Package ‘tall’

February 12, 2026
Title Text Analysis for All
Version 0.5.2

Description An R 'shiny' app designed for diverse text analysis tasks, offer-
ing a wide range of methodologies tailored to Natural Language Processing (NLP) needs.
It is a versatile, general-purpose tool for analyzing textual data.
'tall' features a comprehensive workflow, including data cleaning, preprocessing, statistical anal-
ysis, and visualization, all integrated for effective text analysis.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.3

URL https://github.com/massimoaria/tall, https://www.k-synth.com/tall/

BugReports https://github.com/massimoaria/tall/issues
Depends R (>=3.5.0), shiny

Imports baseb4denc, ca, chromote, curl (>= 6.3.0), doParallel, dplyr
(>=1.1.0), DT, fontawesome, ggplot2, ggraph, ggwordcloud,
graphics, httr2, igraph, jsonlite, later, openxlsx, pagedown,
parallel, pdftools (>= 3.6.0), plotly, promises, purrr, ranger,
Repp (>= 1.0.3), readr, readtext, readxl, rlang, RSpectra,
shinycssloaders (>= 1.1.0), shinydashboardPlus, shinyFiles,
shinyjs, shinyWidgets, sparkline, stringr, strucchange,
textrank, tidygraph, tidyr, topicmodels, udpipe, umap,
visNetwork, word2vec

LazyData true
LinkingTo Rcpp
NeedsCompilation yes

Author Massimo Aria [aut, cre, cph] (0000-0002-8517-9411),
Maria Spano [aut] (ORCID: <https://orcid.org/0000-0002-3103-2342>),
Luca D'Aniello [aut] (ORCID: <https://orcid.org/0000-0003-1019-9212>),
Corrado Cuccurullo [ctb] (ORCID:
<https://orcid.org/0000-0002-7401-8575>),
Michelangelo Misuraca [ctb] (ORCID:
<https://orcid.org/0000-0002-8794-966X>)

1

https://github.com/massimoaria/tall
https://www.k-synth.com/tall/
https://github.com/massimoaria/tall/issues
https://orcid.org/0000-0002-3103-2342
https://orcid.org/0000-0003-1019-9212
https://orcid.org/0000-0002-7401-8575
https://orcid.org/0000-0002-8794-966X

2 calculate_ngram_is

Maintainer Massimo Aria <aria@unina.it>
Repository CRAN
Date/Publication 2026-02-12 08:50:02 UTC

Contents
calculate_ngram_iSs L. e e 2
mobydick 3
process_multiwords_fasto Lo 5
TEINEI o e e e e e e e 6
reinPlot L e 7
FEINSUMMALY o o ottt e e e e e e e e e e 8
tall . . . e 10
term_per_cluster e e 11
txt_recode_fast e 12
txt_recode_ngram_fast o 13

Index 15

calculate_ngram_is Calculate IS index for n-grams
Description

This function calculates the IS (Absorption Index) from Morrone (1996) for all n-grams in the
corpus. Only n-grams that start AND end with lexical words are considered.

Usage

calculate_ngram_is(
dfTag,
max_ngram = 5,
term = "lemma"”,
pos = c("NOUN", "ADJ", "ADV", "VERB"),
min_freq = 1,
min_IS_norm = @

)
Arguments
dfTag A data frame with tagged text data containing columns: doc_id, sentence_id,
token_id, lemma/token, upos
max_ngram Maximum length of n-grams to generate (default: 5)
term Character string indicating which column to use: "lemma" or "token" (default:

"lemma")

mobydick 3

pos Character vector of POS tags considered lexical (default: c("NOUN", "ADJ",
"ADVII’ ||VERBII))
min_freq Minimum frequency threshold for n-grams (default: 1)
min_IS_norm Minimum normalized IS threshold for n-grams (default: 0)
Details

The IS index is calculated as: IS = (sum 1/freq_i) x freq_ngram x n_lexical where freq_i is the
frequency of each word in the n-gram, freq_ngram is the frequency of the n-gram, and n_lexical is
the number of lexical words. IS_norm is the normalized version: IS / L*2 where L is the n-gram
length.

OPTIMIZATION: Only n-grams that start AND end with lexical words (as defined by the ’pos’
parameter) are generated, significantly reducing computation time.

