
Package ‘transGFM’
January 8, 2026

Type Package

Title Transfer Learning for Generalized Factor Models

Version 1.0.2

Date 2026-01-08

Maintainer Zhijing Wang <wangzhijing@sjtu.edu.cn>

Description Transfer learning for generalized factor models with support for continuous, count (Pois-
son), and binary data types. The package provides functions for single and multiple source trans-
fer learning, source detection to identify positive and negative transfer sources, factor decompo-
sition using Maximum Likelihood Estimation (MLE), and information crite-
ria ('IC1' and 'IC2') for rank selection. The methods are particularly useful for high-
dimensional data analysis where auxiliary information from related source datasets can im-
prove estimation efficiency in the target domain.

License GPL-3

URL https://github.com/zjwangATsu/transGFM

BugReports https://github.com/zjwangATsu/transGFM/issues

Encoding UTF-8

Depends R (>= 3.5.0)

Imports stats

Suggests testthat (>= 3.0.0), knitr, rmarkdown

RoxygenNote 7.3.2

NeedsCompilation no

Author Zhijing Wang [aut, cre],
Peirong Xu [aut],
Hongyu Zhao [aut],
Tao Wang [aut]

Repository CRAN

Date/Publication 2026-01-08 04:40:02 UTC

1

https://github.com/zjwangATsu/transGFM
https://github.com/zjwangATsu/transGFM/issues

2 ic_criterion

Contents
ic_criterion . 2
identify . 3
relative_error . 4
source_detection . 5
source_potential . 6
transGFM . 7
transGFM_multi . 9

Index 12

ic_criterion Information criterion (IC1/IC2) for selecting number of factors

Description

Information criterion (IC1/IC2) for selecting number of factors

Usage

ic_criterion(
X,
r_max = 10,
ic_type = c("IC1", "IC2"),
data_type = "count",
C = NULL,
max_iter = 30,
verbose = FALSE

)

Arguments

X Data matrix (may contain missing values coded as NA)

r_max Maximum number of factors to consider (default: 10)

ic_type IC criterion type: "IC1" or "IC2" (default: "IC1")

data_type Type of data: "continuous", "count", or "binary"

C CJMLE projection constant (if NULL, auto-calculated)

max_iter Maximum CJMLE iterations (default: 30)

verbose Print progress information (default: FALSE)

Value

List with r_hat (optimal rank), ic_values, loglik_values

identify 3

Examples

Generate Poisson data with known rank
set.seed(2025)
n <- 100; p <- 100; r_true <- 2

Generate true factors
F_true <- matrix(runif(n * r_true, min = -2, max = 2), n, r_true)
B_true <- matrix(runif(p * r_true, min = -2, max = 2), p, r_true)
M_true <- F_true %*% t(B_true)

Generate Poisson observations
lambda <- exp(M_true)
X <- matrix(rpois(n * p, as.vector(lambda)), n, p)

Add 10% missing values
n_missing <- floor(n * p * 0.1)
missing_idx <- sample(n * p, n_missing)
X[missing_idx] <- NA

Use IC1 to select rank
result_IC1 <- ic_criterion(

X = X,
r_max = 6,
ic_type = "IC1",
data_type = "count",
verbose = TRUE

)

print(paste("True rank:", r_true))
print(paste("Estimated rank (IC1):", result_IC1$r_hat))

Use IC2 to select rank
result_IC2 <- ic_criterion(

X = X,
r_max = 6,
ic_type = "IC2",
data_type = "count",
verbose = TRUE

)

identify Identify factor decomposition via SVD

Description

Identify factor decomposition via SVD

Usage

identify(M, r)

4 relative_error

Arguments

M Matrix to decompose

r Number of factors

Value

List with F (row factors) and B (column factors)

Examples

Generate Poisson data
set.seed(123)
n0 <- 50; p0 <- 50; r <- 2
F_true <- matrix(runif(n0 * r, min = -2, max = 2), n0, r)
B_true <- matrix(runif(p0 * r, min = -2, max = 2), p0, r)
F_true <- F_true / sqrt(r)
B_true <- B_true / sqrt(r)
M_true <- F_true %*% t(B_true)

Decompose using identify
result <- identify(M_true, r = 2)
F_hat <- result$F
B_hat <- result$B

Check reconstruction
M_reconstructed <- F_hat %*% t(B_hat)
print(max(abs(M_reconstructed - M_true))) # Should be very small

relative_error Calculate relative error between estimated and true matrices

Description

Calculate relative error between estimated and true matrices

Usage

relative_error(M_hat, M_true)

