Package ‘modEvA’

January 9, 2026

Type Package

Title Model Evaluation and Analysis

Version 3.41

Date 2026-01-08

Maintainer A. Marcia Barbosa <ana.marcia.barbosa@gmail.com>
Imports graphics, grDevices, stats, terra (> 1.5-50)

Description Analyses species distribution models and evaluates their performance. It includes func-
tions for variation partitioning, extracting variable importance, computing several met-
rics of model discrimination and calibration performance, optimizing prediction thresh-
olds based on a number of criteria, performing multivariate environmental similarity sur-
face (MESS) analysis, and displaying various analytical plots. Initially described in Bar-
bosa et al. (2013) <doi:10.1111/ddi.12100>.

LazyLoad yes
LazyData yes
License GPL-3

URL http://modeva.r-forge.r-project.org/

BugReports https://github.com/AMBarbosa/modEvA/issues
NeedsCompilation no

Author A. Marcia Barbosa [aut, cre],
Jennifer A. Brown [aut],
Alberto Jimenez-Valverde [aut],
Raimundo Real [aut],

Oswald van Ginkel [ctb],
Jurica Levatic [ctb],

Victoria Formoso-Freire [ctb],
Andres Baselga [ctb],

Carola Gomez-Rodriguez [ctb],
Jose Carlos Guerrero [fnd]

Depends R (>=2.10)
Repository CRAN
Date/Publication 2026-01-09 09:30:23 UTC

https://doi.org/10.1111/ddi.12100
http://modeva.r-forge.r-project.org/
https://github.com/AMBarbosa/modEvA/issues

2 Contents

Contents
modEvA-package 3
applyThreshold 4
arrangePlots L L 7
AUC . . e 8
Boyce e 12
confusionLabel 16
confusionMatrix e 18
Dsquared e 20
ITOrMEASUIES o it e e e e e e e e e e e 22
evaluate e e 24
EVEINESS « « ¢« v v v v v e e e e e e e e e e e e e e e 26
getBins . . . L e e 27
getModEqn e e 30
getThreshold L e 31
HLAt. . . e 34
inputMunch 38
logLike e e 39
Iollipop e 41
MESS . . e 43
MillerCalib o . 46
mod2obspred L 49
modEvAmethods 50
multModEv 51
OA . e 53
optiPair 54
optiThresh e 57
plotCoeffs e 61
PIOtGLM . . . e e 62
predDensity 64
predPlot 67
Prevalence e e e 69
pseudoRsq e 71
ptsrast2obspred e e e e e 73
quantReclass 75
range0l L e e e 76
RMSE . . . e 77
rotifmods e 79
RsqGLM o e 80
similarity L L e 81
standardOl Lo L 83
threshMeasures L e e 85
varlmp . . . L e e e 89
varPart oL e 93

Index 98

modEvA-package 3

modEvA-package Model Evaluation and Analysis

Description

The modEvA package can analyse species distribution models and evaluate their performance. It
includes functions for performing variation partitioning; calculating several measures of model dis-
crimination, classification, explanatory power, and calibration; optimizing prediction thresholds
based on a number of criteria; performing multivariate environmental similarity surface (MESS)
analysis; and displaying various analytical plots.

Details
Package: modEvA
Type: Package
Version: 3.41
Date: 2026-01-08
License: GPL-3
Author(s)

Barbosa A.M., Brown J.A., Jimenez-Valverde A., Real R.

A. Marcia Barbosa <ana.marcia.barbosa@ gmail.com>

References

Barbosa A.M., Real R., Munoz A.R. & Brown J.A. (2013) New measures for assessing model
equilibrium and prediction mismatch in species distribution models. Diversity and Distributions
19: 1333-1338 (DOI: 10.1111/ddi.12100)

See Also

PresenceAbsence, ROCR, verification, Metrics

Examples

load sample models:
data(rotif.mods)

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

plot this model:
plotGLM(model = mod)

4 apply Threshold

compute the Root Mean Square Error of the model:
RMSE (model = mod)

extract variable importance from the model:
varImp(model = mod)

calculate the area under the ROC curve for the model:
AUC(model = mod)

calculate some threshold-based measures for this model:
threshMeasures(model = mod, thresh = 0.5)
threshMeasures(model = mod, thresh = "preval”)

calculate optimal thresholds based on several criteria:
optiThresh(model = mod, measures = c("CCR", "Sensitivity”, "kappa", "TSS"),
ylim = c(@, 1), pch = 20, cex = 0.5)

calculate the optimal threshold balancing two evaluation measures:
optiPair(model = mod, measures = c("Sensitivity", "Specificity”))

calculate the Boyce index, explained deviance, Hosmer-Lemeshow goodness-of-fit,
Miller's calibration stats, and (pseudo) R-squared values for the model:
Boyce(model = mod)

Dsquared(model = mod)

HLfit(model = mod, bin.method = "quantiles”)

MillerCalib(model = mod)

RsqGLM(model = mod)

calculate a bunch of evaluation measures for a set of models:
multModEv(models = rotif.mods$models[1:4], thresh = "preval”,

bin.method = "quantiles"”)
applyThreshold Apply threshold(s) to model predictions
Description

This function applies a threshold value to the continuous predictions of a model, converting them to
binary predictions: 1 for values above the threshold, and 0 for values below it. If two thresholds are
provided (e.g. to separate high, low and intermediate predictions), the result is 0 below the lowest
threshold, 1 above the highest threshold, and 0.5 between them.

Usage

applyThreshold(model = NULL, obs = NULL, pred = NULL, thresh, pbg = FALSE,
right = FALSE, interval = .01, quant = @, na.rm = TRUE, verbosity = 2)

apply Threshold 5

Arguments

non non non

model a binary-response model object of class "glm", "gam", "gbm", "randomForest"
or "bart". If this argument is provided, *obs’ and ’pred’ will be extracted with
mod2obspred. Alternatively, you can input the ’obs’ and ’pred’ arguments in-
stead of “model’.

obs alternatively to 'model” and together with ’pred’, a numeric vector of observed
presences (1) and absences (0) of a binary response variable. Alternatively (and
if *pred’ is a ’SpatRaster’), a two-column matrix or data frame containing, re-
spectively, the x (longitude) and y (latitude) coordinates of the presence points,
in which case the 'obs’ vector will be extracted with ptsrast2obspred. This
argument is ignored if *'model’ is provided.

pred alternatively to 'model’ and together with ’obs’, a vector with the correspond-
ing predicted values of presence probability, habitat suitability, environmental
favourability or alike. Must be of the same length and in the same order as "obs’.
Alternatively (and if 'obs’ is a set of point coordinates), a ’SpatRaster’ map of
the predicted values for the entire evaluation region, in which case the ’pred’
vector will be extracted with ptsrast2obspred. This argument is ignored if
’model’ is provided.

thresh numeric vector of length 1 or 2, containing the threshold value(s) with which
to reclassify “pred’, or the criteria under which to compute these thresholds —
run modEvAmethods("getThreshold") for available options, and see Details in
getThreshold for their description.

pbg logical value to pass to inputMunch indicating whether to use presence/background
(rather than presence/absence) data. Default FALSE.

right logical value indicating if the interval should be closed on the right (and open on
the left) or vice versa, i.e., if predictions equalling the threshold value(s) should
be classified as lower rather than higher. The default is FALSE.

interval Argument to pass to optiThresh indicating the interval between the thresholds
to test, if 'thresh’ implies optimizing a threshold-based measure. The default
is 0.01. Smaller values may provide more precise results but take longer to
compute.

quant Numeric value indicating the proportion of presences to discard if any of ’thresh’
is "MTP" (minimum training presence). With the default value 0, MTP will be
the threshold at which all observed presences are classified as such; with e.g.
quant=0.05, MTP will be the threshold at which 5% presences will be classified
as absences.

na.rm Logical value indicating whether NA values should be ignored. Defaults to
TRUE.

verbosity integer value indicating the amount of messages to print. Defaults to 2, for the
maximum amount of messages.
Details

Several criteria have been proposed for selecting thresholds with which to convert continuous model
predictions (of presence probability, habitat suitability or alike) into binary predictions of presence

6 apply Threshold

or absence. A threshold is required for computing threshold-based model evaluation metrics, such
as those in threshMeasures. This function reclassifies the predictions of a model given one or two
numeric thresholds, or one or two threshold selection criteria implemented in getThreshold.

Value

This function returns an object of the same class as ’pred’” with the reclassified values after applica-
tion of the threshold.

Author(s)

A. Marcia Barbosa

See Also

getThreshold, threshMeasures

Examples

load sample models:
data(rotif.mods)

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

applyThreshold(model = mod, thresh = "maxTSS")

you can also use applyThreshold with vectors of observed and predicted values:

presabs <- mod$y
prediction <- mod$fitted.values

applyThreshold(pred = prediction, thresh = 0.5)

applyThreshold(pred = prediction, thresh = c(0.2, 0.8))

applyThreshold(pred = prediction, thresh = "meanPred”)

applyThreshold(obs = presabs, pred = prediction, thresh = "preval”)

applyThreshold(obs = presabs, pred = prediction, thresh "MTP")
applyThreshold(obs = presabs, pred = prediction, thresh = "MTP",

quant = 0.05)

'obs' can also be a table of presence point coordinates
and 'pred' a SpatRaster of predicted values

arrangePlots 7

arrangePlots Arrange plots

Description
Get an appropriate row/column combination (for par(mfrow)) for arranging a given number of
plots within a plotting window.

Usage

arrangePlots(n.plots, landscape = FALSE)

Arguments
n.plots number of plots to be placed in the graphics device.
landscape logical, whether the plotting window should be landscape/horizontal (number
of columns larger than the number of rows) or not. The value does not make a
difference if the number of plots makes for a square plotting window.
Details

This function is used internally by optiThresh, but can also be useful outside it.

Value

An integer vector of the form c(nr, nc) indicating, respectively, the number of rows and of columns
of plots to set in the graphics device.

Author(s)

A. Marcia Barbosa

See Also

plot, layout
Examples
arrangePlots(10)

arrangePlots(10, landscape = TRUE)

a more practical example:
data(iris)

names(iris)

8 AUC

say you want to plot all columns in a nicely arranged plotting window:
par(mfrow = arrangePlots(ncol(iris)))
for (i in 1:ncol(iris)) {

plot(1:nrow(iris), iris[, il)

}

AUC Area Under the Curve

Description

This function calculates the Area Under the Curve of the receiver operating characteristic (ROC)
plot, or alternatively the precision-recall (PR) plot, for either a model object or two matching vectors
of observed binary (1 for occurrence vs. 0 for non-occurrence) and predicted continuous (e.g.
occurrence probability) values, respectively.

Usage

AUC(model = NULL, obs = NULL, pred = NULL, simplif = FALSE,

interval = "auto”, FPR.limits = c(@, 1), curve = "ROC", pbg = FALSE,
method = NULL, plot = TRUE, diag = TRUE, diag.col = "lightblue3",
diag.lty = 2, curve.col = "darkblue"”, curve.lty = 1, curve.lwd = 2,
plot.values = TRUE, plot.digits = 3, plot.preds = FALSE,

grid = FALSE, grid.lty = 1, xlab = "auto”, ylab = "auto”, cex.lab = 0.9,

ticks = FALSE, na.rm = TRUE, rm.dup = FALSE, verbosity = 2, ...)
Arguments
model a binary-response model object of class "glm", "gam", "gbm", "randomForest"

or "bart". If this argument is provided, 'obs’ and ’pred’ will be extracted with
mod2obspred. Alternatively, you can input the ’obs’ and ’pred’ arguments in-
stead of “model’.

obs alternatively to “'model’ and together with ’pred’, a numeric vector of observed
presences (1) and absences (0) of a binary response variable. Alternatively (and
if *pred’ is a ’SpatRaster’), a two-column matrix or data frame containing, re-
spectively, the x (longitude) and y (latitude) coordinates of the presence points,
in which case the 'obs’ vector will be extracted with ptsrast2obspred. This
argument is ignored if *'model’ is provided.

pred alternatively to 'model’ and together with ’obs’, a vector with the correspond-
ing predicted values of presence probability, habitat suitability, environmental
favourability or alike. Must be of the same length and in the same order as "obs’.
Alternatively (and if 'obs’ is a set of point coordinates), a ’SpatRaster’ map of
the predicted values for the entire evaluation region, in which case the ’pred’
vector will be extracted with ptsrast2obspred. This argument is ignored if
’model’ is provided.

