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ic_criterion Information criterion (IC1/IC2) for selecting number of factors

Description

Information criterion (IC1/IC2) for selecting number of factors

Usage

ic_criterion(
X,
r_max = 10,
ic_type = c("IC1", "IC2"),
data_type = "count",
C = NULL,
max_iter = 30,
verbose = FALSE

)

Arguments

X Data matrix (may contain missing values coded as NA)

r_max Maximum number of factors to consider (default: 10)

ic_type IC criterion type: "IC1" or "IC2" (default: "IC1")

data_type Type of data: "continuous", "count", or "binary"

C CJMLE projection constant (if NULL, auto-calculated)

max_iter Maximum CJMLE iterations (default: 30)

verbose Print progress information (default: FALSE)

Value

List with r_hat (optimal rank), ic_values, loglik_values
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Examples

# Generate Poisson data with known rank
set.seed(2025)
n <- 100; p <- 100; r_true <- 2

# Generate true factors
F_true <- matrix(runif(n * r_true, min = -2, max = 2), n, r_true)
B_true <- matrix(runif(p * r_true, min = -2, max = 2), p, r_true)
M_true <- F_true %*% t(B_true)

# Generate Poisson observations
lambda <- exp(M_true)
X <- matrix(rpois(n * p, as.vector(lambda)), n, p)

# Add 10% missing values
n_missing <- floor(n * p * 0.1)
missing_idx <- sample(n * p, n_missing)
X[missing_idx] <- NA

# Use IC1 to select rank
result_IC1 <- ic_criterion(

X = X,
r_max = 6,
ic_type = "IC1",
data_type = "count",
verbose = TRUE

)

print(paste("True rank:", r_true))
print(paste("Estimated rank (IC1):", result_IC1$r_hat))

# Use IC2 to select rank
result_IC2 <- ic_criterion(

X = X,
r_max = 6,
ic_type = "IC2",
data_type = "count",
verbose = TRUE

)

identify Identify factor decomposition via SVD

Description

Identify factor decomposition via SVD

Usage

identify(M, r)
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Arguments

M Matrix to decompose

r Number of factors

Value

List with F (row factors) and B (column factors)

Examples

# Generate Poisson data
set.seed(123)
n0 <- 50; p0 <- 50; r <- 2
F_true <- matrix(runif(n0 * r, min = -2, max = 2), n0, r)
B_true <- matrix(runif(p0 * r, min = -2, max = 2), p0, r)
F_true <- F_true / sqrt(r)
B_true <- B_true / sqrt(r)
M_true <- F_true %*% t(B_true)

# Decompose using identify
result <- identify(M_true, r = 2)
F_hat <- result$F
B_hat <- result$B

# Check reconstruction
M_reconstructed <- F_hat %*% t(B_hat)
print(max(abs(M_reconstructed - M_true))) # Should be very small

relative_error Calculate relative error between estimated and true matrices

Description

Calculate relative error between estimated and true matrices

Usage

relative_error(M_hat, M_true)

Arguments

M_hat Estimated matrix

M_true True matrix

Value

Relative Frobenius norm error
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Examples

M_true <- matrix(1:9, 3, 3)
M_hat <- M_true + matrix(rnorm(9, 0, 0.1), 3, 3)
relative_error(M_hat, M_true)

source_detection Detect positive and negative transfer sources using ratio method

Description

Detect positive and negative transfer sources using ratio method

Usage

source_detection(
X_sources,
X0,
r,
C,
C2,
data_type = "count",
c_penalty = 0.1,
verbose = TRUE

)

Arguments

X_sources List of source data matrices (may contain missing values)

X0 Target data matrix (complete)

r Number of factors

C CJMLE projection constant

C2 Refinement projection constant

data_type Type of data: "continuous", "count", or "binary"

c_penalty Penalty coefficient (default: 0.1)

verbose Print progress information (default: TRUE)

Value

List with positive_sources, negative_sources, and diagnostic info
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source_potential Identify potential sources based on rank comparison using IC criterion

