\@tabacckludge ‘e}
416 (all, t1,lyl)\DeclareUnicodeCharacter{00E9}{\@tabacckludge’e}
417 (all, t1,lyl)\DeclareUnicodeCharacter{00EA}{\ e}

418 (all, t1,lyl)\DeclareUnicodeCharacter{00EB}{\"e}

419 (all, t1, otl, lyl)\DeclareUnicodeCharacter{00EC}{\@tabacckludge ‘\i}
420 (all, t1, otl, lyl)\DeclareUnicodeCharacter{00ED}{\@tabacckludge’\i}
421 (all, t1, ot1, lyl)\DeclareUnicodeCharacter{0OEE}{\"\i}

422 (all, t1, 0tl, lyl)\DeclareUnicodeCharacter{O0EF}{\"\i}

423 (all, t1,lyl)\DeclareUnicodeCharacter{00F0}{\dh}

424 (all, t1,lyl)\DeclareUnicodeCharacter{00F1}{\ "n}

425 (all, t1,lyl)\DeclareUnicodeCharacter{00F2}{\@tabacckludge ‘ o}
426 (all, t1,lyl)\DeclareUnicodeCharacter{00F3}{\@tabacckludge’o}
427 (all, t1,lyl)\DeclareUnicodeCharacter{00F4}{\ o}

428 (all, t1,lyl)\DeclareUnicodeCharacter{00F5}{\~o}

429 (all, t1,lyl)\DeclareUnicodeCharacter{00F6}{\"o}

430 (all, ts1)\DeclareUnicodeCharacter{00F7}{\textdiv}

431 (all, t1, otl, lyl,lcy)\DeclareUnicodeCharacter{00F8}{\o}

432 (all, t1,lyl)\DeclareUnicodeCharacter{00F9}{\@tabacckludge ‘u}

17

433 (all, t1,lyl)\DeclareUnicodeCharacter{00FA}{\@tabacckludge’u}
434 (all, t1,lyl)\DeclareUnicodeCharacter{00FB}{\"u}
435 (all, t1,lyl)\DeclareUnicodeCharacter{00FC}{\"u}
436 (all, t1,lyl)\DeclareUnicodeCharacter{00FD}{\@tabacckludge’y}
437 (all, t1,lyl)\DeclareUnicodeCharacter{0O0FE}{\th}
438 (all, t1,1yl)\DeclareUnicodeCharacter{00FF}{\"y}
439 (all, t1)\DeclareUnicodeCharacter{0100}{\@tabacckludge=A}
440 (all, t1)\DeclareUnicodeCharacter{0101}{\@tabacckludge=a}
441 (all, t1)\DeclareUnicodeCharacter{0102}{\u A}
442 (all, t1)\DeclareUnicodeCharacter{0103}{\u a}
443 (all, t1)\DeclareUnicodeCharacter{0104}{\k A}
444 (all; t1)\DeclareUnicodeCharacter{0105}{\k a}
445 (all, t1)\DeclareUnicodeCharacter{0106}{\@tabacckludge’C}
446 (all, t1)\DeclareUnicodeCharacter{0107}{\@tabacckludge’c}
447 (all, t1)\DeclareUnicodeCharacter{0108}{\"C}
448 (all, t1)\DeclareUnicodeCharacter{0109}{\ "¢}
449 (all, t1)\DeclareUnicodeCharacter{010A}{\.C}
450 (all, t1)\DeclareUnicodeCharacter{010B}{\.c}
451 (all, t1)\DeclareUnicodeCharacter{010C}H{\v C}
452 (all, t1)\DeclareUnicodeCharacter{010D}{\v c}
453 (all, t1)\DeclareUnicodeCharacter{010E}{\v D}
454 (all, t1)\DeclareUnicodeCharacter{010F}{\v d}
455 (all, t1)\DeclareUnicodeCharacter{0110}{\DJ}
456 (all, t1)\DeclareUnicodeCharacter{0111}{\dj}
457 (all, t1)\DeclareUnicodeCharacter{0112}{\@tabacckludge=E}
458 (all, t1)\DeclareUnicodeCharacter{0113}{\@tabacckludge=e}
459 (all, t1)\DeclareUnicodeCharacter{0114}{\u E}
460 (all, t1)\DeclareUnicodeCharacter{0115}{\u e}
461 (all, t1)\DeclareUnicodeCharacter{0116}{\.E}
462 (all, t1)\DeclareUnicodeCharacter{0117}{\.e}
463 (all, t1)\DeclareUnicodeCharacter{0118}{\k E}
464 (all, t1)\DeclareUnicodeCharacter{0119}{\k e}
465 (all, t1)\DeclareUnicodeCharacter{011A}{\v E}
466 (all, t1)\DeclareUnicodeCharacter{011B}{\v e}
467 (all, t1)\DeclareUnicodeCharacter{011C}{\ "G}
468 (all, t1)\DeclareUnicodeCharacter{011D}{\ g}
469 (all, t1)\DeclareUnicodeCharacter{011E}{\u G}
470 (all, t1)\DeclareUnicodeCharacter{011F}{\u g}
471 (all, t1)\DeclareUnicodeCharacter{0120}{\.G}
472 (all, t1)\DeclareUnicodeCharacter{0121}{\.g}
473 (all, t1)\DeclareUnicodeCharacter{0122}{\c G}
474 (all, t1)\DeclareUnicodeCharacter{0123}{\c g2}
(all, t1)
(all, t1)
(all, t1)
(all, 1)
(all, t1)
(all, t1)
(all, t1)
(all, t1)
(all, t1)
(all, t1)
(
(

475 (all, t1)\DeclareUnicodeCharacter{0124}{\"H}
476 (all,t1)\DeclareUnicodeCharacter{0125}{\"h}
477 (all, t1)\DeclareUnicodeCharacter{0128}{\"I}

478 (all, t1)\DeclareUnicodeCharacter{0129}{\~"\i}
479 (all, t1)\DeclareUnicodeCharacter{012A}{\@tabacckludge=I}
480 (all, t1)\DeclareUnicodeCharacter{012B}{\@tabacckludge=\i}
481 (all, t1)\DeclareUnicodeCharacter{012C}{\u I}
482 (all, t1)\DeclareUnicodeCharacter{012D}{\u\i}
483 (all, t1)\DeclareUnicodeCharacter{012E}{\k I}

484 (all, t1)\DeclareUnicodeCharacter{012F}{\k i}
485 (all, t1)\DeclareUnicodeCharacter{0130}{\.I}
486 (all, t2c, t2b, t2a, t1, ot2, otl, lyl, Icy)\DeclareUnicodeCharacter{0131}{\i}

18

487 (all, t1)\DeclareUnicodeCharacter{0132}{\I1J}

488 (all, t1)\DeclareUnicodeCharacter{0133}{\ij}

489 (all, t1)\DeclareUnicodeCharacter{0134}{\"J}

490 (all, t1)\DeclareUnicodeCharacter{0135}{\"\j2}

491 (all, t1)\DeclareUnicodeCharacter{0136}{\c K}

492 (all, t1)\DeclareUnicodeCharacter{0137}{\c k}

493 (all, t1)\DeclareUnicodeCharacter{0139}{\@tabacckludge’L}
494 (all, t1)\DeclareUnicodeCharacter{013A}{\@tabacckludge’1}
495 (all, t1)\DeclareUnicodeCharacter{013B}{\c L}

496 (all, t1)\DeclareUnicodeCharacter{013C}{\c 1}

497 (all, t1)\DeclareUnicodeCharacter{013D}{\v L}

498 (all, t1)\DeclareUnicodeCharacter{013E}{\v 1}

499 (all, t1,0tl, lyl)\DeclareUnicodeCharacter{0141}{\L}

500 (all, t1, ot1, lyl)\DeclareUnicodeCharacter{0142}{\1}

501 (all, t1)\DeclareUnicodeCharacter{0143}{\@tabacckludge’N}
502 (all, t1)\DeclareUnicodeCharacter{0144}{\@tabacckludge’n}
503 (all,t1)\DeclareUnicodeCharacter{0145}{\c N}

504 (all,t1)\DeclareUnicodeCharacter{0146}{\c n}

505 (all, t1)\DeclareUnicodeCharacter{0147}{\v N}

506 (all,t1)\DeclareUnicodeCharacter{0148}{\v n}

507 (all, t1)\DeclareUnicodeCharacter{014A}{\NG}

508 (all, t1)\DeclareUnicodeCharacter{014B}{\ng}

509 (all, t1)\DeclareUnicodeCharacter{014C}{\@tabacckludge=0}
510 (all,t1)\DeclareUnicodeCharacter{014D}{\@tabacckludge=0}
511 (all, t1)\DeclareUnicodeCharacter{014E}{\u 0}

