Package ‘tna’

February 12, 2026
Title Transition Network Analysis (TNA)
Version 1.2.0

Description Provides tools for performing Transition Network Analysis (TNA) to
study relational dynamics, including functions for building and plotting TNA
models, calculating centrality measures, and identifying dominant events and
patterns. TNA statistical techniques (e.g., bootstrapping and permutation
tests) ensure the reliability of observed insights and confirm that
identified dynamics are meaningful. See (Saqr et al., 2025)
<doi:10.1145/3706468.3706513> for more details on TNA.

License MIT + file LICENSE
URL https://github.com/sonsoleslp/tna/, http://sonsoles.me/tna/

BugReports https://github.com/sonsoleslp/tna/issues/
Depends R (>=4.1.0)

Imports checkmate, cli, cluster, colorspace, dplyr, ggplot2, graphics,
igraph, qgraph, RColorBrewer, rlang, stats, tibble, tidyr,
tidyselect

Suggests doParallel, gt, knitr, parallel, pracma, rmarkdown, seqHMM,
stringdist, testthat (>= 3.0.0)

VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8

RoxygenNote 7.3.3

LazyData true
Config/Needs/website rmarkdown
NeedsCompilation no

Author Mohammed Saqr [aut],
Santtu Tikka [aut],
Sonsoles Lépez-Pernas [aut, cre]

Maintainer Sonsoles Lépez-Pernas <sonsoles.lopez@uef.fi>
Repository CRAN
Date/Publication 2026-02-12 10:00:02 UTC

https://doi.org/10.1145/3706468.3706513
https://github.com/sonsoleslp/tna/
http://sonsoles.me/tna/
https://github.com/sonsoleslp/tna/issues/

2 Contents

Contents
tha-package e 4
asdgraph.group_tna L e 5
asdgraph.matrixX L. e e 5
asdgraph.tna e 6
betweenness_network e 7
DOOLSIIAD . . . o o o o e e e e e e e e e e e e e 7
bootstrap_cliques L e e e e 10
build_ model e 11
centralities e e 15
cliques 17
cluster_data e 18
COMMUNILIES v v v bttt e e e ettt e e e e e e e 20
COMPATE .« v v v v v e v e 21
COMPAre.ZrOUP_LNA v v v v e v e e e e e e e e e e e e e e e 23
COMPATE_SEQUENICES . « « .« o v e v e e e e e e e e e e e e e e e e 24
deprune L e 26
ENZAZCIMENL ¢ o i e e e e e e e e e e e e e e e e e 27
eNgagement_MMIM o vt v e e e e e e e e e e e e 28
EStIMAE_CS . . v v v o o e e e e e e e e e e 28
group_model e e 32
group_regulation e e e e 35
group_regulation_long 36
hist.group_tna L e 36
histtna. 37
import_data 38
import_onehot e 40
MMIM_STALS . . . o o o o o e e e e e e e e e e e e 41
PErMULAtion_test L. e e e e e e e e e 42
permutation_test.group_tnao e 43
plot.group_tna 45
plot.group_tna_bootstrap oL e e e e e e 46
plot.group_tna_centralities 47
plot.group_tna_cliques L 48
plot.group_tna_communities L. e e e e 49
plot.group_tna_permutation e e e e e e e e e 50
plot.group_tna_stability 51
plottna 52
plot.tna_bootstrap L e 54
plot.tna_centralities 55
plottna_cliques 56
plot.tha_communities o i e e e e e e e e 57
plot.tna_comparison L e e e e e e e 58
plot.tna_permutation L e e e 60
plot.tna_reliability L 61
plot.tna_sequence_cOmpariSON v v v bt e e e e e e 62

plot.tna_stability 63

Contents

Index

3

PlOt_assoCiations e e e e e e e e e e 64
plot_compare 65
plot_compare.group_tna 66
plot_frequencies L. e e e e 67
plot_frequencies.group_tna L. 68
PlOL_MOSAIC L e e e e e 69
Plot_mOoSaiCc.group_tna i e e e e e e e e e e e 70
plot_mosaic.tna_data 71
PIOL_SEQUENCES o o e e e e e e e e e 72
prepare_data L. L e e e e e e e 75
Print.group_tna e e e e e 77
print.group_tna_bootstrap 78
print.group_tna_centralities 79
print.group_tna_cliques e 80
print.group_tna_communitieso 81
print.group_tna_permutationo e 81
print.group_tna_stability e 82
Print.summary.group_tna o v vttt e e e e e e e e 83
print.summary.group_tna_bootstrap L. oL 84
Print.sSumMmary.tna v v vt e e e e e e e e e e e e e e e e e 85
print.summary.tna_bootstrap L. 85
Printtna 86
Print.tna_bootstrap L. e e e e e e e 87
print.tna_centralities L. L 88
print.tna_cliques 89
print.tna_clustering e 90
print.tna_communiti€S L. e e e 91
Print.tna_CcompariSOn oo e e e e e 91
print.tna_data e e e e e 92
print.tna_permutationo Lo e e 93
print.tna_reliability 94
print.tna_sequence_CompariSOn o v e bt e e e e e e e e 95
print.tna_stability L e 95
PIULE . . . o ottt e e e e e 96
pruning details L. 98
reliability e 99
TENAME_ZIOUDPS . .« « & v v e v v et e 100
TEPTUNE . . . v o v vttt e e e e e e e e e e e e e e e 101
simulate.group_tna e e e e e e e e e e 102
simulate.tna e 103
] 1 - 104
SUMMATY.EIOUP_NA . .« . v v v v v e e e e e e e e e e e e e e e e e e 105
summary.group_tna_bootstrapo 107
SUMMATY.tNA . . . ¢ v v v v v v et e e e e e e e e e e e e e e e e e e e 108
summary.tna_bootsStrapo e e e e e e e e e e e e 109
111

4 tna-package

tna-package The tna Package.

Description

Provides tools for performing transition network analysis (TNA), including functions for building
TNA models, plotting transition networks, and calculating centrality measures. The package relies
on the qgraph and igraph for network plotting and centrality measure calculations.

Author(s)

Sonsoles Lépez-Pernas, Santtu Tikka, Mohammed Saqr

References

Saqr M., Lépez-Pernas S., Torminen T., Kaliisa R., Misiejuk K., Tikka S. (2025). Transition
Network Analysis: A Novel Framework for Modeling, Visualizing, and Identifying the Temporal
Patterns of Learners and Learning Processes. In Proceedings of the 15th International Learning
Analytics and Knowledge Conference (LAK ’25), 351-361.

Banerjee A., Chandrasekhar A., Duflo E., Jackson M. (2014). Gossip: Identifying Central Individ-
uals in a Social Network. Working Paper.

Kivimaki, I., Lebichot, B., Saramaki, J., Saerens, M. (2016). Two betweenness centrality measures
based on Randomized Shortest Paths. Scientific Reports, 6, 19668.

Serrano, M. A., Boguna, M., Vespignani, A. (2009). Extracting the multiscale backbone of complex
weighted networks. Proceedings of the National Academy of Sciences, 106, 6483-6488.

Zhang, B., Horvath, S. (2005). A general framework for weighted gene co-expression network
analysis. Statistical Applications in Genetics and Molecular Biology, 4(1).

See Also

Useful links:

e https://github.com/sonsoleslp/tna/

* http://sonsoles.me/tna/

* Report bugs at https://github.com/sonsoleslp/tna/issues/
Basic functions build_model (), hist.group_tna(), hist.tna(), plot.group_tna(), plot.tna(),
plot_frequencies(), plot_frequencies.group_tna(), plot_mosaic(), plot_mosaic.group_tna(),

plot_mosaic.tna_data(), print.group_tna(), print.summary.group_tna(), print.summary.tna(),
print.tna(), summary.group_tna(), summary.tna()

https://github.com/sonsoleslp/tna/
http://sonsoles.me/tna/
https://github.com/sonsoleslp/tna/issues/

as.igraph.group_tna

as.igraph.group_tna Coerce a Specific Group from a group_tna Object into an igraph

Object.

Description

Coerce a Specific Group from a group_tna Object into an igraph Object.

Usage

S3 method for class 'group_tna'

as.igraph(x, which, ...)
Arguments

X The object to convert.

which The number or name of the group.

Additional arguments. None currently.

Value

An igraph object.

See Also

Helper functions as.igraph.matrix(), as.igraph.tna()

as.igraph.matrix

Coerce a Weight Matrix into an igraph Object.

Description

Coerce a Weight Matrix into an igraph Object.

Usage
S3 method for class 'matrix’
as.igraph(x, mode = "directed”, ...)
Arguments
X A matrix of edge weights.

mode

Character scalar, specifies how igraph should interpret the supplied matrix. See
also the weighted argument, the interpretation depends on that too. Possible
values are: directed, undirected, upper, lower, max, min, plus. See details
below.

Ignored.

Value

An igraph object.

See Also

Helper functions as.igraph.group_tna(), as.igraph.tna()

as.igraph.tna

as.igraph.tna Coerce a tna Object into an igraph Object.

Description

Coerce a tna Object into an igraph Object.

Usage
S3 method for class 'tna'
as.igraph(x, mode = "directed”, ...)
Arguments
X A tna object.
mode Character scalar, specifies how igraph should interpret the supplied matrix. See

also the weighted argument, the interpretation depends on that too. Possible
values are: directed, undirected, upper, lower, max, min, plus. See details

below.

Ignored.

Value

An igraph object.

See Also

Helper functions as.igraph.group_tna(), as.igraph.matrix()

betweenness_network 7

betweenness_network Build and Visualize a Network with Edge Betweenness

Description

This function builds a network from a transition matrix in a tna object and computes edge between-
ness for the network.

Usage
betweenness_network(x, directed)

S3 method for class 'tna'
betweenness_network(x, directed)

Arguments

X A tna object.

directed A logical value. If TRUE, the network is considered directed.
Value

A tna object where the edge weights are edge betweenness values.

See Also

Centrality measure functions centralities(), plot.group_tna_centralities(), plot.tna_centralities(),
print.group_tna_centralities(), print.tna_centralities()

Examples

model <- tna(group_regulation)
betweenness_network(model)

bootstrap Bootstrap Transition Networks from Sequence Data

Description

Perform bootstrapping on transition networks created from sequence data stored in a tna object.
Bootstrapped estimates of edge weights are returned with confidence intervals and significance
testing.

Usage

bootstrap(x, iter, level, method, threshold, consistency_range)

S3 method for class 'tna'

bootstrap

bootstrap(
X ’
iter = 1000,
level = 0.05,
method = "stability”,
threshold,
consistency_range = c(0.75, 1.25)
)
S3 method for class 'group_tna'
bootstrap(
X,
iter = 1000,
level = 0.05,
method = "stability",
threshold,
consistency_range = c(0.75, 1.25)
)
Arguments
X A tna or a group_tna object created from sequence data.
iter An integer specifying the number of bootstrap samples to draw. Defaults to
1000.
level A numeric value representing the significance level for hypothesis testing and
confidence intervals. Defaults to 0. @5.
method A character string. This argument defines the bootstrap test statistic. The
"stability"” option (the default) compares edge weights against a range of
"consistent" values defined by consistency_range. Weights that fall outside
this range are considered insignificant. In other words, an edge is considered
significant if its value is within the range in (1 - 1level) * 100% of the bootstrap
samples. The "threshold"” option instead compares the edge weights against a
user-specified threshold value.
threshold A numeric value to compare edge weights against. The default is the 10th

percentile of the edge weights. Used only when method = "threshold”.

consistency_range

A numeric vector of length 2. Determines how much the edge weights may
deviate (multiplicatively) from their observed values (below and above) be-
fore they are considered insignificant. The default is c(@.75, 1.25) which
corresponds to a symmetric 25% deviation range. Used only when method =
"stability".

bootstrap 9

Details

The function first computes the original edge weights for the specified cluster from the tna object.
It then performs bootstrapping by resampling the sequence data and recalculating the edge weights
for each bootstrap sample. The mean and standard deviation of the transitions are computed, and
confidence intervals are derived. The function also estimates p-values for each edge and identifies
significant edges based on the specified significance level. A matrix of significant edges (those
with estimated p-values below the significance level) is generated. Additional statistics on removed
edges (those not considered significant) are provided.

All results, including the original transition matrix, bootstrapped estimates, and summary statistics
for removed edges, are returned in a structured list.

Value
A tna_bootstrap object which is a 1ist containing the following elements:

* weights_orig: The original edge weight matrix.

weights_sig: The matrix of significant transitions (those with estimated p-values below the
significance level).

weights_mean: The mean weight matrix from the bootstrap samples.

weights_sd: The standard deviation matrix from the bootstrap samples.

cr_lower: The lower bound matrix of the consistency range for the edge weights.

cr_upper: The upper bound matrix of the consistency range for the edge weights.

* ci_lower: The lower bound matrix of the bootstrap confidence intervals for the edge weights.
* ci_upper: The upper bound matrix of the bootstrap confidence intervals for the edge weights.
* p_values: The matrix of estimated p-values for the edge weights.

summary: A data.frame summarizing the edges, their weights, p-values, statistical signifi-
cance, consistency ranges, and confidence intervals.

If x is a group_tna object, the output is a group_tna_bootstrap object, which is a 1list of
tnha_bootstrap objects.

See Also

Validation functions deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna(),
plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),
plot.tna_bootstrap(), plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),
print.group_tna_bootstrap(),print.group_tna_permutation(), print.group_tna_stability(),
print.summary.group_tna_bootstrap(),print.summary.tna_bootstrap(), print.tna_bootstrap(),
print.tna_clustering(), print.tna_permutation(),print.tna_reliability(),print.tna_stability(),
prune(), pruning_details(), reliability(), reprune(), summary.group_tna_bootstrap(),
summary . tna_bootstrap()

Examples

model <- tna(group_regulation)
Small number of iterations for CRAN
bootstrap(model, iter = 10)

10 bootstrap_cliques

bootstrap_cliques Bootstrap Cliques of Transition Networks from Sequence Data

Description

Bootstrap Cliques of Transition Networks from Sequence Data

Usage

bootstrap_cliques(x, size, threshold, iter, level, consistency_range)

S3 method for class 'tna'
bootstrap_cliques(

X ’
size = 2L,
threshold = 0,
iter = 1000,
level = 0.05,
consistency_range = c(0.75, 1.25)
)
Arguments
X A tna or a group_tna object.
size An integer specifying the size of the cliques to identify. Defaults to 2 (dyads).
threshold A numeric value that sets the minimum edge weight for an edge to be consid-
ered in the clique. Edges below this value are ignored. Defaults to 0.
iter An integer specifying the number of bootstrap samples to draw. Defaults to
1000.
level A numeric value representing the significance level for hypothesis testing and

confidence intervals. Defaults to @.05.

consistency_range

A numeric vector of length 2. Determines how much the edge weights may
deviate (multiplicatively) from their observed values (below and above) be-
fore they are considered insignificant. The default is c(@.75, 1.25) which
corresponds to a symmetric 25% deviation range. Used only when method =
"stability".

build_model 11

build_model Build a Transition Network Analysis Model

Description

Construct a transition network analysis (TNA) model from sequence data. The function takes a data
set of sequence of events or states as input and builds a TNA model. It extracts the edge weights
and initial probabilities from the data along with the state labels. The function also accepts weight
matrices and initial state probabilities directly.

Usage
build_model(x, ...)

Default S3 method:
build_model(
X,
type = "relative”,
scaling = character(oL),
params = list(),
inits,

)

S3 method for class 'matrix'
build_model(
X,
type = "relative”,
scaling = character(@L),
params = list(),
inits,

)

S3 method for class 'stslist'
build_model(

X,

type = "relative”,

scaling = character(QL),

cols = tidyselect::everything(),

params = list(),

concat = 1L,

begin_state,

end_state,

12

S3 method for class 'data.frame'
build_model(

)

X,

type = "relative”,

scaling = character(oL),

cols = tidyselect::everything(),
concat = 1L,

params = list(),

begin_state,

end_state,

S3 method for class 'tna_data'
build_model(

)

X,

type = "relative”,
scaling = character(QL),
params = list(),

concat = 1L,
begin_state,

end_state,

S3 method for class 'tsn'
build_model(

X,

type = "relative”,
scaling = character(oL),
params = list(),

concat = 1L,
begin_state,

end_state,
)
tna(x, ...)
ftna(x, ...)
ctna(x, ...)
atna(x, ...)

tsn(x, ...)

build_model

build_model 13

Arguments

X A stslist (from TraMineR), data.frame, amatrix, or a tna_data object (see
prepare_data()). For stslist and data.frame objects x should describe a
sequence of events or states to be used for building the Markov model. If x is
a matrix, it is assumed that the element on row i and column j is the weight of
the edge representing the transition from state i to state j. If x is a data. frame,
then it must be in wide format (see cols on how to define columns for the time
points).

Ignored. For the build_model aliases (e.g., tna), this argument matches the
actual arguments to build_model beside x.

type A character string describing the weight matrix type. Currently supports the
following types:

* "relative” for relative frequencies (probabilities, the default)
* "frequency” for frequencies.
e "co-occurrence” for co-occurrences.

* "n-gram” for n-gram transitions. Captures higher-order transitions by con-
sidering sequences of n states, useful for identifying longer patterns.

» "gap” allows transitions between non-adjacent states, with transitions weighted
by the gap size.

* "reverse"” considers the sequences in reverse order (resulting in what is
called a reply network in some contexts). The resulting weight matrix is
the transpose of the "frequency” option.

e "attention” aggregates all downstream pairs of states with an exponential
decay for the gap between states. The parameter lambda can be used to
control the decay rate (the default is 1)-

scaling A character vector describing how to scale the weights defined by type. When
a vector is provided, the scaling options are applied in the respective order. For
example, c("rank”, "minmax") would first compute the ranks, then scale them
to the unit interval using min-max normalization. An empty vector corresponds
to no scaling. Currently supports the following options:

* "minmax” performs min-max normalization to scale the weights to the unit
interval. Note that if the smallest weight is positive, it will be zero after
scaling.

* "max" Multiplies the weights by the reciprocal of the largest weight to scale
the weights to the unit interval. This options preserves positive ranks, unlike
"minmax” when all weights are positive.

* "rank” Computes the ranks of the weights using base: : rank () with ties.method
= "average".

params A list of additional arguments for models of specific type. The potential ele-
ments of this list are:

* n_gram: An integer for n-gram transitions specifying the number of adja-
cent events. The default value is 2.

* max_gap: An integer for the gap-allowed transitions specifying the largest
allowed gap size. The default is 1.

14 build_model

* windowed: Perform the model estimation by window. Supported for relative,
frequency and co-occurrence types.

* window_size: An integer for the sliding window transitions specifying
the window size. The default is 2.

* window_type: A character string that defines the window type. Either
"rolling” or "tumbling”.

* weighted: A logical value. If TRUE, the transitions are weighted by the
inverse of the sequence length. Can be used for frequency, co-occurrence
and reverse model types. The default is FALSE.

* direction: A character string specifying the direction of attention for
models of type = "attention”. The available options are "backward”,
"forward”, and "both"”, for backward attention, forward attention, and
bidirectional attention, respectively. The default is "forward”.