Description

Identify potential sources based on rank comparison using IC criterion

Usage

source_potential(
X_sources,
X0,
r_max = 10,
ic_type = "IC1",
data_type = "count",
C = NULL,
max_iter = 30,
verbose = TRUE

)

Arguments

X_sources List of source data matrices (may contain missing values)

X0 Target data matrix (may contain missing values)

r_max Maximum number of factors to consider (default: 10)

ic_type IC criterion type: "IC1" or "IC2" (default: "IC1")

data_type Type of data: "continuous", "count", or "binary"

C CJMLE projection constant (if NULL, auto-calculated)

max_iter Maximum CJMLE iterations (default: 30)

verbose Print progress information (default: TRUE)

Value

List with positive_potential_sources, negative_sources, r_target, r_sources

Examples

# Generate Poisson data
set.seed(2025)

# Generate 5 sources with different ranks
n1 <- 100; p1 <- 100
source_list <- list()

# Sources 1-2: rank 2 (same as target)
r_s <- 2
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F_s <- matrix(runif(n1 * r_s, min = -2, max = 2), n1, r_s)
B_s <- matrix(runif(p1 * r_s, min = -2, max = 2), p1, r_s)
M_s <- F_s %*% t(B_s)
for (s in 1:2) {

X_s <- matrix(rpois(n1 * p1, exp(M_s)), n1, p1)

# Add 10% missing values
n_missing <- floor(n1 * p1 * 0.1)
missing_idx <- sample(n1 * p1, n_missing)
X_s[missing_idx] <- NA

source_list[[s]] <- X_s
}

# Sources 3-5: rank 3 (different from target)
for (s in 3:5) {

r_s_nega <- 3
F_s_nega <- matrix(runif(n1 * r_s_nega, min = -2, max = 2), n1, r_s_nega)
B_s_nega <- matrix(runif(p1 * r_s_nega, min = -2, max = 2), p1, r_s_nega)
M_s_nega <- F_s_nega %*% t(B_s_nega)
X_s_nega <- matrix(rpois(n1 * p1, exp(M_s_nega)), n1, p1)

n_missing <- floor(n1 * p1 * 0.1)
missing_idx <- sample(n1 * p1, n_missing)
X_s_nega[missing_idx] <- NA

source_list[[s]] <- X_s_nega
}

# Target data: rank 2
n0 <- 50; p0 <- 50; r_target <- 2
M_target <- M_s[1:n0, 1:p0]
X_target <- matrix(rpois(n0 * p0, exp(M_target)), n0, p0)

# Identify potential sources
result <- source_potential(

X_sources = source_list,
X0 = X_target,
r_max = 5,
ic_type = "IC1",
data_type = "count",
verbose = TRUE

)

print(result$positive_potential_sources) # Should be c(1, 2)
print(result$negative_sources) # Should be c(3, 4, 5)
print(result$r_target) # Should be 2
print(result$r_sources) # Should be c(2, 2, 3, 3, 3)

transGFM Single source transfer learning for generalized factor models
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Description

Single source transfer learning for generalized factor models

Usage

transGFM(
source_data,
target_data,
r,
data_type = "count",
lambda_seq = seq(0, 10, by = 1),
K_cv = 3,
sigma2 = 1,
max_iter_cjmle = 30,
max_iter_refine = 30,
max_iter_nuclear = 30,
verbose = FALSE

)

Arguments

source_data Source data matrix (may contain missing values coded as NA)

target_data Target data matrix (complete)

r Number of factors

data_type Type of data: "continuous", "count", or "binary"

lambda_seq Sequence of lambda values for CV (default: seq(0, 10, by = 1))

K_cv Number of CV folds (default: 3)

sigma2 Variance parameter for continuous data (default: 1)

max_iter_cjmle Maximum iterations for CJMLE (default: 30)
max_iter_refine

Maximum iterations for refinement (default: 30)
max_iter_nuclear

Maximum iterations for nuclear MLE (default: 100)

verbose Print progress information (default: FALSE)