512 (all, t1)\DeclareUnicodeCharacter{014F}{\u o}

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
E
513 (all, t1)\DeclareUnicodeCharacter{0150}{\H 0%}
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

e e~ ~—— ~— ~— ~—— ~— ~— ~— ~— ~—

514 (all, t1)\DeclareUnicodeCharacter{0151}{\H o}

515 (all, t1, otl, lyl, lcy)\DeclareUnicodeCharacter{0152}{\0E}

516 (all, t1,otl, lyl,lcy)\DeclareUnicodeCharacter{0153}{\oe}

517 (all, t1)\DeclareUnicodeCharacter{0154}{\@tabacckludge’R}
\DeclareUnicodeCharacter{0155}{\@tabacckludge’r}
\DeclareUnicodeCharacter{0156}{\c R}
\DeclareUnicodeCharacter{0157}{\c r}
\DeclareUnicodeCharacter{0158}{\v R}
\DeclareUnicodeCharacter{0159}{\v r}
\DeclareUnicodeCharacter{015A}{\@tabacckludge’S}
\DeclareUnicodeCharacter{015B}{\@tabacckludge’s}
\DeclareUnicodeCharacter{015C}{\"S}

526 (all,t1)\DeclareUnicodeCharacter{015D}{\ s}

527 (all, t1)\DeclareUnicodeCharacter{015E}{\c S}

528 (all, t1)\DeclareUnicodeCharacter{015F}{\c s}

529 (all, t1,lyl)\DeclareUnicodeCharacter{0160}{\v S}

530 (all, t1,lyl)\DeclareUnicodeCharacter{0161}{\v s}

531 (all, t1)\DeclareUnicodeCharacter{0162}{\c T2}

518 (all, t1
519 (all, t1
520 (all, t1
521 (all, t1
522 (all, t1
523 (all, tl
524 (all, t1
525 (all, t1

e~~~ ~— ~— ~— ~— ~—

532 (all, t1)\DeclareUnicodeCharacter{0163}{\c t}

533 (all, t1)\DeclareUnicodeCharacter{0164}{\v T}

534 (all, t1)\DeclareUnicodeCharacter{0165}{\v t}

535 (all, t1)\DeclareUnicodeCharacter{0168}{\"U}

536 (all, t1)\DeclareUnicodeCharacter{0169}{\ u}

537 (all, t1)\DeclareUnicodeCharacter{016A}{\@tabacckludge=U}
538 (all, t1)\DeclareUnicodeCharacter{016B}{\@tabacckludge=u}
539 (all, t1)\DeclareUnicodeCharacter{016C}{\u U}

540 (all, t1)\DeclareUnicodeCharacter{016D}{\u u}

19

541 (all, t1)\DeclareUnicodeCharacter{016E}{\r U}
542 (all, t1)\DeclareUnicodeCharacter{016F}{\r u}
543 (all, t1)\DeclareUnicodeCharacter{0170}{\H U}
544 (all, t1)\DeclareUnicodeCharacter{0171}{\H u}
545 (all, t1)\DeclareUnicodeCharacter{0172}{\k U}
546 (all, t1)\DeclareUnicodeCharacter{0173}{\k u}

547 (all, t1, ot1, lyl)\DeclareUnicodeCharacter{0174}{\ "W}
548 (all, t1, otl, lyl)\DeclareUnicodeCharacter{0175}{\ " w}
549 (all, t1,otl, lyl)\DeclareUnicodeCharacter{0176}{\ Y}

550 (all, t1, ot1, lyl)\DeclareUnicodeCharacter{0177}{\"y}
551 (all, t1,lyl)\DeclareUnicodeCharacter{0178}{\"Y}

552 (all, t1)\DeclareUnicodeCharacter{0179}{\@tabacckludge’Z}
553 (all, t1)\DeclareUnicodeCharacter{017A}{\@tabacckludge’z}
554 (all, t1)\DeclareUnicodeCharacter{017B}{\.Z}

555 (all, t1)\DeclareUnicodeCharacter{017C}{\.z}
556 (all, t1,lyl)\DeclareUnicodeCharacter{017D}{\v Z}
557 (all, t1,lyl)\DeclareUnicodeCharacter{017E}{\v z}
558 (all, ts1, lyl)\DeclareUnicodeCharacter{0192}{\textflorin}

559 (all, t1)\DeclareUnicodeCharacter{01C4}{D\v Z}
560 (all, t1)\DeclareUnicodeCharacter{01C5}{D\v z}
561 (all,t1)\DeclareUnicodeCharacter{01C6}{d\v z}
562 (all, t1)\DeclareUnicodeCharacter{01C7}{LJ}
563 (all, t1)\DeclareUnicodeCharacter{01C8}{Lj}
564 (all, t1)\DeclareUnicodeCharacter{01C9}{1j}
565 (all, t1)\DeclareUnicodeCharacter{01CA}{NJ}
566 (all,t1)\DeclareUnicodeCharacter{01CB}{Nj}
567 (all, t1)\DeclareUnicodeCharacter{01CC}{nj}

(

(

(

(

(

(

(

(

(

(

(

(all, t1)

(all, 1)

(all, t1)

(all, t1)

(all, £1)

(all, t1)

(all, t1)

(all, t1)

568 (all, t1)\DeclareUnicodeCharacter{01CD}{\v A}

569 (all, t1)\DeclareUnicodeCharacter{01CE}{\v a}

570 (all, t1)\DeclareUnicodeCharacter{01CF}{\v I}

571 (all, t1)\DeclareUnicodeCharacter{01DO}{\v \i}

572 (all, t1)\DeclareUnicodeCharacter{01D1}{\v 0}

573 (all, t1)\DeclareUnicodeCharacter{01D2}{\v o}

574 (all, t1)\DeclareUnicodeCharacter{01D3}{\v U}

575 (all, t1)\DeclareUnicodeCharacter{01D4}{\v u}

576 (all, t1)\DeclareUnicodeCharacter{01E2}{\@tabacckludge=\AE}

577 (all, t1)\DeclareUnicodeCharacter{01E3}{\@tabacckludge=\ae}

578 (all, t1)\DeclareUnicodeCharacter{01E6}{\v G}

579 (all, t1)\DeclareUnicodeCharacter{01E7}{\v g}

580 (all, t1)\DeclareUnicodeCharacter{01E8}{\v K}

581 (all, t1)\DeclareUnicodeCharacter{01E9}{\v k}

582 (all, t1)\DeclareUnicodeCharacter{01EA}{\k 0%}

583 (all, t1)\DeclareUnicodeCharacter{01EB}{\k o}

584 (all, t1)\DeclareUnicodeCharacter{01FO}{\v\j}

585 (all, t1)\DeclareUnicodeCharacter{01F4}{\@tabacckludge’G}

586 (all, t1)\DeclareUnicodeCharacter{01F5}{\@tabacckludge’g}
(
(
(
(
(
(

587 (all, t1, otl, lyl)\DeclareUnicodeCharacter{0218}{\textcommabelow
588 (all, t1,otl, lyl)\DeclareUnicodeCharacter{0219}{\textcommabelow
589 (all, t1,otl, lyl)\DeclareUnicodeCharacter{021A}{\textcommabelow
590 (all, t1, 0tl, lyl)\DeclareUnicodeCharacter{021B}{\textcommabelow

591
592

all, t1)\DeclareUnicodeCharacter{0232}{\@tabacckludge=Y}
all, t1)\DeclareUnicodeCharacter{0233}{\@tabacckludge=y}

20

593 (all, t2c, t2b, t2a, t1, ot2, otl, lyl, Icy)\DeclareUnicodeCharacter{0237}{\j}
594 (all, lyl, utf8)\DeclareUnicodeCharacter{02C6}{\textasciicircum}

595 (all, ts1)\DeclareUnicodeCharacter{02C7}{\textasciicaron}

596 (all, lyl, utf8)\DeclareUnicodeCharacter{02DC}{\textasciitilde}

597 (all, ts1)\DeclareUnicodeCharacter{02D8}{\textasciibreve}

598 (all, t1)\DeclareUnicodeCharacter{02D9}{\.{}}

599 (all, t1)\DeclareUnicodeCharacter{02DB}{\k{}2}

600 (all, ts1)\DeclareUnicodeCharacter{02DD}{\textacutedbl}

The Cyrillic code points have been recently checked (2007) and extended and
corrected by Matthias Noe (2a9931078@unet.univie.ac.at) — thanks.

