
Package ‘xlr’
January 17, 2026

Title Create Table Summaries and Export Neat Tables to 'Excel'

Version 1.1.1

Description A high-level interface for creating and exporting summary tables to
'Excel'. Built on 'dplyr' and 'openxlsx', it provides tools for generating
one-way to n-way tables, and summarizing multiple response questions
and question blocks. Tables are exported with native 'Excel' formatting,
including titles, footnotes, and basic styling options.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.3

Collate as_base_r.R xlr_table.R xlr_to_workbook.R
build_multiple_response_table.R build_table.R write_xlsx.R
xlr_numeric.R xlr_integer.R xlr_vector.R xlr_percent.R
xlr_n_percent.R xlr_format.R openxlsx_utils.R xlr_doc.R
error_utils.R create_table_of_contents.R
build_question_block_table.R table_utils.R data.R is_xlr_type.R
make_wider.R remove_NA.R

Suggests knitr, rmarkdown, testthat (>= 3.0.0), data.table, lubridate,
ggplot2

Config/testthat/edition 3

Imports rlang, vctrs (>= 0.6.0), haven, openxlsx, methods, cli, dplyr,
tibble, pillar, tidyr, tidyselect

Depends R (>= 4.1.0)

LazyData true

VignetteBuilder knitr

URL https://nhilder.github.io/xlr/, https://github.com/NHilder/xlr

BugReports https://github.com/NHilder/xlr/issues

NeedsCompilation no

Author Nicholas Hilderson [aut, cre, cph]

Maintainer Nicholas Hilderson <nhilderson.code@gmail.com>

1

https://nhilder.github.io/xlr/
https://github.com/NHilder/xlr
https://github.com/NHilder/xlr/issues


2 as_base_r

Repository CRAN

Date/Publication 2026-01-17 09:10:02 UTC

Contents
as_base_r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
build_mtable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
build_qtable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
build_table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
clothes_opinions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
create_table_of_contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
is_xlr_format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
is_xlr_type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
make_wider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
update_theme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
write_xlsx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
xlr_and_dplyr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
xlr_format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
xlr_integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
xlr_numeric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
xlr_n_percent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
xlr_percent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
xlr_table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
xlr_vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Index 31

as_base_r Convert xlr types to their base R type

Description

as_base_r converts xlr objects, xlr_table, xlr_numeric, xlr_integer, xlr_percent, and xlr_format to
their base R type.

Usage

as_base_r(x)

Arguments

x a xlr object

Details

as_base_r is a generic. It is a wrapper around vec_data but will convert every object to its base type.



build_mtable 3

Value

The base type of the base R object.

Examples

library(xlr)

# We create a xlr objects
a <- xlr_numeric(1:100)
b <- xlr_percent(1:100/100)
tab <- xlr_table(mtcars,"a title","a footnote")

# now lets convert them back to their base types
as_base_r(a)
as_base_r(b)
as_base_r(tab)

build_mtable Summarise a multiple response table

Description

This function can take one or two multiple response responses and generate a summary table with
them. You can also cut these columns by other categorical columns by specify the cols parameter.

Usage

build_mtable(
x,
mcols,
cols = NULL,
table_title = "",
use_questions = FALSE,
use_NA = FALSE,
wt = NULL,
footnote = "",
exclude_codes = NULL,
exclude_label = paste0(exclude_codes, collapse = "_"),
...

)

Arguments

x a data frame or tidy object.

mcols the column(s) that are multiple response questions. See the Details for more
details of how these columns should be structured.



4 build_mtable

cols the column(s) that we want to calculate the sum/percentage of and the multiple
response question.

table_title the title of the table sheet

use_questions if the data has column labels (was a imported .sav) file, convert the column label
to a footnote with the question.

use_NA logical. whether to include NA values in the table. For more complicated NA
processing post creation, we recommend using filter.

wt Specify a weighting variable, if NULL no weight is applied.

footnote optional parameter to pass a custom footnote to the question, this parameter
overwrites use_questions.

exclude_codes vector. Pass values to this argument if there exists values in the multiple response
question but indicate someone saw the question but did not response to the value
(e.g. -99, 0).

exclude_label string. A name for the value of the seen but answered response.

... These dots are for future extensions and must be empty.

Details

A multiple response response is a series of columns with a single unique response that stores survey
data where a respondent may have chosen multiple options. This function works if this data is
stored in a wide format. To have a valid multiple response column all the columns should start with
the same text, and each contain a unique value. That is it has the form:

data.frame(multi_col_1 = c(1,NA,1),
multi_col_2 = c(1,1,1),
multi_col_3 = c(NA,NA,1)

)
#> multi_col_1 multi_col_2 multi_col_3
#> 1 1 1 NA
#> 2 NA 1 NA
#> 3 1 1 1

This is how popular survey platforms such as Qualtrics output this data type. If your data is long,
you will need to pivot the data before hand, we recommend using pivot_wider.

By default this function converts labelled to a xlr_vector by default (and underlying it is a character()
type).

This function and its family (build_table, build_qtable) is designed to work with data with columns
of type haven::labelled, which is the default format of data read with haven::read_sav/has
the format of .sav. .sav is the default file function type of data from SPSS and can be exported
from popular survey providers such as Qualtrics. When you read in data with haven::read_sav it
imports data with the questions, labels for the response options etc.

See labelled and read_sav if you would like more details on the importing type.