Value

List containing final estimate M_trans and intermediate results

Examples

# Generate Poisson data
set.seed(2025)

# Source data (100 x 100 with 10% missing)
n1 <- 100; p1 <- 100; r <- 2
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F_source <- matrix(runif(n1 * r, min = -2, max = 2), n1, r)
B_source <- matrix(runif(p1 * r, min = -2, max = 2), p1, r)
M_source <- F_source %*% t(B_source)
lambda_source <- exp(M_source)
X_source <- matrix(rpois(n1 * p1, as.vector(lambda_source)), n1, p1)

# Add 10% missing values to source
n_missing <- floor(n1 * p1 * 0.1)
missing_idx <- sample(n1 * p1, n_missing)
X_source[missing_idx] <- NA

# Target data (50 x 50, complete)
n0 <- 50; p0 <- 50
M_target_true <- M_source[1:n0, 1:p0]
lambda_target <- exp(M_target_true)
X_target <- matrix(rpois(n0 * p0, as.vector(lambda_target)), n0, p0)

# Run transGFM
result <- transGFM(

source_data = X_source,
target_data = X_target,
r = 2,
data_type = "count",
lambda_seq = seq(0, 5, by = 1),
K_cv = 3,
verbose = FALSE

)

# Check results
print(paste("Optimal lambda:", result$optimal_lambda))
print(paste("Final relative error:",

relative_error(result$M_trans, M_target_true)))

transGFM_multi Multiple source transfer learning for generalized factor models

Description

Multiple source transfer learning for generalized factor models

Usage

transGFM_multi(
source_data_list,
target_data,
r,
data_type = "count",
method = "AD",
lambda_seq = seq(0, 10, by = 1),
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K_cv = 3,
sigma2 = 1,
max_iter_cjmle = 30,
max_iter_refine = 30,
max_iter_nuclear = 100,
verbose = FALSE

)

Arguments

source_data_list

List of source data matrices (may contain missing values)

target_data Target data matrix (complete)

r Number of factors

data_type Type of data: "continuous", "count", or "binary"

method Fusion method: "AD" (Average-Debias) or "DA" (Debias-Average)

lambda_seq Sequence of lambda values for CV

K_cv Number of CV folds

sigma2 Variance parameter for continuous data

max_iter_cjmle Maximum iterations for CJMLE
max_iter_refine

Maximum iterations for refinement
max_iter_nuclear

Maximum iterations for nuclear MLE

verbose Print progress information

Value

List containing final estimate and intermediate results

Examples

# Generate Poisson data
set.seed(2025)

# Generate 3 source datasets (100 x 100 with different missing rates)
n1 <- 100; p1 <- 100; r <- 2
source_list <- list()
F_s <- matrix(runif(n1 * r, min = -2, max = 2), n1, r)
B_s <- matrix(runif(p1 * r, min = -2, max = 2), p1, r)
M_s <- F_s %*% t(B_s)
for (s in 1:3) {

X_s <- matrix(rpois(n1 * p1, exp(M_s)), n1, p1)

# Add missing values (10%, 12%, 14% for sources 1-3)
missing_rate <- 0.1 + (s - 1) * 0.02
n_missing <- floor(n1 * p1 * missing_rate)
missing_idx <- sample(n1 * p1, n_missing)
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X_s[missing_idx] <- NA

source_list[[s]] <- X_s
}

# Target data (50 x 50, complete)
n0 <- 50; p0 <- 50
M_target_true <- M_s[1:n0, 1:p0]
X_target <- matrix(rpois(n0 * p0, exp(M_target_true)), n0, p0)

# Run transGFM_multi with AD method
result_AD <- transGFM_multi(

source_data_list = source_list,
target_data = X_target,
r = 2,
data_type = "count",
method = "AD",
lambda_seq = seq(0, 5, by = 1),
K_cv = 3,
verbose = FALSE

)

# Run transGFM_multi with DA method
result_DA <- transGFM_multi(

source_data_list = source_list,
target_data = X_target,
r = 2,
data_type = "count",
method = "DA",
verbose = FALSE

)

# Compare results
print(paste("AD method error:", relative_error(result_AD$M_trans, M_target_true)))
print(paste("DA method error:", relative_error(result_DA$M_trans, M_target_true)))
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