* decay: A function that specifies the decay of the weights between two
time points at a specific distance. The function should take three argu-
ments: i, j and lambda, where i and j are numeric vectors of time values,
and lambda is a numeric value for the decay rate. The function should re-
turn a numeric vector of weights. The default is function(i, j, lambda)
exp(-abs(i - j) / lambda).

e lambda: A numeric value for the decay rate. The default is 1.

* time: A matrix or a data.frame providing the time values for each se-
quence and at time index. For tna_data objects, this can also be a logical
value, where TRUE will use the time_data element of x for the time values.
Date values are converted to numeric.

e duration: A matrix or a data.frame providing the time spent in each
state for each sequence and time index. This is an alternative to time.

inits An optional numeric vector of initial state probabilities for each state. The
vector will be scaled to unity.

cols An expression giving a tidy selection of columns that should be considered as
sequence data. By default, all columns are used.

concat An integer for the number of consecutive sequences to concatenate. The de-
fault is 1 (no concatenation).

begin_state A character string for an additional begin state. This state is added as the first
observation for every sequence to signify the beginning of the sequence

end_state A character string for an additional end state. This state is added as the last
observation for every sequence to signify the end of the sequence.

Value
An object of class tna which is a 1ist containing the following elements:

* weights: An adjacency matrix of the model (weight matrix).

* inits: A numeric vector of initial values for each state. For matrix type x, this element will
be NULL if inits is not directly provided

e labels: A character vector of the state labels, or NULL if there are no labels.

» data: The original sequence data that has been converted to an internal format used by the
package when x is a stslist or a data. frame object. Otherwise NULL.

centralities 15

See Also

Basic functions hist.group_tna(), hist.tna(), plot.group_tna(), plot.tna(), plot_frequencies(),
plot_frequencies.group_tna(), plot_mosaic(), plot_mosaic.group_tna(), plot_mosaic.tna_data(),
print.group_tna(),print.summary.group_tna(), print.summary.tna(), print.tna(), summary.group_tna(),
summary.tna(), tna-package

Examples

model <- build_model(group_regulation)
print(model)

model <- tna(group_regulation)
model <- ftna(group_regulation)
model <- ctna(group_regulation)

model <- atna(group_regulation)

centralities Calculate Centrality Measures for a Transition Matrix

Description

Calculates several centrality measures. See *Details’ for information about the measures.
Usage
centralities(x, loops = FALSE, normalize = FALSE, invert = TRUE, measures)

S3 method for class 'tna'
centralities(x, loops = FALSE, normalize = FALSE, invert = TRUE, measures)

S3 method for class 'matrix'
centralities(x, loops = FALSE, normalize = FALSE, invert = TRUE, measures)

S3 method for class 'group_tna'
centralities(x, loops = FALSE, normalize = FALSE, invert = TRUE, measures)

Arguments
X A tna object, a group_tna object, or a square matrix representing edge weights.
loops A logical value indicating whether to include loops in the network when com-
puting the centrality measures. The default is FALSE.
normalize A logical value indicating whether the centralities should be normalized. The

default is FALSE.

16 centralities

invert A logical value indicating whether the weights should be inverted for distance-
based measures. The default is TRUE.
measures A character vector indicating which centrality measures should be computed.
If missing, all available measures are returned. See ’Details’ for the available
measures.
Details

The following measures are provided:
* QutStrength: Outgoing strength centrality, calculated using igraph: : strength() with mode
= "out". It measures the total weight of the outgoing edges from each node.

e InStrength: Incoming strength centrality, calculated using igraph: : strength() with mode
="in". It measures the total weight of the incoming edges to each node.

* ClosenessIn: Closeness centrality (incoming), calculated using igraph: :closeness() with
mode = "in". It measures how close a node is to all other nodes based on the incoming paths.

* ClosenessOut: Closeness centrality (outgoing), calculated using igraph: :closeness() with
mode = "out". It measures how close a node is to all other nodes based on the outgoing paths.

* Closeness: Closeness centrality (overall), calculated using igraph: : closeness() with mode
= "all". It measures how close a node is to all other nodes based on both incoming and out-
going paths.

* Betweenness: Betweenness centrality defined by the number of geodesics calculated using
igraph: :betweenness().

* BetweennessRSP: Betweenness centrality based on randomized shortest paths (Kiviméki et
al. 2016). It measures the extent to which a node lies on the shortest paths between other
nodes.

» Diffusion: Diffusion centrality of Banerjee et.al. (2014). It measures the influence of a node
in spreading information through the network.

* Clustering: Signed clustering coefficient of Zhang and Horvath (2005) based on the sym-
metric adjacency matrix (sum of the adjacency matrix and its transpose). It measures the
degree to which nodes tend to cluster together.
Value
A tna_centralities object which is a tibble (tb1l_df). containing centrality measures for each
state.
See Also
Centrality measure functions betweenness_network(), plot.group_tna_centralities(), plot.tna_centralities(),
print.group_tna_centralities(), print.tna_centralities()
Examples

model <- tna(group_regulation)

Centrality measures including loops in the network

cliques 17

centralities(model)

Centrality measures excluding loops in the network
centralities(model, loops = FALSE)

Centrality measures normalized
centralities(model, normalize = TRUE)

cliques Identify Cliques in a Transition Network

Description
This function identifies cliques of a specified size in a transition network. It searches for cliques,
i.e., complete subgraphs where every pair of nodes is connected, of size n in the transition matrix
for the specified cluster in the tna object.

Usage
cliques(x, ...)

S3 method for class 'tna'
cliques(x, size = 2, threshold = @, sum_weights = FALSE, ...)

S3 method for class 'group_tna'

cliques(x, size = 2, threshold = @, sum_weights = FALSE, ...)
Arguments
X A tna or a group_tna object.
Ignored.
size An integer specifying the size of the cliques to identify. Defaults to 2 (dyads).
threshold A numeric value that sets the minimum edge weight for an edge to be consid-
ered in the clique. Edges below this value are ignored. Defaults to .
sum_weights A logical value specifying whether the sum of the weights should be above
the threshold instead of individual weights of the directed edges. Defaults to
FALSE.
Value

A tna_cliques object which is a 1ist of two elements:

* weightsis amatrix of the edge weights in the clique.

e initsis anumeric vector of initial weights for the clique.

If x is a group_tna object, a group_tna_cliques object is returned instead, which is a 1ist or
tna_cliques objects.

18 cluster_data

See Also

Clique-related functions plot.group_tna_cliques(), plot.tna_cliques(),print.group_tna_cliques(),
print.tna_cliques()

Examples

model <- tna(group_regulation)

Find 2-cliques (dyads)
cliq <- cliques(model, size = 2)

model <- group_tna(engagement_mmm)
cliques(model)

cluster_data Clustering via Dissimilarity Matrix based on String Distances

Description

Performs clustering using specified dissimilarity measures and clustering methods. The rows of the
data are first converted to strings and compared using the dissimilarity measures available in the
stringdist package.

Usage

cluster_data(
data,
k,
dissimilarity = "hamming",
method = "pam”,
na_syms = c("*", "%"),
weighted = FALSE,
lambda = 1,

)

cluster_sequences(
data,
k,
dissimilarity = "hamming",
method = "pam”,
na_syms = c("*", "%"),
weighted = FALSE,
lambda = 1,

cluster_data

Arguments

data
k

dissimilarity

method

na_syms

weighted

lambda

Value

19

A data.frame or amatrix in wide format.
An integer giving the number of clusters.

A character string specifying the dissimilarity measure. The available options
are: "osa”, "1lv", "dl", "hamming”, "lcs", "qgram”, "cosine”, "jaccard”,
and "jw". See stringdist::stringdist-metrics for more information on these mea-
sures.

A character string specifying clustering method. The available methods are
"pam”, "ward.D", "ward.D2", "complete"”,"average”, "single”, "mcquitty”,
"median”, and "centroid”. See cluster::pam() and stats::hclust() for
more information on these methods.

A character vector of symbols or factor levels to convert to explicit missing
values.

A logical value indicating whether the dissimilarity measure should be weighted
(the default is FALSE for no weighting). If TRUE, earlier observations of the se-
quences receive a greater weight in the distance calculation with an exponential
decay. Currently only supported for the Hamming distance.

A numeric value defining the strength of the decay when weighted = TRUE. The
defaultis 1.0.

Additional arguments passed to stringdist::stringdist().

A tna_clustering object which is a 1ist containing:

* data: The original data.

¢ k: The number of clusters.

* assignments: An integer vector of cluster assignments.

* silhouette: Silhouette score measuring clustering quality.

e sizes: An integer vector of cluster sizes.

* method: The clustering method used.

e distance: The distance matrix.

Examples

data <- data.frame(
T1 = c("A", "B", "A", "C", "A" "B"),

T2
T3
)

C(”B”, ”A”, an, "A”, ”C”, ”A"),
C(”C”, "C”, IIAII’ an’ an, nCu)

PAM clustering with optimal string alignment (default)
result <- cluster_sequences(data, k = 2)

20

communities

communities Community Detection for Transition Networks

Description

This function detects communities within the transition networks (represented by the tna object). It
uses various algorithms to find communities in the graph representation of transitions and returns a
list of communities for each cluster or a specified cluster. If multiple transition matrices exist, the
function iterates over each cluster in the tna object to find communities using different algorithms.
The function uses the igraph package to convert the transition matrices into graphs and then applies
community detection algorithms (e.g., Walktrap, Fast Greedy, Label Propagation, Infomap, Edge
Betweenness, Leading Eigenvector, and Spin Glass).

Usage

communities(x, methods, gamma)

S3 method for class 'tna'
communities(x, methods, gamma = 1)

S3 method for class 'group_tna'
communities(x, methods, gamma = 1)

Arguments

X A tna or a group_tna object.

methods A character vector of community detection algorithms to apply to the network.
The supported options are:
* "walktrap”: A community detection method using short random walks.
e "fast_greedy"”: A method based on modularity optimization.
e "label_prop"”: A method that uses label propagation.
e "infomap”: A method that uses information flow to detect communities.

* "edge_betweenness”: A method that uses edge betweenness to find com-
munities.

* "leading_eigen”: A method using the leading eigenvector of the modu-
larity matrix.

* "spinglass”: A method based on the spinglass model.
If not provided, all methods are applied.

gamma A numeric value depicting a parameter that affects the behavior of certain algo-
rithms like the Spin Glass method. Defaults to 1.

Value

An object of class tna_communities which is a 1ist with an element for each cluster containing:

compare 21

* counts: A list with the number of communities found by each algorithm.

* assignments: A data.frame where each row corresponds to a node and each column to a
community detection algorithm, with color-coded community assignments.

If x is a group_tna object, a group_tna_communities object is returned instead, which is a 1ist
of tna_communities objects.

See Also

Community detection functions plot. group_tna_communities(), plot.tna_communities(), print.group_tna_commun
print.tna_communities()

Cluster-related functions group_model (), mmm_stats (), rename_groups()

Examples

model <- tna(group_regulation)
comm <- communities(model)

compare Compare Two Matrices or TNA Models with Comprehensive Metrics

Description

Various distances, measures of dissimilarity and similarity, correlations and other metrics are com-
puted to compare the models. Optionally, the weight matrices of the models can be scaled before
comparison. The resulting object can be used to produce heatmap plots and scatterplots to further
illustrate the differences.

Usage

compare(x, ...)

S3 method for class 'tna'

compare(x, y, scaling = "none"”, measures = character(@), network = TRUE, ...)

S3 method for class 'matrix’

compare(x, y, scaling = "none"”, measures = character(@), network = TRUE, ...)
Arguments

X A tna object or a matrix of weights.

Ignored.
y A tna object or amatrix of weights.
scaling A character string naming a scaling method to apply to the weights before

comparing them. The supported options are:

22 compare

* "none"”: No scaling is performed. The weights are used as is.

e "minmax”: Performs min-max normalization, i.e., the minimum value is
subtracted and the differences are scaled by the range.

n

* "max”: Max-normalization: the values are divided by the maximum value.

* "rank”: Applies min-max normalization to the ranks of the weights (com-
puted with ties.method = "average").

» "zscore": Computes the standard score, i.e. the mean weight is subtracted
and the differences are scaled by the standard deviation.

* "robust”: Computes the robust z-score, i.e. the median weight is sub-
tracted and the differences are scaled by the median absolute deviation (us-
ing stats::mad).

* "log": Simply the natural logarithm of the weights.

e "loglp”: As above, but adds 1 to the values before taking the logarithm.
Useful for scenarios with zero weights.

e "softmax": Performs softmax normalization.

* "quantile”: Uses the empirical quantiles of the weights via stats::ecdf.

measures A character vector indicating which centrality measures should be computed.
See centralities() for the available measures. No measures are included by
default.

network A logical value indicating whether network metrics should be included in the

comparison. The default is TRUE.

Value

A tna_comparison object, which is a 1ist containing the following elements:
* matrices: A list containing the scaled matrices of the input tna objects or the scaled inputs
themselves in the case of matrices.
e difference_matrix: A matrix of differences x - y.
* edge_metrics: A data.frame of edge-level metrics about the differences.
e summary_metrics: A data.frame of summary metrics of the differences across all edges.
¢ network_metrics: A data. frame of network metrics for both x and y.

e centrality_differences: A data.frame of differences in centrality measures computes
from x and y.

e centrality_correlations: A numeric vector of correlations of the centrality measures
between x and y.

See Also

Model comparison functions compare. group_tna(), compare_sequences(), plot.tna_comparison(),
plot.tna_sequence_comparison(), plot_compare(), plot_compare.group_tna(), print.tna_comparison(),
print.tna_sequence_comparison()

compare.group_tna

Examples

23

Comparing TNA models

model_x <- tna(group_regulation[1:200, 1)
model_y <- tna(group_regulation[1001:1200, 1)
comp1 <- compare(model_x, model_y)

Comparing matri

ces

mat_x <- model_x$weights
mat_y <- model_y$weights
comp2 <- compare(mat_x, mat_y)

Comparing a mat

rix to a TNA model

comp3 <- compare(mat_x, model_y)

compare.group_tna

Compare Grouped TNA Models with Comprehensive Metrics

Description

Compare Grouped TNA Models with Comprehensive Metrics

Usage
S3 method for class 'group_tna'
compare(
X)
i=1L,
j =L,
scaling = "none”,

measures = character(0),
network = TRUE,

Arguments
X
i
J
scaling

A group_tna object.
An integer index or the name of the principal cluster as a character string.
An integer index or the name of the secondary cluster as a character string.

A character string naming a scaling method to apply to the weights before
comparing them. The supported options are:
* "none”: No scaling is performed. The weights are used as is.

e "minmax”: Performs min-max normalization, i.e., the minimum value is
subtracted and the differences are scaled by the range.

* "max": Max-normalization: the values are divided by the maximum value.

24 compare_sequences

* "rank”: Applies min-max normalization to the ranks of the weights (com-
puted with ties.method = "average").

* "zscore": Computes the standard score, i.e. the mean weight is subtracted
and the differences are scaled by the standard deviation.

* "robust”: Computes the robust z-score, i.e. the median weight is sub-
tracted and the differences are scaled by the median absolute deviation (us-
ing stats::mad).

e "log": Simply the natural logarithm of the weights.

e "loglp”: As above, but adds 1 to the values before taking the logarithm.
Useful for scenarios with zero weights.

e "softmax": Performs softmax normalization.

* "quantile”: Uses the empirical quantiles of the weights via stats::ecdf.

measures A character vector indicating which centrality measures should be computed.
See centralities() for the available measures. No measures are included by
default.

network A logical value indicating whether network metrics should be included in the

comparison. The default is TRUE.

Additional arguments passed to compare.tna().

Value

A tna_comparison object. See compare. tna() for details.

See Also
Model comparison functions compare (), compare_sequences(), plot.tna_comparison(), plot. tna_sequence_compar
plot_compare(), plot_compare.group_tna(), print.tna_comparison(), print.tna_sequence_comparison()
Examples

model <- group_model (engagement_mmm)
compare(model, i =1, j = 2)

compare_sequences Compare Sequences Between Groups

Description

Performs comprehensive sequence comparison analysis between groups. All patterns of the se-
quences (subsequences of specific length) are extracted from all sequences in each group. The
pattern frequencies are compared between the groups using a permutation test. The reported effect
size is the difference between the observed test statistic (sum of squared differences between the
observed and expected counts) and the mean value over the permutation samples divided by their
standard deviation times square root of the number of observations.

compare_sequences

Usage

25

compare_sequences(x, ...)

Default S3 method:
compare_sequences(

X’
group,
sub,

min_freq = 5L,

test = FALSE,

iter =

adjust = "bonferroni”,

)

S3 method for class 'group_tna'
compare_sequences(

X)
sub,
min_freq = 5L,
test = FALSE,
iter =
adjust = "bonferroni”,
)
Arguments
X A group_tna object or a data. frame containing sequence data in wide format.
Not used.
group A vector indicating the group assignment of each row of the data/sequence.
Must have the same length as the number of rows/sequences of x. Alternatively,
a single character string giving the column name of the data that defines the
group when x is a wide format data. frame or a tna_data object.
sub An integer vector of pattern lengths to analyze. The default is 2: 5.
min_freq An integer giving the minimum number of times that a specific pattern has to
be observed in each group to be included in the analysis. The default is 5.
test A logical value indicating whether to test the differences of pattern counts
between the groups using a permutation test. The default is FALSE.
iter An integer giving the number of iterations for the permutation test. The default
is 1000.
adjust A character string naming the multiple comparison correction method (de-

fault: "bonferroni”). Supports all stats::p.adjust methods: "holm"”, "hochberg”,
"hommel”, "bonferroni”, "BH", "BY", "fdr", "none". The adjustment is car-
ried out within sequences of the same length.

26 deprune

Value

A tna_sequence_comparison object, which is a data.frame with columns giving the names of
the patterns, pattern frequencies, pattern proportions (within patterns of the same length), effect
sizes, and p-values of the tests.

See Also
Model comparison functions compare(), compare.group_tna(), plot.tna_comparison(), plot.tna_sequence_compar
plot_compare(), plot_compare.group_tna(), print.tna_comparison(),print.tna_sequence_comparison()

Examples

group <- c(rep("High", 1000), rep("Low"”, 1000))
comp <- compare_sequences(group_regulation, group)

With permutation test (small number of iterations for CRAN)
comp_test <- compare_sequences(
group_regulation,

group,
test = TRUE,
iter = 10
)
deprune Restore a Pruned Transition Network Analysis Model
Description

Restore a Pruned Transition Network Analysis Model

Usage

deprune(x, ...)

S3 method for class 'tna'
deprune(x, ...)

S3 method for class 'tna'
reprune(x, ...)

S3 method for class 'group_tna'
deprune(x, ...)
Arguments

X A tna or group_tna object.

Ignored.

engagement 27

Value

A tna or group_tna object that has not been pruned.

See Also

Validation functions bootstrap(), estimate_cs(), permutation_test(), permutation_test.group_tna(),
plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),
plot.tna_bootstrap(),plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),
print.group_tna_bootstrap(), print.group_tna_permutation(), print.group_tna_stability(),
print.summary.group_tna_bootstrap(),print.summary.tna_bootstrap(), print.tna_bootstrap(),
print.tna_clustering(), print.tna_permutation(),print.tna_reliability(),print.tna_stability(),
prune(), pruning_details(), reliability(), reprune(), summary.group_tna_bootstrap(),
summary . tna_bootstrap()

Examples

model <- tna(group_regulation)
pruned_model <- prune(model, method = "threshold”, threshold = 0.1)
depruned_model <- deprune(pruned_model) # restore original model

engagement Example Data on Student Engagement

Description

Students’ engagement states (Active / Average / Disengaged) throughout a whole study program.
The data was generated synthetically based on the article "The longitudinal association between en-
gagement and achievement varies by time, students’ profiles, and achievement state: A full program
study"

Usage

engagement

Format

A stslist object (sequence data).