Value

a xlr_table object. Use write_xlsx to write to an Excel file. See xlr_table for more information.



build_mtable 5

Examples

library(xlr)
library(dplyr)

# You can use this function to calculate the number of people that have
# responded to the question `What is your favourite colour`
build_mtable(clothes_opinions,

"Q2",
table_title = "What is your favourite colour?")

# The function also lets you to see the number of NA questions (this is
# where someone doesn't answer any option)
build_mtable(clothes_opinions,

"Q2",
table_title = "What is your favourite colour?",
use_NA = TRUE)

# You can also cut all questions in the multiple response functions by another
# column
build_mtable(clothes_opinions,

"Q2",
gender2,
table_title = "Your favourite colour by gender")

# By setting `use_questions=TRUE` then the footnote will be the questions
# labels. This is useful to see what the question is.
# The function will try to pull out this based on the question label, and
# will manipulate try and get the correct label.
build_mtable(clothes_opinions,

"Q2",
gender2,
table_title = "Your favourite colour by gender",
use_questions = TRUE)

# It is common for your data to include 'other' responses in a multiple
# response column. You should remove the column before running build_mtable
clothes_opinions |>

select(-Q3_other) |>
build_mtable("Q3")

# You can also specify up to a maxium of two different multiple response
# columns.
clothes_opinions |>

select(-Q3_other) |>
build_mtable(c("Q2", "Q3"))

# These cam also be cut by other columns.
clothes_opinions |>

select(-Q3_other) |>
build_mtable(c("Q2", "Q3"),

gender2)



6 build_mtable

# This function also supports weights and manual footnotes
clothes_opinions |>

select(-Q3_other) |>
build_mtable(c("Q2", "Q3"),

gender2,
wt = weight,
footnote = "This is an example footnote.")

# Sometimes your survey data includes special codes that indicate a respondent
# saw the question but didn't select that option (e.g., 0 or -99). Use
# exclude_codes to filter these out from the count

# lets first change our data structure to match
# a normal set up in a survey
clothes_opinions <- clothes_opinions |>

mutate(across(starts_with("Q2"),
~ if_else(is.na(.x), "0", .x))

)

build_mtable(clothes_opinions,
"Q2",
table_title = "What is your favourite colour?",
exclude_codes = 0)

# You can exclude multiple codes by passing a vector
build_mtable(clothes_opinions,

"Q2",
table_title = "What is your favourite colour?",
exclude_codes = c(0, -99))

# By default, excluded codes are labeled with the codes concatenated together.
# You can provide a custom label using exclude_label
build_mtable(clothes_opinions,

"Q2",
use_NA = TRUE,
table_title = "What is your favourite colour?",
exclude_codes = 0,
exclude_label = "Not selected")

# exclude_codes works with all other parameters including cuts and weights
build_mtable(clothes_opinions,

"Q2",
gender2,
table_title = "Your favourite colour by gender",
exclude_codes = c(0, -99),
exclude_label = "No response",
wt = weight)

# When working with two multiple response columns, exclude_codes applies
# to both columns
clothes_opinions |>

select(-Q3_other) |>
build_mtable(c("Q2", "Q3"),



build_qtable 7

gender2,
exclude_codes = 0,
exclude_label = "Not selected")

build_qtable Summarize a Question Block

Description

Analyzes a block of related questions (such as matrix questions) and presents them in a single
summary table. Optionally cross-tabulates results by other variables. All questions in the block
must share the same response options.

Usage

build_qtable(
x,
block_cols,
cols = NULL,
table_title = "",
use_questions = FALSE,
use_NA = FALSE,
wt = NULL,
footnote = ""

)

Arguments

x A data frame or tibble containing survey data.

block_cols <tidyr_tidy_select> Columns that form the question block. All selected columns
must have identical response options. Tip: Use starts_with('prefix') when
block columns share a common prefix. See Examples.

cols <tidyr_tidy_select> Optional column(s) to cross-tabulate against the question
block (for example, demographics).

table_title Character string. Title for the output table.

use_questions Logical. If TRUE and data contains column labels (from .sav files), adds the full
question text as a footnote. Default is FALSE.

use_NA Logical. Whether to include NA values in the table. Default is TRUE. For ad-
vanced NA handling, use filter() before table creation.

wt Column name (quoted or unquoted) for weighting variable. If NULL (default), no
weighting is applied.

footnote Character vector. Custom footnote text. When provided, overrides use_questions.



8 build_qtable

Details

This function works best with haven::labelled data, which is created when importing SPSS files
(.sav) using haven::read_sav(). This format preserves question text and response option labels
from survey platforms like Qualtrics.

Important: All questions in the block must have identical response options. The function uses the
first question to determine valid response values. If you encounter errors, convert the block columns
to factors beforehand to ensure consistency.

By default this function converts labelled to a xlr_vector by default (and underlying it is a character()
type).

See labelled and read_sav if you would like more details on the importing type.

Value

An xlr_table object. Write to Excel using write_xlsx(). See xlr_table for details.