601 (*all, x2, t2c, t2b, t2a, ot2, Icy)

602 \DeclareUnicodeCharacter{0400}{\@tabacckludge ‘\CYRE}

603 (/all, x2, t2¢, t2b, t2a, ot2, lcy)

604 (all,x2, t2c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{0401}{\CYRYO}
605 (all,x2, t2a, ot2)\DeclareUnicodeCharacter{0402}{\CYRDJE}

606 (*all, x2, t2¢, t2b, t2a, ot2, lcy)

607 \DeclareUnicodeCharacter{0403}{\@tabacckludge’\CYRG}

608 (/all, x2,t2c, t2b, t2a, ot2, Icy)

609 (all,x2,t2a, ot2, Icy)\DeclareUnicodeCharacter{0404}{\CYRIE}

610 (all,x2, t2c, t2b, t2a, ot2)\DeclareUnicodeCharacter{0405}{\CYRDZE}
611 (all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{0406}{\CYRII}
612 (all, x2, t2a, lcy)\DeclareUnicodeCharacter{0407}{\CYRYI}

613 (all,x2, t2c, t2b, t2a, ot2)\DeclareUnicodeCharacter{0408}{\CYRJE}
614 (all, x2, t2b, t2a, ot2)\DeclareUnicodeCharacter{0409}{\CYRLJE}
615 (all, x2,t2b, t2a, ot2)\DeclareUnicodeCharacter{040A}{\CYRNJE}
616 (all,x2, t2a, ot2)\DeclareUnicodeCharacter{040B}{\CYRTSHE}

617 (xall, x2, t2c, t2b, t2a, ot2, Icy)

618 \DeclareUnicodeCharacter{040C}{\@tabacckludge’\CYRK}

619 \DeclareUnicodeCharacter{040D}{\@tabacckludge ‘\CYRI}

620 (/all, x2,t2c, t2b, t2a, ot2, Icy)

621 (all,x2,t2b, t2a, Icy)\DeclareUnicodeCharacter{040E}{\CYRUSHRT}
622 (all,x2, t2c, t2a, ot2)\DeclareUnicodeCharacter{040F}{\CYRDZHE}
623 (xall, x2, t2c, t2b, t2a, ot2, Icy)

624 \DeclareUnicodeCharacter{0410}{\CYRA}

625 \DeclareUnicodeCharacter{0411}{\CYRB}

626 \DeclareUnicodeCharacter{0412}{\CYRV}

627 \DeclareUnicodeCharacter{0413}{\CYRG}

628 \DeclareUnicodeCharacter{0414}{\CYRD}

629 \DeclareUnicodeCharacter{0415}{\CYRE}

630 \DeclareUnicodeCharacter{0416}{\CYRZH}

631 \DeclareUnicodeCharacter{0417}{\CYRZ}

632 \DeclareUnicodeCharacter{0418}{\CYRI}

633 \DeclareUnicodeCharacter{0419}{\CYRISHRT}

634 \DeclareUnicodeCharacter{041A}{\CYRK}

635 \DeclareUnicodeCharacter{041B}{\CYRL}

636 \DeclareUnicodeCharacter{041C}{\CYRM}

637 \DeclareUnicodeCharacter{041D}{\CYRN}

638 \DeclareUnicodeCharacter{041E}{\CYRO}

639 \DeclareUnicodeCharacter{041F}{\CYRP}

640 \DeclareUnicodeCharacter{0420}{\CYRR}

641 \DeclareUnicodeCharacter{0421}{\CYRS}

642 \DeclareUnicodeCharacter{0422}{\CYRT}

643 \DeclareUnicodeCharacter{0423}{\CYRU}

o~~~ o~~~ o~

21

644 \DeclareUnicodeCharacter{0424}{\CYRF}

645 \DeclareUnicodeCharacter{0425}{\CYRH}

646 \DeclareUnicodeCharacter{0426}{\CYRC}

647 \DeclareUnicodeCharacter{0427}{\CYRCH}

648 \DeclareUnicodeCharacter{0428}{\CYRSH}

649 \DeclareUnicodeCharacter{0429}{\CYRSHCH}

650 \DeclareUnicodeCharacter{042A}{\CYRHRDSN}

651 \DeclareUnicodeCharacter{042B}{\CYRERY}

652 \DeclareUnicodeCharacter{042C}{\CYRSFTSN}

653 \DeclareUnicodeCharacter{042D}{\CYREREV}

654 \DeclareUnicodeCharacter{042E}{\CYRYU}

655 \DeclareUnicodeCharacter{042F}{\CYRYA}

656 \DeclareUnicodeCharacter{0430}{\cyral}

657 \DeclareUnicodeCharacter{0431}{\cyrb}

658 \DeclareUnicodeCharacter{0432}{\cyrv}

659 \DeclareUnicodeCharacter{0433}{\cyrg}

660 \DeclareUnicodeCharacter{0434}{\cyrd}

661 \DeclareUnicodeCharacter{0435}{\cyre}

662 \DeclareUnicodeCharacter{0436}{\cyrzh}

663 \DeclareUnicodeCharacter{0437}{\cyrz}

664 \DeclareUnicodeCharacter{0438}{\cyri}

665 \DeclareUnicodeCharacter{0439}{\cyrishrt}

666 \DeclareUnicodeCharacter{043A}{\cyrk}

667 \DeclareUnicodeCharacter{043B}{\cyrl}

668 \DeclareUnicodeCharacter{043C}{ \cyrm}

669 \DeclareUnicodeCharacter{043D}{\cyrn}

670 \DeclareUnicodeCharacter{043E}{\cyro}

671 \DeclareUnicodeCharacter{043F}{\cyrp}

672 \DeclareUnicodeCharacter{0440}{\cyrr}

673 \DeclareUnicodeCharacter{0441}{\cyrs}

674 \DeclareUnicodeCharacter{0442}{\cyrt}

675 \DeclareUnicodeCharacter{0443}{\cyru}

676 \DeclareUnicodeCharacter{0444}{\cyrf}

677 \DeclareUnicodeCharacter{0445}{\cyrh}

678 \DeclareUnicodeCharacter{0446}{\cyrc}

679 \DeclareUnicodeCharacter{0447}{\cyrch}

680 \DeclareUnicodeCharacter{0448}{\cyrsh}

681 \DeclareUnicodeCharacter{0449}{\cyrshch}

682 \DeclareUnicodeCharacter{044A}{\cyrhrdsn}

683 \DeclareUnicodeCharacter{044B}{\cyrery}

684 \DeclareUnicodeCharacter{044C}{\cyrsftsn}

685 \DeclareUnicodeCharacter{044D}{\cyrerev}

686 \DeclareUnicodeCharacter{044E}{\cyryu}

687 \DeclareUnicodeCharacter{044F}{\cyrya}

688 \DeclareUnicodeCharacter{0450}{\@tabacckludge ‘\cyre}
689 \DeclareUnicodeCharacter{0451}{\cyryo}

690 (/all, x2,t2¢, t2b, t2a, ot2, lcy)

691 (all,x2, t2a, ot2)\DeclareUnicodeCharacter{0452}{\cyrdje}
692 (xall, x2,t2c, t2b, t2a, ot2, Icy)

693 \DeclareUnicodeCharacter{0453}{\@tabacckludge’\cyrg}
694 (/all, x2, t2c, t2b, t2a, ot2, Icy)

695 (all, x2, t2a, ot2, Icy) \DeclareUnicodeCharacter{0454}{\cyrie}
696 (all, x2, t2c, t2b, t2a, ot2)\DeclareUnicodeCharacter{0455}{\cyrdze}
697 (all,x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{0456}{\cyrii}

22

698 (all,x2, t2a, Icy)\DeclareUnicodeCharacter{0457}{\cyryi}

699 (all, x2, t2¢, t2b, t2a, ot2)\DeclareUnicodeCharacter{0458}{\cyrje}
700 (all,x2, t2b, t2a, ot2)\DeclareUnicodeCharacter{0459}{\cyrlje}
701 (all,x2, t2b, t2a, ot2)\DeclareUnicodeCharacter{045A}{\cyrnje}
702 (all, x2, t2a, ot2)\DeclareUnicodeCharacter{045B}{\cyrtshe}

703 (xall,x2, t2c, t2b, t2a, ot2, Icy)

704 \DeclareUnicodeCharacter{045C}{\@tabacckludge’\cyrk}

705 \DeclareUnicodeCharacter{045D}{\@tabacckludge ‘\cyri}

706 (/all,x2,t2c, t2b, t2a, ot2, Icy)

707 (all,x2, t2b, t2a, Icy)\DeclareUnicodeCharacter{045E}{\cyrushrt}
708 (all, x2, t2¢, t2a, ot2)\DeclareUnicodeCharacter{045F}{\cyrdzhe}
709 (all, x2, ot2)\DeclareUnicodeCharacter{0462}{\CYRYAT?}

710 (all,x2, ot2)\DeclareUnicodeCharacter{0463}{\cyryat}

711 (all, x2)\DeclareUnicodeCharacter{046A}{\CYRBYUS}

712 (all,x2)\DeclareUnicodeCharacter{046B}{\cyrbyus}

The next two declarations are questionable, the encoding definition should proba-
bly contain \CYROTLD and \cyrotld. Or alternatively, if the characters in the X2
encodings are really meant to represent the historical characters in Ux0472 and
Ux0473 (they look like them) then they would need to change instead.