Source

doi:10.1016/j.compedu.2023.104787

See Also

Datasets engagement_mmm, group_regulation, group_regulation_long

https://doi.org/10.1016/j.compedu.2023.104787

28 estimate_cs

engagement_mmm Example Mixed Markov Model Fitted to the engagement Data

Description

Example Mixed Markov Model Fitted to the engagement Data

Usage

engagement_mmm

Format

A mhmm object.

Source

The data was generated via mixed_markov_model.R in https://github.com/sonsoleslp/tna/
tree/main/data-raw/

See Also

Datasets engagement, group_regulation, group_regulation_long

estimate_cs Estimate Centrality Stability

Description

Estimates the stability of centrality measures in a network using subset sampling without replace-
ment. It allows for dropping varying proportions of cases and calculates correlations between the
original centralities and those computed using sampled subsets.

Usage

estimate_cs(
X,
loops,
normalize,
invert,
measures,
iter,
method,
drop_prop,
threshold,
certainty,

https://github.com/sonsoleslp/tna/tree/main/data-raw/
https://github.com/sonsoleslp/tna/tree/main/data-raw/

estimate_cs

progressbar

)

estimate_centrality_stability(
X,
loops,
normalize,
invert,
measures,
iter,
method,
drop_prop,
threshold,
certainty,
progressbar

)

S3 method for class 'tna'
estimate_cs(

X,

loops = FALSE,

normalize = FALSE,

invert = TRUE,

measures = c("InStrength”, "OutStrength”, "Betweenness"),
iter = 1000,
method = "pearson”,

drop_prop = seq(@.1, 0.9, by = 0.1),
threshold = 0.7,
certainty = 0.95,
progressbar = FALSE
)

I o

S3 method for class 'tna'
estimate_centrality_stability(
X,
loops = FALSE,
normalize = FALSE,
invert = TRUE,

measures = c("InStrength”, "OutStrength”, "Betweenness"),
iter = 1000,

method = "pearson”,

drop_prop = seq(@.1, 0.9, by = 0.1),

threshold = 0.7,

certainty = 0.95,

progressbar = FALSE

)

S3 method for class 'group_tna'

30

estimate_cs(

X’

estimate_cs

loops = FALSE,

normalize

FALSE,

invert = TRUE,
measures = c("InStrength”, "OutStrength”, "Betweenness"),

iter = 1000,

method = "pearson”,

drop_prop
threshold
certainty

I o

progressbar

)

seq(@.1, 0.9, by = 0.1),
0.7,

.95,

FALSE

S3 method for class 'group_tna'
estimate_centrality_stability(

X ’
loops = FALSE,
normalize = FALSE,
invert = TRUE,
measures = c("InStrength”, "OutStrength”, "Betweenness"),
iter = 1000,
method = "pearson”,
drop_prop = seq(@.1, 0.9, by = 0.1),
threshold = 0.7,
certainty = 0.95,
progressbar = FALSE
)
Arguments
X A tna or a group_tna object representing the temporal network analysis data.
The object should be created from a sequence data object.
loops A logical value indicating whether to include loops in the network when com-
puting the centrality measures. The default is FALSE.
normalize A logical value indicating whether to normalize the centrality measures. The
default is FALSE.
invert A logical value indicating whether the weights should be inverted for distance-
based measures. The default is TRUE.
measures A character vector of centrality measures to estimate. The default measures
are "InStrength”, "OutStrength”, and "Betweenness"”. See centralities()
for a list of available centrality measures.
iter An integer specifying the number of resamples to draw. The default is 1000.
method A character string indicating the correlation coefficient type. The default is
"pearson”. See stats::cor() for details.
drop_prop A numeric vector specifying the proportions of cases to drop in each sampling

iteration. Default is a sequence from 0.1 to 0.9 in increments of 0.1.

estimate_cs 31

threshold A numeric value specifying the correlation threshold for calculating the CS-
coefficient. The default is 0.7.

certainty A numeric value specifying the desired level of certainty for the CS-coefficient.
Default is 0.95.

progressbar A logical value. If TRUE, a progress bar is displayed Defaults to FALSE

Details

The function works by repeatedly resampling the data, dropping varying proportions of cases, and
calculating centrality measures on the subsets. The correlation between the original centralities
and the resampled centralities is calculated for each drop proportion. The stability of each central-
ity measure is then summarized using a centrality stability (CS) coefficient, which represents the
proportion of dropped cases at which the correlations drop below a given threshold (default 0.7).

The results can be visualized by plotting the output object showing the stability of the centrality
measures across different drop proportions, along with confidence intervals. The CS-coefficients
are displayed in the subtitle.

Value

A tna_stability object which is a 1ist with an element for each measure with the following
elements:

» cs_coefficient: The centrality stability (CS) coefficient of the measure.

e correlations: A matrix of correlations between the original centrality and the resampled
centralities for each drop proportion.

If x is a group_tna object, a group_tna_stability object is returned instead, which is a list of
tna_stability objects.

See Also

Validation functions bootstrap(), deprune(), permutation_test(), permutation_test.group_tna(),
plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),
plot.tna_bootstrap(),plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),
print.group_tna_bootstrap(),print.group_tna_permutation(), print.group_tna_stability(),
print.summary.group_tna_bootstrap(),print.summary.tna_bootstrap(), print.tna_bootstrap(),
print.tna_clustering(), print.tna_permutation(),print.tna_reliability(),print.tna_stability(),
prune(), pruning_details(), reliability(), reprune(), summary.group_tna_bootstrap(),
summary . tna_bootstrap()

Examples

model <- tna(group_regulation)
Small number of iterations and drop proportions for CRAN
estimate_cs(

model,

drop_prop = seq(@.3, 0.9, by = 0.2),

measures = c("InStrength”, "OutStrength"),

iter = 10

32

group_model

group_model

Build a Grouped Transition Network Analysis Model

Description

This function constructs a transition network analysis (TNNA) model for each group from a given

sequence, wide-format dataframe or a mixture Markov model.

Usage

group_model(x, ...)

Default S3 method:
group_model (

)

X!

group,

type = "relative”,

scaling = character(oL),
groupwise = FALSE,

cols = tidyselect::everything(),
params = list(),

concat = 1L,

na.rm = TRUE,

S3 method for class 'mhmm'
group_model(

)

S3 method for class 'tna_clustering'

X,

type = "relative”,
scaling = character(oL),
groupwise = FALSE,
params = list(),

na.rm = TRUE,

group_model (

X,

type = "relative”,
scaling = character(@L),
groupwise = FALSE,
params = list(),

group_model

na.rm = TRUE,

group_tna(x,
group_ftna(x,
group_ctna(x,

group_atna(x,

Arguments

X

group

type

scaling

33

An stslist object describing a sequence of events or states to be used for build-
ing the Markov model. The argument x also accepts data. frame objects in wide
format, and tna_data objects. This can also be the output of clustering from
cluster_sequences().

Ignored.

A vector indicating the group assignment of each row of the data/sequence.
Must have the same length as the number of rows/sequences of x. Alternatively,
a single character string giving the column name of the data that defines the
group when x is a wide format data.frame or a tna_data object. If not pro-
vided, each row of the data forms a cluster. Not used when x is a mixture Markov
model or a clustering result.

A character string describing the weight matrix type. Currently supports the
following types:

* "relative” for relative frequencies (probabilities, the default)

* "frequency” for frequencies.

» "co-occurrence” for co-occurrences.

* "n-gram” for n-gram transitions. Captures higher-order transitions by con-
sidering sequences of n states, useful for identifying longer patterns.

* "gap" allows transitions between non-adjacent states, with transitions weighted

by the gap size.
* "reverse"” considers the sequences in reverse order (resulting in what is

called a reply network in some contexts). The resulting weight matrix is
the transpose of the "frequency” option.

* "attention"” aggregates all downstream pairs of states with an exponential
decay for the gap between states. The parameter lambda can be used to
control the decay rate (the default is 1)-

A character vector describing how to scale the weights defined by type. When
a vector is provided, the scaling options are applied in the respective order. For
example, c("rank”, "minmax") would first compute the ranks, then scale them
to the unit interval using min-max normalization. An empty vector corresponds
to no scaling. Currently supports the following options:

34

groupwise

cols

params

group_model

* "minmax” performs min-max normalization to scale the weights to the unit
interval. Note that if the smallest weight is positive, it will be zero after
scaling.

* "max" Multiplies the weights by the reciprocal of the largest weight to scale
the weights to the unit interval. This options preserves positive ranks, unlike
"minmax"” when all weights are positive.

¢ "rank"” Computes the ranks of the weights using base: : rank () with ties.method
="average".

A logical value that indicates whether scaling methods should be applied by
group (TRUE) or globally (FALSE, the default).

An expression giving a tidy selection of the columns that should be considered
as sequence data. The default is all columns. The columns are automatically
determined for tna_data objects. The group column is automatically removed
from these columns if provided.

A list of additional arguments for models of specific type. The potential ele-
ments of this list are:

* n_gram: An integer for n-gram transitions specifying the number of adja-
cent events. The default value is 2.

* max_gap: An integer for the gap-allowed transitions specifying the largest
allowed gap size. The default is 1.

* windowed: Perform the model estimation by window. Supported for relative,
frequency and co-occurrence types.

* window_size: An integer for the sliding window transitions specifying
the window size. The default is 2.

* window_type: A character string that defines the window type. Either
"rolling” or "tumbling”.

* weighted: A logical value. If TRUE, the transitions are weighted by the
inverse of the sequence length. Can be used for frequency, co-occurrence
and reverse model types. The default is FALSE.

e direction: A character string specifying the direction of attention for
models of type = "attention”. The available options are "backward”,
"forward”, and "both", for backward attention, forward attention, and
bidirectional attention, respectively. The default is "forward”.

* decay: A function that specifies the decay of the weights between two
time points at a specific distance. The function should take three argu-
ments: i, j and lambda, where i and j are numeric vectors of time values,
and lambda is a numeric value for the decay rate. The function should re-
turn a numeric vector of weights. The default is function(i, j, lambda)
exp(-abs(i - j) / lambda).

* lambda: A numeric value for the decay rate. The default is 1.

e time: A matrix or a data.frame providing the time values for each se-
quence and at time index. For tna_data objects, this can also be a logical
value, where TRUE will use the time_data element of x for the time values.
Date values are converted to numeric.

e duration: A matrix or a data.frame providing the time spent in each
state for each sequence and time index. This is an alternative to time.

group_regulation 35

concat An integer for the number of consecutive sequences to concatenate. The de-
fault is 1 (no concatenation).

na.rm A logical value that determines if observations with NA value in group be
removed. If FALSE, an additional category for NA values will be added. The
default is FALSE and a warning is issued if NA values are detected.
Value
An object of class group_tna which is a 1ist containing one element per cluster. Each element is
a tna object.
See Also

Cluster-related functions communities(), mmm_stats(), rename_groups()

Examples

Manually specified groups
group <- c(rep("High", 1000), rep("Low"”, 1000))
model <- group_model(group_regulation, group = group)

Groups defined by a mixed Markov model
model <- group_model (engagement_mmm)

model <- group_tna(group_regulation, group = gl(2, 1000))

model <- group_ftna(group_regulation, group = gl(2, 1000))

model <- group_ctna(group_regulation, group = gl(2, 1000))

model <- group_atna(group_regulation, group = gl(2, 1000))

group_regulation Example Wide Data on Group Regulation

Description

Students’ regulation during collaborative learning. Students’ interactions were coded as: "adapt",

non non "non non "non "non

"cohesion", "consensus", "coregulate", "discuss", "emotion", "monitor", "plan", "synthesis"

Usage

group_regulation

Format

A data. frame object.

36 hist.group_tna

Source

The data was generated synthetically.

See Also

Datasets engagement, engagement_mmm, group_regulation_long

group_regulation_long Example Long Data on Group Regulation

Description

Students’ regulation during collaborative learning. This is the same dataset as group_regulation
but in long format. In addition to students’ actions (Action), it contains the student identifier
(Actor), timestamp (Time), Course name, and collaboration Group. It also includes a column
(Achiever) indicating whether the student is a high or low achiever.

Usage

group_regulation_long

Format

A data. frame object.

Source

The data was generated synthetically from group_regulation

See Also

Datasets engagement, engagement_mmm, group_regulation

hist.group_tna Plot a Histogram of Edge Weights for a group_tna Object.

Description

Plot a Histogram of Edge Weights for a group_tna Object.

Usage

S3 method for class 'group_tna'
hist(x, ...)

hist.tna 37

Arguments
X A group_tna object.
Additional arguments passed to graphics: :hist().
Value

A list (invisibly) of histogram objects of the edge weights of each cluster.

See Also

Basic functions build_model (), hist. tna(), plot.group_tna(), plot.tna(), plot_frequencies(),
plot_frequencies.group_tna(), plot_mosaic(), plot_mosaic.group_tna(), plot_mosaic.tna_data(),
print.group_tna(), print.summary.group_tna(), print.summary.tna(),print.tna(), summary.group_tna(),
summary.tna(), tna-package

Examples
model <- group_model (engagement_mmm)
hist(model)
hist.tna Plot a Histogram of Edge Weights in the Network
Description

Plot a Histogram of Edge Weights in the Network

Usage

S3 method for class 'tna'

hist(x, breaks, col = "lightblue”, main, xlab, border = "white"”, ...)
Arguments

X a vector of values for which the histogram is desired.

breaks one of:

* avector giving the breakpoints between histogram cells,

* a function to compute the vector of breakpoints,

* asingle number giving the number of cells for the histogram,

* acharacter string naming an algorithm to compute the number of cells (see

‘Details’),

* a function to compute the number of cells.
In the last three cases the number is a suggestion only; as the breakpoints will
be set to pretty values, the number is limited to 1e6 (with a warning if it was
larger). If breaks is a function, the x vector is supplied to it as the only argument
(and the number of breaks is only limited by the amount of available memory).

38 import_data

col a colour to be used to fill the bars.

main A character string defining the title of the plot.

xlab A character string defining the vertical axis label.

border the color of the border around the bars. The default is to use the standard fore-

ground color.

Additional arguments passed to graphics: :hist().

Value

A histogram object of edge weights.

See Also

Basic functions build_model (), hist.group_tna(), plot.group_tna(), plot.tna(), plot_frequencies(),
plot_frequencies.group_tna(), plot_mosaic(), plot_mosaic.group_tna(), plot_mosaic.tna_data(),
print.group_tna(), print.summary.group_tna(), print.summary.tna(),print.tna(), summary.group_tna(),
summary.tna(), tna-package

Examples

model <- tna(group_regulation)
hist(model)

import_data Import Wide Format Sequence Data as Long Format Sequence Data

Description

This function transforms wide format data where features are in separate columns into a long for-
mat suitable for sequence analysis. It creates windows of data based on row order and generates
sequence order within these windows.

Usage

import_data(data, cols, id_cols, window_size = 1, replace_zeros = TRUE)

Arguments
data A data. frame in wide format.
cols An expression giving a tidy selection of column names to be transformed into

long format (actions). This can be a vector of column names (e.g., c(featurel,
feature2)) or a range specified as featurel:feature6 (without quotes) to
include all columns from *featurel’ to *feature6’ in the order they appear in the
data frame. For more information on tidy selections, see dplyr: :select().

import_data 39

id_cols An expression giving a tidy selection of column names that uniquely identify
each observation (IDs).

window_size An integer specifying the size of the window for sequence grouping. Default
is 1 (each row is a separate window).

replace_zeros A logical value indicating whether to replace Os in cols with NA. The default
is TRUE.

Value

A data. frame in long format with added columns for window and sequence order.

See Also

Other data: import_onehot(), prepare_data(), print.tna_data(), simulate.group_tna(),
simulate.tna()

Examples

data <- data.frame(
ID = c("A", "A", "B", "B"),
Time = c(1, 2, 1, 2),
featurel = c(10, @, 15, 20),
feature2 = c(5, 8, 0, 12),
feature3 = c(2, 4, 6, 8),
other_col = c("X", "Y", "Z", "W")
)

Using a vector

long_datal <- import_data(
data = data,
cols = c(featurel, feature2),
id_cols = c("ID", "Time"),
window_size = 2,
replace_zeros = TRUE

Using a column range
long_data2 <- import_data(
data = data,
cols = featurel:feature3,
id_cols = c("ID", "Time"),
window_size = 2,
replace_zeros = TRUE

40 import_onehot

import_onehot Import One-Hot Data

Description

Import One-Hot Data

Usage

import_onehot(
data,
cols,
actor,
session,
window_size = 1L,
window_type = "tumbling”,
aggregate = FALSE

window_size

window_type

aggregate

Value

)
Arguments

data A data.frame in wide format.

cols An expression giving a tidy selection of columns to be considered as one-hot
data.

actor An optional character string giving the column name of data containing the
actor identifiers.

session An optional character string giving the column name of data containing the

session identifiers.
An integer specifying the window size for grouping.

A character string. Either "tumbling” (the default) for non-overlapping win-
dows or "sliding" for one-step sliding window.

A logical value that determines how multiple occurrences of the same event
within a window are processed. Option TRUE aggregates multiple occurrences
into a single occurrence. Option FALSE keeps all occurrences (the default).

The processed data as a data. frame.

See Also

Other data: import_data(), prepare_data(), print.tna_data(), simulate.group_tna(), simulate.tna()

mmm_stats 41

Examples

d <- data.frame(
actor = gl(100, 5),
session = gl(10, 50),
featurel = rbinom(500, 1, prob = 0.33),

feature2 = rbinom(500, 1, prob = 0.25),
feature3 = rbinom(500, 1, prob = 0.50)
)
onehot1 <- import_onehot(d, featurel:feature3)
onehot2 <- import_onehot(d, featurel:feature3, "actor”, "session")
mmm_stats Retrieve Statistics from a Mixture Markov Model (MMM)
Description

Retrieve Statistics from a Mixture Markov Model (MMM)
Usage
mmm_stats(x, level = 0.05)

S3 method for class 'mhmm'
mmm_stats(x, level = 0.05)

Arguments
X A mhmm object.
level A numeric value representing the significance level for hypothesis testing and
confidence intervals. Defaults to @.05.
Value

A data. frame object.

See Also

Cluster-related functions communities(), group_model (), rename_groups()

Examples

mmm_stats(engagement_mmm)

42 permutation_test

permutation_test Compare Two Networks from Sequence Data using a Permutation Test

Description

This function compares two networks built from sequence data using permutation tests. The func-
tion builds Markov models for two sequence objects, computes the transition probabilities, and
compares them by performing permutation tests. It returns the differences in transition probabili-
ties, effect sizes, estimated p-values, and confidence intervals.

Usage

permutation_test(x, ...)