AUC 9

simplif logical, whether to use a faster version that returns only the AUC value (and the
plot if *plot = TRUE’).
FPR.1limits (NOT YET IMPLEMENTED) numerical vector of length 2 indicating the limits

of false positive rate between which to calculate a partial AUC. The default is
¢(0, 1), for considering the whole AUC. Pending implementation. Meanwhile,
you can try e.g. the roc function in the pROC package.

curve character indicating whether to compute the "ROC" (receiver operating chara-
teristic) or the "PR" (precision-recall) curve.

pbg logical value to pass to inputMunch indicating whether to use presence/background
(rather than presence/absence) data. Default FALSE.

interval interval of threshold values at which to compute and plot the true- and false-
positive rates. Can be a (preferably small) numeric value between 0 and 1; or the
new default "auto", which will be either 0.01 (old default) or 0.001, depending
on whether ’pred’ does or doesn’t have values in all thirds of the [0, 1] range.
Larger intervals provide faster computation, but may generate innacurate curves
especially if "pred’ has too few values towards one of the extremes (e.g. towards
1). Note that, if method = "rank" (the default if curve = "ROC"), ’interval’ does
not affect the obtained AUC value (although it can visually affect the size of
the plotted curve, especially when there are very few "pred’ values towards O or
towards 1), as the AUC is calculated with the Mann-Whitney-Wilcoxon statistic
and is therefore threshold-independent. If method != "rank" (or, by extension,
if curve = "PR" — see 'method’ argument), smaller "interval’ values will provide
more accurate AUC values. Smaller “interval’ values also improve the output
’meanPrecision’, as this is averaged across all threshold values.

method character indicating with which method to calculate the AUC value. Available
options are "rank" (the default and most accurate, but implemented only if curve
= "ROC") and "trapezoid" (the default if curve = "PR"). The latter may be
computed more accurately if ’interval’ is smaller (see ’interval’ argument).

plot logical, whether or not to plot the curve. Defaults to TRUE.

diag logical, whether or not to add the reference diagonal (if plot = TRUE). Defaults
to TRUE.

diag.col line colour for the reference diagonal (if diag = TRUE).

diag.lty line type for the reference diagonal (if diag = TRUE).

curve.col line colour for the curve.

curve.lty line type for the curve.

curve.lwd line width for the curve.

plot.values logical, whether or not to show in the plot the values associated to the curve
(e.g., the AUC). Defaults to TRUE.

plot.digits integer number indicating the number of digits to which the values in the plot

should be rounded. Defaults to 3. This argument is ignored if "plot’ or "plot.values’
are set to FALSE.

plot.preds logical value indicating whether the proportions of ’pred’ values for each thresh-
old should be plotted as proportionally sized blue circles. Can also be provided
as a character vector specifying if the circles should be plotted on the "curve"

10 AUC

(the default) and/or at the "bottom" of the plot. The default is FALSE for no cir-
cles, but it may be interesting to try it, especially if your curve has long straight
lines or does not cover the full length of the plot.

grid logical, whether or not to add a grid to the plot, marking the analysed thresholds.
Defaults to FALSE.

grid.1lty line type for the grid (if grid = TRUE).

xlab label for the x axis. By default, a label is automatically generated according to
the specified 'curve’.

ylab label for the y axis. By default, a label is automatically generated according to
the specified 'curve’.

cex.lab ’cex’ (amount by which the text should be magnified) for the axis labels. Default
0.9.

ticks logical, whether or not to add blue tick marks at the bottom of the plot to mark
the thresholds at which there were values from which to to draw the curve. De-
faults to FALSE.

na.rm Logical value indicating if missing values should be ignored in computations.
The default is TRUE.

rm. dup If TRUE and if "pred’ is a SpatRaster and if there are repeated points within the

same pixel, a maximum of one point per pixel is used to compute the presences.
See examples in ptsrast2obspred. The default is FALSE.

verbosity integer specifying the amount of messages to display. Defaults to the maximum
implemented; lower numbers (down to 0) decrease the number of messages.

further arguments to be passed to the plot function.

Details

In the case of the "ROC" curve (the default), the AUC is a measure of the overall discrimination
power of the predictions, or the probability that an occurrence site has a higher predicted value than
a non-occurrence site. It can thus be calculated with the Wilcoxon rank sum statistic, as is done
with the default method="rank". There’s also an option to compute, instead of the ROC curve, the
precision-recall ("PR") curve, which is more robust to imbalanced data, e.g. species rarity (Sofaer
et al. 2019), as it doesn’t value true negatives.

If *curve’ is set to "PR", or if "'method’ is manually set to "trapezoid", the AUC value will be more
accurate if “interval’ is decreased (see *method’ and ’interval’ arguments above). The plotted curve
will also be more accurate with smaller ’interval’ values, especially for imbalanced datasets (which
can cause an apparent disagreement between the look of the curve and the actual value of the AUC).

Swets (1988) proposed the following thresholds for interpreting ROC AUC scores: below 0.6 = fail;
0.6 to 0.7 = poor; 0.7 to 0.8 = fair; 0.8 to 0.9 = good; 0.9 or higher = excellent. Mind that the ROC
AUC has been widely criticized (e.g. Lobo et al. 2008, Jimenez-Valverde et al. 2013), though is
still a widely used metric in model evaluation. It is highly correlated with species prevalence (as
are the generality of discrimination and classification metrics, including TSS), so prevalence is also
output by the AUC function (if simplif = FALSE, the default) for reference.

Although there are functions to calculate the AUC in other R packages (e.g. ROCR, PresenceAb-
sence, verification, Epi, PRROC, PerfMeas, precrec), the AUC function is more compatible (in
terms of arguments and outputs) with the remaining functions in modEvA; and it can be applied

AUC 11

not only to a set of observed vs. predicted values, but also directly to a model object of class "glm",

"gam", "gbm", "randomForest" or "bart", or even to a set of presence point coordinates and a raster
map of the predictions in the model evaluation region.

Value

If simplif = TRUE, the function returns only the AUC value (a numeric value between 0 and 1).
Otherwise (the default), it returns a 1ist with the following components:

thresholds a data frame of the true and false positives, the sensitivity, specificity and recall
of the predictions, and the number of predicted values at each analysed thresh-
old.

N the total number of obervations.

prevalence the proportion of presences (i.e., ones) in the data (which correlates with the
AUC of the "ROC" plot).

AUC the value of the AUC).

AUCratio the ratio of the obtained AUC value to the null expectation (0.5).

meanPrecision the arithmetic mean of precision (proportion of predicted presences actually ob-
served as presences) across all threshold values (defined by ’interval’). It is close
to the AUC of the precision-recall (PR) curve.

GiniCoefficient
the Gini coefficient (aka Gini index or Gini ratio), a measure of statistical dis-
persion intended to represent inequality, computed as 2*AUC-1.

SomersD Somers’ D, a measure of ordinal association between two variables (i.e. a
rank correlation), also used as a quality measure of binary choice, computed
as 2*(AUC-0.5). It is mathematically equivalent to the Gini coefficient; they are
both here to match the terminology familiar to different audiences.

Author(s)
A. Marcia Barbosa

References
Lobo, J.M., Jimenez-Valverde, A. & Real, R. (2008) AUC: a misleading measure of the performance
of predictive distribution models. Global Ecology and Biogeography 17: 145-151

Jimenez-Valverde, A., Acevedo, P., Barbosa, A.M., Lobo, J.M. & Real, R. (2013) Discrimination
capacity in species distribution models depends on the representativeness of the environmental do-
main. Global Ecology and Biogeography 22: 508-516

Sofaer, H.R., Hoeting, J.A. & Jarnevich, C.S. (2019). The area under the precision-recall curve as
a performance metric for rare binary events. Methods in Ecology and Evolution, 10: 565-577

Swets, J.A. (1988) Measuring the accuracy of diagnostic systems. Science, 240: 1285-1293 (doi:
10.1126/science.3287615)

See Also

threshMeasures

12 Boyce

Examples

load sample models:
data(rotif.mods)

choose a particular model to play with:

mod <- rotif.mods$models[[1]]

compute the AUC:

AUC(model = mod)

AUC(model = mod, simplif = TRUE)

AUC(model = mod, curve = "PR")

AUC(model = mod, interval = 0.1, grid = TRUE)
AUC(model = mod, plot.preds = TRUE)

AUC(model = mod, ticks = TRUE)

AUC(model = mod, plot.preds = c("curve”, "bottom"))
you can also use vectors of observed and predicted values
instead of a model object:

presabs <- mod$y
prediction <- mod$fitted.values

AUC(obs = presabs, pred = prediction)

'obs' can also be a table of presence point coordinates
and 'pred' a SpatRaster of predicted values

Boyce Boyce Index

Description

This function computes the (continuous) Boyce index (Boyce 2002; Hirzel et al. 2006) for either:
1) a model object; or 2) two paired numeric vectors of observed (binary, 1 for occurrence vs. 0
for no occurrence records) and predicted (continuous, e.g. occurrence probability) values; or 3) a
set of presence point coordinates and a raster map with the predicted values for the entire model
evaluation area.

This metric is designed for evaluating model predictions against presence/background data (i.e.
presence/available, where "available" includes both occupied and unoccupied sites; Boyce 2002),

Boyce 13

so the function uses the model predictions for the presence sites (ones) against the predictions for
the entire dataset (ones and zeros).

Usage

Boyce(model = NULL, obs = NULL, pred = NULL, n.bins = NA,

bin.width = "default”, res = 100, method = "spearman”, rm.dup.classes = FALSE,
rm.dup.points = FALSE, pbg = FALSE, plot = TRUE, plot.lines = TRUE,
plot.values = TRUE, plot.digits = 3, na.rm = TRUE, verbosity = 2,

L)

Arguments

non non "non

model a binary-response model object of class "glm", "gam", "gbm", "randomForest"
or "bart". If this argument is provided, ’obs’ and ’pred’ will be extracted with
mod2obspred. Alternatively, you can input the ’obs’ and "pred’ arguments (e.g.
for external test data) instead of *model’.

obs alternatively to 'model’ and together with ’pred’, a numeric vector of observed
presences (1) and absences (0) of a binary response variable. Alternatively (and
if *pred’ is a ’SpatRaster’), a two-column matrix or data frame containing, re-
spectively, the x (longitude) and y (latitude) coordinates of the presence points,
in which case the 'obs’ vector will be extracted with ptsrast2obspred. This
argument is ignored if 'model’ is provided.

pred alternatively to 'model’ and together with ’obs’, a vector with the correspond-
ing predicted values of presence probability, habitat suitability, environmental
favourability or alike. Must be of the same length and in the same order as "obs’.
Alternatively (and if "obs’ is a set of point coordinates), a ’SpatRaster’ map of
the predicted values for the entire evaluation region, in which case the ’pred’
vector will be extracted with ptsrast2obspred. This argument is ignored if
’model’ is provided.

n.bins number of classes or bins (e.g. 10) in which to group the "pred’ values, or a
vector with the bin thresholds. If n.bins = NA (the default), a moving window
is used (see next parameters), so as to compute the "continuous Boyce index"
(Hirzel et al. 2006).

bin.width width of the moving window (if n.bins = NA), in the units of ’pred’ (e.g. 0.1).
By default, it is 1/10th of the *pred’ range.

res resolution of the moving window (if n.bins = NA). By default it is 100 focals,
providing 100 moving bins).

method argument to be passed to cor indicating which correlation coefficient to use. The
defaultis 'spearman’ as per Boyce et al. (2002), but 'pearson' and 'kendall'’
can also be used.

rm.dup.classes Logical, default FALSE. If TRUE (as in ’ecospat::ecospat.boyce’) and if there are
different bins with the same predicted/expected ratio, only one of each is used
to compute the correlation (see Examples).

rm.dup.points if TRUE and if *pred’ is a SpatRaster and if there are repeated points within the
same pixel, a maximum of one point per pixel is used to compute the presences.
See examples in ptsrast2obspred. The default is FALSE.