However, their looks are probably a font designers decision and the next two
mappings are wrong or rather the names in OT2 should change for consistency.

On the other hand the names \CYROTLD are somewhat questionable as the
Unicode standard only describes “Cyrillic barred O” while TLD refers to a tilde
(which is more less what the “Cyrillic FITA looks according to the Unicode book).

713 (all, ot2)\DeclareUnicodeCharacter{0472}{\CYRFITA}
714 (all, ot2)\DeclareUnicodeCharacter{0473}{\cyrfita}

715 (all, x2, ot2)\DeclareUnicodeCharacter{0474}{\CYRIZH}
716 (all,x2, ot2)\DeclareUnicodeCharacter{0475}{\cyrizh}

While the double grave accent seems to exist in X2, T2A, T2B and T2C encoding,
the letter izhitsa exists only in X2 and OT2. Therefore, izhitsa with double grave
seems to be possible only using X2.

717 (all,x2)\DeclareUnicodeCharacter{0476}{\C\CYRIZH}
718 (all,x2)\DeclareUnicodeCharacter{0477}{\C\cyrizh}

(
719 (all, t2c)\DeclareUnicodeCharacter{048C}{\CYRSEMISFTSN}

720 (all, t2c)\DeclareUnicodeCharacter{048D}{\cyrsemisftsn}

721 (all, t2c)\DeclareUnicodeCharacter{048E}{\CYRRTICK}

722 (all, t2c)\DeclareUnicodeCharacter{048F}{\cyrrtick}

723 (all,x2, t2a, Icy)\DeclareUnicodeCharacter{0490}{\CYRGUP}

724 (all, x2, t2a, Icy)\DeclareUnicodeCharacter{0491}{\cyrgup?}

725 (all,x2, t2b, t2a)\DeclareUnicodeCharacter{0492}{\CYRGHCRS}
726 (all,x2, t2b, t2a)\DeclareUnicodeCharacter{0493}{\cyrghcrs}
727 (all, x2, t2¢, t2b)\DeclareUnicodeCharacter{0494}{\CYRGHK}

728 (all,x2, t2c, t2b)\DeclareUnicodeCharacter{0495}{\cyrghk}

729 (all,x2, t2b, t2a)\DeclareUnicodeCharacter{0496}{\CYRZHDSC}
730 (all, x2, t2b, t2a)\DeclareUnicodeCharacter{0497}{\cyrzhdsc}
731 (all, x2, t2a)\DeclareUnicodeCharacter{0498}{\CYRZDSC}

732 (all,x2, t2a)\DeclareUnicodeCharacter{0499}{\cyrzdsc}

733 (all,x2, t2¢, t2b, t2a)\DeclareUnicodeCharacter{049A}{\CYRKDSC}
734 (all, x2, t2¢, t2b, t2a)\DeclareUnicodeCharacter{049B}{\cyrkdsc}
735 (all, x2, t2a) \DeclareUnicodeCharacter{049C}{\CYRKVCRS}

736 (all,x2, t2a)\DeclareUnicodeCharacter{049D}{\cyrkvcrs}

23

737 (all, x2, t2c)\DeclareUnicodeCharacter{049E}{\CYRKHCRS}
738 (all, x2,t2c)\DeclareUnicodeCharacter{049F}{\cyrkhcrs}
739 (all, x2, t2a)\DeclareUnicodeCharacter{04A0}{\CYRKBEAK}
740 (all,x2, t2a)\DeclareUnicodeCharacter{04A1}{\cyrkbeak}
741 (all, x2, t2¢, t2b, t2a)\DeclareUnicodeCharacter{04A2}{\CYRNDSC}
742 (all, x2, t2¢, t2b, t2a)\DeclareUnicodeCharacter{04A3}{\cyrndsc}
743 (all,x2, t2b, t2a)\DeclareUnicodeCharacter{04A4}{\CYRNG}
744 (all, x2,t2b, t2a)\DeclareUnicodeCharacter{04A5}{\cyrng}
745 (all, x2, t2c)\DeclareUnicodeCharacter{04A6}{\CYRPHK}
746 (all,x2, t2c)\DeclareUnicodeCharacter{04A7}{\cyrphk}
747 (all, x2,t2c)\DeclareUnicodeCharacter{04A8}{\CYRABHHA}
748 (all, x2, t2c)\DeclareUnicodeCharacter{04A9}{\cyrabhha}
749 (all,x2, t2a)\DeclareUnicodeCharacter{04AA}{\CYRSDSC}
750 (all, x2, t2a)\DeclareUnicodeCharacter{04AB}{\cyrsdsc}
751 (all, x2, t2c)\DeclareUnicodeCharacter{04AC}{\CYRTDSC}
752 (all,x2, t2c)\DeclareUnicodeCharacter{04AD}{\cyrtdsc}
753 (all, x2, t2b, t2a)\DeclareUnicodeCharacter{04AE}{\CYRY}
754 (all,x2, t2b, t2a)\DeclareUnicodeCharacter{04AF}{\cyry?}

755 (all,x2, t2a)\DeclareUnicodeCharacter{04BO}{\CYRYHCRS}

756 (all, x2, t2a)\DeclareUnicodeCharacter{04B1}{\cyryhcrs}

757 (all,x2, t2¢c, t2b, t2a)\DeclareUnicodeCharacter{04B2}{\CYRHDSC}
758 (all,x2, t2¢c, t2b, t2a)\DeclareUnicodeCharacter{04B3}{\cyrhdsc}
759 (all, x2, t2c)\DeclareUnicodeCharacter{04B4}{\CYRTETSE}

760 (all, x2,t2c)\DeclareUnicodeCharacter{04B5}{\cyrtetse}

761 (all,x2, t2¢c, t2b, t2a)\DeclareUnicodeCharacter{04B6}{\CYRCHRDSC}
762 (all,x2, t2¢, t2b, t2a)\DeclareUnicodeCharacter{04B7}{\cyrchrdsc}
763 (all, x2, t2a)\DeclareUnicodeCharacter{04B8}{\CYRCHVCRS}

764 (all,x2, t2a)\DeclareUnicodeCharacter{04B9}{\cyrchvcrs}

765 (all, x2, t2¢, t2b, t2a)\DeclareUnicodeCharacter{04BA}{\CYRSHHA}
766 (all,x2, t2c, t2b, t2a)\DeclareUnicodeCharacter{04BB}{\cyrshha}
767 (all,x2, t2c)\DeclareUnicodeCharacter{04BC}{\CYRABHCH}

768 (all,x2, t2c)\DeclareUnicodeCharacter{04BD}{\cyrabhch}

769 (all,x2, t2c)\DeclareUnicodeCharacter{04BE}{\CYRABHCHDSC}

770 (all,x2, t2c)\DeclareUnicodeCharacter{04BF}{\cyrabhchdsc}

The character \CYRpalochka is not defined by OT2 and LCY. However it is looking
identical to \CYRII and the Unicode standard explicitly refers to that (and to Latin
I). So perhaps those encodings could get an alias? On the other hand, why are
there two distinct slots in the T2 encodings even though they are so pressed for
space? Perhaps they don’t always look alike.

771 (all, x2, t2¢, t2b, t2a)\DeclareUnicodeCharacter{04C0}{\CYRpalochka}
772 (all,x2, t2¢, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04C1}{\U\CYRZH}
773 (all, x2, t2¢c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04C2}{\U\cyrzh}

774 (all, x2, t2b)\DeclareUnicodeCharacter{04C3}{\CYRKHK}
775 (all,x2, t2b)\DeclareUnicodeCharacter{04C4}{\cyrkhk}

According to the Unicode standard Ux04C5 should be an L with “tail” not with
descender (which also exists as Ux04A2) but it looks as if the char names do not
make this distinction. Should they?