S3 method for class 'tna'
permutation_test(

X)

Y,

adjust = "none”,
iter = 1000,
paired = FALSE,
level = 0.05,

measures = character(0),

)
Arguments

X A tna object containing sequence data for the first tna model.
Additional arguments passed to centralities().

y A tna object containing sequence data for the second tna model.

adjust A character string for the method to adjust p-values with for multiple compar-
isons. The default is "none” for no adjustment. See the method argument of
stats::p.adjust() for details and available adjustment methods.

iter An integer giving the number of permutations to perform. The default is 1000.

paired A logical value. If TRUE, perform paired permutation tests; if FALSE, perform
unpaired tests. The default is FALSE.

level A numeric value giving the significance level for the permutation tests. The
default is 0.05.

measures A character vector of centrality measures to test. See centralities() for a

list of available centrality measures.

permutation_test.group_tna 43

Value

A tna_permutation object which is a 1ist with two elements: edges and centralities, both
containing the following elements:

* stats: A data.frame of original differences, effect sizes, and estimated p-values for each
edge or centrality measure. The effect size is computed as the observed difference divided by
the standard deviation of the differences of the permuted samples.

e diffs_true: A matrix of differences in the data.

» diffs_sig: A matrix showing the significant differences.

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test.group_tna(),
plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),
plot.tna_bootstrap(), plot.tna_permutation(),plot.tna_reliability(),plot.tna_stability(),
print.group_tna_bootstrap(), print.group_tna_permutation(), print.group_tna_stability(),
print.summary.group_tna_bootstrap(),print.summary.tna_bootstrap(), print.tna_bootstrap(),
print.tna_clustering(), print.tna_permutation(),print.tna_reliability(),print.tna_stability(),
prune(), pruning_details(), reliability(), reprune(), summary.group_tna_bootstrap(),
summary . tna_bootstrap()

Examples

model_x <- tna(group_regulation[1:200, 1)
model_y <- tna(group_regulation[1001:1200, 1)
Small number of iterations for CRAN
permutation_test(model_x, model_y, iter = 20)

permutation_test.group_tna
Compare Networks using a Permutation Test

Description

Test edge weight differences between all pairs or a subset of pairs of a group_tna object. See
permutation_test. tna() for more details.

Usage

S3 method for class 'group_tna'
permutation_test(

X’

groups,

adjust = "none”,
iter = 1000,

paired = FALSE,

44 permutation_test. group_tna

level = 0.05,
measures = character(0),
consecutive = FALSE,

)
Arguments

X A group_tna object

groups An integer vector or a character vector of group indices or names, respec-
tively, defining which groups to compare. When not provided, all pairs are com-
pared (the default).

adjust A character string for the method to adjust p-values with for multiple compar-
isons. The default is "none” for no adjustment. See the method argument of
stats::p.adjust() for details and available adjustment methods.

iter An integer giving the number of permutations to perform. The default is 1000.

paired A logical value. If TRUE, perform paired permutation tests; if FALSE, perform
unpaired tests. The default is FALSE.

level A numeric value giving the significance level for the permutation tests. The
default is 0.05.

measures A character vector of centrality measures to test. See centralities() for a
list of available centrality measures.

consecutive A logical value. If FALSE (the default), all pairwise comparisons are performed
in lexicographic order with respect to the order of the groups. If TRUE, only
comparisons between consecutive pairs of groups are performed.
Additional arguments passed to centralities().

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), plot.group_tna_bootstrap(),
plot.group_tna_permutation(), plot.group_tna_stability(), plot.tna_bootstrap(), plot.tna_permutation(),
plot.tna_reliability(), plot.tna_stability(), print.group_tna_bootstrap(),print.group_tna_permutation
print.group_tna_stability(), print.summary.group_tna_bootstrap(), print.summary.tna_bootstrap(),
print.tna_bootstrap(), print.tna_clustering(),print.tna_permutation(),print.tna_reliability(),
print.tna_stability(), prune(), pruning_details(), reliability(), reprune(), summary.group_tna_bootstrap(
summary . tna_bootstrap()

Examples

model <- group_model(engagement_mmm)
Small number of iterations for CRAN
permutation_test(model, iter = 20)

plot.group_tna

45

plot.group_tna

Plot a Grouped Transition Network Analysis Model

Description

Plots a transition network of each cluster using qgraph.

Usage
S3 method for class 'group_tna'
plot(x, title, which, ...)
Arguments
X A group_model object.
title A title for each plot. It can be a single string (the same one will be used for all
plots) or a list (one per group)
which An optional integer vector of groups to plot. By default, all groups are plotted.

Arguments passed on to plot. tna
node_list An optional list of two character vectors that define two mutu-
ally exclusive groups of node labels.

use_list_order A logical value. If node_list is provided, defines how the
order of the nodes in the plot is defined. A TRUE value uses the order in
node_list. Otherwise, the nodes are ranked based on edge weights and
ordered according to the rank.

x_offset An optional numeric vector with the same number of elements as
there are states. Defines a horizontal offset for each node in the plot when
node_list is provided.

labels See qgraph::qgraph().

colors See ggraph: :qgraph().

pie See qgraph::qgraph().

cut Edge color and width emphasis cutoff value. The default is the median of
the edge weights. See qgraph: :qgraph() for details.

show_pruned A logical value indicating if pruned edges removed by prune ()
should be shown in the plot. The default is TRUE, and the edges are drawn
as dashed with a different color to distinguish them.

pruned_edge_color A character string for the color to use for pruned edges
when show_pruned = TRUE. The default is "pink”.

edge.color See qgraph::qgraph().
edge.labels See qgraph::qgraph().
edge.label.position See qgraph::qggraph().
layout One of the following:

* A character string describing a qgraph layout (e.g., "circle") or the
name of a igraph layout function (e.g., "layout_on_grid").

46 plot.group_tna_bootstrap

* A matrix of node positions to use, with a row for each node and x and
y columns for the node positions.

* A layout function from igraph.

layout_args A list of arguments to pass to the igraph layout function when
layout is a function or a character string that specifies a function name.

scale_nodes A character string giving the name of a centrality measure to
scale the node size by. See centralities() for valid names. If missing
(the default), uses default ggraph: : qgraph() scaling. The value of vsize
provided via . .. is used as baseline size.

scaling_factor A numeric value specifying how strongly to scale the nodes
when scale_nodes is provided. Values between O and 1 will result in
smaller differences and values larger than 1 will result in greater differ-
ences. The default is 0. 5.

mar See ggraph: :qgraph().

theme See qgraph::qgraph().

Value

NULL (invisibly).

See Also

Basic functions build_model (), hist.group_tna(), hist.tna(), plot.tna(), plot_frequencies(),
plot_frequencies.group_tna(), plot_mosaic(), plot_mosaic.group_tna(), plot_mosaic.tna_data(),
print.group_tna(), print.summary.group_tna(), print.summary.tna(),print.tna(), summary.group_tna(),
summary.tna(), tna-package

Examples

model <- group_model (engagement_mmm)
plot(model, which = 1)

plot.group_tna_bootstrap
Plot a Bootstrapped Grouped Transition Network Analysis Model

Description

Plot a Bootstrapped Grouped Transition Network Analysis Model

Usage

S3 method for class 'group_tna_bootstrap'
plot(x, title, ...)

plot.group_tna_centralities 47

Arguments
X A group_tna_bootstrap object.
title A character vector of titles to use for each plot.
Additional arguments passed to plot.tna().
See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_permutation(), plot.group_tna_stability(), plot.tna_bootstrap(), plot.tna_permutation(),
plot.tna_reliability(), plot.tna_stability(), print.group_tna_bootstrap(), print.group_tna_permutation
print.group_tna_stability(), print.summary.group_tna_bootstrap(), print.summary.tna_bootstrap(),
print.tna_bootstrap(), print.tna_clustering(),print.tna_permutation(),print.tna_reliability(),

print.tna_stability(), prune(), pruning_details(), reliability(), reprune(), summary.group_tna_bootstrap(
summary . tna_bootstrap()

Examples

model <- group_model (engagement_mmm)
Small number of iterations for CRAN
boot <- bootstrap(model, iter = 10)
plot(boot)

plot.group_tna_centralities
Plot Centrality Measures

Description

Plot Centrality Measures

Usage
S3 method for class 'group_tna_centralities'
plot(
X,
reorder = TRUE,
ncol = 3,
scales = c("free_x", "fixed"),
colors,

palette = "Set2”,
labels = TRUE,

48 plot.group_tna_cliques

Arguments
X A group_tna_centralities object.
reorder A logical value indicating whether to reorder the values for each centrality in
a descending order. The default is TRUE.
ncol Number of columns to use for the facets. The default is 3.
scales Either "fixed"” or "free_x" (the default). If "free_x", the horizontal axis is
scaled individually in each facet. If "fixed", the same values are used for all
axes.
colors The colors for each node (default is the model colors if the tna model object is
passed, otherwise "black").
palette A color palette to be applied if colors is not specified.
labels A logical value indicating whether to show the centrality numeric values. The
default is TRUE.
Ignored.
Value

A ggplot object displaying a line chart for each centrality with one line per cluster.

See Also

Centrality measure functions betweenness_network(), centralities(), plot.tna_centralities(),
print.group_tna_centralities(), print.tna_centralities()

Examples

model <- group_model (engagement_mmm)
cm <- centralities(model)
plot(cm)

plot.group_tna_cliques
Plot Found Cliques

Description

Plot Found Cliques

Usage

S3 method for class 'group_tna_cliques'
plot(x, title, ...)

plot.group_tna_communities 49

Arguments
X A group_tna_cliques object.
title A character vector of titles to use for each plot.
Arguments passed to plot.tna_cliques().
Value

A list (invisibly) with one element per cluster. Each element contains a qgraph plot when only
one clique is present per cluster, otherwise the element is NULL.
See Also

Clique-related functions cliques(), plot. tna_cliques(), print.group_tna_cliques(), print.tna_cliques()

Examples

model <- group_model (engagement_mmm)
cliq <- cliques(model, size = 2)
plot(cliq, ask = FALSE)

plot.group_tna_communities
Plot Detected Communities

Description

Plot Detected Communities

Usage
S3 method for class 'group_tna_communities'
plot(x, title, colors, ...)
Arguments
X A group_tna_communities object.
title A character vector of titles to use for each plot.
colors A character vector of colors to use.

Arguments passed to plot.tna_communities().

Value

A list (invisibly) of ggraph objects in which the nodes are colored by community for each cluster.

50 plot.group_tna_permutation

See Also

Community detection functions communities(), plot.tna_communities(), print.group_tna_communities(),
print.tna_communities()

Examples

model <- group_model (engagement_mmm)
comm <- communities(model)
plot(comm)

plot.group_tna_permutation
Plot Permutation Test Results

Description

Plot Permutation Test Results

Usage
S3 method for class 'group_tna_permutation'
plot(x, title, ...)
Arguments
X A group_tna_permutation object.
title An optional character vector of titles for each plot. When not provided, the

title shows the names of the clusters being contrasted.

Arguments passed to plot. tna_permutation().

Value

A list (invisibly) of qgraph objects depicting the significant difference between each pair.

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_stability(), plot.tna_bootstrap(),plot.tna_permutation(),
plot.tna_reliability(), plot.tna_stability(), print.group_tna_bootstrap(), print.group_tna_permutation
print.group_tna_stability(), print.summary.group_tna_bootstrap(), print.summary.tna_bootstrap(),
print.tna_bootstrap(),print.tna_clustering(),print.tna_permutation(),print.tna_reliability(),

print.tna_stability(), prune(), pruning_details(), reliability(), reprune(), summary.group_tna_bootstrap(
summary . tna_bootstrap()

plot.group_tna_stability 51

Examples

model <- group_tna(engagement_mmm)

Small number of iterations for CRAN
perm <- permutation_test(model, iter = 20)
plot(perm)

plot.group_tna_stability
Plot Centrality Stability Results

Description

Plot Centrality Stability Results

Usage
S3 method for class 'group_tna_stability'
plot(x, ...)
Arguments
X A group_tna_stability object.
Arguments passed to plot.tna_stability().
Value

A list (invisibly) of ggplot objects displaying the stability analysis plot.

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(), plot.tna_bootstrap(), plot.tna_permutation(),
plot.tna_reliability(), plot.tna_stability(), print.group_tna_bootstrap(),print.group_tna_permutation
print.group_tna_stability(),print.summary.group_tna_bootstrap(),print.summary.tna_bootstrap(),
print.tna_bootstrap(), print.tna_clustering(),print.tna_permutation(),print.tna_reliability(),
print.tna_stability(), prune(), pruning_details(), reliability(), reprune(), summary.group_tna_bootstrap(

summary . tna_bootstrap()

Examples

model <- group_model (engagement_mmm)
Low number of iterations for CRAN
stability <- estimate_cs(

model,
drop_prop = c(0.3, 0.5, 0.7, 0.9),
iter = 10

52

plot(stability)

plot.tna

plot.tna

Plot a Transition Network Analysis Model

Description

This function plots a transition network analysis (TNA) model using the ggraph package. The nodes
in the graph represent states, with node sizes corresponding to initial state probabilities. Edge labels
represent the edge weights of the network.

Usage

S3 method for class 'tna'

plot(
X’
node_list,

use_list_order = TRUE,

x_offset,
labels,
colors,
pie,

cut,

show_pruned = TRUE,
pruned_edge_color = "pink",
edge.color = NA,
edge.labels = TRUE,
edge.label.position = 0.65,
layout = "circle”,

layout_args
scale_nodes,

list(),

scaling_factor = 0.5,
mar = rep(5, 4),

theme = "colorblind”,
)
Arguments
X A tna object from tna().
node_list

use_list_order

An optional 1list of two character vectors that define two mutually exclusive

groups of node labels.

A logical value. If node_list is provided, defines how the order of the nodes
in the plot is defined. A TRUE value uses the order in node_list. Otherwise, the
nodes are ranked based on edge weights and ordered according to the rank.

plot.tna 53

x_offset An optional numeric vector with the same number of elements as there are
states. Defines a horizontal offset for each node in the plot when node_list is
provided.

labels See ggraph: :qgraph().

colors See ggraph: :qgraph().

pie See ggraph: :qgraph().

cut Edge color and width emphasis cutoff value. The default is the median of the

edge weights. See qgraph: :qgraph() for details.

show_pruned A logical value indicating if pruned edges removed by prune() should be
shown in the plot. The default is TRUE, and the edges are drawn as dashed with
a different color to distinguish them.

pruned_edge_color

A character string for the color to use for pruned edges when show_pruned =
TRUE. The default is "pink".

edge.color See ggraph: :qgraph().
edge.labels See ggraph: :qgraph().
edge.label.position

See qgraph: :ggraph().
layout One of the following:

* A character string describing a ggraph layout (e.g., "circle”) or the
name of a igraph layout function (e.g., "layout_on_grid").

* A matrix of node positions to use, with a row for each node and x and y
columns for the node positions.

* A layout function from igraph.

layout_args A list of arguments to pass to the igraph layout function when layout is a
function or a character string that specifies a function name.

scale_nodes A character string giving the name of a centrality measure to scale the node
size by. See centralities() for valid names. If missing (the default), uses
default ggraph: :qgraph() scaling. The value of vsize provided via ... is
used as baseline size.

scaling_factor A numeric value specifying how strongly to scale the nodes when scale_nodes
is provided. Values between 0 and 1 will result in smaller differences and values
larger than 1 will result in greater differences. The default is @. 5.

mar See qgraph: :ggraph().
theme See qgraph: :ggraph().
Additional arguments passed to qgraph: :qgraph().

Value

A qgraph plot of the transition network.

54 plot.tna_bootstrap

See Also

Basic functions build_model (), hist.group_tna(), hist.tna(), plot.group_tna(), plot_frequencies(),
plot_frequencies.group_tna(), plot_mosaic(), plot_mosaic.group_tna(), plot_mosaic.tna_data(),

print.group_tna(), print.summary.group_tna(), print.summary.tna(),print.tna(), summary.group_tna(),
summary.tna(), tna-package

Examples

model <- tna(group_regulation)
plot(model)

plot.tna_bootstrap Plot a Bootstrapped Transition Network Analysis Model

Description

Plot a Bootstrapped Transition Network Analysis Model

Usage
S3 method for class 'tna_bootstrap'
plot(x, ...)
Arguments
X A tna_bootstrap object.
Additional arguments passed to plot.tna().
See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),
plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),print.group_tna_bootstrap(),
print.group_tna_permutation(), print.group_tna_stability(), print.summary.group_tna_bootstrap(),
print.summary.tna_bootstrap(),print.tna_bootstrap(),print.tna_clustering(), print.tna_permutation(),
print.tna_reliability(), print.tna_stability(), prune(),pruning_details(), reliability(),

reprune(), summary.group_tna_bootstrap(), summary.tna_bootstrap()

Examples

model <- tna(group_regulation)

Small number of iterations for CRAN
boot <- bootstrap(model, iter = 50)
plot(boot)

plot.tna_centralities 55

plot.tna_centralities Plot Centrality Measures

Description

Plots the centrality measures of a tna_centralities object as a lollipop chart. The resulting plot
includes facets for each centrality measure, showing the values for each state. The returned plot is
a ggplot2 object, so it can be easily modified and styled. See centralities() for details on the
centrality measures.

Usage
S3 method for class 'tna_centralities'
plot(
X,
reorder = TRUE,
ncol = 3,
scales = c("free_x", "fixed"),
colors,

labels = TRUE,

)
Arguments
X An object of class tna_centralities.
reorder A logical value indicating whether to reorder the values for each centrality in
a descending order. The default is TRUE.
ncol Number of columns to use for the facets. The default is 3.
scales Either "fixed"” or "free_x" (the default). If "free_x", the horizontal axis is
scaled individually in each facet. If "fixed", the same values are used for all
axes.
colors The colors for each node (default is the model colors if the tna model object is
passed, otherwise "black").
labels A logical value indicating whether to show the centrality numeric values. The
default is TRUE.
Ignored.
Value

A ggplot object displaying the lollipop charts for each centrality measure.

See Also

Centrality measure functions betweenness_network(), centralities(), plot.group_tna_centralities(),
print.group_tna_centralities(), print.tna_centralities()

56 plot.tna_cliques

Examples

tna_model <- tna(group_regulation)
cm <- centralities(tna_model)
plot(cm, ncol = 3, reorder = TRUE)

plot.tna_cliques Plot Cliques of a TNA Network

Description

Plot Cliques of a TNA Network

Usage
S3 method for class 'tna_cliques'
plot(
X,
n==6,
first =1,

show_loops = FALSE,
edge.labels = TRUE,
edge.label.position = 0.65,
minimum = 1e-05,

mar = rep(5, 4),

layout = "circle”,
layout_args = list(),
cut = 0.01,
normalize = TRUE,
ask = TRUE,
colors,
theme = "colorblind”,
)
Arguments
X A tna_cliques object.
n An integer defining the maximum number of cliques to show. The defaults is
6.
first An integer giving the index of the first clique to show. The default index is 1.
show_loops A logical value indicating whether to include loops in the plots or not.

edge.labels See ggraph: :qgraph().
edge.label.position
See qgraph: :ggraph().

plot.tna_communities 57

minimum See ggraph: :qgraph().
mar See qgraph: :ggraph().
layout One of the following:

* A character string describing a qgraph layout (e.g., "circle”) or the
name of a igraph layout function (e.g., "layout_on_grid").