14

Boyce
pbg logical value to pass to inputMunch indicating whether to use presence/background
(rather than presence/absence) data. Default FALSE.
plot logical, whether or not to plot the predicted/expected ratio against the median
prediction of each bin. Defaults to TRUE.
plot.lines logical, whether or not to add lines connecting the points in the plot (if plot=TRUE).
Defaults to TRUE.
plot.values logical, whether or not to show in the plot the value of the Boyce index. Defaults
to TRUE.

plot.digits number of digits to which the value in the plot should be rounded (if *plot” and
"plot.values’ are TRUE). Defaults to 3.

na.rm Logical value indicating if missing values should be removed from computa-
tions. The default is TRUE.
verbosity integer specifying the amount of messages to display. Defaults to the maximum

implemented; lower numbers (down to 0) decrease the number of messages.

some additional arguments can be passed to plot, e.g. 'main’ or ’xlim’.

Details

The Boyce index is the correlation between model predictions and area-adjusted frequencies (i.e.,
observed vs. expected proportion of occurrences) along different prediction classes (bins). In other
words, it measures how model predictions differ from a random distribution of the observed pres-
ences across the prediction gradient (Boyce et al. 2002). It can take values between -1 and 1.
Positive values indicate that presences are more frequent than expected by chance (given avail-
ability) in areas with higher predicted values. Values close to zero mean that predictions are no
better than random (i.e. presences are distributed among prediction classes as expected by chance),
and negative values indicate counter predictions (i.e., presences are proportionally more frequent in
areas with lower predicted values).

The R code is largely based on the ’ecospat.boyce’ function of the ecospat package (version 3.2.1),
but it is modified to match the input formats in the remaining functions of *'modEvA’, and to return
a more complete and informative output. It also does not ‘rm.dup.classes’ by default, like the
’ecospat’ version does (though the user can control this parameter); and it implements a bug fix
identified at https://github.com/ecospat/ecospat/issues/994#issue-2528136160.

Value

This function returns a 1ist with the following components:

bins a data frame with the number of values in each bin, their median and range of
predicted values, and the corresponding predicted/expected ratio of presences.

B the numeric value of the Boyce index, i.e. the coefficient of correlation between
the median predicted value in each bin and the corresponding predicted/expected
ratio.

If plot=TRUE (the default), the function also plots the predicted/expected ratio for the utilized bins
along the prediction range. A good model should yield a monotonically increasing curve (but see
Note).

Boyce 15

Note

This index is designed for evaluating predictions of habitat suitability, not presence probability
(which also depends on the species’ presence/absence ratio: rare species do not usually show high
proportions of presences, even in highly suitable areas). If your predictions are of presence prob-
ability based on a sample prevalence different from 50% presences, you should convert those pre-
dictions e.g. with the Fav function of package fuzzySim, before evaluating them with the Boyce
index.

In bins with overly small sample sizes, the comparison between median prediction and random
expectation may not be meaningful, although these bins will equally contribute to the overall Boyce
index. When there are bins with fewer than 30 values, a warning is emitted and their values are
plotted as red triangles, but mind that 30 is a largely arbitrary number. See the $bins$bin.N section
of the console output, and use the *bin.width’ argument to enlarge the bins if necessary.

Author(s)
A. Marcia Barbosa, with significant chunks of code from the ’ecospat::ecospat.boyce’ function by
Blaise Petitpierre and Frank Breiner (ecospat package version 3.2.1).

References

Boyce, M.S., PR. Vemier, S.E. Nielsen & F.K.A. Schmiegelow (2002) Evaluating resource selec-
tion functions. Ecological Modelling 157: 281-300

Hirzel, A.H., G. Le Lay, V. Helfer, C. Randin & A. Guisan (2006) Evaluating the ability of habitat
suitability models to predict species presences. Ecological Modelling 199: 142-152

See Also

MillerCalib; HLfit; ecospat::ecospat.boyce; enmSdmX: :evalContBoyce

Examples

load sample models:
data(rotif.mods)

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

compute the Boyce index:

Boyce(model = mod, main = "My model Boyce plot")
Boyce(model = mod, main = "My model Boyce plot”, rm.dup.classes = TRUE)

you can also use vectors of observed and predicted values
instead of a model object:

presabs <- mods$y
prediction <- mod$fitted.values

Boyce(obs = presabs, pred = prediction)

16 contfusionLabel

'obs' can also be a table of presence point coordinates
and 'pred' a SpatRaster of predicted values

confusionlLabel Label predictions according to their confusion matrix category

Description

This function labels the (typically continuous) predictions of a binary-response model according
to their confusion matrix categories, i.e., it classifies each prediction into a false positive, false
negative, true positive or true negative, given a user-defined threshold value.

Usage

confusionLabel (model = NULL, obs = NULL, pred = NULL, thresh,
interval = 0.01, quant = @, verbosity = 2, na.rm = FALSE,

rm.dup = FALSE, plot = TRUE, ...)
Arguments
model a binary-response model object of class "glm", "gam", "gbm", "randomForest"

or "bart". If this argument is provided, *obs’ and ’pred’ will be extracted with
mod2obspred. Alternatively, you can input the "obs’ and ’pred’ arguments (e.g.
for external test data) instead of model’.

obs alternatively to 'model’ and together with ’pred’, a numeric vector of observed
presences (1) and absences (0) of a binary response variable. Alternatively (and
if *pred’ is a ’SpatRaster’), a two-column matrix or data frame containing, re-
spectively, the x (longitude) and y (latitude) coordinates of the presence points,
in which case the ’obs’ vector will be extracted with ptsrast2obspred. This
argument is ignored if 'model’ is provided.

pred alternatively to 'model’ and together with ’obs’, a vector with the correspond-
ing predicted values of presence probability, habitat suitability, environmental
favourability or alike. Must be of the same length and in the same order as "obs’.
Alternatively (and if obs’ is a set of point coordinates), a ’SpatRaster’ map of
the predicted values for the entire evaluation region, in which case the ’pred’
vector will be extracted with ptsrast2obspred. This argument is ignored if
’model’ is provided.

thresh numeric value of the threshold to separate predicted presences from predicted
absences; can be "preval", to use the prevalence of ’obs’ (or of the response
variable in “'model’) as the threshold, or any real number between 0 and 1. See
Details in threshMeasures for an informed choice.

interval numeric value, used if "thresh’ is a threshold optimization method such as "maxKappa"
or "maxTSS", indicating the interval between the thresholds to test. The default
is 0.01. Smaller values may provide more precise results but take longer to
compute.

confusionLabel 17

quant numeric value indicating the proportion of presences to discard if thresh="MTP"
(minimum training presence). With the default value 0, MTP will be the thresh-
old at which all observed presences are classified as such; with e.g. quant=0.05,
MTP will be the threshold at which 5% presences will be classified as absences.

verbosity integer specifying the amount of messages to display. Defaults to the maximum
implemented; lower numbers (down to 0) decrease the number of messages.

na.rm logical argument indicating whether to remove (with a warning saying how
many) rows with NA in any of the "obs’ or "pred’ values. The default is FALSE.

rm.dup if TRUE and if ’pred’ is a SpatRaster and if there are repeated points within the
same pixel, a maximum of one point per pixel is used to compute the presences.
See examples in ptsrast2obspred. The default is FALSE.

plot if TRUE (the default) and if "pred’ is a SpatRaster, the output (also a SpatRaster)
is automatically plotted. Map categories have a set colour table, built with
terra::coltab().

additional arguments to pass to terra::plot() (if "pred’ is a SpatRaster and plot=TRUE),
such as “mar’, "axes’ or 'legend’.

Value

This function returns a categorical (factor) vector (or a categorical *SpatRaster’ if pred’ is of that
class) of the same length as "pred’, or of the same number of rows as the data in 'model’, containing
the confusion matrix label for each value.

Author(s)
A. Marcia Barbosa

See Also

threshMeasures, confusionMatrix

Examples

load sample models:
data(rotif.mods)

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

confusionLabel(model = mod, thresh = 0.5)

you can instead use vectors of observed and predicted values:

presabs <- mods$y
prediction <- mod$fitted.values

confusionlLabel (obs = presabs, pred = prediction, thresh = 0.5)

18 confusionMatrix

'obs' can also be a table of presence point coordinates
and 'pred' a SpatRaster of predicted values

confusionMatrix Confusion matrix

Description

This function computes the confusion (or contingency) matrix for a binary-response model, con-
taining the numbers of false positives, false negatives, true positives and true negatives, given a
user-defined threshold value.

Usage

confusionMatrix(model = NULL, obs = NULL, pred
quant = @, verbosity = 2, na.rm = TRUE, rm.dup

NULL, thresh, interval = 0.01,
FALSE, plot = FALSE,

classes = FALSE, ...)
Arguments
model a binary-response model object of class "glm", "gam", "gbm", "randomForest"

or "bart". If this argument is provided, *obs’ and ’pred’ will be extracted with
mod2obspred. Alternatively, you can input the "obs’ and ’pred’ arguments (e.g.
for external test data) instead of model’.

obs alternatively to 'model’ and together with ’pred’, a numeric vector of observed
presences (1) and absences (0) of a binary response variable. Alternatively (and
if *pred’ is a ’SpatRaster’), a two-column matrix or data frame containing, re-
spectively, the x (longitude) and y (latitude) coordinates of the presence points,
in which case the ’obs’ vector will be extracted with ptsrast2obspred. This
argument is ignored if 'model’ is provided.

pred alternatively to 'model’ and together with ’obs’, a vector with the correspond-
ing predicted values of presence probability, habitat suitability, environmental
favourability or alike. Must be of the same length and in the same order as "obs’.
Alternatively (and if obs’ is a set of point coordinates), a ’SpatRaster’ map of
the predicted values for the entire evaluation region, in which case the ’pred’
vector will be extracted with ptsrast2obspred. This argument is ignored if
’model’ is provided.

thresh numeric value of the threshold to separate predicted presences from predicted
absences; can be "preval", to use the prevalence of ’obs’ (or of the response
variable in “'model’) as the threshold, or any real number between 0 and 1. See
Details in threshMeasures for an informed choice.

interval numeric value, used if "thresh’ is a threshold optimization method such as "maxKappa"
or "maxTSS", indicating the interval between the thresholds to test. The default
is 0.01. Smaller values may provide more precise results but take longer to
compute.

confusionMatrix

quant

verbosity

na.rm

rm. dup

plot

classes

Value

19

numeric value indicating the proportion of presences to discard if thresh="MTP"
(minimum training presence). With the default value 0, MTP will be the thresh-
old at which all observed presences are classified as such; with e.g. quant=0.05,
MTP will be the threshold at which 5% presences will be classified as absences.

integer specifying the amount of messages to display. Defaults to the maximum
implemented; lower numbers (down to 0) decrease the number of messages.

logical argument indicating whether to remove (with a warning saying how
many) rows with NA in any of the "obs’ or "pred’ values. The default is FALSE.

if TRUE and if ’pred’ is a SpatRaster and if there are repeated points within the
same pixel, a maximum of one point per pixel is used to compute the presences.
See examples in ptsrast2obspred. The default is FALSE.

logical argument indicating whether to also plot the matrix as an image. The
default is FALSE (for back-compatibility).

logical argument indicating whether the matrix image (if plot=TRUE) should
have qualitative colours, matching the output of confusionLabel for SpatRasters.
The default is FALSE, in which case the colours are proportional to the values
in each section of the matrix, and the palette can be user-specified with the ’col’
argument for ’plot’ (see Examples).

some additional arguments can be passed to image (and through to plot) if
plot=TRUE, such as ’main’, ’font.main’ or ’cex.main’ (not ’axes’, ’xlab’ or
"ylab’, which are already defined by confusionMatrix).

This function returns a data frame containing the four values of the confusion matrix.