Value

A tibble with columns: ngram, n_length, ngram_freq, n_lexical, IS, IS_norm

Examples

Not run:
IS <- calculate_ngram_is(dfTag, max_ngram = 4, term = "lemma"”, min_freq = 2)
head(IS)

End(Not run)

mobydick Lemmatized Text of Moby-Dick (Chapters 1-10)

Description

This dataset contains the lemmatized version of the first 10 chapters of the novel Moby-Dick by
Herman Melville. The data is structured as a dataframe with multiple linguistic annotations.

Usage
data(mobydick)

Format

A dataframe with multiple rows and 26 columns:

doc_id Character: Unique document identifier
paragraph_id Integer: Paragraph index within the document
sentence_id Integer: Sentence index within the paragraph

sentence Character: Original sentence text

4 mobydick

start Integer: Start position of the token in the sentence

end Integer: End position of the token in the sentence

term_id Integer: Unique term identifier

token_id Integer: Token index in the sentence

token Character: Original token (word)

lemma Character: Lemmatized form of the token

upos Character: Universal POS tag

xpos Character: Language-specific POS tag

feats Character: Morphological features

head_token_id Integer: Head token in dependency tree

dep_rel Character: Dependency relation label

deps Character: Enhanced dependency relations

misc Character: Additional information

folder Character: Folder containing the document

split_word Character: The word used to separate the chapters in the original book
filename Character: Source file name

doc_selected Logical: Whether the document is selected
POSSelected Logical: Whether POS was selected

sentence_hl Character: Highlighted sentence

docSelected Logical: Whether the document was manually selected
noHapax Logical: Whether hapax legomena were removed
noSingleChar Logical: Whether single-character words were removed

lemma_original_nomultiwords Character: Lemmatized form without multi-word units

Source

Extracted and processed from the text of Moby-Dick by Herman Melville.

Examples

data(mobydick)
head(mobydick)

process_multiwords_fast 5

process_multiwords_fast
Optimized multiword processing workflow

Description

Complete optimized workflow for multiword detection and processing. Uses C++ functions and
data.table for maximum performance.

Usage
process_multiwords_fast(x2, stats, term = c("lemma”, "token"))
Arguments
X2 Data frame with token information
stats Data frame with multiword statistics (keyword, ngram columns)
term Type of term to process: "lemma" or "token"
Details

This function replaces the original switch block with an optimized version that uses:

* C++ functions for text recoding
* Vectorized operations instead of multiple mutate calls

* Pre-computed lookups to avoid repeated joins

Value

Data frame with columns: doc_id, term_id, multiword, upos_multiword, ngram

Examples

Not run:
result <- process_multiwords_fast(dfTag, multiword_stats, term = "lemma”)

End(Not run)

6 reinert

reinert Segment clustering based on the Reinert method - Simple clustering

Description

Segment clustering based on the Reinert method - Simple clustering

Usage

reinert(
X,
k =10,
term = "token",
segment_size = 40,
min_segment_size = 3,
min_split_members = 5,
cc_test = 0.3,

tsj = 3
)
Arguments
X tall data frame of documents
k maximum number of clusters to compute
term indicates the type of form "lemma" or "token". Default value is term = "lemma".

segment_size number of forms by document. Default value is segment_size = 40

min_segment_size
minimum number of forms by document. Default value is min_segment_size =
5

min_split_members
minimum number of segment in a cluster

cc_test contingency coefficient value for feature selection
tsj minimum frequency value for feature selection
Details

See the references for original articles on the method. Special thanks to the authors of the rainette
package (https://github.com/juba/rainette) for inspiring the coding approach used in this function.

Value

The result is a list of both class hclust and reinert_tall.

reinPlot 7

References

* Reinert M, Une methode de classification descendante hierarchique: application a 1’analyse
lexicale par contexte, Cahiers de I’analyse des donnees, Volume 8, Numéro 2, 1983. https:
//www.numdam.org/item/?id=CAD_1983__8_2_187_0

* Reinert M., Alceste une méthodologie d’analyse des données textuelles et une application:
Aurelia De Gerard De Nerval, Bulletin de Methodologie Sociologique, Volume 26, Numero
1, 1990. doi:10.1177/075910639002600103

* BarnierJ., Privé F, rainette: The Reinert Method for Textual Data Clustering, 2023, doi:10.32614/
CRAN.package.rainette

Examples

data(mobydick)

res <- reinert(
x = mobydick,
k =10,
term = "token"”,
segment_size = 40,
min_segment_size = 5,
min_split_members = 10,
cc_test = 0.3,
tsj = 3

reinPlot Plot Terms by Cluster

Description
This function creates a horizontal bar plot to visualize the most significant terms for each cluster,
based on their Chi-squared statistics.