See Also

build_table(), build_qtable()

Examples

library(xlr)

# You can use this function to get a block of questions
build_qtable(

clothes_opinions,
starts_with("Q1"),
table_title = "This is an example table")

# Another way you could select the same columns
build_qtable(

clothes_opinions,
c(Q1_1,Q1_2,Q1_3,Q1_4),
table_title = "This is an example table")

# Yet another way to select the same columns
build_qtable(

clothes_opinions,
all_of(c("Q1_1","Q1_2","Q1_3","Q1_4")),
table_title = "This is an example table")

# You can also cut all questions in the block by a single column
build_qtable(

clothes_opinions,
starts_with("Q1"),
gender2,
table_title = "This is the second example table")

# You can also cut all questions in the block by a multiple columns
# By setting `use_questions=TRUE` then the footnote will be the questions
# labels, for the cut questions



build_table 9

build_qtable(
clothes_opinions,
starts_with("Q1"),
c(gender2,age_group),
table_title = "This is the third example table",
use_questions = TRUE)

# You can also use weights, these weights can be either doubles or integers
# based weights
# You can also set a footnote
build_qtable(

clothes_opinions,
starts_with("Q1"),
age_group,
table_title = "This is the fourth example table",
wt = weight,
footnote = paste0("This is a footnote, you can use it if you want ",

"more detail in your table."))

build_table Create a one, two, three,..., n-way table

Description

build_table creates a one, two, three, ..., n-way table. It should be used to calculate the count
and percentage of different categorical variables. It gives the data back in a long format. The
percentages calculated are the ’row’ percentages.

Usage

build_table(
x,
cols,
table_title = "",
use_questions = FALSE,
use_NA = FALSE,
wt = NULL,
footnote = ""

)

Arguments

x a data frame or tidy object.

cols <tidyr_tidy_select> These are the column(s) that we want to calculate the count
and percentage of.

table_title a string. The title of the table sheet.

use_questions a logical. If the data has column labels convert the column label to a footnote
with the question. See details for more information.



10 build_table

use_NA a logical. Whether to include NA values in the table. For more complicated NA
processing post creation, we recommend using filter.

wt a quoted or unquote column name. Specify a weighting variable, if NULL no
weight is applied.

footnote a character vector. Optional parameter to pass a custom footnote to the question,
this parameter overwrites use_questions.

Details

This function and its family (build_mtable, build_qtable) is designed to work with data with columns
of type haven::labelled, which is the default format of data read with haven::read_sav/has the
format of .sav. .sav is the default file function type of data from SPSS and can be exported from
popular survey providers such as Qualtrics. When you read in data with haven::read_sav it im-
ports data with the questions, labels for the response options etc.

By default this function converts labelled to a xlr_vector by default (and underlying it is a character()
type).

See labelled and read_sav if you would like more details on the importing type.

Value

a xlr_table object. Use write_xlsx to write to an Excel file. See xlr_table for more information.

Examples

library(xlr)

# You can use this function to calculate the number count and percentage
# of a categorical variable
build_table(

clothes_opinions,
gender,
table_title = "The count of the gender groups")

# You must use a `tidyselect` statement, to select the columns that you wish to
# calculate the count, and group percentage.
# This will calculate the number of observations in each group of age and
# gender.
# The percentage will be the percentage of each age_group in each gender
# group (the row percentage).
build_table(

clothes_opinions,
c(gender,age_group),
table_title = "This is the second example table")

# You can use more complicated tidy select statements if you have a large number
# of columns, but this is probably not recommended
#
# Using use_questions, if you have labelled data, it will take the label and
# include it as a footnote.
# This is useful for when you have exported data from survey platforms



clothes_opinions 11

# as a .sav, use `haven::read_sav` to load it into your R environment.
build_table(

clothes_opinions,
c(group:gender,Q1_1),
table_title = "This is the third example table",
use_questions = TRUE)

# You can also use weights, these weights can be either doubles or integers
# based weights
# You can also set a footnote manually
build_table(

clothes_opinions,
age_group,
table_title = "This is the fourth example table",
wt = weight,
footnote = paste0("This is a footnote, you can use it if you want",

"more detail in your table."))

clothes_opinions Clothes opinions data

Description

This is a fake data set used to show how to work with the xlr package.

Usage

clothes_opinions

Format

clothes_opinions:
A data frame with 1000 rows and 20 variables.

weight Fake survey weights
group A grouping variable
gender A character vector for gender
gender2 A haven labelled vector for gender
age A continuous age variable
age_group A character vector for grouped age, generated from age

Q1_1 The first column in a question block asking whether pants are good to wear. Likert scale.
Q1_2 The second column in a question block asking whether shirts are good to wear. Likert

scale.
Q1_3 The third column in a question block asking whether shoes are good to wear. Likert scale.
Q1_4 The forth column in a question block asking whether pants are good to wear. Likert scale.

This column is intentionally has no label.



12 create_table_of_contents

Q2_1,2,3,4,5,6 Multiple response columns. Question asking what is your favourite colour to
wear.

Q3_1,2,3 Multiple response columns. Question asking what is your favourite jewellery to wear.
Q3_other The other column for question 3

create_table_of_contents

Adds a table of contents to an .xlsx (Excel) file

Description

This function adds a table of contents to an Excel file by reading the information from the Excel
sheet in, and then using that data to create the table of contents. It guesses what the information is,
see details below.

Usage

create_table_of_contents(
file,
title = NA_character_,
overwrite = TRUE,
pull_titles = TRUE,
TOC_sheet_name = "Table of Contents"

)

Arguments

file the file name.

title the title for the table.

overwrite logical. When TRUE overwrite the file, if FALSE it will not overwrite the file.

pull_titles when TRUE take the titles from the Excel sheets, and add them to the description
in the TOC_sheet_name.