Author(s)

A. Marcia Barbosa

See Also

threshMeasures, confusionLabel

Examples

load sample models:

data(rotif.mods)

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

confusionMatrix(model = mod, thresh

0.5)

confusionMatrix(model = mod, thresh = 0.5, plot = TRUE)

confusionMatrix(model = mod, thresh = 0.5, plot = TRUE,
col = hcl.colors(100, "blues"))

20

confusionMatrix(model = mod, thresh = @0.5, plot = TRUE, classes = TRUE,
main = "Confusion matrix")
you can instead use vectors of observed and predicted values:

presabs <- mod$y
prediction <- mod$fitted.values

confusionMatrix(obs = presabs, pred = prediction, thresh = 0.5, plot = TRUE)

'obs' can also be a table of presence point coordinates
and 'pred' a SpatRaster of predicted values

Dsquared

Explained deviance

Description

This function computes the (adjusted) amount of deviance accounted for by a model, given a model
object or a set of observed and predicted values.

Usage

Dsquared(model = NULL, obs = NULL, pred = NULL, family = NULL,
adjust = FALSE, npar = NULL, na.rm = TRUE, rm.dup = FALSE, pbg = FALSE,
dismo.version = FALSE, verbosity = 2)

Arguments

model

obs

pred

a model object of a class implemented in mod2obspred. If this argument is
provided, 'obs’ and "pred’ will be extracted with that function. Alternatively,
you can input the "obs’ and ’pred’ arguments instead of *'model’.

alternatively to 'model’ and together with ’pred’, a numeric vector of observed
values of the response variable. Alternatively (and if *pred’ is a *SpatRaster’),
a two-column matrix or data frame containing, respectively, the x (longitude)
and y (latitude) coordinates of presence points, in which case the ’obs’ vector
of presences and absences will be extracted with ptsrast2obspred. This argu-
ment is ignored if *'model’ is provided.

alternatively to “'model” and together with ’obs’, a vector with the corresponding
predicted values, of the same length and in the same order as obs’. Alternatively
(and if "obs’ is a set of point coordinates), a *SpatRaster’ map of the predicted
values for the entire evaluation region, in which case the ’pred’ vector will be
extracted with ptsrast2obspred. This argument is ignored if *'model’ is pro-
vided.

Dsquared 21

family a character vector (i.e. in quotes) of length 1 specifying the family of the model
that generated the *pred’ values. This argument is ignored if model is provided
and is of a class for which family provides a result; otherwise (i.e. if "obs’ and
"pred’ are provided rather than a model object), family can be specified by the
user, or (if left NULL) will be guessed (with a message) given the values of the
response variable.

adjust logical, whether or not to adjust the D-squared value for the number of obser-
vations and parameters in the model (see Details). The default is FALSE; TRUE
requires either providing the model object of class GLM, or specifying the num-
ber of parameters in the model that produced the pred values.

npar integer value indicating the number of parameters in the model. This argument
is ignored and taken from model if this argument is provided and of class GLM,
or if adjust = FALSE.

na.rm Logical value indicating whether missing values should be ignored in computa-
tions. Defaults to TRUE.

rm. dup If TRUE and if "pred’ is a SpatRaster and if there are repeated points within the
same pixel, a maximum of one point per pixel is used to compute the presences.
See examples in ptsrast2obspred. The default is FALSE.

pbg logical value to pass to inputMunch indicating whether to use presence/background
(rather than presence/absence) data. Default FALSE.

dismo.version Logical value indicating whether the deviance should be computed with code
from the dismo::calc.deviance() function. The default is FALSE, for back-
compatibility.

verbosity integer specifying the amount of messages to display. Defaults to the maximum
implemented; lower numbers (down to 0) decrease the number of messages.

Details

Linear models have an R-squared value (commonly provided with the model summary) which mea-
sures the proportion of variation that the model accounts for. For generalized linear models (GLMs)
and others based on non-continuous response variables, an equivalent is the amount of deviance ac-
counted for (D-squared; Guisan & Zimmermann 2000), though this value is not routinely provided
with the model summary. The Dsquared function calculates it as the proportion of the null de-
viance (i.e. the deviance of a model with no predictor variables) that is accounted for by the model.
There is also an option to compute the adjusted D-squared, which takes into account the number of
observations and the number of parameters, thus allowing direct comparison among the output for
different models (Weisberg 1980, Guisan & Zimmermann 2000).

The function computes the mean residual deviance (as in the calc.deviance function of package
dismo) of the observed (response) against the predicted values, and the mean deviance of a null
model (with no predictor variables), i.e. of the response against the mean of the response. Finally,
it gets the explained deviance as (null-residual)/null.

Value

The function returns a numeric value indicating the (optionally adjusted) proportion of deviance
accounted for by the input model predictions.

22

Author(s)

errorMeasures

A. Marcia Barbosa, with parts of code from ’dismo::calc.deviance’ by John R. Leathwick and Jane

Elith

References

Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecolog-
ical Modelling 135: 147-186

Weisberg, S. (1980) Applied Linear Regression. Wiley, New York

See Also

plotGLM, RsqGLM, dismo: :calc.deviance

Examples

load sample models:
data(rotif.mods)

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

Dsquared(model

Dsquared(model

you can also use Dsquared with vectors of observed and predicted values

mod)

= mod, adjust = TRUE)

instead of with a model object:

presabs <- mod$y
prediction <- mod$fitted.values
parameters <- attributes(logLik(mod))$df

Dsquared(obs

Dsquared(obs

presabs, pred = prediction, family = "binomial”)

presabs, pred = prediction, family = "binomial”,

adjust = TRUE, npar = parameters)

'obs' can also be a table of presence point coordinates
and 'pred' a SpatRaster of predicted values

errorMeasures

Measures of model prediction error.

errorMeasures

Description

23

This function computes metrics such as the (root) mean square error or the Brier score, of a model
object or a set of observed and predicted values or maps. The smaller the returned values, the better
the modol predictions fit the observations.

Usage

errorMeasures(model = NULL, obs = NULL, pred = NULL, na.rm = TRUE,
rm.dup = FALSE, verbosity = 2)

Arguments

model

obs

pred

na.rm

rm.dup

verbosity

Details

a model object of class implemented in mod2obspred. If this argument is pro-
vided, ’obs’ and "pred’ will be extracted with that function. Alternatively, you
can input the "obs’ and ’pred’ arguments instead of “model’.

alternatively to 'model’ and together with ’pred’, a numeric vector of observed
values of the response variable. Alternatively (and if ’pred’ is a ’SpatRaster’),
a two-column matrix or data frame containing, respectively, the x (longitude)
and y (latitude) coordinates of presence points, in which case the ’obs’ vector
of presences and absences will be extracted with ptsrast2obspred. This argu-
ment is ignored if *'model’ is provided.

alternatively to “'model” and together with ’obs’, a vector with the corresponding
predicted values, of the same length and in the same order as obs’. Alternatively
(and if "obs’ is a set of point coordinates), a *SpatRaster’ map of the predicted
values for the entire evaluation region, in which case the *pred’ vector will be
extracted with ptsrast2obspred. This argument is ignored if *'model’ is pro-
vided.

Logical value indicating whether missing values should be ignored in computa-
tions. Defaults to TRUE.

If TRUE and if "pred’ is a SpatRaster and if there are repeated points within the
same pixel, a maximum of one point per pixel is used to compute the presences.
See examples in ptsrast2obspred. The default is FALSE.

integer specifying the amount of messages to display. Defaults to the maximum
implemented; lower numbers (down to 0) decrease the number of messages.

The Brier score measures the accuracy of probabilistic predictions against a binary response vari-
able. It is computed as the mean of the squared differences between observed and predicted values,
i.e. the mean square error (MSE). It may take values between 0 and 1. The smaller the score, the
better the model fit.

The root mean square error is more usually applied to models of coninuous response variables. It is
computed as the square root of the mean of the squared differences between observed and predicted
values. It is (approximately) the same as the standard deviation of the model residuals (prediction
errors), i.e., a measure of how spread out these residuals are, or how concentrated the observations
are around the model prediction line.

24 evaluate

Value

This function returns a named list of numeric values indicating various measures of model error.

Author(s)
A. Marcia Barbosa

References

Kenney J.F. & Keeping E.S. (1962) Root Mean Square. "Mathematics of Statistics", 3rd ed. Prince-
ton, NJ: Van Nostrand, pp. 59-60.

See Also

RMSE, plotGLM, RsqGLM, Dsquared

Examples

load sample models:
data(rotif.mods)

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

errorMeasures(model = mod)
you can also use errorMeasures with vectors of observed and predicted values
instead of with a model object:

presabs <- mod$y
prediction <- mod$fitted.values

errorMeasures(obs = presabs, pred = prediction)

'obs' can also be a table of presence point coordinates
and 'pred' a SpatRaster of predicted values

evaluate Evaluate a model based on the elements of a confusion matrix.

Description
This function evaluates the classification performance of a model based on the values of a confusion
matrix obtained at a particular threshold.

Usage

evaluate(a, b, ¢, d, N = NULL, measure = "CCR")

evaluate 25

Arguments
a number of correctly predicted presences (true positives)
b number of absences incorrectly predicted as presences (false positives)
c number of presences incorrectly predicted as absences (false negatives)
d number of correctly predicted absences (true negatives)
N total number of cases. If NULL (the default), it is calculated automatically by
adding up a, b, c and d.)
measure a character vector of length 1 indicating the evaluation measure to use. Type
modEvAmethods ("threshMeasures”) for available options.
Details

A number of measures can be used to evaluate continuous model predictions against observed bi-
nary occurrence data (Fielding & Bell 1997; Liu et al. 2011; Barbosa et al. 2013; Leroy et al. 2018).
The ’evaluate’ function can calculate a few threshold-based classification measures from the values
of a confusion matrix obtained at a particular threshold. The ’evaluate’ function is used internally
by threshMeasures. It can also be accessed directly by the user, but it is usually more practical to
use "threshMeasures’, which calculates the confusion matrix automatically.

Value

Numeric value of the specified evaluation measure.

Note

Some measures (e.g. NMI, odds ratio) don’t work with zeros in (some parts of) the confusion
matrix. Also, TSS and NMI are not symmetrical, i.e. "obs" vs "pred" is different from "pred" vs
"ObS”,

Author(s)

A. Marcia Barbosa

References

Barbosa A.M., Real R., Munoz A.R. & Brown J.A. (2013) New measures for assessing model
equilibrium and prediction mismatch in species distribution models. Diversity and Distributions,
19: 1333-1338

Fielding A.H. & Bell J.F. (1997) A review of methods for the assessment of prediction errors in
conservation presence/absence models. Environmental Conservation 24: 38-49

Leroy B., Delsol R., Hugueny B., Meynard C.M., Barhoumi C., Barbet-Massin M. & Bellard C.
(2018) Without quality presence-absence data, discrimination metrics such as TSS can be mislead-
ing measures of model performance. Journal of Biogeography 45(9):1994-2002

Liu C., White M., & Newell G. (2011) Measuring and comparing the accuracy of species distribu-
tion models with presence-absence data. Ecography, 34, 232-243.

26 evenness

See Also

threshMeasures

Examples

evaluate(23, 44, 21, 34)

evaluate(23, 44, 21, 34, measure = "TSS")

evenness Evenness in a binary vector.

Description

For building and evaluating species distribution models, the porportion of presences (prevalence)
of a species and the balance between the number of presences and absences may be issues to take
into account (e.g. Jimenez-Valverde & Lobo 2006, Barbosa et al. 2013). The evenness function
calculates the presence-absence balance in a binary (e.g., presence/absence) vector.

Usage
evenness(obs)
Arguments
obs a vector of binary observations (e.g. 1 or 0, male or female, disease or no disease,
etc.)
Value

A number ranging between 0 when all values are the same, and 1 when there are the same number
of cases with each value in obs.
Author(s)

A. Marcia Barbosa

References

Barbosa A.M., Real R., Munoz A.R. & Brown J.A. (2013) New measures for assessing model
equilibrium and prediction mismatch in species distribution models. Diversity and Distributions,
19: 1333-1338

Jimenez-Valverde A. & Lobo J.M. (2006) The ghost of unbalanced species distribution data in
geographical model predictions. Diversity and Distributions, 12: 521-524.