* A matrix of node positions to use, with a row for each node and x and y
columns for the node positions.

* A layout function from igraph.

layout_args A list of arguments to pass to the igraph layout function when layout is a
function or a character string that specifies a function name.

cut See qgraph: :ggraph().

normalize See qgraph: :ggraph().

ask A logical value. When TRUE, show plots one by one and asks to plot the next
plot in interactive mode.

colors See ggraph: :qgraph().

theme See ggraph: :qgraph().
Ignored.

Value

NULL (invisibly).

See Also
Clique-related functions cliques(), plot.group_tna_cliques(), print.group_tna_cliques(),
print.tna_cliques()

Examples

model <- tna(group_regulation)
cliq <- cliques(model, size = 2)
plot(clig, n = 1, ask = FALSE)

plot.tna_communities Plot Communities

Description
This function visualizes the communities detected within a tna object based on different community
detection algorithms and their corresponding color mappings.

Usage

S3 method for class 'tna_communities'
plot(x, colors, method, ...)

58 plot.tna_comparison

Arguments
X A communities object generated by the find_communities method. Each
community detection method maps nodes or points in to a specific communi-
ties.
colors A character vector of color values used for visualizing community assign-
ments.
method A character string naming a community detection method to use for coloring
the plot. The default is to use the first available method in x. See communities()
for details.
Additional arguments passed to gqgraph: :qgraph().
Value

A qgraph object in which the nodes are colored by community.

See Also

Community detection functions communities(), plot.group_tna_communities(), print.group_tna_communities(),
print.tna_communities()

Examples

model <- tna(group_regulation)
comm <- communities(model)
plot(comm, method = "leading_eigen”)

plot.tna_comparison Plot the Comparison of Two TNA Models or Matrices

Description

Plot the Comparison of Two TNA Models or Matrices

Usage
S3 method for class 'tna_comparison'
plot(
X,
type = "heatmap”,
population = "difference”,
method = "pearson”,
name_x = "x",
name_y = "y",

plot.tna_comparison 59

Arguments
X A tna_comparison object.
type A character string naming the type of plot to produce. The available op-
tions are "heatmap” (the default), "scatterplot”, "centrality_heatmap”,
and "weight_density".
population A "character” string naming the population for which to produce the heatmaps,
i.e, one of "x", "y", or "difference” for the differences. Ignored for type =
"scatterplot”. Defaults to "diff".
method A character string naming the correlation coefficient to use when plotting
a scatterplot. The available options are "pearson” (the default), "kendall”,
"spearman”, and "distance"”. The final option is the distance correlation coef-
ficient of Szekely, Rizzo, and Bakirov (2007). See also the energy package for
further information on this measure.
name_x An optional character string to use as the name of the first population in the
plots. The default is "x".
name_y An optional character string to use as the name of the second population in the
plots. The defaultis "y".
Ignored.
Value

A ggplot object.

References

Szekely, G.J., Rizzo, M.L., and Bakirov, N.K. (2007), Measuring and Testing Dependence by Cor-
relation of Distances, Annals of Statistics, 35(6), 2769-2794. doi:10.1214/009053607000000505

See Also

Model comparison functions compare (), compare. group_tna(), compare_sequences(), plot.tna_sequence_comparis
plot_compare(), plot_compare.group_tna(), print.tna_comparison(), print.tna_sequence_comparison()

Examples

model_x <- tna(group_regulation[1:200, 1)
model_y <- tna(group_regulation[1001:1200, 1)
comp <- compare(model_x, model_y)

plot(comp)

60

plot.tna_permutation

plot.tna_permutation Plot the Significant Differences from a Permutation Test

Description

Plot the Significant Differences from a Permutation Test

Usage
S3 method for class 'tna_permutation'
plot(x, colors, posCol = "#009900", negCol = "red”, ...)
Arguments
X A tna_permutation object.
colors See ggraph: :qgraph().
posCol Color for plotting edges the difference in edge weights is positive. See qgraph: :qgraph().
negCol Color for plotting edges when the the difference in edge weights is negative. See
ggraph: :qgraph().
Arguments passed to plot_model ().
Value

A qgraph object containing only the significant edges according to the permutation test.

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()

plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),

plot.tna_bootstrap(),plot.tna_reliability(), plot.tna_stability(), print.group_tna_bootstrap(),
print.group_tna_permutation(),print.group_tna_stability(), print.summary.group_tna_bootstrap(),
print.summary.tna_bootstrap(), print.tna_bootstrap(),print.tna_clustering(),print.tna_permutation(),

print.tna_reliability(), print.tna_stability(), prune(), pruning_details(), reliability(),
reprune(), summary.group_tna_bootstrap(), summary.tna_bootstrap()

Examples

model_x <- tna(group_regulation[1:200, 1)

model_y <- tna(group_regulation[1001:1200, 1)

Small number of iterations for CRAN

perm <- permutation_test(model_x, model_y, iter = 20)

plot(perm)

plot.tna_reliability 61

plot.tna_reliability Plot Reliability Analysis Results

Description

Plot Reliability Analysis Results

Usage
S3 method for class 'tna_reliability'
plot(x, type = "histogram”, metric = "Median Abs. Diff.", ...)
Arguments
X A tna_reliability object.
type A character string specifying the plot type. The options are: "histogram”

(default), "density”, or "boxplot”.

metric A character string specifying the metric to plot. The default is the median
absolute difference ("Median Abs. Diff.").

Ignored

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),
plot.tna_bootstrap(), plot.tna_permutation(),plot.tna_stability(), print.group_tna_bootstrap(),
print.group_tna_permutation(),print.group_tna_stability(), print.summary.group_tna_bootstrap(),
print.summary.tna_bootstrap(), print.tna_bootstrap(),print.tna_clustering(),print.tna_permutation(),
print.tna_reliability(), print.tna_stability(), prune(),pruning_details(), reliability(),

reprune(), summary.group_tna_bootstrap(), summary.tna_bootstrap()

Examples

Small number of iterations for CRAN
model <- tna(engagement)

rel <- reliability(model, iter = 20)
plot(rel)

62 plot.tna_sequence_comparison

plot.tna_sequence_comparison
Plot a Sequence Comparison

Description

Visualize the differences in pattern counts by plotting the standardized residuals by pattern and
group.

Usage
S3 method for class 'tna_sequence_comparison'
plot(
X ’
n =10,
legend = TRUE,
cells = TRUE,
text_color = "white",
digits = 2L,
)
Arguments
X A tna_sequence_comparison object.
n An integer giving the number of patterns to plot. The default is 10.
legend A logical value indicating whether to show the color scale legend. The default
is TRUE.
cells A logical value indicating whether to display the numeric values in each cell.
The default is TRUE.
text_color A character string specifying the text color to use for the cell values. The
default is "white".
digits An integer specifying the number of digits for the cell values.
Not used.
Value

A ggplot object.

See Also

Model comparison functions compare(), compare. group_tna(), compare_sequences(), plot.tna_comparison(),
plot_compare(), plot_compare.group_tna(), print.tna_comparison(), print.tna_sequence_comparison()

plot.tna_stability 63

Examples

group <- c(rep("High", 1000), rep("Low"”, 1000))
comp <- compare_sequences(group_regulation, group)
plot(comp)

plot.tna_stability Plot Centrality Stability Results

Description

This function visualizes the centrality stability results produced by the estimate_centrality_stability
function. It shows how different centrality measures’ correlations change as varying proportions of
cases are dropped, along with their confidence intervals (CIs).

Usage
S3 method for class 'tna_stability'
plot(x, level = 0.05, ...)
Arguments
X A tna_stability object produced by estimate_cs.
level A numeric value representing the significance level for the confidence intervals.

Defaults to 0. 05.
Ignored.

Details

The function aggregates the results for each centrality measure across multiple proportions of
dropped cases (e.g., 0.1, 0.2, ..., 0.9) and calculates the mean and the desired quantiles for each
proportion. The confidence intervals (Cls) are computed based on the quantiles and displayed in
the plot.

If no valid data is available for a centrality measure (e.g., missing or NA values), the function skips
that measure with a warning.

The plot includes:
* The mean correlation for each centrality measure as a function of the proportion of dropped
cases.
* Shaded confidence intervals representing CIs for each centrality measure.
* A horizontal dashed line at the threshold value used for calculating the CS-coefficient.

* A subtitle listing the CS-coefficients for each centrality measure.

Value

A ggplot object displaying the stability analysis plot.

64 plot_associations

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(), plot.group_tna_stability(),
plot.tna_bootstrap(), plot.tna_permutation(), plot.tna_reliability(), print.group_tna_bootstrap(),
print.group_tna_permutation(),print.group_tna_stability(), print.summary.group_tna_bootstrap(),
print.summary.tna_bootstrap(),print.tna_bootstrap(),print.tna_clustering(),print.tna_permutation(),
print.tna_reliability(), print.tna_stability(), prune(),pruning_details(),reliability(),

reprune(), summary.group_tna_bootstrap(), summary.tna_bootstrap()

Examples

model <- tna(group_regulation)
cs <- estimate_cs(model, iter = 10)
plot(cs)

plot_associations Plot an Association Network

Description

Plot an Association Network

Usage

plot_associations(x, ...)

S3 method for class 'tna'

plot_associations(x, edge.color, ...)
Arguments
X A tna object.

Additional arguments passed to plot_model().

edge.color An optional character vector of colors for the edges. By default, the colors are
specified by the magnitude of the standardized residual.
Value

A qgraph plot of the network.

Examples

model <- ftna(group_regulation)
plot_associations(model)

plot_compare 65

plot_compare Plot the Difference Network Between Two Models

Description

Plots the difference network between model x and model y. The edges are computed from sub-
tracting the two models. The pie chart is the difference in initial probabilities between model x and
model y. Green color indicates that xis greater than yand red indicates otherwise.

Usage

plot_compare(x, ...)

S3 method for class 'tna'
plot_compare(

X)

Y,

theme = NULL,

palette = "colorblind”,

posCol = "#009900",

negCol = "red",

Arguments
X A tna object. This is the the principal model.
Additional arguments passed to qgraph: :qgraph().
y A tna object. This is the model subtracted from the principal model.
theme See qgraph: :ggraph().
palette See qgraph: :ggraph().
posCol Color for plotting edges and pie when the first group has a higher value. See
ggraph: :qgraph().
negCol Color for plotting edges and pie when the second group has a higher value. See
ggraph: :qgraph().
Value

A ggraph object displaying the difference network between the two models.

See Also

Model comparison functions compare (), compare.group_tna(), compare_sequences(), plot.tna_comparison(),
plot.tna_sequence_comparison(), plot_compare.group_tna(), print.tna_comparison(),
print.tna_sequence_comparison()

66 plot_compare.group_tna

Examples
model_x <- tna(group_regulation[group_regulation[, 1] == "plan”, 1)
model_y <- tna(group_regulation[group_regulation[, 1] != "plan”, 1)

plot_compare(model_x, model_y)

plot_compare.group_tna
Plot the Difference Network Between Two Groups

Description

Plot the Difference Network Between Two Groups

Usage
S3 method for class 'group_tna'
plot_compare(x, i = 1L, j = 2L, ...)
Arguments
X A group_tna object.
i An integer index or the name of the principal cluster as a character string.
j An integer index or the name of the secondary cluster as a character string.

Additional arguments passed to plot_compare.tna().

Value

A qgraph object displaying the difference network between the two clusters

See Also

Model comparison functions compare (), compare. group_tna(), compare_sequences(), plot. tna_comparison(),
plot.tna_sequence_comparison(), plot_compare(), print.tna_comparison(),print.tna_sequence_comparison(

Examples

model <- group_model (engagement_mmm)
plot_compare(model)

plot_frequencies 67

plot_frequencies Plot the Frequency Distribution of States

Description

Plot the Frequency Distribution of States

Usage

plot_frequencies(x, ...)

S3 method for class 'tna'

plot_frequencies(x, width = 0.7, hjust = 1.2, show_label = TRUE, colors, ...)
Arguments
X A tna object created from sequence data.
Ignored.
width A numeric value for the Width of the bars. Default is 0.7,
hjust A numeric value for the horizontal adjustment of the labels. Default is 1.2.
show_label A logical value indicating whether to show a label with the frequency counts.
Default is TRUE.
colors A character vector of colors to be used in the plot (one per label) or a single
color.
Value

A ggplot object.

See Also

Basic functions build_model (), hist.group_tna(), hist.tna(), plot.group_tna(), plot.tna(),
plot_frequencies.group_tna(), plot_mosaic(), plot_mosaic.group_tna(), plot_mosaic.tna_data(),
print.group_tna(), print.summary.group_tna(), print.summary.tna(),print.tna(), summary.group_tna(),
summary.tna(), tna-package

Examples

model <- tna(group_regulation)
plot_frequencies(model)
plot_frequencies(model, width = .5, colors = "pink")

68 plot_frequencies.group_tna

plot_frequencies.group_tna
Plot the Frequency Distribution of States

Description

Plot the Frequency Distribution of States

Usage

S3 method for class 'group_tna'
plot_frequencies(

X,

label,

colors,

width = 0.7,

palette = "Set2",

show_label = TRUE,

position = "dodge",
hjust = 1.2,
)
Arguments
X A group_tna object.
label An optional character string that can be provided to specify the grouping factor
name if x was not constructed using a column name of the original data.
colors A character vector of colors to be used in the plot (one per group).
width A numeric value for the width of the bars. The defaultis @.7.
palette A character string that specifies the palette to be used if colors are not passed.
show_label A logical value indicating whether to show a label with the frequency counts.
Default is TRUE.
position Position of the bars:"dodge”, "dodge2"”, "fill"” or "stack”.
hjust A numeric value for the horizontal adjustment of the labels. The default is 1. 2.
Ignored.
Value

A ggplot object.

See Also

Basic functions build_model (), hist.group_tna(), hist.tna(), plot.group_tna(), plot.tna(),
plot_frequencies(), plot_mosaic(),plot_mosaic.group_tna(),plot_mosaic.tna_data(),
print.group_tna(), print.summary.group_tna(), print.summary.tna(),print.tna(), summary.group_tna(),
summary.tna(), tna-package

plot_mosaic 69

Examples

model <- group_model (engagement_mmm)

Default

plot_frequencies(model)

Default labels outside and custom colors
plot_frequencies(

model,

width = 0.9,

hjust = -0.3,

colors = c("#218516", "#f9c22e", "#53b3cbh")

)

Stacked with no labels

plot_frequencies(model, position = "stack”, show_label = FALSE)
Fill

plot_frequencies(model, position = "fill"”, hjust = 1.1)

plot_mosaic Create a Mosaic Plot of Transitions or Events

Description

Create a Mosaic Plot of Transitions or Events

Usage

plot_mosaic(x, ...)

S3 method for class 'tna'

plot_mosaic(x, ...)
Arguments
X A tna or a group_tna object.
Ignored.
Value

A ggplot object.

See Also

Basic functions build_model (), hist.group_tna(), hist.tna(), plot.group_tna(), plot.tna(),
plot_frequencies(),plot_frequencies.group_tna(), plot_mosaic.group_tna(),plot_mosaic.tna_data(),
print.group_tna(), print.summary.group_tna(), print.summary.tna(),print.tna(), summary.group_tna(),
summary.tna(), tna-package

70 plot_mosaic.group_tna

Examples

ftna_model <- ftna(group_regulation)
plot_mosaic(ftna_model)

plot_mosaic.group_tna Plot State Frequencies as a Mosaic Between Two Groups

Description

Plot State Frequencies as a Mosaic Between Two Groups

Usage
S3 method for class 'group_tna'
plot_mosaic(x, label, ...)
Arguments
X A group_tna object.
label An optional character string that can be provided to specify the grouping factor

name if x was not constructed using a column name of the original data.

Ignored.

Value

A ggplot object.

See Also

Basic functions build_model (), hist.group_tna(), hist.tna(), plot.group_tna(), plot.tna(),
plot_frequencies(), plot_frequencies.group_tna(), plot_mosaic(), plot_mosaic.tna_data(),
print.group_tna(), print.summary.group_tna(), print.summary.tna(),print.tna(), summary.group_tna(),
summary.tna(), tna-package

Examples

model <- group_model(engagement, group = rep(1:3, length.out = 1000))
plot_mosaic(model)

plot_mosaic.tna_data 71

plot_mosaic.tna_data Plot State Frequencies as a Mosaic Between Two Groups

Description

Plot State Frequencies as a Mosaic Between Two Groups

Usage
S3 method for class 'tna_data'
plot_mosaic(x, group, label = "Group", ...)
Arguments
X A tna_data object.
group A character string giving the column name of the (meta) data to contrast the

frequencies with or a vector of group indicators with the the same length as the
number of rows in the sequence data.

label An optional character string that specifies a label for the grouping variable
when group is not a column name of the data.

Ignored.

Value

A ggplot object.

See Also

Basic functions build_model (), hist.group_tna(), hist.tna(), plot.group_tna(), plot.tna(),
plot_frequencies(), plot_frequencies.group_tna(), plot_mosaic(), plot_mosaic.group_tna(),
print.group_tna(), print.summary.group_tna(), print.summary.tna(),print.tna(), summary.group_tna(),
summary.tna(), tna-package

Examples

d <- data.frame(
time = rep(1:5, rep = 4),
group = rep(1:4, each = 5),
event = sample(LETTERS[1:3], 20, replace = TRUE)
)
sequence_data <- prepare_data(
d,
time = "time”,
actor = "group”,
action = "event”
)

plot_mosaic(sequence_data, group = "group")

72 plot_sequences

plot_sequences Create a Sequence Index Plot or a Distribution Plot

Description

Create a Sequence Index Plot or a Distribution Plot

Usage

plot_sequences(x, ...)

S3 method for class 'tna'
plot_sequences(
X,
group,
type = "index",
scale = "proportion”,
geom = "bar”,
include_na = FALSE,
na_color = "white",
sort_by,
show_n = TRUE,
border,
title,
legend_title,
xlab,
ylab,
tick = 5,
ncol = 2L

’

)

S3 method for class 'tna_data'
plot_sequences(
X,
group,
type = "index",
scale = "proportion”,
geom = "bar”,
include_na = FALSE,
colors,
na_color = "white",
sort_by,
show_n = TRUE,
border,
title,
legend_title,

plot_sequences

xlab,
ylab,
tick = 5,
ncol = 2L,

)

Default S3 method:
plot_sequences(
X,
cols = tidyselect::everything(),
group,
type = "index",
scale = "proportion”,
geom = "bar”,
include_na = FALSE,
colors,
na_color = "white",
sort_by,
show_n = TRUE,
border,
title,
legend_title,
xlab,
ylab,
tick = 5,
ncol = 2L,

)

S3 method for class 'group_tna'
plot_sequences(
X,
type = "index",
scale = "proportion”,
geom = "bar”,
include_na = FALSE,
na_color = "white",
sort_by,
show_n = TRUE,
border,
title,
legend_title,
xlab,
ylab,
tick
ncol

I
N =
— -

Arguments

X

group

type

scale

geom

include_na

na_color

sort_by

show_n

border

title

legend_title
xlab

ylab

tick

ncol
colors

cols

plot_sequences

A tna, group_tna, tna_data or a data.frame object with sequence data in
wide format.

Ignored.