776 (all,x2, t2¢, t2b)\DeclareUnicodeCharacter{04C5}{\CYRLDSC}
777 (all, x2,t2c, t2b)\DeclareUnicodeCharacter{04C6}{\cyrldsc}

()
778 (all, x2, t2¢c, t2b)\DeclareUnicodeCharacter{04C7}{\CYRNHK}
779 (all,x2, t2¢, t2b)\DeclareUnicodeCharacter{04C8}{\cyrnhk}

24

780 (all,x2, t2b)\DeclareUnicodeCharacter{04CB}{\CYRCHLDSC}
781 (all, x2, t2b)\DeclareUnicodeCharacter{04CC}{\cyrchldsc}

According to the Unicode standard Ux04CD should be an M with “tail” not
with descender. However this time there is no M with descender in the Unicode
standard.

782 (all,x2, t2c)\DeclareUnicodeCharacter{04CD}{\CYRMDSC}
783 (all, x2, t2c)\DeclareUnicodeCharacter{04CE}{\cyrmdsc}

(

784 (all, x2, t2¢c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04DO}{\U\CYRA}
785 (all, x2, t2¢, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04D1}{\U\cyra}
786 (all,x2, t2c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04D2}{\"\CYRA}
787 (all, x2, t2¢, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04D3}{\"\cyra}
788 (all, x2, t2a)\DeclareUnicodeCharacter{04D4}{\CYRAE}

789 (all, x2, t2a)\DeclareUnicodeCharacter{04D5}{\cyrae}

790 (all,x2, t2¢, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04D6}{\U\CYRE}
791 (all, x2, t2¢, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04D7}{\U\cyre}
792 (all,x2, t2¢c, t2b, t2a)\DeclareUnicodeCharacter{04D8}{\CYRSCHWA}

793 (all,x2, t2¢c, t2b, t2a)\DeclareUnicodeCharacter{04D9}{\cyrschwa}

794 (all, x2, t2¢, t2b, t2a)\DeclareUnicodeCharacter{04DA}{\"\CYRSCHWA}
795 (all,x2, t2¢c, t2b, t2a)\DeclareUnicodeCharacter{04DB}{\"\cyrschwa}
796 (all,x2, t2c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04DC}{\"\CYRZH}
797 (all, x2, t2¢, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04DD}{\"\cyrzh}
798 (all,x2, t2¢c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04DE}{\"\CYRZ}
799 (all, x2, t2¢c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04DF}{\"\cyrz}
800 (all, x2, t2¢, t2b)\DeclareUnicodeCharacter{04E0}{\CYRABHDZE}

801 (all,x2, t2c, t2b)\DeclareUnicodeCharacter{04E1}{\cyrabhdze}

802 (all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04E2}{\@tabacckludge=\CYRI}
803 (all, x2, t2¢, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04E3}{\@tabacckludge=\cyri}
804 (all,x2, t2¢, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04E4}{\"\CYRI}
805 (all,x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04E5}{\"\cyri}
806 (all, x2, t2¢, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04E6}{\"\CYRO}
807 (all, x2, t2¢, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04E7}{\"\cyro}

808 (all,x2, t2c, t2b, t2a)\DeclareUnicodeCharacter{04E8}{\CYROTLD}

809 (all, x2, t2c, t2b, t2a)\DeclareUnicodeCharacter{04E9}{\cyrot1d}

810 (all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04EC}{\"\CYREREV}

811 (all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04ED}{\"\cyrerev}

812 (all, x2, t2¢, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04EE}{\@tabacckludge=\CYRU}
813 (all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04EF}{\@tabacckludge=\cyru}
814 (all,x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04F0}{\"\CYRU}

815 (all, x2, t2¢, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04F1}{\"\cyru}

816 (all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04F2}{\H\CYRU}

817 (all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04F3}{\H\cyru}

818 (all, x2, t2¢, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04F4}{\"\CYRCH}

819 (all,x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04F5}{\"\cyrch}

820 (all, x2, t2b)\DeclareUnicodeCharacter{04F6}{\CYRGDSC}

821 (all, x2, t2b)\DeclareUnicodeCharacter{04F7}{\cyrgdsc}

822 (all,x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04F8}{\"\CYRERY}

823 (all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04F9}{\"\cyrery}

824 (all, t2b)\DeclareUnicodeCharacter{04FA}{\CYRGDSCHCRS}

825 (all, t2b)\DeclareUnicodeCharacter{04FB}{\cyrgdschcrs}

826 (all, x2, t2b)\DeclareUnicodeCharacter{04FC}{\CYRHHK}

827 (all, x2, t2b)\DeclareUnicodeCharacter{04FD}{\cyrhhk}

828 (all, t2b)\DeclareUnicodeCharacter{04FE}{\CYRHHCRS}

829 (all, t2b)\DeclareUnicodeCharacter{04FF}{\cyrhhcrs}

25

830 (all, ts1)\DeclareUnicodeCharacter{OE3F}{\textbaht}
831 (all, t1)\DeclareUnicodeCharacter{1E02}{\.B}
832 (all, t1)\DeclareUnicodeCharacter{1E03}{\.b}

833 (all, t1)\DeclareUnicodeCharacter{1EOD}{\d d}

834 (all, t1)\DeclareUnicodeCharacter{1E1E}{\.F}

835 (all, t1)\DeclareUnicodeCharacter{l1E1F}{\.f}

836 (all,t1)\DeclareUnicodeCharacter{1E25}{\d h}

837 (all,t1)\DeclareUnicodeCharacter{1E30}{\@tabacckludge’K}

(

(

(all, 1)

(all, 1)

(all, t1)

(all, t1)

(all, t1)

(all, t1)

838 (all, t1)\DeclareUnicodeCharacter{1E31}{\@tabacckludge’k}

839 (all, t1)\DeclareUnicodeCharacter{1E37}{\d 1}

840 (all, t1)\DeclareUnicodeCharacter{1E8E}{\.Y}

841 (all, t1)\DeclareUnicodeCharacter{1E8F}{\.y}

842 (all, t1)\DeclareUnicodeCharacter{1E43}{\d m}

843 (all, t1)\DeclareUnicodeCharacter{1E45}{\.n}

844 (all, t1)\DeclareUnicodeCharacter{1E47}{\d n}

845 (all, t1)\DeclareUnicodeCharacter{1E5B}{\d r}

846 (all, t1)\DeclareUnicodeCharacter{1E63}{\d s}

847 (all, t1)\DeclareUnicodeCharacter{1E6D}{\d t}

848 (all, t1)\DeclareUnicodeCharacter{1E90}{\"Z}

849 (all, t1)\DeclareUnicodeCharacter{1E91}{\ "z}

850 (all, t1)\DeclareUnicodeCharacter{1E9E}{\SS}

851 (all, t1)\DeclareUnicodeCharacter{1EF2}{\@tabacckludge ‘Y}

852 (all, t1)\DeclareUnicodeCharacter{1EF3}{\@tabacckludge ‘y}
(
(

853 (all, x2, t2¢, t2b, t2a, t1, utf8) \DeclareUnicodeCharacter{200C}{\textcompwordmark}

854 (all, t1)\DeclareUnicodeCharacter{2010}{-}
855 (all, t1)\DeclareUnicodeCharacter{2011}{\mbox{-}}

U+2012 should be the width of a digit, endash is OK in many fonts including cm.

856 (all, t1)\DeclareUnicodeCharacter{2012}{\textendash}
857 (xall, x2, t2¢, t2b, t2a, t1, ot2, otl, lyl, lcy)

858 \DeclareUnicodeCharacter{2013}{\textendash}

859 \DeclareUnicodeCharacter{2014}{\textemdash}

U+2015 is Horizontal bar

860 (all, t1) \DeclareUnicodeCharacter{2015}{\textemdash}

861 (/all,x2, t2¢, t2b, t2a, t1, ot2, otl, lyl, lcy)

862 (all, ts1)\DeclareUnicodeCharacter{2016}{\textbardbl}

863 (xall, x2, t2¢, t2b, t2a, t1, ot2, otl, lcy)

864 \DeclareUnicodeCharacter{2018}{\textquoteleft}

865 \DeclareUnicodeCharacter{2019}{\textquoteright}

866 (/all,x2, t2c, t2b, t2a, t1, ot2, otl, lcy)

867 (all, t1)\DeclareUnicodeCharacter{201A}{\quotesinglbase}

868 (xall, x2,t2¢, t2b, t2a, t1, ot2, otl, lyl, lcy)

869 \DeclareUnicodeCharacter{201C}{\textquotedblleft}

870 \DeclareUnicodeCharacter{201D}{\textquotedblright}

871 (/all, x2,t2¢, t2b, t2a, t1, ot2, otl, lyl, lcy)

872 (all, x2, t2c, t2b, t2a, t1, lcy)\DeclareUnicodeCharacter{201E}{\quotedblbase}
873 (all, ts1, oms, lyl)\DeclareUnicodeCharacter{2020}{\textdagger}
874 (all, ts1, oms, lyl)\DeclareUnicodeCharacter{2021}{\textdaggerdbl}
875 (all, ts1, oms, lyl)\DeclareUnicodeCharacter{2022}{\textbullet}
876 (all, lyl, utf8)\DeclareUnicodeCharacter{2026}{\textellipsis}