See Also

prevalence

getBins

Examples

27

(x <= rep(c(@, 1), each = 5))
(y <= c(rep(@, 3), rep(1, 7)))
(z <= c(rep(o, 7), rep(1, 3)))

prevalence(x)
evenness(x)

prevalence(y)
evenness(y)

prevalence(z)
evenness(z)

getBins

Get bins of continuous values.

Description

Get continuous predicted values into bins according to specific criteria.

Usage

getBins(model = NULL, obs = NULL, pred = NULL, id = NULL,
bin.method, n.bins = 10, fixed.bin.size = FALSE, min.bin.size = 15,
min.prob.interval = 0.1, quantile.type = 7, simplif = FALSE,
verbosity = 2, na.rm = TRUE, rm.dup = FALSE)

Arguments

model

obs

pred

non non "non

a binary-response model object of class "glm", "gam", "gbm", "randomForest"
or "bart". If this argument is provided, ’obs’ and ’pred’ will be extracted with
mod2obspred. Alternatively, you can input the ’obs’ and ’pred’ arguments in-
stead of "'model’.

alternatively to 'model’ and together with ’pred’, a numeric vector of observed
presences (1) and absences (0) of a binary response variable. Alternatively (and
if *pred’ is a ’SpatRaster’), a two-column matrix or data frame containing, re-
spectively, the x (longitude) and y (latitude) coordinates of the presence points,
in which case the 'obs’ vector will be extracted with ptsrast2obspred. This
argument is ignored if 'model’ is provided.

alternatively to 'model” and together with ’obs’, a vector with the correspond-
ing predicted values of presence probability, habitat suitability, environmental
favourability or alike. Must be of the same length and in the same order as "obs’.
Alternatively (and if 'obs’ is a set of point coordinates), a ’SpatRaster’ map of
the predicted values for the entire evaluation region, in which case the ’pred’
vector will be extracted with ptsrast2obspred. This argument is ignored if
’model’ is provided.

28

getBins

id optional vector of row identifiers; must be of the same length and in the same
order of obs and pred (or of the cases used to build model)

bin.method the method with which to divide the values into bins. Type modEvAmeth-
ods("getBins") for available options and see Details for more information on
these methods.

n.bins the number of bins in which to divide the data.
fixed.bin.size logical, whether all bins should have (approximally) the same size.

min.bin.size integer value defining the minimum number of observations to include in each
bin. The default is 15, the minimum required for accurate comparisons within
bins (Jovani & Tella 2006, Jimenez-Valverde et al. 2013).

min.prob.interval
minimum range of probability values in each bin. The default is 0.1.

quantile.type argument to pass to quantile specifying the algorithm to use if bin.method =
"quantiles”. The default is 7 (the quantile default in R), but check out other
types, e.g. 3 (used by SAS), 6 (used by Minitab and SPSS) or 5 (appropriate for
deciles, which correspond to the default n.bins = 10).

simplif logical, whether to calculate a faster, simplified version (used internally in other
functions). The default is FALSE.

verbosity integer specifying the amount of messages or warnings to display. Defaults to
the maximum implemented; lower numbers (down to 0) decrease the number of
messages.

na.rm logical argument indicating whether to remove (with a warning saying how
many) rows with NA in any of the obs’ or "pred’ values. The default is TRUE,
as some ’bin.method’ options will fail if there are NAs.

rm.dup If TRUE and if "pred’ is a SpatRaster and if there are repeated points within the
same pixel, a maximum of one point per pixel is used to compute the presences.
See examples in ptsrast2obspred. The default is FALSE.

Details

Mind that different bin.methods can lead to visibly different results regarding the bins and any
operations that depend on them (such as HLfit). Currently available bin.methods are:

- round.prob: probability values are rounded to the number of digits of min.prob.interval -
e.g., if min.prob.interval = 0.1 (the default), values under 0.05 get into bin 1 (rounded probability =
0), values between 0.05 and 0.15 get into bin 2 (rounded probability = 0.1), etc. until values with
probability over 0.95, which get into bin 11. Arguments n.bins, fixed.bin.size and min.bin.size are
ignored by this bin.method.

- prob.bins: probability values are grouped into bins of the given probability intervals - e.g., if
min.prob.interval = 0.1 (the default), bin 1 gets the values between 0 and 0.1, bin 2 gets the values
between 0.1 and 0.2, etc. until bin 10 which gets the values between 0.9 and 1. Arguments n.bins,
fixed.bin.size and min.bin.size are ignored by this bin.method.

- size.bins: probability values are grouped into bins of (approximately) equal size, defined by
argument min.bin.size. Arguments n.bins and min.prob.interval are ignored by this bin.method.

- n.bins: probability values are divided into the number of bins given by argument n.bins, and their
sizes may or may not be forced to be (approximately) equal, depending on argument fixed.bin.size

getBins 29

(which is FALSE by default). Arguments min.bin.size and min.prob.interval are ignored by this
bin.method.

- quantiles: probability values are divided using R function quantile, with probability cutpoints
defined by the given n.bins (i.e., deciles by default), and with the quantile algorithm defined by
argument quantile.type. Arguments fixed.bin.size, min.bin.size and min.prob.interval are ignored
by this bin.method.

Value

The output of getBins is a list with the following components:

prob.bin the first and last value of each bin

bins.table a data frame with the sample size, number of presences, number of absences,
prevalence, mean and median probability, and the difference between predicted
and observed values (mean probability - observed prevalence) in each bin.

N the total number of observations in the analysis.
n.bins the total number of bins obtained.
Note

This function is still under development and may fail for some datasets and binning methods (e.g.,
ties may sometimes preclude binning under some bin.methods). Fixes and further binning methods
are in preparation. Feedback is welcome.

Author(s)

A. Marcia Barbosa

References

Jimenez-Valverde A., Acevedo P., Barbosa A.M., Lobo J.M. & Real R. (2013) Discrimination ca-
pacity in species distribution models depends on the representativeness of the environmental do-
main. Global Ecology and Biogeography 22: 508-516.

Jovani R. & Tella J.L. (2006) Parasite prevalence and sample size: misconceptions and solutions.
Trends in Parasitology 22: 214-218.

See Also

HLfit

Examples

load sample models:

data(rotif.mods)

choose a particular model to play with:

30 getModEqn
mod <- rotif.mods$models[[1]]
try getBins using different binning methods:
getBins(model = mod, bin.method = "quantiles")
getBins(model = mod, bin.method = "n.bins")
getBins(model = mod, bin.method = "n.bins"”, fixed.bin.size = TRUE)
getModEqgn Get model equation
Description
This function retrieves the equation of a model, to print or apply elsewhere.
Usage
getModEgn(model, type = "Y", digits = NULL, prefix = NULL,
suffix = NULL)
Arguments
model a model object of class 'Im’ or glm’.
type the type of equation to get; can be either "Y" (the default, for the linear model
equation), "P" (for probabiity) or "F" (for favourability).
digits the number of significant digits to which to round the coefficient estimates in the
equation.
prefix the prefix to add to each variable name in the equation.
suffix the suffix to add to each variable name in the equation.
Details

The summary of a model in R gives you a table of the coefficient estimates and other parameters.
Sometimes it may be useful to have a string of text with the model’s equation, so that you can
present it in an article (e.g. Real et al. 2005) or apply it in a (raster map) calculation, either in R
(although here you can usually use the *predict’ function for this) or in a GIS software (e.g. Barbosa
et al. 2010). The getModEgn function gets this equation for linear or generalized linear models.

By default it prints the "Y" linear equation, but for generalized linear models you can also set type
= "P" (for the equation of probability) or type = "F" (for favourability, which modifies the intercept
to eliminate the effect of modelled prevalence - see Real et al. 2006).

If the variables to which you want to apply the model have a prefix or suffix (e.g. something like
prefix = "raster.stack$" for the R ’raster’ or ’terra’ package, or prefix = "mydata$" for a data frame,
or suffix ="@1" in QGIS, or suffix = "@mapset"” in GRASS), you can get these in the equation too,
using the prefix and/or the suffix argument.

getThreshold 31

Value

A charachter string of the model equation.

Author(s)

A. Marcia Barbosa

References

Barbosa A.M., Real R. & Vargas J.M. (2010) Use of coarse-resolution models of species’ distribu-
tions to guide local conservation inferences. Conservation Biology 24: 1378-87

Real R., Barbosa A.M., Martinez-Solano 1. & Garcia-Paris, M. (2005) Distinguishing the distribu-
tions of two cryptic frogs (Anura: Discoglossidae) using molecular data and environmental model-
ing. Canadian Journal of Zoology 83: 536-545

Real R., Barbosa A.M. & Vargas J.M. (2006) Obtaining environmental favourability functions from
logistic regression. Environmental and Ecological Statistics 13: 237-245

Examples

load sample models:
data(rotif.mods)

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

getModEqgn (mod)
getModEgn(mod, type = "P", digits = 3, suffix = "@mapset")

getModEgn(mod, type = "F", digits = 2)

getThreshold Prediction threshold for a given criterion

Description

This function computes the prediction threshold under a given criterion.

Usage

getThreshold(model = NULL, obs = NULL, pred = NULL, threshMethod,
interval = 0.01, quant = @, na.rm = TRUE, verbosity = 2, pbg = FALSE)

32

Arguments

model

obs

pred

threshMethod

interval

quant

na.rm

verbosity

pbg

Details

getThreshold

non non non

a binary-response model object of class "glm", "gam", "gbm", "randomForest"
or "bart". If this argument is provided, *obs’ and ’pred’ will be extracted with
mod2obspred. Alternatively, you can input the "obs’ and ’pred’ arguments in-
stead of 'model’.

alternatively to 'model’ and together with ’pred’, a numeric vector of observed
presences (1) and absences (0) of a binary response variable. Alternatively (and
if *pred’ is a ’SpatRaster’), a two-column matrix or data frame containing, re-
spectively, the x (longitude) and y (latitude) coordinates of the presence points,
in which case the 'obs’ vector will be extracted with ptsrast2obspred. This
argument is ignored if *'model’ is provided.

alternatively to 'model’ and together with ’obs’, a vector with the correspond-
ing predicted values of presence probability, habitat suitability, environmental
favourability or alike. Must be of the same length and in the same order as "obs’.
Alternatively (and if 'obs’ is a set of point coordinates), a ’SpatRaster’ map of
the predicted values for the entire evaluation region, in which case the ’pred’
vector will be extracted with ptsrast2obspred. This argument is ignored if
’model’ is provided.

Criterion under which to compute the threshold. Run modEvAmethods("getThreshold")
for available options.

Argument to pass to optiThresh indicating the interval between the thresholds
to test. The default is 0.01. Smaller values may provide more precise results but
take longer to compute.

Numeric value indicating the proportion of presences to discard if threshMethod="MTP"
(minimum training presence). With the default value 0, MTP will be the thresh-
old at which all observed presences are classified as such; with e.g. quant=0.05,
MTP will be the threshold at which 5% presences will be classified as absences.

Logical value (default TRUE) indicating whether NA values should be ignored.

integer indicating the amount of messages to display. Defaults to the maximum
implemented; lower numbers (down to 0) decrease the number of messages.

logical value to pass to inputMunch indicating whether to use presence/background
(rather than presence/absence) data. Default FALSE.

Several criteria have been proposed for selecting a threshold with which to convert continuous
model predictions (of presence probability, habitat suitability or alike) into binary predictions of
presence or absence. Such threshold is required for computing threshold-based model evaluation
metrics, such as those in threshMeasures. This function implements a few of these threshold
selection criteria, including those outlined in Liu et al. (2005, 2013) and a couple more:

- "preval", "trainPrev": prevalence (proportion of presences) in the supplied 'model’ or *obs’

- "meanPred": mean predicted value in the supplied "'model’ or ’pred’

- "midPoint": median predicted value in the supplied *'model’ or ’pred’

- "maxKappa": threshold that maximizes Cohen’s kappa

getThreshold 33

- "maxCCR", "maxOA", "maxOPS": threshold that maximizes the Correct Classification Rate, aka
Overall Accuracy, aka Overall Prediction Success

- "maxF": threshold that maximizes the F value

- "maxSSS": threshold that maximizes the sum of sensitivity and specificity

- "maxTSS": threshold that maximizes the True Skill Statistic

- "maxSPR": threshold that maximizes the sum of precision and recall

- "minDSS": threshold that minimizes the difference between sensitivity and specificity

- "minDPR": threshold that minimizes the difference between precision and recall

- "minDO1": threshold that minimizes the distance between the ROC curve and the 0,1 point
- "minD11": threshold that minimizes the distance between the PR curve and the 1,1 point

- "equalPrev": predicted and observed prevalence equalization

- "MTP": minimum training presence, or the lowest predicted value where presence is recorded in
’obs’ or 'model’. Optionally, with the ’quant’ argument, this threshold leaves out predicted values
lower than the value for the lowest specified proportion of presences

Value
This function returns a numeric value indicating the threshold selected under the specified "thresh-
Method’.