TOC_sheet_name string. the sheet name for the table of contents.

Details

This function uses the sheet names to create the table of contents. For the titles it pulls the text that
is the position A1 in each of the sheets. It chooses this as this is the default location of titles when
you write a xlr_table with write_xlsx.

Value

Returns a logical or error if writing the file succeeded.



is_xlr_format 13

Examples

library(xlr)
library(openxlsx)
table_list <- list("Sheet name 1" = mtcars,

"Sheet name 2" = mtcars)

output_file <- "example_file.xlsx"

# using write xlsx we create an `Excel` document
# You could use xlr::write_xlsx to create a table of
# contents automatically.
write.xlsx(table_list,

output_file)

# Now add the table of contents to the existing file
create_table_of_contents(output_file,

"A workbook with example tables",
# it only makes sense to pull titles when
# the first cell has a text description
pull_titles = FALSE)

is_xlr_format Test if an object is a xlr_format

Description

Test if an object is a xlr_format

Usage

is_xlr_format(x)

Arguments

x An object to test

Value

a logical.

Examples

# Test if an object is a xlr_format
is_xlr_format(1)
bf <- xlr_format(font_size = 14)
is_xlr_format(bf)



14 make_wider

is_xlr_type Check if a variable is an xlr type This function tests whether an R
variable has a xlr type.

Description

Check if a variable is an xlr type This function tests whether an R variable has a xlr type.

Usage

is_xlr_type(x)

Arguments

x a variable you wish to test

Value

a logical.

make_wider Pivot a table wider combining counts and percentages

Description

This function takes a data frame produced by functions like build_table, build_mtable, or build_qtable,
which contains columns N and Percent, and pivots it into a wider format. It combines the N and
Percent columns into a single xlr_n_percent vector for each pivoted column. If top_variable is
not specified, it infers the variable to use for column names from the structure of the data frame.

Usage

make_wider(x, top_variable = NULL, names_prefix = "")

Arguments

x A data frame or tibble containing at least the columns N and Percent. Typically
the output of build_table, build_mtable, or build_qtable,.

top_variable Optional. A bare column name to use for the names_from argument in pivot_wider.
If NULL (default), the function infers the column based the default position.

names_prefix String added to the start of every variable name. This is particularly useful if
top_variable is a numeric vector and you want to create syntactic variable
names.



update_theme 15

Value

A xlr_table (if x is a xlr_table) or tibble::tibble (if tibble::tibble or data.frame) in a wider format
with columns containing xlr_n_percent vectors.

See Also

xlr_n_percent, pivot_wider

Examples

library(xlr)
# Assuming example data from build_table or similar
table <- clothes_opinions |>

build_table(c(gender,age_group))
make_wider(table)

# use top_variable to specify that we have gender as out selection column
make_wider(table, top_variable = age_group)

update_theme Update the xlr_table theme

Description

This function allows you to update the underlying styling for your xlr_table. This changes how the
titles, footnotes, columns, and body objects look when you write you xlr_table to Excel with
write_xlsx().

Usage

update_theme(
x,
title_format = xlr_format(font_size = 12, text_style = "bold"),
footnote_format = xlr_format(font_size = 9, text_style = "italic"),
column_heading_format = xlr_format(font_size = 11, text_style = "bold", border =

c("top", "bottom"), halign = "center", wrap_text = TRUE),
table_body_format = xlr_format(border = c("top", "left", "right", "bottom"))

)

Arguments

x a xlr_table

title_format a xlr_format object to format the title
footnote_format

a xlr_format object to format the footnote



16 write_xlsx

column_heading_format

a xlr_format object to format the column heading

table_body_format

a xlr_format object to format the body

Details

If you want to change the style of the columns in the data, you should convert them to a xlr_vector,
xlr_numeric, xlr_integer or xlr_percent type if they are not already, and then update the xlr_format
attribute, by setting the style parameter.

Value

Returns a xlr_table object.

Examples

library(xlr)
# set up a basic table
bt <- xlr_table(mtcars,

"A title",
"A footnote")

# now we want to update the title
# This changes what it look likes when we print it to `Excel`
bt <- update_theme(bt,

xlr_format(font_size = 12,
text_style = c("bold","underline")))

# To see the change you must write to an Excel file
write_xlsx(bt,

"example.xlsx",
"Test")

write_xlsx Write a xlr_table, data.frame, or tibble to an .xlsx (Excel) file

Description

This function writes xlr_table, data.frame, or tibble to an .xlsx (Excel file). Like write.xlsx
you can also write a list of xlr_table’s, data.frame’s, and tibbles’s to the one file. The main
use of this function is that it uses the formatting in a xlr_table when it writes to the Excel sheet.
See xlr_table for more information.



write_xlsx 17

Usage

write_xlsx(
x,
file,
sheet_name = NULL,
overwrite = FALSE,
append = TRUE,
TOC = FALSE,
TOC_title = NA_character_,
overwrite_sheets = TRUE,
excel_data_table = TRUE

)

Arguments

x a single or list of types xlr_table, data.frame, or tibble.

file character. A valid file path.

sheet_name a sheet name (optional). Only valid for when you pass a single object to x.

overwrite logical. Whether to overwrite the file/worksheet or not.

append logical. Whether or not to append a worksheet to an existing file.