877 (*all, x2, ts1, t2¢, t2b, t2a, t1, lyl)

878 \DeclareUnicodeCharacter{2030}{\textperthousand}

879 (/all,x2, tsl, t2¢, t2b, t2a, t1, ly1)

26

880 (xall,x2, ts1, t2c, t2b, t2a, t1)
881 \DeclareUnicodeCharacter{2031}{\textpertenthousand}
882 (/all,x2, ts1, t2c, t2b, t2a, t1)
883 (all, t1,lyl)\DeclareUnicodeCharacter{2039}{\guilsinglleft}
884 (all, t1,lyl)\DeclareUnicodeCharacter{203A}{\guilsinglright}
885 (all, ts1)\DeclareUnicodeCharacter{203B}{\textreferencemark}
886 (all, ts1)\DeclareUnicodeCharacter{203D}{\textinterrobang}
887 (all, ts1)\DeclareUnicodeCharacter{2044}{\textfractionsolidus}
888 (all, ts1)\DeclareUnicodeCharacter{204E}{\textasteriskcentered}
889 (all, ts1)\DeclareUnicodeCharacter{2052}{\textdiscount}
890 (all, ts1)\DeclareUnicodeCharacter{20A1}{\textcolonmonetary}
891 (all, ts1)\DeclareUnicodeCharacter{20A4}{\textlira}
892 (all, ts1)\DeclareUnicodeCharacter{20A6}{\textnaira}
893 (all, ts1)\DeclareUnicodeCharacter{20A9}{\textwon}
894 (all, ts1)\DeclareUnicodeCharacter{20AB}{\textdong}
895 (all, ts1)\DeclareUnicodeCharacter{20AC}{\texteuro}
896 (all, ts1)\DeclareUnicodeCharacter{20B1}{\textpeso}
897 (all, ts1)\DeclareUnicodeCharacter{2103}{\textcelsius}
898 (all,x2, ts1,t2¢, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{2116}{\textnumero}
899 (all, ts1)\DeclareUnicodeCharacter{2117}{\textcircledP}
900 (all, ts1)\DeclareUnicodeCharacter{211E}{\textrecipe}
901 (all, ts1)\DeclareUnicodeCharacter{2120}{\textservicemark}
902 (all, ts1, lyl, utf8)\DeclareUnicodeCharacter{2122}{\texttrademark}
903 (all, ts1)\DeclareUnicodeCharacter{2126}{\textohm}
904 (all, ts1)\DeclareUnicodeCharacter{2127}{\textmho}
905 (all, ts1)\DeclareUnicodeCharacter{212E}{\textestimated}
906 (all, ts1)\DeclareUnicodeCharacter{2190}{\textleftarrow}
907 (all, ts1)\DeclareUnicodeCharacter{2191}{\textuparrow}
908 (all, ts1)\DeclareUnicodeCharacter{2192}{\textrightarrow}
909 (all, ts1)\DeclareUnicodeCharacter{2193}{\textdownarrow}

(

(

(

(

(

(

(

(

(

(

(

(

(

910 (all, x2, ts1, t2c, t2b, t2a)\DeclareUnicodeCharacter{2329}{\textlangle}

911 (all,x2, ts1,t2c, t2b, t2a)\DeclareUnicodeCharacter{3008}{\textlangle}

912 (all,x2, ts1,t2c, t2b, t2a)\DeclareUnicodeCharacter{232A}{\textrangle}

913 (all, x2, ts1, t2c, t2b, t2a)\DeclareUnicodeCharacter{3009}{\textrangle}

914 (all, ts1)\DeclareUnicodeCharacter{2422}{\textblank}

915 (all, x2, t2c, t2b, t2a, t1, utf8) \DeclareUnicodeCharacter{2423}{\textvisiblespace}
916 (all, ts1)\DeclareUnicodeCharacter{25E6}{\textopenbullet}

917 (all, ts1)\DeclareUnicodeCharacter{25EF}{\textbigcircle}

918 (all, ts1)\DeclareUnicodeCharacter{266A}{\textmusicalnote}

919 (all,x2, ts1,t2c, t2b, t2a)\DeclareUnicodeCharacter{27E8}{\textlangle}
920 (all,x2, ts1,t2c, t2b, t2a)\DeclareUnicodeCharacter{27E9}{\textrangle}
921 (all, t1)\DeclareUnicodeCharacter{1E20}{\@tabacckludge=G}
922 (all, t1)\DeclareUnicodeCharacter{1E21}{\@tabacckludge=g}

When doing cut-and-paste from other documents f-ligatures might show up as
Unicode characters. We translate them back to individual characters so that they
get accepted. If supported by the font (which is normally the case) they are then
reconstructed as ligatures so they come out as desired. Otherwise they will come
out as individual characters which is fine too.

923 (all, t1,0tl, lyl,t2a, t2b, t2c)\DeclareUnicodeCharacter{FBOO}{ff} ¥ ff
924 (all, t1,0tl, lyl,t2a, t2b, t2c)\DeclareUnicodeCharacter{FBO1}{fi} % fi
925 (all, t1, otl, lyl, t2a, t2b, t2c)\DeclareUnicodeCharacter{FBO2}{f1} ¥ f1
926 (all, t1,0tl, lyl,t2a, t2b, t2c)\DeclareUnicodeCharacter{FBO3}{ffi} ¥ ffi

27

927
928
929

all, t1, otl, lyl, t2a,t2b, t2c)\DeclareUnicodeCharacter{FBO4}{ff1} 7 ffl
all, t1, otl, lyl, t2a, t2b, t2c)\DeclareUnicodeCharacter{FBO5}{st} % st -- this is the long s (not
all,; t1, otl, lyl, t2a,t2b, t2c)\DeclareUnicodeCharacter{FBO6}{st} % st

o~ o~~~

930 (all, ts1, utf8)\DeclareUnicodeCharacter{FEFF}{\ifhmode\nobreak\fi}

3.3 Notes

The following inputs are inconsistent with the 8-bit inputenc files since they will
always only produce the ‘text character’. This is an area where inputenc is noto-
riously confused.

%<all,tsl,tl,otl,lyl>\DeclareUnicodeCharacter{00A3}{\textsterling}
%<*all,x2,tsl,t2c,t2b,t2a,oms,lyl>
\DeclareUnicodeCharacter{00A7}{\textsection}
%</all,x2,tsl,t2c,t2b,t2a,oms,lyl>
%<all,tsl,utf8>\DeclareUnicodeCharacter{00A9}{\textcopyright}
%<all,ts1>\DeclareUnicodeCharacter{00B1}{\textpm}
%<all,tsl,oms,lyl>\DeclareUnicodeCharacter{00B6}{\textparagraph}
%<all,tsl,oms,lyl>\DeclareUnicodeCharacter{2020}{\textdagger}
%<all,tsl,oms,lyl>\DeclareUnicodeCharacter{2021}{\textdaggerdbl}
%<all,lyl,utf8>\DeclareUnicodeCharacter{2026}{\textellipsis}

The following definitions are in an encoding file but have no direct equivalent
in Unicode, or they simply do not make sense in that context (or we have not
yet found anything or ...:-). For example, the non-combining accent characters
are certainly available somewhere but these are not equivalent to a TEX accent
command.