Author(s)

A. Marcia Barbosa

References

Liu C., Berry PM., Dawson T.P. & Pearson R.G. (2005) Selecting thresholds of occurrence in the
prediction of species distributions. Ecography 28: 385-393

Liu C., White M. & Newell G. (2013) Selecting thresholds for the prediction of species occurrence
with presence-only data. Journal of Biogeography 40: 778-789

See Also

optiThresh, optiPair, threshMeasures

Examples

load sample models:
data(rotif.mods)

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

getThreshold(model = mod, threshMethod = "maxTSS")

you can also use getThreshold with vectors of observed and predicted values

34 HLfit

instead of with a model object:

presabs <- mod$y
prediction <- mod$fitted.values

getThreshold(obs = presabs, pred = prediction, threshMethod = "maxTSS")

getThreshold(obs = presabs, pred = prediction, threshMethod "MTP")

getThreshold(obs = presabs, pred = prediction, threshMethod = "MTP",
quant = 0.05)

'obs' can also be a table of presence point coordinates
and 'pred' a SpatRaster of predicted values

HLfit Hosmer-Lemeshow goodness of fit

Description

This function calculates a model’s calibration performance (reliability) with the Hosmer & Lemeshow
goodness-of-fit statistic, which compares predicted probability to observed occurrence frequency at
each portion of the probability range.

Usage

HLfit(model = NULL, obs = NULL, pred = NULL, bin.method,
n.bins = 10, fixed.bin.size = FALSE, min.bin.size = 15,
min.prob.interval = 0.1, quantile.type = 7, simplif = FALSE,
verbosity = 2, alpha = 0.05, plot = TRUE, plot.values = TRUE,
plot.bin.size = TRUE, xlab = "Predicted probability”,

ylab = "Observed prevalence”, na.rm = TRUE, rm.dup = FALSE, ...)
Arguments
model a binary-response model object of class "glm", "gam", "gbm", "randomForest"

or "bart". If this argument is provided, *obs’ and ’pred’ will be extracted with
mod2obspred. Alternatively, you can input the ’obs’ and ’pred’ arguments in-
stead of “model’.

obs alternatively to 'model’ and together with ’pred’, a numeric vector of observed
presences (1) and absences (0) of a binary response variable. Alternatively (and
if *pred’ is a ’SpatRaster’), a two-column matrix or data frame containing, re-
spectively, the x (longitude) and y (latitude) coordinates of the presence points,
in which case the 'obs’ vector will be extracted with ptsrast2obspred. This
argument is ignored if *'model’ is provided.

HLfit

pred

bin.method

n.bins

fixed.bin.size

min.bin.size

35

alternatively to 'model’ and together with ’obs’, a vector with the correspond-
ing predicted values of presence probability, habitat suitability, environmental
favourability or alike. Must be of the same length and in the same order as "obs’.
Alternatively (and if "obs’ is a set of point coordinates), a ’SpatRaster’ map of
the predicted values for the entire evaluation region, in which case the ’pred’
vector will be extracted with ptsrast2obspred. This argument is ignored if
’model’ is provided.

argument to pass to getBins specifying the method for grouping the records
into bins within which to compare predicted probability to observed prevalence;
type modEvAmethods("getBins") for available options, and see Details for more
information.

argument to pass to getBins specifying the number of bins to use if bin.method
= n.bins or bin.method = quantiles. The default is 10.

argument to pass to getBins, a logical value indicating whether to force bins to
have (approximately) the same size. The default is FALSE.

argument to pass to getBins specifying the minimum number of records in each
bin. The default is 15, the minimum required for accurate comparisons within
bins (Jovani & Tella 2006, Jimenez-Valverde et al. 2013).

min.prob.interval

quantile. type

simplif

verbosity

alpha

plot
plot.values
plot.bin.size
xlab

ylab

na.rm

rm.dup

argument to pass to getBins specifying the minimum interval (range) of proba-
bility values within each bin. The default is 0.1.

argument to pass to quantile specifying the algorithm to use if bin.method =
"quantiles". The default is 7 (the quantile default in R), but check out other
types, e.g. 3 (used by SAS), 6 (used by Minitab and SPSS) or 5 (appropriate for
deciles, which correspond to the default n.bins = 10).

logical, wheter to perform a faster simplified version returning only the basic
statistics. The default is FALSE.

integer specifying the amount of messages or warnings to display. Defaults to
the maximum implemented; lower numbers (down to 0) decrease the number of
messages.

alpha value for confidence intervals if plot = TRUE.

logical, whether to produce a plot of the results. The default is TRUE.
logical, whether to report measure values in the plot. The default is TRUE.
logical, whether to report bin sizes in the plot. The default is TRUE.

label for the x axis.

label for the y axis.

Logical value indicating whether missing values should be ignored in computa-
tions. Defaults to TRUE.

If TRUE and if "pred’ is a SpatRaster and if there are repeated points within the
same pixel, a maximum of one point per pixel is used to compute the presences.
See examples in ptsrast2obspred. The default is FALSE.

further arguments to pass to the plot function.

36 HLfit

Details

Most of the commonly used measures for evaluating model performance focus on the discrimina-
tion or the classification capacity, i.e., how well the model is capable of distinguishing or classifying
presences and absences (often after the model’s continuous predictions of presence probability or
alike are converted to binary predictions of presence or absence). However, there is another im-
portant facet of model evaluation: calibration or reliability, i.e., the relationship between predicted
probability and observed occurrence frequency (Pearce & Ferrier 2000; Jimenez-Valverde et al.
2013). The HLfit function measures model reliability with the Hosmer & Lemeshow goodness-of-
fit statistic (Hosmer & Lemeshow 1980).

Note that this statistic has strong limitations and caveats (see e.g. http://www.statisticalhorizons.com/hosmer-
lemeshow, Allison 2014), mainly due to the need to group the values into bins within which to com-

pare probability and prevalence, and the strong influence of the binning method on the results. The

"HLfit’ function can use several binning methods, which are implemented and roughly explained in

the getBins function and can be accessed by typing 'modEvAmethods("getBins")’. You should try

"HLAit” with different binning methods to see how if the results are robust.

Value

HLfit returns a list with the following components:

bins.table a data frame of the obtained bins and the values resulting from the hosmer-
Lemeshow goodness-of-fit analysis.

chi.sq the value of the Chi-squared test.

DF the number of degrees of freedom.

p.value the p-value of the Hosmer-Lemeshow test. Note that this is one of those tests
for which higher p-values are better.

RMSE the root mean squared error.

Note

The 4 lines of code from "observed" to "p.value" were adapted from the "hosmerlem’ function
available at http://www.stat.sc.edu/~hitchcock/diseaseoutbreakRexample704.txt. The plotting code
was loosely based on the calibration.plot function in package PresenceAbsence. HLfit still
needs some code simplification, and may fail for some datasets and binning methods. Fixes are
being applied. Feedback is welcome.

Author(s)

A. Marcia Barbosa

References

Allison P.D. (2014) Measures of Fit for Logistic Regression. SAS Global Forum, Paper 1485
Hosmer D.W. & Lemeshow S. (1980) A goodness-of-fit test for the multiple logistic regression
model. Communications in Statistics, A10: 1043-1069

Jimenez-Valverde A., Acevedo P., Barbosa A.M., Lobo J.M. & Real R. (2013) Discrimination ca-
pacity in species distribution models depends on the representativeness of the environmental do-
main. Global Ecology and Biogeography 22: 508-516

HLfit 37

Jovani R. & Tella J.L. (2006) Parasite prevalence and sample size: misconceptions and solutions.
Trends in Parasitology 22: 214-218

Pearce J. & Ferrier S. (2000) Evaluating the Predictive Performance of Habitat Models Developed
using Logistic Regression. Ecological Modeling, 133: 225-245

See Also

getBins,MillerCalib

Examples

load sample models:

data(rotif.mods)

choose a particular model to play with:

mod <- rotif.mods$models[[1]]

try HLfit using different binning methods:

HLfit(model = mod, bin.method = "round.prob”,
main = "HL GOF with round.prob (n=10)")

HLfit(model = mod, bin.method = "prob.bins",

main = "HL GOF with prob.bins

HLfit(model = mod, bin.method
main = "HL GOF with size.bins

HLfit(model = mod, bin.method
main = "HL GOF with size.bins

HLfit(model = mod, bin.method
main = "HL GOF with 10 bins")

HLfit(model = mod, bin.method

(n=10)")

= "size.bins",
(min size=15)")

= "size.bins", min.bin.size = 30,
min size 30")

= "n.bins",

= "n.bins”, fixed.bin.size = TRUE,

main = "HL GOF with 1@ bins of fixed size")

HLfit(model = mod, bin.method
main = "HL GOF with 20 bins”)

HLfit(model = mod, bin.method

= "n.bins"”, n.bins = 20,

_n : n
= "quantiles”,

main = "HL GOF with quantile bins (n=10)")

HLfit(model = mod, bin.method

= "quantiles”, n.bins = 20,

main = "HL GOF with quantile bins (n=20)")

you can also use 'predPlot' with vectors of observed and predicted values

38

inputMunch

instead of a model object:

presabs <- mod$y

prediction <- mod$fitted.values

HLfit(obs

presabs, pred = prediction, bin.method = "round.prob”)

'obs' can also be a table of presence point coordinates
and 'pred' a SpatRaster of predicted values

inputMunch

Munch inputs into ’obs’ and ’pred’ vectors

Description

This function is used internally by many other functions in this package to check and extract the
’obs’ and ’pred’ vectors from the user inputs.

Usage

inputMunch(model = NULL, obs = NULL, pred = NULL, rm.dup = FALSE, na.rm = FALSE,
pbg = FALSE, verbosity = 2)

Arguments

model

obs

pred

rm.dup

non non non

a binary-response model object of class "glm", "gam", "gbm", "randomForest"
or "bart". If this argument is provided, 'obs’ and ’pred’ will be extracted with
mod2obspred. Alternatively, you can input the *obs’ and ’pred’ arguments (e.g.
for external test data) instead of model’.

alternatively to 'model” and together with ’pred’, a numeric vector of observed
presences (1) and absences (0) of a binary response variable. Alternatively (and
if *pred’ is a ’SpatRaster’), a two-column matrix or data frame containing, re-
spectively, the x (longitude) and y (latitude) coordinates of the presence points,
in which case the 'obs’ vector will be extracted with ptsrast2obspred. This
argument is ignored if *'model’ is provided.

alternatively to 'model’ and together with ’obs’, a vector with the correspond-
ing predicted values of presence probability, habitat suitability, environmental
favourability or alike. Must be of the same length and in the same order as "obs’.
Alternatively (and if "obs’ is a set of point coordinates), a ’SpatRaster’ map of
the predicted values for the entire evaluation region, in which case the ’pred’
vector will be extracted with ptsrast2obspred. This argument is ignored if
’model’ is provided.

logical argument to be passed to ptsrast2obspred indicating whether repeated
points within the same pixel should be removed. The default is FALSE.

logLike 39

na.rm logical argument indicating whether to remove (with a warning saying how
many) rows with NA in any of the resulting obs’ or ’pred’ values. The default
is FALSE.

pbg logical value indicating whether to output presence/background (rather than

presence/absence) data. If set to TRUE, the ’pred’ values at presences ('obs’
= 1) are added to the background (’obs’ = 0). Similar to what is done in pres-
ence/background modelling algorithms such as Maxent (e.g. analogous to the
’addsamplestobackground’ argument of maxnet::maxnet). Experimental! De-
fault FALSE.

verbosity integer value indicating the amount of messages to display. Defaults to 2, for
the maximum amount of messages.