Usage

reinPlot(terms, nPlot = 10)

Arguments
terms A data frame containing terms and their associated statistics, such as Chi-squared
values, generated by the term_per_cluster function. The data frame must in-
clude the following columns:
e term: The term to plot.
* chi_square: The Chi-squared statistic associated with the term.
* sign: The sign of the term ("positive” or "negative”).
nPlot Integer. The number of top terms to plot for each sign ("positive"” and "negative").

Default is 10.

https://www.numdam.org/item/?id=CAD_1983__8_2_187_0
https://www.numdam.org/item/?id=CAD_1983__8_2_187_0
https://doi.org/10.1177/075910639002600103
https://doi.org/10.32614/CRAN.package.rainette
https://doi.org/10.32614/CRAN.package.rainette

8 reinSummary

Details

The function organizes the input data by Chi-squared values and selects the top terms for each sign.
The plot uses different colors for positive and negative terms, with hover tooltips providing detailed
information.

Value

An interactive horizontal bar plot (using plotly) displaying the top terms for each cluster. The plot
includes:

* Bars representing the Chi-squared values of terms.

* Hover information displaying the term and its Chi-squared value.

See Also

term_per_cluster

Examples

Not run:
data(mobydick)
res <- reinert(
x = mobydick,
k =10,
term = "token"”,
segment_size = 40,
min_segment_size = 5,
min_split_members = 10,
cc_test = 0.3,
tsj = 3

tc <- term_per_cluster(res, cutree = NULL, k = 1, negative = FALSE)
fig <- reinPlot(tc$terms, nPlot = 10)

End(Not run)

reinSummary Summarize Reinert Clustering Results

Description

This function summarizes the results of the Reinert clustering algorithm, including the most fre-
quent documents and significant terms for each cluster. The input is the result returned by the
term_per_cluster function.

reinSummary 9

Usage

reinSummary(tc, n = 10)

Arguments
tc A list returned by the term_per_cluster function. The list includes:
* segments: A data frame with segments information, including cluster
and doc_id.
e terms: A data frame with terms information, including cluster, sign,
chi_square, and term.
n Integer. The number of top terms (based on Chi-squared value) to include in the
summary for each cluster and sign. Default is 10.
Details

This function performs the following steps:

1. Extracts the most frequent document for each cluster.
2. Summarizes the number of documents per cluster.
3. Selects the top n terms for each cluster, separated by positive and negative signs.

4. Combines the terms and segment information into a final summary table.

Value
A data frame summarizing the clustering results. The table includes:

* cluster: The cluster ID.

* Positive terms: The top n positive terms for each cluster, concatenated into a single string.
* Negative terms: The top n negative terms for each cluster, concatenated into a single string.
* Most frequent document: The document ID that appears most frequently in each cluster.

* N. of Documents per Cluster: The number of documents in each cluster.

See Also

term_per_cluster, reinPlot

Examples

data(mobydick)

res <- reinert(
x = mobydick,
k =10,
term = "token”,
segment_size = 40,
min_segment_size = 5,
min_split_members = 10,
cc_test = 0.3,
tsj = 3

10

)

tall

tc <- term_per_cluster(res, cutree = NULL, k = 1:10, negative = FALSE)

S <- reinSummary(tc, n = 10)

head (S, 10)

tall

TALL UI

Description

tall performs text analysis for all.

launch.browser = TRUE,

= 1000

The IPv4 address that the application should listen on. Defaults to the shiny.host
option, if set, or "127.0.0.1" if not.

Usage
tall(
host = "127.0.0.1",
port = NULL,
maxUploadSize
)
Arguments
host
port

launch.browser

maxUploadSize

Value

is the TCP port that the application should listen on. If the port is not specified,
and the shiny.port option is set (with options(shiny.port = XX)), then that port
will be used. Otherwise, use a random port.

If true, the system’s default web browser will be launched automatically after
the app is started. Defaults to true in interactive sessions only. This value of this
parameter can also be a function to call with the application’s URL.

is ainteger. The max upload file size argument. Default value is 1000 (megabyte)

No return value, called for side effects.

term_per_cluster 11

term_per_cluster Extract Terms and Segments for Document Clusters

Description

This function processes the results of a document clustering algorithm based on the Reinert method.
It computes the terms and their significance for each cluster, as well as the associated document
segments.