TOC logical. Whether to create a table of contents with the document. Works only
when you pass a list to x. To add a table of contents to an existing file, use
create_table_of_contents().

TOC_title character. To specify the table of contents title (optional).
overwrite_sheets

logical. Whether to overwrite existing sheets in a file.
excel_data_table

logical. Whether to save the data as an Excel table in the worksheet. These are
more accessible than data in the sheet.

Value

None

Examples

library(xlr)
library(tibble)
# we can write a data.frame or tibble with write_xlsx
example_tibble <- tibble(example = c(1:100))

write_xlsx(mtcars,
"example_file.xlsx",
sheet_name = "Example sheet")

# you must specify a sheet name
write_xlsx(example_tibble,



18 xlr_format

"example_file.xlsx",
sheet_name = "Example sheet")

# You can write a xlr_table.
# When you write a xlr_table you can specify the formatting as well as titles
# and footnotes.
example_xlr_table <- xlr_table(mtcars,

"This is a title",
"This is a footnote")

write_xlsx(example_xlr_table,
"example_file.xlsx",
"Example sheet")

# like openxlsx, you can also pass a list
table_list <- list("Sheet name 1" = xlr_table(mtcars,

"This is a title",
"This is a footnote"),

"Sheet name 2" = xlr_table(mtcars,
"This is a title too",
"This is a footnote as well"))

write_xlsx(table_list,
"example_file.xlsx")

xlr_and_dplyr xlr and dplyr

Description

xlr_table() is designed to work with dplyr verbs by default. This is so you mutate, summarise,
arrange etc. your data without losing your xlr_table information. Particularly if you have used
build_table first on your data, which outputs data as a xlr_table.

The list of currently supported dplyrs verbs are: arrange, distinct, filter, mutate, relocate,
rename, rename_with, rowwise, select, slice, slice_head, slice_max, slice_min, slice_sample,
slice_tail, summarise.

xlr_format Specify formatting options for xlr_* types

Description

This function is a utility to work with openxlxs’s createStyle, and work with styles between them.
xlr_format_numeric() is an alias for xlr_format() but with different default values.



xlr_format 19

Usage

xlr_format(
font_size = 11,
font_colour = "black",
font = "calibri",
text_style = NULL,
border = NULL,
border_colour = "black",
border_style = "thin",
background_colour = NULL,
halign = "left",
valign = "top",
wrap_text = FALSE,
text_rotation = 0L,
indent = 0L,
col_width = 10,
...

)

xlr_format_numeric(
font_size = 11,
font_colour = "black",
font = "calibri",
text_style = NULL,
border = NULL,
border_colour = "black",
border_style = "thin",
background_colour = NULL,
halign = "right",
valign = "bottom",
wrap_text = FALSE,
text_rotation = 0L,
indent = 0L,
col_width = 10

)

Arguments

font_size A numeric. The font size, must be greater than 0.

font_colour String. The colour of text in the cell. Must be one of colours() or a valid hex
colour beginning with "#".

font String. The name of a font. This is not validated.

text_style the text styling. You can pass a vector of text decorations or a single string. The
options for text style are "bold", "strikeout", "italic", "underline","underline2"
(double underline), "accounting" (accounting underline), "accounting2" (dou-
ble accounting underline). See Details.



20 xlr_format

border the cell border. You can pass a vector of "top", "bottom", "left", "right" or
a single string to set the borders that you want.

border_colour Character. The colour of border. Must be the same length as the number of sides
specified in border. Each element must be one of colours() or a valid hex
colour beginning with "#".

border_style Border line style vector the same length as the number of sides specified in
border. The list of styles are "none", "thin", "medium", "dashed", "dotted",
"thick", "double", "hair", "mediumDashed", "dashDot", "mediumDashDot",
"dashDotDot", "mediumDashDot", "dastDotDot", "mediumDashDotDot", "slantDashDosh".
See createStyle for more details.

background_colour

Character. Set the background colour for the cell. Must be one of colours() or
a valid hex colour beginning with "#".

halign the horizontal alignment of cell contents. Must be either "left", "right",
"center" or "justify".

valign the vertical alignment of cell contents. Must be either "top", "center", or
"bottom".

wrap_text Logical. If TRUE cell contents will rap to fit in the column.

text_rotation Integer. Rotation of text in degrees. Must be an integer between -90 and 90.

indent Integer. The number of indent positions, must be an integer between 0 and 250.

col_width Numeric. The column width.

... Dots. For future expansions. Must be empty.

Details

Text styling:
For text styling you can pass either one of the options or options in a vector. For example if you
would like to have text that is bold and italised then set:

fmt <- xlr_format(text_style = c("bold", "italic"))

If you would like to the text to be only bold then:

fmt <- xlr_format(text_style = "bold")

Border styling:
The three arguments to create border styling are border, border_colour, and border_style.
They each take either a vector, where you specify to change what borders to have in each cell and
what they look like. To specify that you want a border around a cell, use border, you need to pass
a vector of what sides you want to have a border (or a single element if it’s only one side). For
example:

• "top" the top border
• "left" the left border
• c("bottom", "right") the top and bottom border
• c("left", "right", "bottom") the left, right and bottom borders
• c("top","right","bottom","left") the borders for all sides of the cells



xlr_format 21

Based on this you can use border_colour to set the border colours. If you want all the same
border colour, just pass a character representing the colour you want (e.g. set border_colour =
"blue" if you’d like all borders to be blue). Alternatively you can pass a vector the same length
as the vector that you passed to border, with the location specifying the colour. For example, if
you set:

fmt <- xlr_format(border = c("left", "top"),
border_colour = c("blue","red"))

the top border will be red, and the left border will be blue. You set the pattern in the same way for
border_style. Alternatively if you only wanted it to be dashed with default colours. You’d set:

fmt <- xlr_format(border = c("left", "top"),
border_style = "dashed")

Value

a xlr_format S3 class.