A vector indicating the group assignment of each row of the data. Must have
the same length as the number of rows of x. Alternatively, a single character
string giving the column name of the data that defines the group when x is a
wide format data.frame or a tna_data object. Used for faceting the plot.

A character string for the type of plot to generate. The available options are
"index" (the default) for a sequence index plot, and "distribution” showing
the distribution of the states over time.

A character string that determines the scaling of the vertical axis for distribu-
tion plots. The options are "proportion” (the default) and "count” for propor-
tions and raw counts of states, respectively.

A character string for the type of geom to use for distribution plots. The
options are "bar” (the default) and "area”.

A logical value for whether to include missing values for distribution plots.
The default is FALSE. If TRUE, the missing values are converted to a new state
and included in the plot.

A character string giving the color to use for missing values. The default is
"white".

An optional expression giving a tidy selection of column names of x to sort by
or "everything”.

A logical value for whether to add the number of observations (total or by
group) to the plot title.

A character string giving the color for borders. For index plots, this is the
color of borders between cells (tiles). For distribution plot with geom = "bar”,
this is the color of bar outlines. Not applicable to geom = "area”.

An optional character string providing a title for the plot.

An optional character string providing a title for the legend.

A character string giving the label for the horizontal axis. The default is
"Time".

A character string giving the label for the vertical axis. The default is "Sequence”
for index plots, and "Proportion” or "Count” based on scale for distribution

plots.

An integer specifying the horizontal axis label interval. The default value tick
= 5 shows every 5Sth label. Setting this to 1 will show every label.

Number of columns to use for the facets. The default is 2.

A named character vector mapping states to colors, or an unnamed character
vector. If missing, a default palette is used.

An expression giving a tidy selection of column names to be treated as time
points. By default, all columns will be used.

prepare_data 75

Examples

Sequence index plot (default)
plot_sequences(
group_regulation,
group = rep(1:2, each = 1000),
)
State distribution plot
plot_sequences(
group_regulation,
group = rep(1:2, each = 1000),
type = "distribution”,

)

prepare_data Compute User Sessions from Event Data

Description

Processes a dataset to create user sessions based on time gaps, ordering columns, or actor group-
ings. It supports different ways to understand order in user behavior and provides flexibility when
widening the data.

Usage

prepare_data(

data,

actor,

time,

action,

order,

time_threshold = 900,
custom_format = NULL,
is_unix_time = FALSE,

unix_time_unit = "seconds”,
unused_fn = dplyr::first
)
Arguments
data A data.frame or containing the action/event data.
actor A character vector or an expression that represents a tidy selection of the

names of the columns that represent a user/actor identifiers. If not provided
and neither time nor order is specified, the entire dataset is treated as a single
session. In the case of multiple actors, a new .actor column is added that
represents the interaction of the given columns.

76 prepare_data

time A character string or an expression giving the name of the column represent-
ing timestamps of the action events.

action A character string or an expression giving the name of the column holding
the information about the action taken.

order A character string or an expression giving the name of a column with se-
quence numbers or non-unique orderable values that indicate order within an
actor group, if not present it will be ordered with all the data if no actor is
available, used when widening the data. If both actor and time are specified,
then the sequence order should be specified such that it determines the order of
events within actor and each session.

time_threshold An integer specifying the time threshold in seconds for creating new time-
based sessions. Defaults to 900 seconds.

custom_format A character string giving the format used to parse the time column.

is_unix_time A logical value indicating whether the time column is in Unix time. The
default is FALSE.

unix_time_unit A character string giving the Unix time unit when is_unix_time is TRUE.
The default is "seconds”. Valid options are "seconds”, "milliseconds”, or
"microseconds”.

unused_fn How to handle extra columns when pivoting to wide format. See tidyr: :pivot_wider().
The default is to keep all columns and to use the first value.

Value

A tna_data object, which is a 1ist with the following elements:

* long_data: The processed data in long format.

» sequence_data: The processed data on the sequences in wide format, with actions/events as
different variables structured with sequences.

* meta_data: Other variables from the original data in wide format.

* statistics: A list containing summary statistics: total sessions, total actions, unique users,
time range (if applicable), and top sessions and user by activities.

See Also

Other data: import_data(), import_onehot(), print.tna_data(), simulate.group_tna(),
simulate.tna()

Examples
results <- prepare_data(
group_regulation_long, actor = "Actor”, time = "Time"”, action = "Action”
)

print(results$sequence_data)
print(results$meta_data)
print(results$statistics)

Custom order column

print.group_tna 77

data_ordered <- tibble::tibble(
user = c("A”, "A", "A", "B", "B" "C", "C", "C"),
order = c(1, 2, 3, 1, 2, 1, 2, 3),
action = c(

"view", "click"”, "add_cart”, "view",
"checkout”, "view", "click"”, "share"
)
)
results_ordered <- prepare_data(
data_ordered, actor = "user"”, order = "order", action = "action”
)

print(results_ordered$sequence_data)
print(results_ordered$meta_data)
print(results_ordered$statistics)

No actor scenario leading to a single session
data_single_session <- tibble::tibble(
action = c(

"view", "click"”, "add_cart”, "view",
"checkout”, "view", "click"”, "share"
)
results_single <- prepare_data(data_single_session, action = "action")

print(results_single$sequence_data)
print(results_single$meta_data)
print(results_single$statistics)

Multiple actors
data_multi_actor <- tibble::tibble(
user = c("A", "A", "A", "A", "B", "B", "B", "B"),
session = c(1, 1, 2, 2, 1, 1, 2, 2),
action = c(
"view", "click"”, "add_cart”, "view",
"checkout”, "view"”, "click", "share”
)
)
results_multi_actor <- prepare_data(
data_multi_actor, actor = c("user”, "session"), action = "action”
)
print(results_multi_actor$sequence_data)
print(results_multi_actor$meta_data)
print(results_multi_actor$statistics)

print.group_tna Print a group_tna Object

Description

Print a group_tna Object

78 print.group_tna_bootstrap

Usage
S3 method for class 'group_tna'
print(x, ...)
Arguments
X A group_tna object.
Arguments passed to print.tna().
Value

x (invisibly).

See Also

Basic functions build_model (), hist.group_tna(), hist.tna(), plot.group_tna(), plot.tna(),
plot_frequencies(), plot_frequencies.group_tna(), plot_mosaic(), plot_mosaic.group_tna(),
plot_mosaic.tna_data(), print.summary.group_tna(), print.summary.tna(), print.tna(),
summary.group_tna(), summary.tna(), tna-package

Examples

model <- group_model (engagement_mmm)
print(model)

print.group_tna_bootstrap
Print group_tna Bootstrap Results

Description

Print group_tna Bootstrap Results

Usage
S3 method for class 'group_tna_bootstrap'
print(x, ...)
Arguments
X A group_tna_bootstrap object.
Arguments passed to print.tna_bootstrap().
Value

x (invisibly).

print.group_tna_centralities 79

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),
plot.tna_bootstrap(),plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),
print.group_tna_permutation(),print.group_tna_stability(), print.summary.group_tna_bootstrap(),
print.summary.tna_bootstrap(),print.tna_bootstrap(),print.tna_clustering(), print.tna_permutation(),
print.tna_reliability(), print.tna_stability(), prune(),pruning_details(),reliability(),

reprune(), summary.group_tna_bootstrap(), summary.tna_bootstrap()

Examples

model <- group_model (engagement_mmm)
Low number of iteration for CRAN
boot <- bootstrap(model, iter = 10)
print(boot)

print.group_tna_centralities
Print Centrality Measures

Description

Print Centrality Measures

Usage
S3 method for class 'group_tna_centralities'
print(x, ...)
Arguments
X A group_tna_centralities object.
Ignored.
Value

x (invisibly).

See Also

Centrality measure functions betweenness_network(), centralities(), plot.group_tna_centralities(),
plot.tna_centralities(), print.tna_centralities()

80 print.group_tna_cliques

Examples

model <- group_model (engagement_mmm)
cm <- centralities(model)
print(cm)

print.group_tna_cliques
Print Found Cliques

Description

Print Found Cliques
Usage

S3 method for class 'group_tna_cliques'

print(x, ...)
Arguments

X A group_tna_cliques object.

Arguments passed to print.tna_cliques().

Value

x (invisibly).

See Also

Clique-related functions cliques(), plot.group_tna_cliques(), plot.tna_cliques(), print.tna_cliques()

Examples

model <- group_model (engagement_mmm)
cliq <- cliques(model, size = 2)
print(cliq)

print.group_tna_communities 81

print.group_tna_communities
Print Detected Communities

Description

Print Detected Communities

Usage
S3 method for class 'group_tna_communities'
print(x, ...)
Arguments
X A group_tna_communities object.
Arguments passed to print.tna_communities().
Value

x (invisibly).

See Also

Community detection functions communities(), plot.group_tna_communities(), plot.tna_communities(),
print.tna_communities()

Examples

model <- group_model (engagement_mmm)
comm <- communities(model)
print(comm)

print.group_tna_permutation
Print Permutation Test Results

Description

Print Permutation Test Results

Usage

S3 method for class 'group_tna_permutation'
print(x, ...)

82 print.group_tna_stability

Arguments
X A group_tna_permutation object.
Arguments passed to print.tna_permutation().
Value
x (invisibly).
See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),
plot.tna_bootstrap(),plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),
print.group_tna_bootstrap(), print.group_tna_stability(), print.summary.group_tna_bootstrap(),
print.summary.tna_bootstrap(), print.tna_bootstrap(), print.tna_clustering(),print.tna_permutation(),
print.tna_reliability(), print.tna_stability(), prune(), pruning_details(), reliability(),

reprune(), summary.group_tna_bootstrap(), summary.tna_bootstrap()

Examples

model <- group_model (engagement_mmm)

Small number of iterations for CRAN
perm <- permutation_test(model, iter = 20)
print(perm)

print.group_tna_stability
Print Centrality Stability Results

Description

Print Centrality Stability Results

Usage
S3 method for class 'group_tna_stability'
print(x, ...)
Arguments
X A group_tna_stability object.
Arguments passed to print.tna_stability().
Value

x (invisibly).

print.summary.group_tna 83

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(), plot.group_tna_stability(),
plot.tna_bootstrap(),plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),
print.group_tna_bootstrap(), print.group_tna_permutation(), print.summary.group_tna_bootstrap(),
print.summary.tna_bootstrap(),print.tna_bootstrap(),print.tna_clustering(), print.tna_permutation(),
print.tna_reliability(), print.tna_stability(), prune(),pruning_details(),reliability(),

reprune(), summary.group_tna_bootstrap(), summary.tna_bootstrap()

Examples

model <- group_model (engagement_mmm)
Low number of iterations for CRAN
stability <- estimate_cs(

model,
drop_prop = c(0.3, 0.5, 0.7, 0.9),
iter = 10

)

print(stability)

print.summary.group_tna
Print a Summary of a Grouped Transition Network Analysis Model

Description

Print a Summary of a Grouped Transition Network Analysis Model

Usage
S3 method for class 'summary.group_tna'
print(x, ...)
Arguments
X A summary.group_tna object.
Arguments passed to the tibble print method
Value

x (invisibly).

See Also

Basic functions build_model (), hist.group_tna(), hist.tna(), plot.group_tna(), plot.tna(),
plot_frequencies(), plot_frequencies.group_tna(), plot_mosaic(), plot_mosaic.group_tna(),
plot_mosaic.tna_data(), print.group_tna(), print.summary.tna(),print.tna(), summary.group_tna(),
summary.tna(), tna-package

84 print.summary.group_tna_bootstrap

Examples

model <- group_model (engagement_mmm)
print(summary(model))

print.summary.group_tna_bootstrap
Print a Bootstrap Summary for a Grouped Transition Network Model

Description

Print a Bootstrap Summary for a Grouped Transition Network Model

Usage
S3 method for class 'summary.group_tna_bootstrap'
print(x, ...)
Arguments
X A summary.group_tna_bootstrap object.
Arguments passed to the generic print method.
Value

x (invisibly).

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(), plot.group_tna_stability(),
plot.tna_bootstrap(), plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),
print.group_tna_bootstrap(), print.group_tna_permutation(), print.group_tna_stability(),
print.summary.tna_bootstrap(),print.tna_bootstrap(),print.tna_clustering(), print.tna_permutation(),
print.tna_reliability(), print.tna_stability(), prune(),pruning_details(), reliability(),

reprune(), summary.group_tna_bootstrap(), summary.tna_bootstrap()

Examples

model <- group_model (engagement_mmm)
Low number of iteration for CRAN
boot <- bootstrap(model, iter = 10)
print(summary(boot))

print.summary.tna 85

print.summary.tna Print a TNA Summary

Description

Print a TNA Summary

Usage
S3 method for class 'summary.tna'
print(x, ...)
Arguments
X A summary. tna object.
Ignored.
Value

A summary. tna object (invisibly) containing the TNA model network metrics and values.

See Also

Basic functions build_model (), hist.group_tna(), hist.tna(), plot.group_tna(), plot.tna(),
plot_frequencies(), plot_frequencies.group_tna(), plot_mosaic(), plot_mosaic.group_tna(),
plot_mosaic.tna_data(), print.group_tna(), print.summary.group_tna(), print.tna(),
summary.group_tna(), summary.tna(), tna-package

Examples

model <- tna(group_regulation)
print(summary(model))

print.summary.tna_bootstrap
Print a Bootstrap Summary

Description

Print a Bootstrap Summary

Usage

S3 method for class 'summary.tna_bootstrap'
print(x, ...)

86 print.tna

Arguments
X A summary. tna_bootstrap object.
Arguments passed to the generic print method.
Value

A summary.tna_bootstrap object (invisibly) containing the weight, estimated p-value and confi-
dence interval of each edge.

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),
plot.tna_bootstrap(),plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),
print.group_tna_bootstrap(), print.group_tna_permutation(), print.group_tna_stability(),
print.summary.group_tna_bootstrap(),print.tna_bootstrap(), print.tna_clustering(),
print.tna_permutation(), print.tna_reliability(),print.tna_stability(), prune(), pruning_details(),
reliability(), reprune(), summary.group_tna_bootstrap(), summary.tna_bootstrap()

Examples

model <- tna(group_regulation)

Small number of iterations for CRAN
boot <- bootstrap(model, iter = 10)
print(summary(boot))

print.tna Print a tna Object

Description

Print a tna Object

Usage
S3 method for class 'tna'
print(x, generic = FALSE, ...)
Arguments
X A tna object.
generic A logical value. If TRUE, use generic print method instead. Defaults to FALSE.

Additional arguments passed to the generic print methods.

Value

The tna object passed as argument x (invisibly).

print.tna_bootstrap 87

See Also

Basic functions build_model (), hist.group_tna(), hist.tna(), plot.group_tna(), plot.tna(),
plot_frequencies(), plot_frequencies.group_tna(), plot_mosaic(), plot_mosaic.group_tna(),
plot_mosaic.tna_data(), print.group_tna(), print.summary.group_tna(), print.summary.tna(),
summary.group_tna(), summary.tna(), tna-package

Examples

model <- tna(group_regulation)
print(model)

print.tna_bootstrap Print Bootstrap Results

Description

Print Bootstrap Results

Usage
S3 method for class 'tna_bootstrap'
print(x, digits = getOption("digits"), type = "both", ...)
Arguments
X A tna_bootstrap object.
digits An integer giving the minimal number of significant digits to print.
type A character vector giving the type of edges to print. The default option "both"

prints both statistically significant and non-significant edges, "sig" prints only
significant edges, and "nonsig” prints only the non-significant edges.

Ignored.

Value

x (invisibly).

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),
plot.tna_bootstrap(),plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),
print.group_tna_bootstrap(), print.group_tna_permutation(), print.group_tna_stability(),
print.summary.group_tna_bootstrap(), print.summary.tna_bootstrap(),print.tna_clustering(),
print.tna_permutation(), print.tna_reliability(),print.tna_stability(), prune(), pruning_details(),
reliability(), reprune(), summary.group_tna_bootstrap(), summary.tna_bootstrap()

88 print.tna_centralities

Examples

model <- tna(group_regulation)

Small number of iterations for CRAN
boot <- bootstrap(model, iter = 10)
print(boot)

print.tna_centralities
Print Centrality Measures

Description

Print Centrality Measures

Usage
S3 method for class 'tna_centralities'
print(x, ...)
Arguments
X A centralities object.
Ignored.
Value

x (invisibly).

See Also

Centrality measure functions betweenness_network(), centralities(), plot.group_tna_centralities(),
plot.tna_centralities(), print.group_tna_centralities()

Examples

model <- tna(group_regulation)
cm <- centralities(model)
print(cm)

print.tna_cliques 89

print.tna_cliques Print Found Cliques of a TNA Network

Description

Print Found Cliques of a TNA Network

Usage
S3 method for class 'tna_cliques'
print(x, n =6, first = 1, digits = getOption("digits"”), ...)
Arguments
X A tna_cliques object.
n An integer defining the maximum number of cliques to show. The defaults is
6.
first An integer giving the index of the first clique to show. The default index is 1.
digits An integer giving the minimal number of significant digits to print.
Ignored.
Value

x (invisibly).

See Also

Clique-related functions cliques(), plot.group_tna_cliques(), plot.tna_cliques(), print.group_tna_cliques()

Examples

model <- tna(group_regulation)
clig <- cliques(model, size = 2)
print(cliq)

90 print.tna_clustering

print.tna_clustering Print the Results of Clustering

Description

Print the Results of Clustering

Usage
S3 method for class 'tna_clustering'
print(x, ...)
Arguments
X A tna_clustering object.
Additional arguments passed to the generic print method.
Value

x (invisibly).

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),
plot.tna_bootstrap(), plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),
print.group_tna_bootstrap(), print.group_tna_permutation(), print.group_tna_stability(),
print.summary.group_tna_bootstrap(),print.summary.tna_bootstrap(), print.tna_bootstrap(),
print.tna_permutation(),print.tna_reliability(), print.tna_stability(), prune(), pruning_details(),
reliability(), reprune(), summary.group_tna_bootstrap(), summary.tna_bootstrap()

Examples

data <- data.frame(
T1 = c("A", "B", "A", "C", "A", "B"),
T2 = c("B", "A", "B", "A", "C", "A"),
T3 = C(IICII’ IICII, IIAII’ IIBII’ IIBII, IICII)
)
PAM clustering with optimal string alignment (default)

result <- cluster_sequences(data, k = 2)
print(result)

print.tna_communities 91

print.tna_communities Print Detected Communities

Description

Print Detected Communities

Usage
S3 method for class 'tna_communities'
print(x, ...)
Arguments
X A tna_communities object.
Additional arguments passed to the generic print method.
Value

x (invisibly).

See Also

Community detection functions communities(), plot.group_tna_communities(), plot.tna_communities(),
print.group_tna_communities()

Examples

model <- tna(group_regulation)
comm <- communities(model)
print(comm)

print.tna_comparison Print Comparison Results

Description

Print Comparison Results

Usage

S3 method for class 'tna_comparison'
print(x, ...)

92 print.tna_data

Arguments
X A tna_comparison object.
Additional arguments passed to the tibble print method.
Value

x (invisibly).