\DeclareTextSymbol{\j}{0T1}{173}
\DeclareTextSymbol{\SS}{T1}{223}
\DeclareTextSymbol{\textcompwordmark}{T1}{23}

\DeclareTextAccent{\"}{0T1}{127}
\DeclareTextAccent{\’}{0T1}{19}
\DeclareTextAccent{\.}{0T1}{95}
\DeclareTextAccent{\=}{0T1}{22}
\DeclareTextAccent{\H}{0T1}{125}
\DeclareTextAccent{\"}{0T1}{94}
\DeclareTextAccent{\‘}{0T1}{18}
\DeclareTextAccent{\r}{0T1}{23}
\DeclareTextAccent{\u}{0T1}{21}
\DeclareTextAccent{\v}{0T1}{20}
\DeclareTextAccent{\~“}{0T1}{126}
\DeclareTextCommand{\b}{0T1}[1]
\DeclareTextCommand{\c}{0T1}[1]
\DeclareTextCommand{\d}{0T1}[1]
\DeclareTextCommand{\k}{T1}[1]

3.4 Mappings for OT1 glyphs

This is even more incomplete as again it covers only the single glyphs from 0T1
plus some that have been explicitly defined for this encoding. Everything that is

28

provided in T1, and that could be provided as composite glyphs via 0T1, could

and probably should be set up as well. Which leaves the many things that are not

provided in T1 but can be provided in 0T1 (and in T1) by composite glyphs.
Stuff not mapped (note that \j () is not equivalent to any Unicode character):

\DeclareTextSymbol{\j}{0T1}{17}
\DeclareTextAccent{\"}{0T1}{127}
\DeclareTextAccent{\’}{0T1}{19}
\DeclareTextAccent{\.}{0T1}{95}
\DeclareTextAccent{\=}{0T1}{22}
\DeclareTextAccent{\"}{0T1}{94}
\DeclareTextAccent{\‘}{0T1}{18}
\DeclareTextAccent{\~"}{0T1}{126}
\DeclareTextAccent{\H}{0T1}{125}
\DeclareTextAccent{\u}{0T1}{21}
\DeclareTextAccent{\v}{0T1}{20}
\DeclareTextAccent{\r}{0T1}{23}
\DeclareTextCommand{\b}{0T1}[1]
\DeclareTextCommand{\c}{0T1}[1]
\DeclareTextCommand{\d}{0T1}[1]

3.5 Mappings for OMS glyphs

Characters like \textbackslash are not mapped as they are (primarily) only in
the lower 127 and the code here only sets up mappings for UTF-8 characters that
are at least 2 octets long.

\DeclareTextSymbol{\textbackslash}{0MS}{110} % "6E
\DeclareTextSymbol{\textbar}{0MS}{106} % "6A
\DeclareTextSymbol{\textbraceleft}{0MS}{102} % "66
\DeclareTextSymbol{\textbraceright}{0MS}{103} % "67

But the following (and some others) might actually lurk in Unicode some-
where. ..

\DeclareTextSymbol{\textasteriskcentered}{0OMS}{3} % "03
\DeclareTextCommand{\textcircled}{0OMS}

3.6 Mappings for TS1 glyphs

Exercise for somebody else.

3.7 Mappings for latex.ltx glyphs

There is also a collection of characters already set up in the kernel, one way or the
other. Since these do not clearly relate to any particular font encoding they are
mapped when the utf8 support is first set up.

Also there are a number of \providecommands in the various input encoding
files which may or may not go into this part.
931 (*utf8)

932 % This space is intentionally empty ...
933 (/utf8)

29

3.8 Old utf8.def file as a temp fix for pTEX and friends

934 (*xutf8-2018)

935 \ProvidesFile{utf8.def}

936 [2018/10/05 v1.2f UTF-8 support for inputenc]

937 \makeatletter

938 \catcode‘\ \saved@space@catcode

939 \long\def\UTFviii@two@octets#1#2{\expandafter

940 \UTFviii@defined\csname u8:#1\string#2\endcsname}

941 \long\def\UTFviii@threeQ@octets#1#2#3{\expandafter

942 \UTFviii@defined\csname u8:#1\string#2\string#3\endcsname}
943 \long\def\UTFviii@four@octets#1#2#3#4{\expandafter

944 \UTFviii@defined\csname u8:#1\string#2\string#3\string#4\endcsname}
945 \def\UTFviii@defined#1{Y%

946 \ifx#1\relax

947 \if\relax\expandafter\UTFviii@checkseq\string#1\relax\relax
948 \UTFviii@undefined@err{#1}%

949 \else

950 \PackageError{inputenc}{Invalid UTF-8 byte sequencel},

951 \UTFviii@invalid@help

952 \fi

953 \else\expandafter

954 #1%

955 \fi

956 }

957 \def\UTFviii@invalid@err#1{%

958 \PackageError{inputenc}{Invalid UTF-8 byte "\UTFviii@hexnumber{‘#1}}/

959 \UTFviii@invalid®@help}

960 \def\UTFviii@invalid@help{’

961 The document does not appear to be in UTF-8 encoding.\MessageBreak

962 Try adding \noexpand\UseRawInputEncoding as the first line of the file\MessageBreak

963 or specify an encoding such as \noexpand\usepackage[latinl]{inputenc}\MessageBreak
964 in the document preamble.\MessageBreak
965 Alternatively, save the file in UTF-8 using your editor or another tool}

966 \def \UTFviii@undefined@err#1{J,
967 \PackageError{inputenc}{Unicode character \expandafter

968 \UTFviii@splitcsname\string#1\relax

969 \MessageBreak

970 not set up for use with LaTeX}/

971 {You may provide a definition with\MessageBreak
972 \noexpand\DeclareUnicodeCharacterl}y,

973 %}

974 \def\UTFviii@checkseq#1: #2#3{/,
975 \ifnum‘#2<"80 ¥
976 \ifx\relax#3\elsel\fi

977 \else

978 \ifnum‘#2<"CO %

979 1%

980 \else

981 \expandafter\expandafter\expandafter\UTFviii@check@continue
982 \expandafter\expandafter\expandafter#3/,

983 \fi

984 \fi}

985 \def\UTFviii@check@continue#1{%

30

986 \ifx\relax#1),

987 \else

988 \ifnum‘#1<"80 1\else\ifnum‘#1>"BF 1\fi\fi
989 \expandafter\UTFviii@check@continue
990 \fi

991 }

992 \begingroup

993 \catcode‘\"13

994 \catcode‘\"12

995 \def\UTFviii@loop{%

996 \uccode‘\~\count@

997 \uppercase\expandafter{\UTFviii@tmpl}%
998 \advance\count@\@ne

999 \ifnum\count@<\@tempcnta

1000 \expandafter\UTFviii@loop

1001 \fi}

1002 \def\UTFviii@tmp{\xdef~"{\noexpand\UTFviii@undefined@err{:\string~}}}
1003 \count@"1

1004 \@tempcntad

1005 \UTFviii@loop

1006 \count@11

1007 \@tempcntal2

1008 \UTFviii@loop

1009 \count@14

1010 \@tempcnta32

1011 \UTFviii@loop

1012 \count@"80

1013 \@tempcnta"C2

1014 \def\UTFviii@tmp{\xdef~"{\noexpand\UTFviii@invalid@err\string~}}
1015 \UTFviii@loop

1016 \count@"C2

1017 \@tempcnta"EO

1018 \def\UTFviii@tmp{\xdef~{\noexpand\UTFviii@two@octets\string~}}
1019 \UTFviii@loop

1020 \count@"EO

1021 \@tempcnta"FO0

1022 \def\UTFviii@tmp{\xdef~{\noexpand\UTFviii@three@octets\string~}}
1023 \UTFviii@loop

1024 \count@"F0

1025 \@tempcnta"F5

1026 \def\UTFviii@tmp{\xdef~"{\noexpand\UTFviii@four@octets\string~}}
1027 \UTFviii@loop

1028 \count@"F5

1029 \@tempcnta"100

1030 \def\UTFviii@tmp{\xdef~{\noexpand\UTFviii@invalid@err\string~}}

1031 \UTFviii@loop

1032 \endgroup

1033 \@inpenc@test

1034 \ifx\@begindocumenthook\@undefined
1035 \makeatother

1036 \endinput \fi

1037 \begingroup

1038 \catcode‘\"=12

1039 \catcode ‘\<=12

31

1040 \catcode‘\.=12

1041 \catcode‘\,=12

1042 \catcode ‘\ ;=12

1043 \catcode‘\!=12

1044 \catcode ‘\"=13

1045 \gdef\DeclareUnicodeCharacter#1#2{}

1046 \count@"#1\relax

1047 \wlog{ \space\space defining Unicode char U+#1 (decimal \the\count@)}/,
1048 \begingroup

1049 \parse@XMLQcharref

1050 \def\UTFviii@two@octets##1##2{\csname u8:##1\string##2\endcsnamely,
1051 \def\UTFviii@three@octets##1##2##3{\csname u8:##1J,

1052 \string##2\string##3\endcsnamel},
1053 \def\UTFviii@four@octets##1##2##3##4{\csname u8:##17

1054 \string##2\string##3\string##4\endcsnamel}’
1055 \expandafter\expandafter\expandafter

1056 \expandafter\expandafter\expandafter

1057 \expandafter

1058 \gdef\UTFviii@tmp{\IeC{#2}}V

1059 \endgroup

1060

1061 \gdef\parse@XMLOcharref{}
1062 \ifnum\count@<"AO\relax

1063 \ifnum\catcode\count@=13

1064 \uccode ‘\"=\count@\uppercase{\def\UTFviii@tmp{\Q@empty\Qempty~}}%
1065 \else

1066 \PackageError{inputenc}{Cannot define non-active Unicode char value < 00A0}%
1067 \@eha

1068 \def\UTFviii@tmp{\UTFviii@tmp}/

1069 \fi

1070 \else\ifnum\count@<"800\relax

1071 \parse@UTFviii@a,?