Value

This function returns a two-column data frame containing the obs’ and ’pred’ values, or an error
message if inputs are not as required.

Author(s)
A. Marcia Barbosa

loglike Log-likelihood

Description

This function computes the log-likelihood of a model, given a model object or a set of observed and
predicted values (or presence points and raster predictions).

Usage

loglLike(model = NULL, obs = NULL, pred = NULL, na.rm = TRUE, plot = TRUE, verbosity = 2)

Arguments
model a model object of class implemented in mod2obspred. If this argument is pro-
vided, ’obs’ and ’pred’ will be extracted with that function. Alternatively, you
can input the "obs’ and ’pred’ arguments instead of model’.
obs alternatively to 'model’ and together with ’pred’, a numeric vector of observed

values of the response variable. Alternatively (and if ’pred’ is a ’SpatRaster’),
a two-column matrix or data frame containing, respectively, the x (longitude)
and y (latitude) coordinates of presence points, in which case the ’obs’ vector
of presences and absences will be extracted with ptsrast2obspred. This argu-
ment is ignored if 'model’ is provided.

40 logLike

pred alternatively to “model’ and together with ’obs’, a vector with the corresponding
predicted values, of the same length and in the same order as ’obs’. Alternatively
(and if "obs’ is a set of point coordinates), a ’SpatRaster’ map of the predicted
values for the entire evaluation region, in which case the ’pred’ vector will be
extracted with ptsrast2obspred. This argument is ignored if *'model’ is pro-

vided.

na.rm logical value indicating whether missing values should be ignored in computa-
tions. Defaults to TRUE.

plot logical value indicating whether to plot the sorted values in log() (see Details).
The default is TRUE.

verbosity integer specifying the amount of messages to display. Defaults to the maximum

implemented; lower numbers (down to 0) decrease the number of messages.

Details

The log-likelihood can be a measure of model calibration (Lawson et al. 2014, Fithian et al. 2015,
Fletcher & Fortin 2018). The higher the value, the better the predictions fit the observations.

The log-likelihood is computed as sum(log(pred*obs+(1-pred)*(1-obs))) (Fletcher & Fortin 2018,
p- 234). If plot=TRUE, a plot is shown with the values within sum(), both within and outside log().

In the first instance of ’pred’ in the formula above, a very small constant is added to the ’pred’
values of zero, because the logarithm of zero is undefined. This added constant is smaller (i.e.
closer to the original value of zero) here than in the R code accompanying Fletcher & Fortin (2018),
specifically 2e-16 rather than 0.001, which may justify some differences in the results when there
are predictions of exactly zero. In any case, whatever constant is used, it should be the same across
the models being compared.

Value

This function returns a numeric value indicating the log-likelihood of the input model predictions
given the input observations.

Author(s)

A. Marcia Barbosa

References

Fithian, W., Elith, J., Hastie, T., Keith, D.A., 2015. Bias correction in species distribution models:
pooling survey and collection data for multiple species. Methods in Ecology and Evolution 6:424-
438. https://doi.org/10.1111/2041-210X.12242

Fletcher R. & Fortin M.-J. (2018) Spatial Ecology and Conservation Modeling. Applications with
R. Springer Nature Switzerland. Cham: 532 pp. https://www.fletcherlab.com/spatial-ecology-
conservation-modeli

Lawson, C.R., Hodgson, J.A., Wilson, R.J., Richards, S.A., 2013. Prevalence, thresholds and the
performance of presence-absence models. Methods in Ecology and Evolution 5, 54-64. https://doi.org/10.1111/2041-
210X.12123

lollipop 41

See Also
loglLik,MillerCalib, HLfit, Boyce, RMSE, Dsquared, RsqGLM

Examples

load sample models:
data(rotif.mods)

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

loglike(model = mod)
you can also use loglLike with vectors of observed and predicted values
instead of with a model object:

obs <- mod$y
pred <- mod$fitted.values

loglike(obs = obs, pred = pred)

'obs' can also be a table of presence point coordinates
and 'pred' a SpatRaster of predicted values

lollipop Lollipop chart

Description

This function creates a lollipop chart (by default), a points chart (if sticks = FALSE) or a point-
range chart (if sticks are confidence limits) from a (named) numeric vector.

Usage
lollipop(x, names = NULL, ymin = @, ylim = "auto@”, sticks = TRUE,
col = "royalblue4", grid = TRUE, cex = 1, cex.axis = 1, las = 2,
horiz = FALSE, bold = FALSE, ...)
Arguments
X a numeric vector.
names a vector of the same length as ’x’ with the names to be plotted below the lol-
lipops. If this argument is left NULL and ’x’ has names, then these will be
used.
ymin numeric value for the lower limit of the y axis (default 0). If set to NA, the min-

imum of ’x’ will be used. This argument is deprecated, as it is now superseded
by, and should be replaced with, *ylim’ (below).

42

ylim

sticks

col
grid

cex

cex.axis

las

horiz

bold

Details

lollipop

either a numeric vector of length 2 specifying the limits (minimum, maximum)
for the y axis; or "auto" to fit the y axis to the minimum and maximum existing
values in ’x’; or "auto0" (the new default) to fit the top of the y axis to the
maximum existing values, and the bottom to zero or the minimum existing value
(whichever is lower). If horiz is TRUE, these limits refer instead to the x axis.

either a logical value indicating whether the sticks of the lollipops (lines from
zero to each value) should be drawn (default TRUE); or a two-column matrix or
dataframe with one row for each element in x, with the minimum and maximum
values for the error bars or confidence intervals (in which case a point-range
chart is drawn).

colour for the lollipops.
logical value (default TRUE) indicating whether or not to add a grid to the plot.

numeric value indicating the size of the lollipops. Will be passed as ’cex’ to
points and as ’Iwd’ to arrows (the lines or lollipop sticks).

numeric value to pass to axis and to mtext indicating the size of the x and y
axis labels.

argument to pass to par indicating the orientation of the axis labels.

logical value (default FALSE) indicating whether the plot should be drawn hor-
izontally rather than vertically.

logical vector (recycled if shorter than x, default FALSE) indicating which name
labels should appear in bold font. Can be used e.g. to highlight significant values
(see e.g. plotCoeffs).

additional arguments that can be passed to plot, e.g. *main’, "xlab’ or "ylab’.

According to modern data viz recommendations, lollipop charts (or instead point charts) are gener-
ally a better alternative to bar charts, as they reduce the visual distortion caused by the length of the
bars, making it easier to visually compare the values.

Value

A plot.

Author(s)

A. Marcia Barbosa

See Also

plotCoeffs; barplot; ggplot2: :geom_pointrange()

MESS 43

Examples
par(mar = c(6, 3, 2, 1))

lollipop(mtcars[,1], names = rownames(mtcars), las = 2,
ylab = names(mtcars)[1], cex.axis = 0.6)

lollipop(mtcars[,1], names = rownames(mtcars), las = 2,
ylab = names(mtcars)[1], cex.axis = 0.6, ylim = NA)
par(mar = c(3, 6, 2, 1))

lollipop(mtcars[,1], names = rownames(mtcars), las = 2,

xlab = "Miles/gallon”, cex.axis = 0.6, main = "Lollipop chart of mtcars”,
horiz = TRUE)

MESS Multivariate Environmental Similarity Surfaces based on a data frame

Description

This function performs the MESS analysis of Elith et al. (2010) to determine the extent of the
environmental differences between model training and model projection (extrapolation) data. It is
applicable to variables in a matrix or data frame.

Usage

MESS(V, P, id.col = NULL, verbosity = 2)

Arguments

\% a matrix or data frame containing the variables (one in each column) in the
training dataset.

P a matrix or data frame containing the same variables in the area to which the
model(s) will be projected. Variables (columns) must be in the same order as in
V, and colnames(P) must exist.

id.col optionally, the index number of a column containing the row identifiers in P. If
provided, this column will be excluded from MESS calculations but included in
the output.

verbosity Integer number indicating the amount of messages to display while computing

the results. The default is to display all messages. Set verbosity=0 for no mes-
sages.

44 MESS

Details

When model predictions are projected into regions, times or spatial resolutions not analysed in the
training data, it may be important to measure the similarity between the new environments and
those in the training sample (Elith et al. 2010), as models are not so reliable when predicting
outside their domain (Barbosa et al. 2009). The Multivariate Environmental Similarity Surfaces
(MESS) analysis measures the similarity in the analysed variables between any given locality in the
projection dataset and the localities in the reference (training) dataset (Elith et al. 2010).

MESS analysis is implemented in the MAXENT software (Phillips et al. 2006) and in the dismo
R package, but there it requires input variables in raster format. This implies not only the use of
complex spatial data structures, but also that the units of analysis are rectangular pixels, whereas we
often need to model distribution data recorded on less regular units (e.g. provinces, river basins),
or on equal-area cells that are not necessarily rectangular (e.g. UTM cells, equal-area hexagons or
other geometric shapes). The MESS function computes this analysis for variables in a data frame,
where localities (in rows) may be of any size or shape.

Value

The function returns a data frame with the same column names as P, plus a column named TOTAL,
quantifying the similarity between each point in the projection dataset and those in the reference
dataset. Negative values indicate localities that are environmentally dissimilar from the reference
region. The last column, MoD, indicates which of the column names of P corresponds to the most
dissimilar variable, i.e., the limiting factor or the variable that drives the MESS in that locality (Elith
et al. 2010).

Note

Newer and apparently more complete methods for analysing environmental dissimilarities have
been developed, such as extrapolation detection (ExDet; Mesgaran et al. 2014) and Mobility-
Oriented Parity analysis (MOP; Owens et al. 2013).

Author(s)

Alberto Jimenez-Valverde, A. Marcia Barbosa

References

Barbosa A.M., Real R. & Vargas J.M. (2009) Transferability of environmental favourability models
in geographic space: the case of the Iberian desman (Galemys pyrenaicus) in Portugal and Spain.
Ecological Modelling 220: 747-754

Elith J., Kearney M. & Phillips S. (2010) The art of modelling range-shifting species. Methods in
Ecology and Evolution 1: 330-342

Mesgaran M.B., Cousens R.D. & Webber B.L. (2014) Here be dragons: a tool for quantifying
novelty due to covariate range and correlation change when projecting species distribution models.
Diversity and Distributions, 20: 1147-1159

Owens H.L., Campbell L.P., Dornak L.L., Saupe E.E., Barve N., Soberon J., Ingenloff K., Lira-
Noriega A., Hensz C.M., Myers C.E. & Peterson A.T. (2013) Constraints on interpretation of eco-
logical niche models by limited environmental ranges on calibration areas. Ecological Modelling,
263: 10-18

MESS 45

Phillips S.J., Anderson R.P. & Schapire R.E. (2006) Maximum entropy modeling of species geo-
graphic distributions. Ecological Modelling 190: 231-259

See Also

0A; mess in packages dismo and predicts; ecospat.climan in package ecospat; kuenm_mop and
kuenm_mmop in package kuenm

Examples
Not run:
load package 'fuzzySim' and its sample data:
require(fuzzySim)
data(rotif.env)
add a column specifying the hemisphere:
unique(rotif.env$CONTINENT)

rotif.env$HEMISPHERE <- "Eastern”

rotif.env$HEMISPHERE[rotif.env$CONTINENT %in%
c("NORTHERN_AMERICA", "SOUTHERN_AMERICA")] <- "Western”

head(rotif.env)
perform a MESS analysis
suppose you'll extrapolate models from the Western hemisphere (Americas)

to the Eastern hemisphere (rest of the world):

names(rotif.env) # variables are in columns 5:17

west <- subset(rotif.env, HEMISPHERE == "Western”, select = 5:17)
east <- subset(rotif.env, HEMISPHERE == "Eastern”, select = 5:17)
east.with.ID <- subset(rotif.env, HEMISPHERE == "Eastern”,

select = c(1, 5:17))

head(east)
head(east.with.ID) # ID is in column 1

mess <- MESS(V = west, P = east)
mess.with.ID <- MESS(V = west, P = east.with.ID, id.col = 1)

head(mess)
head(mess.with.ID)

range(mess[, "TOTAL"])

End(Not run)

46 MillerCalib

MillerCalib Miller’s calibration satistics for logistic regression models

Description

This function calculates Miller’s (1991) calibration statistics for a presence probability model —
namely, the intercept and slope of a logistic regression of the response variable on the logit of
predicted probabilities. Optionally and by default, it also plots the corresponding regression line
over the reference diagonal (identity line). If the model is well calibrated, the line should lie along
(or at least be nearly parallel to) the reference diagonal, i.e. the slope should ideally equal 1.