Arguments

M_hat Estimated matrix

M_true True matrix

Value

Relative Frobenius norm error

source_detection 5

Examples

M_true <- matrix(1:9, 3, 3)
M_hat <- M_true + matrix(rnorm(9, 0, 0.1), 3, 3)
relative_error(M_hat, M_true)

source_detection Detect positive and negative transfer sources using ratio method

Description

Detect positive and negative transfer sources using ratio method

Usage

source_detection(
X_sources,
X0,
r,
C,
C2,
data_type = "count",
c_penalty = 0.1,
verbose = TRUE

)

Arguments

X_sources List of source data matrices (may contain missing values)

X0 Target data matrix (complete)

r Number of factors

C CJMLE projection constant

C2 Refinement projection constant

data_type Type of data: "continuous", "count", or "binary"

c_penalty Penalty coefficient (default: 0.1)

verbose Print progress information (default: TRUE)

Value

List with positive_sources, negative_sources, and diagnostic info

6 source_potential

source_potential Identify potential sources based on rank comparison using IC criterion

Description

Identify potential sources based on rank comparison using IC criterion

Usage

source_potential(
X_sources,
X0,
r_max = 10,
ic_type = "IC1",
data_type = "count",
C = NULL,
max_iter = 30,
verbose = TRUE

)

Arguments

X_sources List of source data matrices (may contain missing values)

X0 Target data matrix (may contain missing values)

r_max Maximum number of factors to consider (default: 10)

ic_type IC criterion type: "IC1" or "IC2" (default: "IC1")

data_type Type of data: "continuous", "count", or "binary"

C CJMLE projection constant (if NULL, auto-calculated)

max_iter Maximum CJMLE iterations (default: 30)

verbose Print progress information (default: TRUE)

Value

List with positive_potential_sources, negative_sources, r_target, r_sources

Examples

Generate Poisson data
set.seed(2025)

Generate 5 sources with different ranks
n1 <- 100; p1 <- 100
source_list <- list()

Sources 1-2: rank 2 (same as target)
r_s <- 2

transGFM 7

F_s <- matrix(runif(n1 * r_s, min = -2, max = 2), n1, r_s)
B_s <- matrix(runif(p1 * r_s, min = -2, max = 2), p1, r_s)
M_s <- F_s %*% t(B_s)
for (s in 1:2) {

X_s <- matrix(rpois(n1 * p1, exp(M_s)), n1, p1)

Add 10% missing values
n_missing <- floor(n1 * p1 * 0.1)
missing_idx <- sample(n1 * p1, n_missing)
X_s[missing_idx] <- NA

source_list[[s]] <- X_s
}

Sources 3-5: rank 3 (different from target)
for (s in 3:5) {

r_s_nega <- 3
F_s_nega <- matrix(runif(n1 * r_s_nega, min = -2, max = 2), n1, r_s_nega)
B_s_nega <- matrix(runif(p1 * r_s_nega, min = -2, max = 2), p1, r_s_nega)
M_s_nega <- F_s_nega %*% t(B_s_nega)
X_s_nega <- matrix(rpois(n1 * p1, exp(M_s_nega)), n1, p1)

n_missing <- floor(n1 * p1 * 0.1)
missing_idx <- sample(n1 * p1, n_missing)
X_s_nega[missing_idx] <- NA

source_list[[s]] <- X_s_nega
}

Target data: rank 2
n0 <- 50; p0 <- 50; r_target <- 2
M_target <- M_s[1:n0, 1:p0]
X_target <- matrix(rpois(n0 * p0, exp(M_target)), n0, p0)

Identify potential sources
result <- source_potential(

X_sources = source_list,
X0 = X_target,
r_max = 5,
ic_type = "IC1",
data_type = "count",
verbose = TRUE

)

print(result$positive_potential_sources) # Should be c(1, 2)
print(result$negative_sources) # Should be c(3, 4, 5)
print(result$r_target) # Should be 2
print(result$r_sources) # Should be c(2, 2, 3, 3, 3)

transGFM Single source transfer learning for generalized factor models

8 transGFM

Description

Single source transfer learning for generalized factor models

Usage

transGFM(
source_data,
target_data,
r,
data_type = "count",
lambda_seq = seq(0, 10, by = 1),
K_cv = 3,
sigma2 = 1,
max_iter_cjmle = 30,
max_iter_refine = 30,
max_iter_nuclear = 30,
verbose = FALSE

)

Arguments

source_data Source data matrix (may contain missing values coded as NA)

target_data Target data matrix (complete)

r Number of factors

data_type Type of data: "continuous", "count", or "binary"

lambda_seq Sequence of lambda values for CV (default: seq(0, 10, by = 1))

K_cv Number of CV folds (default: 3)

sigma2 Variance parameter for continuous data (default: 1)

max_iter_cjmle Maximum iterations for CJMLE (default: 30)
max_iter_refine

Maximum iterations for refinement (default: 30)
max_iter_nuclear

Maximum iterations for nuclear MLE (default: 100)

verbose Print progress information (default: FALSE)

