## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE # Set to FALSE since API calls require credentials ) ## ----------------------------------------------------------------------------- # library(rsynthbio) ## ----query-example------------------------------------------------------------ # # Get the example query structure for a specific model # example_query <- get_example_query(model_id = "gem-1-bulk")$example_query # # # Inspect the query structure # str(example_query) ## ----predict, eval=FALSE------------------------------------------------------ # # Create a query for the bulk model # query <- get_example_query(model_id = "gem-1-bulk")$example_query # # # Submit and get results # result <- predict_query(query, model_id = "gem-1-bulk") ## ----sc-example, eval=FALSE--------------------------------------------------- # # Create a query for the single-cell model # sc_query <- get_example_query(model_id = "gem-1-sc")$example_query # # # Submit and get results # sc_result <- predict_query(sc_query, model_id = "gem-1-sc") ## ----mode-examples, eval=FALSE------------------------------------------------ # # Bulk query with sample generation # bulk_query <- get_example_query(model_id = "gem-1-bulk")$example_query # bulk_query$sampling_strategy <- "sample generation" # # # Bulk query with mean estimation # bulk_query_mean <- get_example_query(model_id = "gem-1-bulk")$example_query # bulk_query_mean$sampling_strategy <- "mean estimation" # # # Single-cell query (must use mean estimation) # sc_query <- get_example_query(model_id = "gem-1-sc")$example_query # sc_query$sampling_strategy <- "mean estimation" # Required for single-cell ## ----total-count-example, eval=FALSE------------------------------------------ # # Create a query and add custom total_count # query <- get_example_query(model_id = "gem-1-bulk")$example_query # query$total_count <- 5000000 ## ----deterministic-example, eval=FALSE---------------------------------------- # # Create a query and enable deterministic latents # query <- get_example_query(model_id = "gem-1-bulk")$example_query # query$deterministic_latents <- TRUE ## ----seed-example, eval=FALSE------------------------------------------------- # # Create a query with a specific seed # query <- get_example_query(model_id = "gem-1-bulk")$example_query # query$seed <- 42 ## ----combined-params, eval=FALSE---------------------------------------------- # # Create a query and add multiple parameters # query <- get_example_query(model_id = "gem-1-bulk")$example_query # query$total_count <- 8000000 # query$deterministic_latents <- TRUE # query$sampling_strategy <- "mean estimation" # # results <- predict_query(query, model_id = "gem-1-bulk") ## ----modify-query, eval=FALSE------------------------------------------------- # # Get a base query # query <- get_example_query(model_id = "gem-1-bulk")$example_query # # # Adjust number of samples for the first input # query$inputs[[1]]$num_samples <- 10 # # # Add a new condition # query$inputs[[3]] <- list( # metadata = list( # sex = "male", # sample_type = "primary tissue", # tissue_ontology_id = "UBERON:0002371" # ), # num_samples = 5 # ) ## ----analyze, eval=FALSE------------------------------------------------------ # # Access metadata and expression matrices # metadata <- result$metadata # expression <- result$expression # # # Check dimensions # dim(expression) # # # View metadata sample # head(metadata) ## ----large-data, eval=FALSE--------------------------------------------------- # # Save results to RDS file # saveRDS(result, "synthesize_results.rds") # # # Load previously saved results # result <- readRDS("synthesize_results.rds") # # # Export as CSV # write.csv(result$expression, "expression_matrix.csv") # write.csv(result$metadata, "sample_metadata.csv")