See Also

• is_xlr_format() to test if an R object is a xlr_format

• xlr_table() to use xlr formats

Examples

library(xlr)
# You can initialise a xlr_format, it comes with a list of defaults
bf <- xlr_format()
# It outputs what the style looks like
bf
# You can update the format by defining a new format
bf <- xlr_format(font_size = 11,

# not that font is not validated
font = "helvetica")

# The main use of xlr_format is to change the format of a vector of
# a xlr type
bd <- xlr_numeric(1:200,

dp = 1,
style = bf)

# You can also use it to change the styles of an xlr_table, this only
# affect the format in `Excel`
bt <- xlr_table(mtcars, "A clever title", "A useful footnote")
bt <- bt |>

update_theme(footnote_format = xlr_format(font_size = 7))



22 xlr_integer

xlr_integer xlr_integer vector

Description

This creates an integer vector that will be printed neatly and can easily be exported to Excel using
it’s native format.You can convert a vector back to its base type with as_base_r().

Usage

xlr_integer(x = integer(), style = xlr_format_numeric())

is_xlr_integer(x)

as_xlr_integer(x, style = xlr_format_numeric())

Arguments

x A numeric vector

• For xlr_integer(): A numeric vector
• For is_xlr_integer(): An object to test
• For as_xlr_integer() : a vector

style Additional styling options for the vector. See xlr_format_numeric for more de-
tails.

Details

Internally, xlr_integer uses vec_cast to convert numeric types to integers. Anything that vec_cast
can handle so can xlr_integer. Read more about casting at vec_cast.

Value

An S3 vector of class xlr_integer

See Also

xlr_vector(), xlr_percent(), xlr_numeric()

Examples

library(xlr)
# Create a variable to represent an integer
x <- xlr_integer(2)
# This will print nicely
x
# You can change the styling, which affects how it looks when we save it as an
# `Excel` document



xlr_numeric 23

x <- xlr_integer(x, style = xlr_format(font_size = 9, font_colour = "red"))
x
# We can also define a vector of integers
y <- xlr_integer(c(1,2,3))
y
# You can convert existing data to a integer using dplyr verbs
# It formats large numbers nicely
df <- data.frame(col_1 = c(1:100*100))
df |>

dplyr::mutate(col_pct = as_xlr_integer(col_1))
# You can use as_xlr_integer to convert a string in a integer
df <- data.frame(col_str = c("12","13","14"))
# now we can convert the string to a integer(), internally it uses the same
# logic as as.integer()
df |>

dplyr::mutate(col_percent = as_xlr_integer(col_str))

xlr_numeric xlr_numeric vector

Description

This creates an numeric vector that will be printed neatly and can easily be exported to Excel using
it’s native format. You can convert a vector back to its base type with as_base_r().

Usage

xlr_numeric(
x = numeric(),
dp = 2L,
scientific = FALSE,
style = xlr_format_numeric()

)

is_xlr_numeric(x)

as_xlr_numeric(x, dp = 0L, scientific = FALSE, style = xlr_format_numeric())

Arguments

x • For xlr_numeric(): A numeric vector
• For is_xlr_numeric(): An object to test
• For as_xlr_numeric() : a vector

dp the number of decimal places to print

scientific logical. Whether to format the numeric using scientific notation.

style Additional styling options for the vector. See xlr_format_numeric for more de-
tails.



24 xlr_n_percent

Details

Internally, xlr_numeric uses vec_cast to convert numeric types to integers. Anything that vec_cast
can handle so can xlr_numeric. Read more about casting at vec_cast.

Value

An S3 vector of class xlr_numeric

See Also

xlr_percent(), xlr_integer(), xlr_vector(), as_base_r()

Examples

library(xlr)
# Create a variable to represent a double with two decimal places
# The decimal places must be a positive integer
x <- xlr_numeric(2.1134,dp = 2)
# This will print nicely
x
# You can change the styling, which affects how it looks when we print it
x <- xlr_numeric(x, dp = 3L, style = xlr_format(font_size = 9, font_colour = "red"))
x
# We can also define a vector of doubles
y <- xlr_numeric(c(22.1055,1.3333333,3.1234567), dp = 2)
y
# You can convert existing data to a double using dplyr verbs
df <- data.frame(col_1 = c(2,3.2,1.33,4.43251))
df |>

dplyr::mutate(col_pct = as_xlr_numeric(col_1))
# You can use as_xlr_numeric to convert a string in a double
df <- data.frame(col_str = c("12.22","12.34567","100"))
# now we can convert the string to a double(), internally it uses the same
# logic as as.double()
df |>

dplyr::mutate(col_double = as_xlr_numeric(col_str,2))

xlr_n_percent xlr_n_percent vector

Description

This creates a record vector combining counts (N) and percentages (pct) that will be printed with
appropriate formatting and exported to Excel using its native formats. You can convert a vector
back to its base type with as_base_r().



xlr_n_percent 25

Usage

xlr_n_percent(
n = integer(),
pct = xlr_percent(),
dp = 0L,
style = xlr_format_numeric()

)

is_xlr_n_percent(x)

Arguments

n A positive integer vector of counts

pct A numeric vector of proportions

dp The number of decimal places to print for the percentage.

style Additional styling options for the vector. See xlr_format_numeric for more de-
tails.

x For is_xlr_n_percent(): An object to test

Value

An S3 record vector of class xlr_n_percent.