Value

List containing final estimate M_trans and intermediate results

Examples

Generate Poisson data
set.seed(2025)

Source data (100 x 100 with 10% missing)
n1 <- 100; p1 <- 100; r <- 2

transGFM_multi 9

F_source <- matrix(runif(n1 * r, min = -2, max = 2), n1, r)
B_source <- matrix(runif(p1 * r, min = -2, max = 2), p1, r)
M_source <- F_source %*% t(B_source)
lambda_source <- exp(M_source)
X_source <- matrix(rpois(n1 * p1, as.vector(lambda_source)), n1, p1)

Add 10% missing values to source
n_missing <- floor(n1 * p1 * 0.1)
missing_idx <- sample(n1 * p1, n_missing)
X_source[missing_idx] <- NA

Target data (50 x 50, complete)
n0 <- 50; p0 <- 50
M_target_true <- M_source[1:n0, 1:p0]
lambda_target <- exp(M_target_true)
X_target <- matrix(rpois(n0 * p0, as.vector(lambda_target)), n0, p0)

Run transGFM
result <- transGFM(

source_data = X_source,
target_data = X_target,
r = 2,
data_type = "count",
lambda_seq = seq(0, 5, by = 1),
K_cv = 3,
verbose = FALSE

)

Check results
print(paste("Optimal lambda:", result$optimal_lambda))
print(paste("Final relative error:",

relative_error(result$M_trans, M_target_true)))

transGFM_multi Multiple source transfer learning for generalized factor models

Description

Multiple source transfer learning for generalized factor models

Usage

transGFM_multi(
source_data_list,
target_data,
r,
data_type = "count",
method = "AD",
lambda_seq = seq(0, 10, by = 1),

10 transGFM_multi

K_cv = 3,
sigma2 = 1,
max_iter_cjmle = 30,
max_iter_refine = 30,
max_iter_nuclear = 100,
verbose = FALSE

)

Arguments

source_data_list

List of source data matrices (may contain missing values)

target_data Target data matrix (complete)

r Number of factors

data_type Type of data: "continuous", "count", or "binary"

method Fusion method: "AD" (Average-Debias) or "DA" (Debias-Average)

lambda_seq Sequence of lambda values for CV

K_cv Number of CV folds

sigma2 Variance parameter for continuous data

max_iter_cjmle Maximum iterations for CJMLE
max_iter_refine

Maximum iterations for refinement
max_iter_nuclear

Maximum iterations for nuclear MLE

verbose Print progress information

Value

List containing final estimate and intermediate results

Examples

Generate Poisson data
set.seed(2025)

Generate 3 source datasets (100 x 100 with different missing rates)
n1 <- 100; p1 <- 100; r <- 2
source_list <- list()
F_s <- matrix(runif(n1 * r, min = -2, max = 2), n1, r)
B_s <- matrix(runif(p1 * r, min = -2, max = 2), p1, r)
M_s <- F_s %*% t(B_s)
for (s in 1:3) {

X_s <- matrix(rpois(n1 * p1, exp(M_s)), n1, p1)

Add missing values (10%, 12%, 14% for sources 1-3)
missing_rate <- 0.1 + (s - 1) * 0.02
n_missing <- floor(n1 * p1 * missing_rate)
missing_idx <- sample(n1 * p1, n_missing)

transGFM_multi 11

X_s[missing_idx] <- NA

source_list[[s]] <- X_s
}

Target data (50 x 50, complete)
n0 <- 50; p0 <- 50
M_target_true <- M_s[1:n0, 1:p0]
X_target <- matrix(rpois(n0 * p0, exp(M_target_true)), n0, p0)

Run transGFM_multi with AD method
result_AD <- transGFM_multi(

source_data_list = source_list,
target_data = X_target,
r = 2,
data_type = "count",
method = "AD",
lambda_seq = seq(0, 5, by = 1),
K_cv = 3,
verbose = FALSE

)

Run transGFM_multi with DA method
result_DA <- transGFM_multi(

source_data_list = source_list,
target_data = X_target,
r = 2,
data_type = "count",
method = "DA",
verbose = FALSE

)

Compare results
print(paste("AD method error:", relative_error(result_AD$M_trans, M_target_true)))
print(paste("DA method error:", relative_error(result_DA$M_trans, M_target_true)))

Index

ic_criterion, 2
identify, 3

relative_error, 4

source_detection, 5
source_potential, 6

transGFM, 7
transGFM_multi, 9

12

	ic_criterion
	identify
	relative_error
	source_detection
	source_potential
	transGFM
	transGFM_multi
	Index