1072 \parse@UTFviii@b C\UTFviii@twoQ@octets.,%

1073 \else\ifnum\count@<"10000\relax

1074 \parse@UTFviii@a;J

1075 \parse@UTFviii®a,%

1076 \parse@UTFviii@b E\UTFviii@three@octets.{,;}%

1077 \else

1078 \ifnum\count@>"10FFFF\relax

1079 \PackageError{inputencl}y,

1080 {\UTFviii@hexnumber\count@\space too large for Unicodel}’
1081 {Values between O and 10FFFF are permittedl}y
1082 \fi

1083 \parse@UTFviii®a;%

1084 \parse@UTFviii®a,%

1085 \parse@UTFviii@a!Y

1086 \parse@UTFviii@b F\UTFviii@four@octets.{!,;}%

1087 \fi

1088 \fi

1089 \fi

1090 }

1091 \gdef\parse@UTFviii@a#1{},

1092 \@tempcnta\count@

1093 \divide\count@ 64

32

1094 \@tempcntb\count@

1095 \multiply\count@ 64

1096 \advance\@tempcnta-\count@

1097 \advance\Q@tempcnta 128

1098 \uccode ‘#1\@tempcnta

1099 \count@\@tempcntb}

1100 \gdef\parse@UTFviii@b#1#2#3#4{}

1101 \advance\count@ "#10\relax

1102 \uccode ‘#3\count@

1103 \uppercase{\gdef\UTFviii@tmp{#2#3#4}}}

1104 \ifx\numexpr\@undefined

1105 \gdef\decode@UTFviii#1{0}

1106 \else

1107 \gdef\decode@UTFviii#1\relax{J

1108 \expandafter\UTFviii@cleanup

1109 \the\numexpr\dec@de@UTFviii#l\relax)))))\Qempty}
1110 \gdef\UTFviii@cleanup#1)#2\Qempty{#1}
1111 \gdef\dec@de@UTFviii#1{},

1112 \ifx\relax#1/

1113 \else

1114 \ifnum‘#1>"EF

1115 (CCC#1-"F0) %

1116 \else

1117 \ifnum‘#1>"DF

1118 (CC“#1-"E0) %

1119 \else

1120 \ifnum‘#1>"BF

1121 ((‘#1-"C0O)%

1122 \else

1123 \ifnum‘#1>"7F
1124) %64+ (‘#1-"80)%
1125 \else

1126 +#1 9,

1127 \fi

1128 \fi

1129 \fi

1130 \fi

1131 \expandafter\dec@deQUTFviii
1132 \fi}

1133 \fi

1134 \ifx\numexpr\@undefined

1135 \global\let\UTFviii@hexnumber\@firstofone

1136 \global\UTFviii@hexdigit\hexnumber®@

1137 \else

1138 \gdef\UTFviiiGhexnumber#1{},

1139 \ifnum#1>15 %

1140 \expandafter\UTFviii@hexnumber\expandafter{\the\numexpr (#1-8)/16\relaxl}’,
1141 \fi

1142 \UTFviii@hexdigit{\numexpr#1\ifnum#1>0- ((#1-8)/16)*16\fi\relax}%
1143 }

1144 \gdef\UTFviii@hexdigit#1{\ifcase\numexpr#1i\relax

1145 O\orilor2\or3\or4\or5\or6\or7\or8\or9\or

1146 A\or B\or C\or D\or E\or F\fi}

1147 \fi

33

1148 \gdef\UTFviii@hexcodepoint#1{U+},
1149 \ifnum#1<16 O\fi
1150 \ifnum#1<256 O\fi

1151

\ifnum#1<4096 O\fi

1152 \UTFviii@hexnumber{#1}%

1153 }%

1154 \gdef\UTFviii@splitcsname#1:#2\relax{%
1155 #2 (\expandafter\UTFviii@hexcodepoint\expandafter{/,

1156

1157 }

\the\numexpr\decode@UTFviii#2\relax})

1158 \endgroup

1159 \@onlypreamble\DeclareUnicodeCharacter
1160 \@onlypreamble\parse@XMLOcharref

1161 \@onlypreamble\parse@UTFviii@a

1162 \@onlypreamble\parse@UTFviii@b

1163 \begingroup

1164
1165
1166
1167
1168
1169
1170
1171
1172
1173

\def\cdp@elt#1#2#3#4{J,
\wlog{Now handling font encoding #1 ...}
\lowercase{%
\InputIfFileExists{#lenc.dful}}%
{\wlog{... processing UTF-8 mapping file for font %
encoding #11}/
\catcode‘\ 9\relax}%
{\wlog{... no UTF-8 mapping file for font encoding #1}1}/,
}
\cdp@list

1174 \endgroup
1175 \def\DeclareFontEncoding@#1#2#3{Y%

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197

\expandafter
\ifx\csname T@#1\endcsname\relax
\def\cdp@elt{\noexpand\cdp@elt}y,
\xdef\cdp@list{\cdp@list\cdp@elt{#1}V,
{\default@family}{\default@series},
{\default@shapel}}/,
\expandafter\let\csname#1-cmd\endcsname\@changed@cmd
\begingroup
\wlog{Now handling font encoding #1 ...}
\lowercase{’,
\InputIfFileExists{#lenc.dfu}}’
{\wlog{... processing UTF-8 mapping file for font %
encoding #1}}V,
{\wlog{... no UTF-8 mapping file for font encoding #1}1}/
\endgroup
\else
\@font@info{Redeclaring font encoding #1}J,
\fi
\global\@namedef{TO#1}{#2}/,
\global\@namedef {MO#1}{\default@M#3}/,
\xdef\LastDeclaredEncoding{#1}/,
}

1198 \DeclareUnicodeCharacter{00A9}{\textcopyright}
1199 \DeclareUnicodeCharacter{00AA}{\textordfeminine}
1200 \DeclareUnicodeCharacter{0O0OAE}{\textregistered}
1201 \DeclareUnicodeCharacter{00BA}{\textordmasculine}

34

1202 \DeclareUnicodeCharacter{02C6}{\textasciicircum}
1203 \DeclareUnicodeCharacter{02DC}{\textasciitilde}

1204 \DeclareUnicodeCharacter{200C}{\textcompwordmark}
1205 \DeclareUnicodeCharacter{2026}{\textellipsis}

1206 \DeclareUnicodeCharacter{2122}{\texttrademark}

1207 \DeclareUnicodeCharacter{2423}{\textvisiblespace}
1208 \DeclareUnicodeCharacter{FEFF}{\ifhmode\nobreak\fi}
1209 \endinput

1210 </ut£8-2018>

4 A test document

Here is a very small test document which may or may not survive if the current
document is transferred from one place to the other.

1211 (*test)

1212 \documentclass{article}

1213

1214 \usepackage[latinl,utf8]{inputenc}
1215 \usepackage[T1]{fontenc}

1216 \usepackage{trace}

1217

1218 \scrollmode 7 to run past the error below
1219

1220 \begin{document}

1221

1222 German umlauts in UTF-8: ~"c37"a4""c3""b6~"c3~"bc 4/ &6t
1223

1224 \inputencoding{latinl} J, switch to latinl

1225

1226 German umlauts in UTF-8 but read by latinl (and will produce one
1227 error since \verb=\textcurrency= is not provided) :

1228 ~"c37"a4""c3""b6""c3""bc

1229

1230 \inputencoding{utf8} % switch back to utf8

1231

1232 German umlauts in UTF-8: ~“"c3""a4""c3""b6~"c3""bc

1233

1234

1235 Some codes that should produce errors as nothing is set up
1236 for them: ~"c3F ""el”"a4""b6

1237

1238 And some that are not legal utf8 sequences: ~"c3X ~"elXY
1239

1240 \showoutput

1241 \tracingstats=2

1242 \stop

1243 (/test)

35

	Contents
	1 Introduction
	1.1 Background and general stuff
	1.2 More specific stuff
	1.3 Notes
	1.4 Basic operation of the code

	2 Coding
	2.1 Housekeeping
	2.2 Parsing UTF-8 input
	2.3 Mapping Unicode codes to LaTeX internal forms
	2.4 Loading Unicode mappings at begin document

	3 Mapping characters —based on font (glyph) encodings
	3.1 About the table itself
	3.2 The mapping table
	3.3 Notes
	3.4 Mappings for OT1 glyphs
	3.5 Mappings for OMS glyphs
	3.6 Mappings for TS1 glyphs
	3.7 Mappings for latex.ltx glyphs
	3.8 Old utf8.def file as a temp fix for pTeX and friends

	4 A test document