See Also
Model comparison functions compare(), compare.group_tna(), compare_sequences(), plot.tna_comparison(),
plot.tna_sequence_comparison(), plot_compare(), plot_compare.group_tna(), print.tna_sequence_comparisor
Examples

model_x <- tna(group_regulation[1:200, 1)
model_y <- tna(group_regulation[1001:1200,])
comp <- compare(model_x, model_y)

print(comp)
print.tna_data Print a TNA Data Object
Description
Print a TNA Data Object
Usage
S3 method for class 'tna_data'
print(x, data = "sequence”, ...)
Arguments
X A tna_data object.
data A character string that defines the data to be printed tibble. Accepts either

"sequence” (default) for wide format sequence data, "meta”, for the wide for-
mat metadata, or "long" for the long format data.

Arguments passed to the tibble print method.

Value

x (invisibly).

See Also

Other data: import_data(), import_onehot(), prepare_data(), simulate.group_tna(), simulate.tna()

print.tna_permutation 93

Examples
res <- prepare_data(group_regulation_long, action = "Action"”, actor = "Actor”,
time = "Time")
print(res, which = "sequence")

print(res, which = "meta")
print(res, which = "long")

print.tna_permutation Print Permutation Test Results

Description

Print Permutation Test Results

Usage
S3 method for class 'tna_permutation'
print(x, ...)
Arguments
X A tna_permutation object.
Additional arguments passed to the tibble print method.
Value

x (invisibly).

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),
plot.tna_bootstrap(),plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),
print.group_tna_bootstrap(), print.group_tna_permutation(), print.group_tna_stability(),
print.summary.group_tna_bootstrap(), print.summary.tna_bootstrap(), print.tna_bootstrap(),
print.tna_clustering(),print.tna_reliability(),print.tna_stability(), prune(),pruning_details(),
reliability(), reprune(), summary.group_tna_bootstrap(), summary.tna_bootstrap()

Examples

model_x <- tna(group_regulation[1:200, 1)

model_y <- tna(group_regulation[1001:1200, 1)

Small number of iterations for CRAN

perm <- permutation_test(model_x, model_y, iter = 20)
print(perm)

94 print.tna_reliability

print.tna_reliability Print Reliability Analysis Results

Description

Print Reliability Analysis Results

Usage
S3 method for class 'tna_reliability'
print(x, summary_metrics, ...)
Arguments
X A tna_reliability object.

summary_metrics
A character vector of metrics to display.

Arguments passed to the generic print method.

Value

x (invisibly).

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),
plot.tna_bootstrap(),plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),
print.group_tna_bootstrap(), print.group_tna_permutation(), print.group_tna_stability(),
print.summary.group_tna_bootstrap(),print.summary.tna_bootstrap(), print.tna_bootstrap(),
print.tna_clustering(), print.tna_permutation(),print.tna_stability(), prune(), pruning_details(),
reliability(), reprune(), summary.group_tna_bootstrap(), summary.tna_bootstrap()

Examples

Small number of iterations for CRAN
model <- tna(engagement)

rel <- reliability(model, iter = 20)
print(rel)

print.tna_sequence_comparison 95

print.tna_sequence_comparison
Print a Comparison of Sequences

Description

Print a Comparison of Sequences

Usage
S3 method for class 'tna_sequence_comparison'
print(x, ...)
Arguments
X A tna_sequence_comparison object.
Arguments passed to the generic print method.
Value

x (invisibly).

See Also

Model comparison functions compare (), compare. group_tna(), compare_sequences(), plot.tna_comparison(),
plot.tna_sequence_comparison(), plot_compare(), plot_compare.group_tna(), print.tna_comparison()

Examples

group <- c(rep("High", 1000), rep("Low", 1000))
comp <- compare_sequences(group_regulation, group)
print(comp)

print.tna_stability Print Centrality Stability Results

Description

Print Centrality Stability Results

Usage

S3 method for class 'tna_stability'
print(x, ...)

96 prune

Arguments
X A tna_stability object.
Additional arguments passed to the generic print method.
Value

x (invisibly).

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),
plot.tna_bootstrap(),plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),
print.group_tna_bootstrap(), print.group_tna_permutation(), print.group_tna_stability(),
print.summary.group_tna_bootstrap(),print.summary.tna_bootstrap(), print.tna_bootstrap(),
print.tna_clustering(), print.tna_permutation(), print.tna_reliability(), prune(),

pruning_details(), reliability(), reprune(), summary.group_tna_bootstrap(), summary.tna_bootstrap()

Examples

model <- tna(group_regulation)
Small number of iterations and drop proportions for CRAN
cs <- estimate_cs(
model,
measures = c("InStrength”, "OutStrength"),
drop_prop = seq(@.3, 0.9, by = 0.2),
iter = 10
)
print(cs)

prune Prune a Transition Network based on Transition Probabilities

Description

Prunes a network represented by a tna object by removing edges based on a specified threshold,
lowest percent of non-zero edge weights, or the disparity filter algorithm (Serrano et al., 2009). It
ensures the network remains weakly connected.

Prunes a network represented by a tna object by removing edges based on a specified threshold,
lowest percent of non-zero edge weights, or the disparity filter algorithm (Serrano et al., 2009). It
ensures the network remains weakly connected.

prune 97

Usage

prune(x, ...)

S3 method for class 'tna'
prune(
X,
method = "threshold”,
threshold = 0.1,
lowest = 0.05,

level = 0.5,
boot = NULL,

)

S3 method for class 'group_tna'

prune(x, ...)

Arguments

X An object of class tna or group_tna
Arguments passed to bootstrap() when using method = "bootstrap” and when
a tna_bootstrap is not supplied.

method A character string describing the pruning method. The available options are
"threshold”, "lowest", "bootstrap” and "disparity”, corresponding to the
methods listed in Details. The default is "threshold”.

threshold A numeric value specifying the edge weight threshold. Edges with weights
below or equal to this threshold will be considered for removal.

lowest A numeric value specifying the lowest percentage of non-zero edges. This per-
centage of edges with the lowest weights will be considered for removal. The
default is 0. @5.

level A numeric value representing the significance level for the disparity filter. De-
faults to 0. 5.

boot A tna_bootstrap object to be used for pruning with method "boot”. The
method argument is ignored if this argument is supplied.

Value

A pruned tna or group_tna object. Details on the pruning can be viewed with pruning_details().
The original model can be restored with deprune().

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),
plot.tna_bootstrap(), plot.tna_permutation(),plot.tna_reliability(), plot.tna_stability(),
print.group_tna_bootstrap(), print.group_tna_permutation(), print.group_tna_stability(),
print.summary.group_tna_bootstrap(),print.summary.tna_bootstrap(), print.tna_bootstrap(),

98 pruning_details

print.tna_clustering(), print.tna_permutation(),print.tna_reliability(),print.tna_stability(),
pruning_details(), reliability(), reprune(), summary.group_tna_bootstrap(), summary.tna_bootstrap()

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),
plot.tna_bootstrap(), plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),
print.group_tna_bootstrap(), print.group_tna_permutation(), print.group_tna_stability(),
print.summary.group_tna_bootstrap(),print.summary.tna_bootstrap(), print.tna_bootstrap(),
print.tna_clustering(), print.tna_permutation(),print.tna_reliability(),print.tna_stability(),
pruning_details(), reliability(), reprune(), summary.group_tna_bootstrap(), summary.tna_bootstrap()

Examples

model <- tna(group_regulation)

pruned_threshold <- prune(model, method = "threshold”, threshold = 0.1)
pruned_percentile <- prune(model, method = "lowest”, lowest = 0.05)
pruned_disparity <- prune(model, method = "disparity”, level = 0.5)

pruning_details Print Detailed Information on the Pruning Results

Description

Print Detailed Information on the Pruning Results

Usage

pruning_details(x, ...)

S3 method for class 'tna'
pruning_details(x, ...)

S3 method for class 'group_tna'

pruning_details(x, ...)
Arguments
X A tna or group_tna object.
Ignored.
Value

A data.frame containing the removed edges if x is a tna object, or a list of data. frame objects
in the case of group_tna object.

reliability 99

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(), plot.group_tna_stability(),
plot.tna_bootstrap(),plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),
print.group_tna_bootstrap(), print.group_tna_permutation(), print.group_tna_stability(),
print.summary.group_tna_bootstrap(),print.summary.tna_bootstrap(), print.tna_bootstrap(),
print.tna_clustering(), print.tna_permutation(),print.tna_reliability(),print.tna_stability(),
prune(),reliability(), reprune(), summary.group_tna_bootstrap(), summary.tna_bootstrap()

Examples

model <- tna(group_regulation)
pruned_threshold <- prune(model, method = "threshold”, threshold = 0.1)
pruning_details(pruned_threshold)

reliability Assess Model Reliability

Description

Performs reliability analysis and outputs a concise summary of key metrics. The results can also be
visualized.

Usage

reliability(x, ...)

S3 method for class 'tna'

reliability(
X ’
types = "relative”,
split = 0.5,
iter = 1000,
scaling = "none”,
)
Arguments
X A tna object.
e Ignored.
types A character vector giving the model types to fit. See build_model() for
available options.
split A numeric value between @ and 1 specifying the proportion of data for the split.
The default is 0.5 for an even split.
iter An integer specifying number of iterations (splits). The default is 1000.

scaling See compare().

100 rename_groups

Value

A tna_reliability object.

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),
plot.tna_bootstrap(), plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),
print.group_tna_bootstrap(), print.group_tna_permutation(), print.group_tna_stability(),
print.summary.group_tna_bootstrap(),print.summary.tna_bootstrap(), print.tna_bootstrap(),
print.tna_clustering(), print.tna_permutation(),print.tna_reliability(),print.tna_stability(),
prune(), pruning_details(), reprune(), summary.group_tna_bootstrap(), summary.tna_bootstrap()

Examples

Small number of iterations for CRAN
model <- tna(engagement)
rel <- reliability(model, iter = 20)

rename_groups Rename Groups

Description

Rename Groups

Usage

rename_groups(x, new_names)

Arguments

X A group_tna object.

new_names A character vector containing one name per cluster.
Value

A renamed group_tna object.

See Also

Cluster-related functions communities(), group_model (), mmm_stats()

Examples

model <- group_model (engagement_mmm)
model_renamed <- rename_groups(model, c("A", "B", "C"))

reprune 101

reprune Restore Previous Pruning of a Transition Network Analysis Model

Description

Restore Previous Pruning of a Transition Network Analysis Model

Usage

reprune(x, ...)

S3 method for class 'group_tna'

reprune(x, ...)
Arguments
X A tna or group_tna object.
Ignored.
Value

A tna or group_tna object that has not been pruned. The previous pruning result can be reactivated
with reprune().

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),
plot.tna_bootstrap(),plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),
print.group_tna_bootstrap(), print.group_tna_permutation(), print.group_tna_stability(),
print.summary.group_tna_bootstrap(),print.summary.tna_bootstrap(), print.tna_bootstrap(),
print.tna_clustering(), print.tna_permutation(),print.tna_reliability(),print.tna_stability(),
prune(), pruning_details(), reliability(), summary.group_tna_bootstrap(), summary.tna_bootstrap()

Examples

model <- tna(group_regulation)

pruned_model <- prune(model, method = "threshold”, threshold = 0.1)
depruned_model <- deprune(pruned_model) # restore original model
repruned_model <- reprune(depruned_model) # reapply the previous pruning

102

simulate.group_tna

simulate.group_tna

Simulate Data from a Group Transition Network Analysis Model

Description

Simulate Data from a Group Transition Network Analysis Model

Usage

S3 method for class 'group_tna'

simulate(
object,

nsim = 1,
seed = NULL,
100L,

c(oL, oL),
"self",
"wide",

max_len

na_range
Zero_row

format

Arguments

object

nsim

seed

max_len

na_range

zZero_row

A group_tna object. The edge weights must be transition probabilities or fre-
quencies, i.e., the model must have type = "relative” or type = "frequency”.

An integer vector giving the number of sequences to simulate per group. If a
single integer is provided, the same number of sequences is generated per each
group. The default is 1.

an object specifying if and how the random number generator should be initial-
ized (‘seeded’).

For the "1m" method, either NULL or an integer that will be used in a call to
set.seed before simulating the response vectors. If set, the value is saved as
the "seed” attribute of the returned value. The default, NULL will not change the
random generator state, and return .Random. seed as the "seed” attribute, see
“Value’.

An integer vector giving the maximum length of the simulated sequences per
group. When no missing values are generated, this is the length of all simulated
sequences. If a single integer is provided, the maximum length is the same for
each group.

An integer vector of length 2 giving the minimum and maximum number of
missing values to generate for each sequence. The number of missing values
is drawn uniformly from this range. If both values are zero (the default), no
missing values are generated.

A character string describing how to process zero rows in the weight matrix.
The option "self” (the default) assigns probability 1 to the corresponding state
(self loop) and option "uniform” assigns a uniform distribution.

simulate.tna 103

format A character string indicating whether the data should be returned in wide or
long format.

Ignored.

Value

A data. frame of the simulated sequence data.

See Also

Other data: import_data(), import_onehot(), prepare_data(),print.tna_data(), simulate.tna()

Examples

model <- group_tna(

group_regulation,

group = rep(c("High”, "Low"), each = 1000)
)

sim <- simulate(model, nsim = 10, max_len = 10)

simulate.tna Simulate Data from a Transition Network Analysis Model

Description

Simulate Data from a Transition Network Analysis Model

Usage

S3 method for class 'tna'
simulate(

object,

nsim = 1,

seed = NULL,

max_len = 100L,

na_range = c(oL, OL),

zero_row = "self”,
format = "wide”,
)
Arguments
object A tna object. The edge weights must be transition probabilities or frequencies,

i.e., the model must have type = "relative” or type = "frequency”.

nsim An integer giving the number of sequences to simulate. The default is 1.

104 sna

seed an object specifying if and how the random number generator should be initial-
ized (‘seeded’).
For the "1m" method, either NULL or an integer that will be used in a call to
set.seed before simulating the response vectors. If set, the value is saved as
the "seed” attribute of the returned value. The default, NULL will not change the
random generator state, and return .Random. seed as the "seed” attribute, see
“Value’.

max_len An integer giving the maximum length of the simulated sequences. When no
missing values are generated, this is the length of all simulated sequences.

na_range An integer vector of length 2 giving the minimum and maximum number of
missing values to generate for each sequence. The number of missing values
is drawn uniformly from this range. If both values are zero (the default), no
missing values are generated.

zero_row A character string describing how to process zero rows in the weight matrix.
The option "self” (the default) assigns probability 1 to the corresponding state
(self loop) and option "uniform” assigns a uniform distribution.

format A character string indicating whether the data should be returned in wide or
long format.

Ignored.

Value

A data. frame of the simulated sequence data.

See Also

Other data: import_data(), import_onehot(), prepare_data(), print.tna_data(), simulate.group_tna()

Examples

model <- tna(group_regulation)
sim <- simulate(model, nsim = 10, max_len = 10)

sha Build a Social Network Analysis Model

Description

Build a Social Network Analysis Model

Usage

sna(x, aggregate = sum, ...)

summary.group_tna 105

Arguments
X A data.frame or a matrix with three columns: the first two representing the
states and the third giving the weights.
aggregate A function to use for aggregating the weights. The default is sum().
Additional arguments passed to aggregate.
Value

A tna object representing the model.

Examples

set.seed(123)

d <- data.frame(
from = sample(LETTERS[1:4], 100, replace = TRUE),
to = sample(LETTERS[1:4], 100, replace = TRUE),
weight = rexp(100)

)

model <- sna(d)

summary.group_tna Calculate Summary of Network Metrics for a grouped Transition Net-
work

Description

This function calculates a variety of network metrics for a tna object. It computes key metrics such
as node and edge counts, network density, mean distance, strength measures, degree centrality, and

reciprocity.
Usage
S3 method for class 'group_tna'
summary (object, combined = TRUE, ...)
Arguments
object A group_tna object.
combined A logical indicating whether the summary results should be combined into a

single data frame for all clusters (defaults to TRUE)

Ignored

106 summary.group_tna

Details

The function extracts the igraph network for each cluster and computes the following network
metrics:

* Node count: Total number of nodes in the network.

» Edge count: Total number of edges in the network.

* Network density: Proportion of possible edges that are present in the network.

* Mean distance: The average shortest path length between nodes.

* Mean and standard deviation of out-strength and in-strength: Measures of the total weight of
outgoing and incoming edges for each node.

* Mean and standard deviation of out-degree: The number of outgoing edges from each node.

* Centralization of out-degree and in-degree: Measures of how centralized the network is based
on the degrees of nodes.

 Reciprocity: The proportion of edges that are reciprocated (i.e., mutual edges between nodes).

Value

A summary.group_tna object which is a 1ist of 1ists or a combined data. frame containing the
following network metrics:

* node_count: The total number of nodes.

* edge_count: The total number of edges.

* network_Density: The density of the network.

* mean_distance: The mean shortest path length.

* mean_out_strength: The mean out-strength of nodes.

* sd_out_strength: The standard deviation of out-strength.

* mean_in_strength: The mean in-strength of nodes.

* sd_in_strength: The standard deviation of in-strength.

* mean_out_degree: The mean out-degree of nodes.

* sd_out_degree: The standard deviation of out-degree.

e centralization_out_degree: The centralization of out-degree.

* centralization_in_degree: The centralization of in-degree.

* reciprocity: The reciprocity of the network.

See Also

Basic functions build_model (), hist.group_tna(), hist.tna(), plot.group_tna(), plot.tna(),
plot_frequencies(), plot_frequencies.group_tna(), plot_mosaic(), plot_mosaic.group_tna(),
plot_mosaic.tna_data(), print.group_tna(), print.summary.group_tna(), print.summary.tna(),
print.tna(), summary.tna(), tna-package

summary.group_tna_bootstrap 107

Examples

group <- c(rep("High", 1000), rep("Low", 1000))
model <- group_model(group_regulation, group = group)
summary (model)

summary.group_tna_bootstrap
Summarize Bootstrap Results for a Grouped Transition Network

Description

Summarize Bootstrap Results for a Grouped Transition Network

Usage
S3 method for class 'group_tna_bootstrap'
summary (object, ...)
Arguments
object A group_tna_bootstrap object.
Ignored.
Value

A summary.group_tna_bootstrap object containing the weight, estimated p-value and confidence
interval of each edge for each cluster.

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(),plot.group_tna_stability(),
plot.tna_bootstrap(), plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),
print.group_tna_bootstrap(), print.group_tna_permutation(), print.group_tna_stability(),
print.summary.group_tna_bootstrap(),print.summary.tna_bootstrap(), print.tna_bootstrap(),
print.tna_clustering(), print.tna_permutation(), print.tna_reliability(), print.tna_stability(),
prune(), pruning_details(), reliability(), reprune(), summary.tna_bootstrap()

Examples

model <- group_tna(engagement_mmm)

Small number of iterations for CRAN
boot <- bootstrap(model, iter = 10)
summary (boot)

108 summary.tna

summary . tna Calculate Summary of Network Metrics for a Transition Network

Description

This function calculates a variety of network metrics for a tna object. It computes key metrics such
as node and edge counts, network density, mean distance, strength measures, degree centrality, and

reciprocity.
Usage

S3 method for class 'tna'

summary (object, ...)
Arguments

object A tna object.

Ignored.

Details

The function extracts the igraph network and computes the following network metrics:

* Node count: Total number of nodes in the network.

* Edge count: Total number of edges in the network.