See Also

xlr_vector(), xlr_integer(), xlr_numeric(), xlr_percent(), as_base_r()

Examples

library(xlr)
# lets define a xlr_n_percent, which combines counts (N) and proportions (pct between 0-1)
#
# Create a variable to represent count 10 with 50%
x <- xlr_n_percent(n = 10L, pct = 0.5)
# This will print nicely
x
# Now we can increase the number of decimal places to display
# The decimal places must be a positive integer
x <- xlr_n_percent(n = 10L, pct = 0.5, dp = 3L)
x
# We can also define a vector of xlr_n_percents
y <- xlr_n_percent(n = c(10L, 20L, 30L), pct = c(0.1055, 0.3333333, 0.1234567), dp = 2)
y
# You can convert existing data to a xlr_n_percent using dplyr verbs
df <- data.frame(N = c(0L, 20L, 33L, 43L), pct = c(0, 0.2, 0.33, 0.43251))
df |>

dplyr::mutate(col_np = xlr_n_percent(N, pct))
# You can also change the styling of a xlr_n_percent column, this is only relevant
# if you print it to `Excel` with write_xlsx



26 xlr_percent

df |>
dplyr::mutate(col_np = xlr_n_percent(N,

pct,
dp = 2,
style = xlr_format_numeric(font_size = 8)))

# You can also convert it to a neat formatted character with as.character()
xlr_n_percent(n = c(10L, 20L, 30L), pct = c(0.1055, 0.3333333, 0.1234567),

dp = 2) |>
as.character()

# if you change the number of percentages it changes in the character
xlr_n_percent(n = c(10L, 20L, 30L), pct = c(0.1055, 0.3333333, 0.1234567),

dp = 0) |>
as.character()

xlr_percent xlr_percent vector

Description

This creates a numeric vector that will be printed as a percentage and exported to Excel using it’s
native format.You can convert a vector back to its base type with as_base_r().

Usage

xlr_percent(x = double(), dp = 0L, style = xlr_format_numeric())

is_xlr_percent(x)

as_xlr_percent(x, dp = 0L, style = xlr_format_numeric())

Arguments

x • For xlr_percent(): A numeric vector
• For is_xlr_percent(): An object to test
• For as_xlr_percent() : a numeric or character vector. For a character

vector, the data must be in the format "XXX.YYY...%".

dp the number of decimal places to print

style Additional styling options for the vector. See xlr_format_numeric for more de-
tails.

Value

An S3 vector of class xlr_percent

See Also

xlr_vector(), xlr_integer(), xlr_numeric(), as_base_r()



xlr_table 27

Examples

library(xlr)
# lets define a xlr_percent, a xlr_percent is between a number between [0-1], not
# between 1-100
#
# Create a variable to represent 10%
x <- xlr_percent(0.1)
# This will print nicely
x
# Now we can increase the number of decimal places to display
# The decimal places must be a positive integer
x <- xlr_percent(x, dp = 3L)
x
# We can also define a vector of xlr_percents
y <- xlr_percent(c(0.1055,0.3333333,0.1234567), dp = 2)
y
# You can convert existing data to a xlr_percentage using dplyr verbs
df <- data.frame(col_1 = c(0,0.2,0.33,0.43251))
df |>

dplyr::mutate(col_pct = as_xlr_percent(col_1))
# You can also change the styling of a xlr_percent column, this is only relevant
# if you print it to `Excel` with write_xlsx
df |>

dplyr::mutate(col_pct = xlr_percent(col_1,
dp = 2,
style = xlr_format(font_size = 8)))

# You can use as_xlr_percent to convert a string in a xlr_percentage format to a
# xlr_percent
df <- data.frame(col_str = c("12.22%","12.34567%","100%"))
# now we can convert the string to a xlr_xlr_percent()
df |>

dplyr::mutate(col_xlr_percent = as_xlr_percent(col_str,2))

xlr_table xlr_table object

Description

Create a xlr_table S3 object. This is used to create an object that stores formatting information,
as well as a title and footnote. This objects makes it easy to convert to an Excel sheet, using
write_xlsx(). To edit underlying formatting options use update_theme().

A number of dplyr methods have been implemented for xlr_table, these include mutate, summarise,
select, etc. This means you can use these functions on a xlr_table, without losing the xlr_table
attributes. You can check if the dplyr function is supported by checking the documentation of the
function. Currently, it is not possible to use group_by and a xlr_table, as this would require the
implementation of a new class.

You can convert a table back to a data.frame with base type with as_base_r().