Usage

term_per_cluster(res, cutree = NULL, k = 1, negative = TRUE)

Arguments
res A list containing the results of the Reinert clustering algorithm. Must include at
least dtm (a document-term matrix) and corresp_uce_uc_full (a correspon-
dence between segments and clusters).
cutree A custom cutree structure. If NULL, the default cutree_reinart is used to de-
termine cluster membership.
k A vector of integers specifying the clusters to analyze. Default is 1.
negative Logical. If TRUE, include negative terms in the results. If FALSE, exclude them.
Default is TRUE.
Details

The function integrates document-term matrix rows for missing segments, calculates term statistics
for each cluster, and filters terms based on their significance. Terms can be excluded based on their
significance (signExcluded).

Value
A list with the following components:

terms A data frame of significant terms for each cluster. Columns include:

* chi_square: Chi-squared statistic for the term.

* p_value: P-value of the chi-squared test.

* sign: Significance of the term (positive, negative, or none).
* term: The term itself.

* freq: Observed frequency of the term in the cluster.

* indep: Expected frequency of the term under independence.

* cluster: The cluster ID.

segments A data frame of document segments associated with each cluster. Columns in-
clude:

¢ uc: Unique segment identifier.

12 txt_recode_fast

* doc_id: Document ID for the segment.
* cluster: Cluster ID.
* segment: The text content of each segment.

Examples

data(mobydick)

res <- reinert(
X = mobydick,
k =10,
term = "token"”,
segment_size = 40,
min_segment_size = 5,
min_split_members = 10,
cc_test = 0.3,
tsj = 3

)

tc <- term_per_cluster(res, cutree = NULL, k = 1:10, negative = FALSE)
head(tc$segments, 10)

head(tc$terms, 10)

txt_recode_fast Fast text recoding (Rcpp version)

Description

Efficiently recodes text values using C++ hash tables. This is a drop-in replacement for txt_recode
but significantly faster for large vectors.

Usage

txt_recode_fast(x, from = c(), to = c(), na.rm = FALSE)

Arguments
X A character vector to recode
from A character vector with values of x which you want to recode
to A character vector with values you want to use to recode to
na.rm Logical, if set to TRUE, will put all values of x which have no matching value

in from to NA. Defaults to FALSE

txt_recode_ngram_fast 13

Details

This function uses C++ hash tables for O(1) lookup time, making it much faster than the pure R
implementation, especially for large datasets.

Performance improvement: ~50-100x faster than base R txt_recode for vectors with 100K+ ele-
ments.

Value

A character vector of the same length as x where values matching from are replaced by correspond-
ing values in to

Examples

X <= c("NOUN", "VERB", "NOUN", "ADV")
txt_recode_fast(x,

from = c("VERB", "ADV"),

to = c("conjugated verb”, "adverb")

)

txt_recode_ngram_fast Fast n-gram recoding for multiword detection

Description

Efficiently combines consecutive tokens into multiword expressions using C++. This function scans
text sequentially to identify and merge n-gram patterns.

Usage
txt_recode_ngram_fast(x, compound, ngram, sep = " ")
Arguments
X Character vector of tokens (e.g., lemmas or tokens)
compound Character vector of multiword expressions to match
ngram Integer vector indicating the length of each compound
sep String separator to use when joining tokens (default: " ")
Details

‘When a multiword match is found:

* The first position gets the combined multiword expression

» Subsequent positions that were merged are set to NA

The function checks n-grams from longest to shortest to prioritize longer matches.

Performance: ~80-150x faster than pure R implementation for typical text data.

14 txt_recode_ngram_fast

Value

Character vector where matched n-grams are combined and subsequent tokens (that were merged)
are set to NA

Examples

nin

tokens <- c("machine”, "learning"”, "is"”, "cool”, "machine"”, "learning")
compounds <- c("machine learning")

ngrams <- c(2)

txt_recode_ngram_fast(tokens, compounds, ngrams, " ")

Returns: c("machine learning”, NA, "is", "cool”, "machine learning”, NA)

n

Index

x datasets
mobydick, 3

calculate_ngram_is, 2
mobydick, 3
process_multiwords_fast, 5

reinert, 6
reinPlot, 7, 9
reinSummary, 8

tall, 10
term_per_cluster, 8, 9, 11
txt_recode_fast, 12
txt_recode_ngram_fast, 13

15

	calculate_ngram_is
	mobydick
	process_multiwords_fast
	reinert
	reinPlot
	reinSummary
	tall
	term_per_cluster
	txt_recode_fast
	txt_recode_ngram_fast
	Index