* Network density: Proportion of possible edges that are present in the network.
* Mean distance: The average shortest path length between nodes.

* Mean and standard deviation of out-strength and in-strength: Measures of the total weight of
outgoing and incoming edges for each node.

* Mean and standard deviation of out-degree: The number of outgoing edges from each node.

* Centralization of out-degree and in-degree: Measures of how centralized the network is based
on the degrees of nodes.

* Reciprocity: The proportion of edges that are reciprocated (i.e., mutual edges between nodes).

A summary of the metrics is printed to the console.

Value
A named list containing the following network metrics (invisibly):

* node_count: The total number of nodes.
* edge_count: The total number of edges.
* network_Density: The density of the network.
* mean_distance: The mean shortest path length.

* mean_out_strength: The mean out-strength of nodes.

summary.tna_bootstrap 109

* sd_out_strength: The standard deviation of out-strength.

* mean_in_strength: The mean in-strength of nodes.

* sd_in_strength: The standard deviation of in-strength.

* mean_out_degree: The mean out-degree of nodes.

* sd_out_degree: The standard deviation of out-degree.

* centralization_out_degree: The centralization of out-degree.
* centralization_in_degree: The centralization of in-degree.

* reciprocity: The reciprocity of the network.

See Also

Basic functions build_model (), hist.group_tna(), hist.tna(), plot.group_tna(), plot.tna(),
plot_frequencies(), plot_frequencies.group_tna(), plot_mosaic(), plot_mosaic.group_tna(),
plot_mosaic.tna_data(), print.group_tna(), print.summary.group_tna(), print.summary.tna(),
print.tna(), summary.group_tna(), tna-package

Examples

model <- tna(group_regulation)
summary (model)

summary.tna_bootstrap Summarize Bootstrap Results

Description

Summarize Bootstrap Results

Usage
S3 method for class 'tna_bootstrap'
summary (object, ...)
Arguments
object A tna_bootstrap object.
Ignored.
Value

A summary. tna_bootstrap object containing the weight, estimated p-value and confidence inter-
val of each edge.

110 summary.tna_bootstrap

See Also

Validation functions bootstrap(), deprune(), estimate_cs(), permutation_test(), permutation_test.group_tna()
plot.group_tna_bootstrap(), plot.group_tna_permutation(), plot.group_tna_stability(),
plot.tna_bootstrap(),plot.tna_permutation(), plot.tna_reliability(), plot.tna_stability(),
print.group_tna_bootstrap(), print.group_tna_permutation(), print.group_tna_stability(),
print.summary.group_tna_bootstrap(),print.summary.tna_bootstrap(), print.tna_bootstrap(),
print.tna_clustering(), print.tna_permutation(),print.tna_reliability(),print.tna_stability(),
prune(), pruning_details(), reliability(), reprune(), summary.group_tna_bootstrap()

Examples

model <- tna(group_regulation)

Small number of iterations for CRAN
boot <- bootstrap(model, iter = 50)
summary (boot)

Index

* basic
build_model, 11
hist.group_tna, 36
hist.tna, 37
plot.group_tna, 45
plot.tna, 52
plot_frequencies, 67
plot_frequencies.group_tna, 68
plot_mosaic, 69
plot_mosaic.group_tna, 70
plot_mosaic.tna_data, 71
print.group_tna, 77
print.summary.group_tna, 83
print.summary.tna, 85
print.tna, 86
summary.group_tna, 105
summary.tna, 108
tna-package, 4

* centralities
betweenness_network, 7
centralities, 15
plot.group_tna_centralities, 47
plot.tna_centralities, 55

print.group_tna_centralities, 79

print.tna_centralities, 88

* cliques
cliques, 17
plot.group_tna_cliques, 48
plot.tna_cliques, 56
print.group_tna_cliques, 80
print.tna_cliques, 89

x clusters
communities, 20
group_model, 32
mmm_stats, 41
rename_groups, 100

* communities
communities, 20
plot.group_tna_communities, 49

111

plot.tna_communities, 57
print.group_tna_communities, 81
print.tna_communities, 91

* comparison
compare, 21
compare.group_tna, 23
compare_sequences, 24
plot.tna_comparison, 58
plot.tna_sequence_comparison, 62
plot_compare, 65
plot_compare.group_tna, 66
print.tna_comparison, 91

print.tna_sequence_comparison, 95

+ datasets
engagement, 27
engagement_mmm, 28
group_regulation, 35
group_regulation_long, 36

* data
import_data, 38
import_onehot, 40
prepare_data, 75
print.tna_data, 92
simulate.group_tna, 102
simulate. tna, 103

* helpers
as.igraph.group_tna, 5
as.igraph.matrix, 5
as.igraph.tna, 6

x validation
bootstrap, 7
deprune, 26
estimate_cs, 28
permutation_test, 42
permutation_test.group_tna, 43
plot.group_tna_bootstrap, 46
plot.group_tna_permutation, 50
plot.group_tna_stability, 51
plot.tna_bootstrap, 54

112

plot.tna_permutation, 60
plot.tna_reliability, 61
plot.tna_stability, 63
print.group_tna_bootstrap, 78
print.group_tna_permutation, 81
print.group_tna_stability, 82
print.summary.group_tna_bootstrap,
84
print.summary.tna_bootstrap, 85
print.tna_bootstrap, 87
print.tna_clustering, 90
print.tna_permutation, 93
print.tna_reliability, 94
print.tna_stability, 95
prune, 96
pruning_details, 98
reliability, 99
reprune, 101
summary.group_tna_bootstrap, 107
summary . tna_bootstrap, 109
.Random. seed, 102, 104

as.igraph.group_tna, 5, 6
as.igraph.matrix, 5,5, 6
as.igraph.tna, 5, 6,6
atna (build_model), 11

base::rank(), 13, 34
betweenness_network, 7, 16, 48, 55, 79, 88
bootstrap, 7, 27, 31, 43, 44, 47, 50, 51, 54,
60, 61, 64,79, 82-84, 86, 87, 90, 93,
94, 96-101, 107, 110
bootstrap(), 97
bootstrap_cliques, 10
build_model, 4, 11, 37, 38, 46, 54, 67-71, 78,
83, 85,87, 106, 109
build_model(), 99

centralities, 7, 15,48, 55, 79, 88
centralities(), 22, 24, 30,42, 44,46, 53, 55
cliques, 17,49, 57, 80, 89
cluster::pam(), 19

cluster_data, 18

cluster_sequences (cluster_data), 18
cluster_sequences(), 33
communities, 20, 35, 41, 50, 58, 81, 91, 100
communities(), 58

compare, 21, 24, 26, 59, 62, 65, 66, 92, 95
compare(), 99

INDEX

compare.group_tna, 22, 23, 26, 59, 62, 65,
66, 92, 95

compare.tna(), 24

compare_sequences, 22, 24, 24, 59, 62, 65,
66, 92, 95

ctna (build_model), 11

deprune, 9, 26, 31,43, 44,47, 50, 51, 54, 60,
61,64,79,82-84, 86, 87, 90, 93, 94,
96-101, 107, 110

deprune(), 97

dplyr::select(), 38

engagement, 27, 28, 36

engagement_mmm, 27, 28, 36

estimate_centrality_stability
(estimate_cs), 28

estimate_cs, 9, 27, 28,43, 44,47, 50, 51, 54,
60, 61, 64,79, 82-84, 86, 87, 90, 93,
94, 96-101, 107, 110

ftna (build_model), 11

graphics::hist(), 37, 38

group_atna (group_model), 32
group_ctna (group_model), 32
group_ftna (group_model), 32
group_model, 21, 32, 41, 100
group_regulation, 27, 28, 35, 36
group_regulation_long, 27, 28, 36, 36
group_tna (group_model), 32

hist.group_tna, 4, 15, 36, 38, 46, 54, 67-71,
78, 83, 85, 87, 106, 109

hist.tna, 4, 15, 37,37, 46, 54, 67-71, 78, 83,
85,87, 106, 109

igraph: :betweenness(), 16
igraph::closeness(), 16
igraph::strength(), 16
import_data, 38, 40, 76, 92, 103, 104
import_onehot, 39, 40, 76, 92, 103, 104

mmm_stats, 21, 35, 41, 100

permutation_test, 9,27, 31, 42,44, 47, 50,
51,54, 60, 61, 64,79, 82-84, 86, 87,
90, 93, 94, 96101, 107, 110

permutation_test.group_tna, 9, 27, 31, 43,
43,47, 50, 51, 54, 60, 61, 64, 79,

INDEX

82-84, 86, 87, 90, 93, 94, 96-101,
107,110
permutation_test.tna(), 43
plot.group_tna, 4, 15, 37, 38,45, 54, 67-71,
78, 83, 85, 87, 106, 109
plot.group_tna_bootstrap, 9, 27, 31,43
44, 46, 50, 51, 54, 60, 61, 64, 79,
82-84, 86, 87, 90, 93, 94, 96101,
107,110
plot.group_tna_centralities, 7, 16, 47,
55,79, 88
plot.group_tna_cliques, 18,48, 57, 80, 89
plot.group_tna_communities, 21, 49, 58,
81,91
plot.group_tna_permutation, 9, 27, 31, 43,
44, 47,50, 51, 54, 60, 61, 64, 79,
82-84, 86, 87, 90, 93, 94, 96-101,
107,110
plot.group_tna_stability, 9,27, 31,43
44,47, 50, 51, 54, 60, 61, 64, 79,
82-84, 86, 87, 90, 93, 94, 96-101,
107,110
plot.tna, 4, 15, 37, 38,45, 46,52, 67-71, 78,
83, 85,87, 106, 109
plot.tna(), 47, 54
plot.tna_bootstrap, 9, 27, 31,43, 44, 47,
50, 51,54, 60, 61, 64,79, 82-84, 86,
87,90, 93, 94, 96-101, 107, 110
plot.tna_centralities, 7, 16, 48, 55,79, 88
plot.tna_cliques, 18, 49, 56, 80, 89
plot.tna_cliques(), 49
plot.tna_communities, 21, 50, 57, 81, 91
plot.tna_communities(), 49
plot.tna_comparison, 22, 24, 26, 58, 62, 65,
66, 92, 95
plot.tna_permutation, 9, 27, 31,43, 44,47,
50, 51, 54, 60, 61, 64, 79, 82-84, 86,
87,90, 93, 94, 96-101, 107, 110
plot.tna_permutation(), 50
plot.tna_reliability, 9,27, 31,43, 44,47,
50, 51, 54, 60, 61, 64, 79, 82-84, 86,
87,90, 93, 94, 96-101, 107, 110
plot.tna_sequence_comparison, 22, 24, 26,
59, 62, 65, 66, 92, 95
plot.tna_stability, 9, 27, 31, 43, 44,47,
50, 51, 54, 60, 61, 63,79, 82-84, 86,
87,90, 93, 94, 96-101, 107, 110
plot.tna_stability(), 5/

113

plot_associations, 64
plot_compare, 22, 24, 26, 59, 62, 65, 66, 92,
95
plot_compare.group_tna, 22, 24, 26, 59, 62,
65, 66, 92, 95
plot_compare.tna(), 66
plot_frequencies, 4, 15, 37, 38, 46, 54, 67,
68-71,78,83,85,87, 106, 109
plot_frequencies.group_tna, 4, 15, 37, 38,
46, 54, 67, 68, 69-71, 78, 83, 85, 87,
106, 109
plot_model(), 60, 64
plot_mosaic, 4, 15, 37, 38, 46, 54, 67, 68, 69,
70, 71,78, 83, 85,87, 106, 109
plot_mosaic.group_tna, 4, 15, 37, 38, 46,
54, 67-69,70, 71,78, 83,85, 87,
106, 109
plot_mosaic.tna_data, 4, 15, 37, 38, 46, 54,
67-70,71,78, 83,85,87, 106, 109
plot_sequences, 72
prepare_data, 39, 40, 75, 92, 103, 104
prepare_data(), 13
pretty, 37
print.group_tna, 4, 15, 37, 38, 46, 54,
67-71,71, 83,85, 87, 106, 109
print.group_tna_bootstrap, 9, 27, 31, 43,
44,47, 50, 51, 54, 60, 61, 64,78,
82-84, 86, 87, 90, 93, 94, 96101,
107,110
print.group_tna_centralities, 7, 16, 48,
55,79, 88
print.group_tna_cliques, 18,49, 57, 80,
89
print.group_tna_communities, 21, 50, 58,
81, 91
print.group_tna_permutation, 9, 27, 31,
43, 44,47, 50, 51, 54, 60, 61, 64, 79,
81, 83, 84, 86, 87, 90, 93, 94,
96-101, 107, 110
print.group_tna_stability, 9, 27, 31, 43,
44,47, 50, 51, 54, 60, 61, 64, 79, 82,
82,84, 86, 87, 90, 93, 94, 96101,
107,110
print.summary.group_tna, 4, 15, 37, 38, 46,
54,67-71,78, 83, 85,87, 106, 109
print.summary.group_tna_bootstrap, 9,
27,31,43, 44,47, 50, 51, 54, 60, 61,
64,79, 82, 83, 84, 86, 87, 90, 93, 94,

114

96-101, 107, 110
print.summary.tna, 4, 15, 37, 38, 46, 54,
67-71,78, 83, 85,87, 106, 109
print.summary.tna_bootstrap, 9, 27, 31,
43, 44,47, 50, 51, 54, 60, 61, 64, 79,
82-84, 85, 87, 90, 93, 94, 96-101,
107,110
print.tna, 4, 15, 37, 38, 46, 54, 67-71, 78,
83, 85, 86, 106, 109
print.tna(), 78
print.tna_bootstrap, 9,27, 31,43, 44,47,
50, 51, 54, 60, 61, 64,79, 82-84, 86,
87, 90, 93, 94, 96101, 107, 110
print.tna_bootstrap(), 78
print.tna_centralities, 7, 16,48, 55,79
88
print.tna_cliques, 18,49, 57, 80, 89
print.tna_cliques(), 80
print.tna_clustering, 9,27, 31,43, 44,47,
50, 51, 54, 60, 61, 64,79, 82-84, 86,
87,90, 93, 94, 96, 98-101, 107, 110
print.tna_communities, 21, 50, 58, 81, 91
print.tna_communities(), 81
print.tna_comparison, 22, 24, 26, 59, 62,
65, 66,91, 95
print.tna_data, 39, 40, 76, 92, 103, 104
print.tna_permutation, 9, 27, 31, 43, 44,
47,50, 51, 54, 60, 61, 64, 79, 82-84,
86, 87, 90, 93, 94, 96, 95-101, 107.
110
print.tna_permutation(), 82
print.tna_reliability, 9, 27, 31, 43, 44,
47,50, 51, 54, 60, 61, 64, 79, 82—-84,
86, 87, 90, 93, 94, 96, 95-101, 107.
110
print.tna_sequence_comparison, 22, 24,
26, 59, 62, 65, 66, 92, 95
print.tna_stability, 9,27, 31,43, 44,47,
50, 51, 54, 60, 61, 64,79, 82-84, 86,
87,90, 93, 94,95, 98-101, 107, 110
print.tna_stability(), 82
prune, 9,27, 31,43, 44,47, 50, 51, 54, 60, 61,
64,79, 82-84, 86, 87, 90, 93, 94, 96,
96, 99-101, 107, 110
prune(), 45,53
pruning_details, 9, 27, 31, 43, 44, 47, 50,
51,54,60,61,64,79,82-84, 86, 87,
90, 93, 94, 96, 98, 98, 100, 101, 107,

INDEX

110
pruning_details(), 97

ggraph: :qgraph(), 45, 46, 53, 56-58, 60, 65

reliability, 9,27, 31,43, 44,47, 50, 51, 54,
60, 61, 64,79, 82-84, 86, 87, 90, 93,
94, 96, 98, 99,99, 101, 107, 110

rename_groups, 21, 35,41, 100

reprune, 9, 27, 31,43, 44,47, 50, 51, 54, 60,
61,64,79,82-84, 86, 87, 90, 93, 94,
96, 98-100, 101, 107, 110

reprune(), 101

reprune.tna (deprune), 26

simulate.group_tna, 39, 40, 76, 92, 102, 104

simulate. tna, 39, 40, 76, 92, 103, 103

sna, 104

stats::cor(), 30

stats: :ecdf, 22, 24

stats::hclust(), 19

stats::mad, 22, 24

stats::p.adjust, 25

stats::p.adjust(), 42, 44

stringdist::stringdist(), 19

stringdist::stringdist-metrics, /9

sum(), 105

summary.group_tna, 4, 15, 37, 38, 46, 54,
67-71,78, 83,85, 87,105, 109

summary.group_tna_bootstrap, 9, 27, 31,
43, 44,47, 50, 51, 54, 60, 61, 64, 79,
82-84, 86, 87, 90, 93, 94, 96,
98-101, 107, 110

summary.tna, 4, 15, 37, 38, 46, 54, 67-71, 78,
83, 85,87, 106, 108

summary. tna_bootstrap, 9, 27, 31, 43, 44,
47,50, 51, 54, 60, 61, 64, 79, 82-84,
86, 87, 90, 93, 94, 96, 98-101, 107,
109

tidyr::pivot_wider(), 76
tna (build_model), 11
tna(), 52

tna-package, 4

tsn (build_model), 11

	tna-package
	as.igraph.group_tna
	as.igraph.matrix
	as.igraph.tna
	betweenness_network
	bootstrap
	bootstrap_cliques
	build_model
	centralities
	cliques
	cluster_data
	communities
	compare
	compare.group_tna
	compare_sequences
	deprune
	engagement
	engagement_mmm
	estimate_cs
	group_model
	group_regulation
	group_regulation_long
	hist.group_tna
	hist.tna
	import_data
	import_onehot
	mmm_stats
	permutation_test
	permutation_test.group_tna
	plot.group_tna
	plot.group_tna_bootstrap
	plot.group_tna_centralities
	plot.group_tna_cliques
	plot.group_tna_communities
	plot.group_tna_permutation
	plot.group_tna_stability
	plot.tna
	plot.tna_bootstrap
	plot.tna_centralities
	plot.tna_cliques
	plot.tna_communities
	plot.tna_comparison
	plot.tna_permutation
	plot.tna_reliability
	plot.tna_sequence_comparison
	plot.tna_stability
	plot_associations
	plot_compare
	plot_compare.group_tna
	plot_frequencies
	plot_frequencies.group_tna
	plot_mosaic
	plot_mosaic.group_tna
	plot_mosaic.tna_data
	plot_sequences
	prepare_data
	print.group_tna
	print.group_tna_bootstrap
	print.group_tna_centralities
	print.group_tna_cliques
	print.group_tna_communities
	print.group_tna_permutation
	print.group_tna_stability
	print.summary.group_tna
	print.summary.group_tna_bootstrap
	print.summary.tna
	print.summary.tna_bootstrap
	print.tna
	print.tna_bootstrap
	print.tna_centralities
	print.tna_cliques
	print.tna_clustering
	print.tna_communities
	print.tna_comparison
	print.tna_data
	print.tna_permutation
	print.tna_reliability
	print.tna_sequence_comparison
	print.tna_stability
	prune
	pruning_details
	reliability
	rename_groups
	reprune
	simulate.group_tna
	simulate.tna
	sna
	summary.group_tna
	summary.group_tna_bootstrap
	summary.tna
	summary.tna_bootstrap
	Index