28 xlr_table

Usage

xlr_table(x, title = character(), footnote = character())

is_xlr_table(x)

as_xlr_table(x, title = character(), footnote = character())

Arguments

x a data object

• for xlr_table() : a data.frame, or tibble. See notes for further details.
• for is_xlr_table() : An object
• for as_xlr_table() a data.frame, or tibble.

title a string that is the title

footnote a string that is the footnote

Value

a xlr_table S3 class

See Also

update_theme(), as_base_r()

Examples

library(xlr)
library(dplyr)
# Create a xlr_table, we set the footnotes and the title
# It converts to the xlr types by default
x <- xlr_table(mtcars,

title = "mtcars is a fun data set",
footnote = "mtcars is a data set that comes with base R")

# The title and the footnote print to console
x
# You can use mutate and summarise with xlr_tables and they are preserved
x |>

summarise(mean_mpg = sum(mpg))
# Rename a column
x |>

rename(new_name = mpg)
# When you want to change how elements of the table look when written using
# write_xlsx, you can update it with update them
x <- x |>

# make the font bigger
update_theme(title_format = xlr_format(font_size = 14))

# you must write it in order to see the formatting changes
write_xlsx(x,

"example.xlsx",



xlr_vector 29

"A example sheet",
TOC = FALSE)

xlr_vector xlr_vector vector

Description

A general container for including additional styling options within a vector so that it can easily
be exported to Excel. This vector type should be used for characters, factors, Booleans, complex
numbers, etc. It does not support dates.

Usage

xlr_vector(x = vector(), excel_format = "GENERAL", style = xlr_format())

is_xlr_vector(x)

as_xlr_vector(x, excel_format = "GENERAL", style = xlr_format())

Arguments

x A vector

• For xlr_vector(): A vector
• For is_xlr_vector(): An object to test
• For as_xlr_vector() : a vector

excel_format a character, the Excel cell format, not validated. See createStyle argument
numFmt for more details on what you can specify.

style Additional styling options for the vector. See xlr_format for more details.

Details

While you can use it with integer, and double types and specifying the associated Excel format,
we recommend using xlr_integer, xlr_numeric, or xlr_percent types instead.

You can convert a vector back to its base type with as_base_r().

Value

An S3 vector of class xlr_vector

See Also

xlr_percent(), xlr_integer(), xlr_numeric(), as_base_r()



30 xlr_vector

Examples

library(xlr)
# Create a xlr_vector object, this is used so we can add styling to an existing
# vector so that it prints nicely in `Excel`
#
# Note currently the style will not change the style in the console
x <- xlr_vector(1:100,

excel_format = "00.0##",
style = xlr_format(font_size = 8))

# You can also use it so that dates are nicely printed in `Excel`
dates <- c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92")
dates <- as.Date(dates, "%m/%d/%y")
x <- xlr_vector(dates,

# Print it as a long date in `Excel`
excel_format = "LONGDATE")

# You can convert existing data to a xlr_vectors using dplyr verbs
iris |>

dplyr::mutate(iris_format = as_xlr_vector(Species,
"TEXT",
xlr_format(text_style = "italic")))



Index

∗ datasets
clothes_opinions, 11

as_base_r, 2, 2
as_base_r(), 22–29
as_xlr_integer (xlr_integer), 22
as_xlr_numeric (xlr_numeric), 23
as_xlr_percent (xlr_percent), 26
as_xlr_table (xlr_table), 27
as_xlr_vector (xlr_vector), 29

build_mtable, 3, 10, 14
build_qtable, 4, 7, 10, 14
build_qtable(), 8
build_table, 4, 9, 14
build_table(), 8

clothes_opinions, 11
create_table_of_contents, 12
create_table_of_contents(), 17
createStyle, 18, 20, 29

is_xlr_format, 13
is_xlr_format(), 21
is_xlr_integer (xlr_integer), 22
is_xlr_n_percent (xlr_n_percent), 24
is_xlr_numeric (xlr_numeric), 23
is_xlr_percent (xlr_percent), 26
is_xlr_table (xlr_table), 27
is_xlr_type, 14
is_xlr_vector (xlr_vector), 29

labelled, 4, 8, 10

make_wider, 14

pivot_wider, 4, 15

read_sav, 4, 8, 10

tibble::tibble, 15

tidyr_tidy_select, 7, 9

update_theme, 15
update_theme(), 27, 28

vec_cast, 22, 24
vec_data, 2

write.xlsx, 16
write_xlsx, 4, 10, 12, 16
write_xlsx(), 8, 15, 27

xlr_and_dplyr, 18
xlr_format, 2, 16, 18, 29
xlr_format(), 18
xlr_format_numeric, 22, 23, 25, 26
xlr_format_numeric (xlr_format), 18
xlr_format_numeric(), 18
xlr_integer, 2, 16, 22, 29
xlr_integer(), 24–26, 29
xlr_n_percent, 14, 15, 24
xlr_numeric, 2, 16, 23, 29
xlr_numeric(), 22, 25, 26, 29
xlr_percent, 2, 16, 26, 29
xlr_percent(), 22, 24, 25, 29
xlr_table, 2, 4, 8, 10, 12, 15, 16, 27
xlr_table(), 21
xlr_vector, 4, 8, 10, 16, 29
xlr_vector(), 22, 24–26

31


	as_base_r
	build_mtable
	build_qtable
	build_table
	clothes_opinions
	create_table_of_contents
	is_xlr_format
	is_xlr_type
	make_wider
	update_theme
	write_xlsx
	xlr_and_dplyr
	xlr_format
	xlr_integer
	xlr_numeric
	xlr_n_percent
	xlr_percent
	xlr_table
	xlr_vector
	Index