Usage

MillerCalib(model = NULL, obs = NULL, pred = NULL, plot = TRUE,
line.col = "darkblue"”, diag = TRUE, diag.col = "lightblue3”,

plot.values = TRUE, digits = 2, xlab = "", ylab = "",

main = "Miller calibration”, na.rm = TRUE, rm.dup = FALSE, verbosity = 2, ...)
Arguments

model a binary-response model object of class "glm", "gam", "gbm", "randomForest"

or "bart". If this argument is provided, ’obs’ and ’pred’ will be extracted with
mod2obspred. Alternatively, you can input the ’obs’ and ’pred’ arguments in-
stead of “model’.

obs alternatively to 'model’ and together with ’pred’, a numeric vector of observed
presences (1) and absences (0) of a binary response variable. Alternatively (and
if *pred’ is a ’SpatRaster’), a two-column matrix or data frame containing, re-
spectively, the x (longitude) and y (latitude) coordinates of the presence points,
in which case the 'obs’ vector will be extracted with ptsrast2obspred. This
argument is ignored if *'model’ is provided.

pred alternatively to 'model’ and together with "obs’, a vector with the correspond-
ing predicted values of presence probability, habitat suitability, environmental
favourability or alike. Must be of the same length and in the same order as "obs’.
Alternatively (and if 'obs’ is a set of point coordinates), a ’SpatRaster’ map of
the predicted values for the entire evaluation region, in which case the ’pred’
vector will be extracted with ptsrast2obspred. This argument is ignored if
’model’ is provided.

plot logical (default TRUE), whether or not to produce a plot of the Miller regression
line.

line.col colour for the Miller regression line (if plot = TRUE).

diag logical (default TRUE), whether or not to add the reference diagonal (if plot =
TRUE).

diag.col line colour for the reference diagonal.

plot.values logical (default TRUE), whether or not to show in the plot the values of the
intercept, slope, and absolute difference between the slope and the ideal value
of 1.

MillerCalib 47

digits integer number indicating the number of digits to which the values in the plot
should be rounded. Dafaults to 2. This argument is ignored if ’plot’ or ’plot.values’
are set to FALSE.

xlab label for the x axis.

ylab label for the y axis.

main title for the plot.

na.rm Logical value (default TRUE) indicating whether missing values should be ig-

nored in computations.

rm.dup If TRUE and if ’pred’ is a SpatRaster and if there are repeated points within the
same pixel, a maximum of one point per pixel is used to compute the presences.
See examples in ptsrast2obspred. The default is FALSE.

verbosity integer specifying the amount of messages to display. Defaults to the maximum
implemented; lower numbers (down to 0) decrease the number of messages.

additional arguments to pass to plot.

Details

Calibration or reliability measures how a model’s predicted probabilities relate to observed species
prevalence or proportion of presences in the modelled data (Pearce & Ferrier 2000; Wintle et al.
2005; Franklin 2010). If predictions are perfectly calibrated, the slope will equal 1 and the intercept
will equal 0, so the model’s calibation line will perfectly overlap with the reference diagonal or
identity line.

Note that Miller’s statistics assess the model globally: a model is well calibrated if the average of
all predicted probabilities equals the proportion of presences in the modelled data. For logistic re-
gression models, perfect calibration is always attained on the same data used for building the model
(Miller 1991); Miller’s calibration statistics are mainly useful when projecting a model outside those
training data.

Calibration can be separated into two measurable components, bias and spread, and a third com-
ponent, unexplained error. Bias describes a consistent overestimate or underestimate of presence
probability, which is reflected by a Miller intercept above or below 0 (i.e., a model line above or
below the reference diagonal). Spread describes a departure of the model line from the 45-degree
slope. A slope greater than 1 indicates that predicted values above 0.5 are underestimating, and
predicted values below 0.5 are overestimating, the probability of presence. A slope smaller than 1
(while greater than 0) implies that predicted values below 0.5 are underestimating, and values above
0.5 are overestimating, the probability of presence (Pearce & Ferrier 2000). A Miller slope very
different from 1 indicates a poorly calibrated model. Baquero et al. (2021) proposed that a value
between 0.5 and 1.5 (i.e., absolute slope difference up to 0.5) can be considered not very different
from 1. The unexplained error component can be assessed, though only in part, through residual
analysis (Miller 1991; Pearce & Ferrier 2000).

While Miller’s calibration statistics were originally conceived for generalized linear models with
binomial distribution and logit link (Miller 1991), they may also apply to other models that also
estimate presence probability, including those that use different link functions such as probit or
cloglog. Regardless of how they get there, these models attempt to estimate presence probabilities
as well calibrated as possible, and the logit is the canonical link for the Bernoulli distribution which
is appropriate for a binary response variable (Jane Elith, pers. comm.). Indeed, the Miller slope is
visibly worse when those other link functions are used for computing it.

48 MillerCalib

Miller’s calibration slope (though not the intercept) is also adequate to assess the calibration of
other predictions related to presence probability, such as suitability and favourability (see e.g. *Fav’
function in the fuzzySim package). Indeed, the slope is the same for presence probability and its
corresponding favourability value (see Examples, bottom).

Value

This function returns a list of three numeric values:

intercept the calibration intercept.
slope the calibration slope.
slopeDiff the absolute difference between the obtained slope and the optimal value of 1.

If plot = TRUE, a plot will be produced with the model calibration line, optionally (if diag = TRUE)
over the reference diagonal, and also optionally (if plot.values = TRUE) with the output values
printed on it.

Author(s)

A. Marcia Barbosa

References

Baquero R.A., Barbosa A.M., Ayllon D., Guerra C., Sanchez E., Araujo M.B. & Nicola G.G. (2021)
Potential distributions of invasive vertebrates in the Iberian Peninsula under projected changes in
climate extreme events. Diversity and Distributions, 27(11): 2262-2276

Franklin, J. (2010) Mapping Species Distributions: Spatial Inference and Prediction. Cambridge
University Press, Cambridge

Miller M.E., Hui S.L. & Tierney W.M. (1991) Validation techniques for logistic regression models.
Statistics in Medicine, 10: 1213-1226

Pearce J. & Ferrier S. (2000) Evaluating the predictive performance of habitat models developed
using logistic regression. Ecological Modelling, 133: 225-245

Wintle B.A., Elith J. & Potts J.M. (2005) Fauna habitat modelling and mapping: A review and case
study in the Lower Hunter Central Coast region of NSW. Austral Ecology, 30: 719-738
See Also

HLfit, Dsquared, RsqGLM, Boyce

Examples

load sample models:
data(rotif.mods)

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

MillerCalib(model
MillerCalib(model

mod)
mod, plot.values = FALSE, main = "Model calibration line")

modZ2obspred 49

you can also use MillerCalib with vectors of observed and predicted values
instead of a model object:

MillerCalib(obs = mod$y, pred = mod$fitted.values)
'obs' can also be a table of presence point coordinates
and 'pred' a SpatRaster of predicted values

Miller slope can also apply to predictions other than probability:

Not run:
(the following code requires the 'fuzzySim' pkg installed)

MillerCalib(obs = mod$y, pred = mod$fitted.values) # probability
fav <- fuzzySim::Fav(model = mod) # favourability

MillerCalib(obs = mod$y, pred = fav) # same slope, different intercept

End(Not run)

mod2obspred Extract observed and predicted, or predictor, values from a model ob-
Ject.

Description

This function takes a model object and returns the observed and (optionally) the predicted (fitted)
values from that model; or the values of the predictors in the model.

Usage
mod2obspred(model, obs.only = FALSE, x.only = FALSE)

Arguments

model a model object of class "glm", "gam", "gbm", "GBMFit", "randomForest" or
"bart" from which the response variable and fitted (predicted) values can be ex-
tracted. Note that, for "randomForest" models, only the out-of-bag prediction is
available from the model object (see ?randomForest: :predict.randomForest),
so here you’ll get different results if you provide 'model’ or the modelled *obs’
(and corresponding "pred’) values.

obs.only logical value (default FALSE) indicating whether only ’obs’ should be obtained.
Saves computing time when *pred’ not needed. Used e.g. by prevalence).

x.only logical value (default FALSE) indicating whether only *x’ or ’data’ (the predic-
tor values) should be obtained. Used e.g. by varImp if imp.type = "permuta-
tion".

50 modEvAmethods

Value

A data frame with one column containing the observed and (if obs.only=FALSE, the default) an-
other column containing the predicted values from *model’; or a data frame with the ’x’, ’data’ or
predictor values from 'model’ (if x.only=TRUE).

Author(s)

A. Marcia Barbosa

See Also

prevalence

Examples

data(rotif.mods)
mod <- rotif.mods$models[[1]]

obspred <- mod2obspred(mod)
head(obspred)

obs <- mod2obspred(mod, obs.only = TRUE)
head(obs)

data <- mod2obspred(mod, x.only = TRUE)
head(data)

modEvAmethods Methods implemented in modEvA functions

Description

This function allows retrieving the methods available for some of the functions in modEvA, such as
similarity, threshMeasures, optiThresh, multModEv, getThreshold and getBins.

Usage
modEvAmethods (fun)
Arguments
fun a character vector of length 1 specifying the name (in quotes) of the function
for which to obtain the available methods. Must be one of "threshMeasures",
"optiThresh", "multModEv", "getThreshold" or "getBins".
Value

a character vector of the available methods for the specified function.

multModEv 51

Author(s)

A. Marcia Barbosa

See Also

threshMeasures, optiThresh, getBins, multModEv

Examples

modEvAmethods (" threshMeasures™)
modEvAmethods ("multModEv")
modEvAmethods("optiThresh")
modEvAmethods ("getBins")

modEvAmethods (”"similarity")

multModEv Multiple model evaluation

Description

If you have a list of GLM model objects (created, e.g., with the multGLM function of the *fuzzySim’
R-Forge package), or a data frame with presence-absence data and the corresponding predicted
values for a set of species, you can use the multModEv function to get a set of evaluation measures
for all models simultaneously, as long as they all have the same sample size.

Usage

multModEv(models = NULL, obs.data = NULL, pred.data = NULL,
measures = modEvAmethods(”"multModEv"”), standardize = FALSE,

thresh = NULL, bin.method = NULL, verbosity = 0, ...)
Arguments
models a list of model object(s) of class "glm", all applied to the same data set. Evalua-

tion is based on the cases included in the models.

obs.data a data frame with observed (training or test) binary data. This argument is ig-
nored if *'models’ is provided.

pred.data a data frame with the corresponding predicted (training or test) values, with both
rows and columns in the same order as in ’obs.data’. This argument is ignored
if "'models’ is provided. Note that, for calibration measures (based on HLfit
or MillerCalib), the results are only valid if the input predictions represent
probability.

52 multModEv

measures character vector of the evaluation measures to calculate. The default is all imple-
mented measures, which you can check by typing 'modEvAmethods("multModEv")’.
But beware: calibration measures (i.e., HL. and Miller) are only valid if your
predicted values reflect actual presence probability (not favourability, habitat
suitability or others); you should exclude them otherwise.

standardize logical, whether to standardize measures that vary between -1 and 1 to the 0-1
scale (see standard@1). The default is FALSE.
thresh argument to pass to threshMeasures if any of 'measures’ is calculated by

that function. The default is NULL, but a valid method must be specified
if any of *measures’ is threshold-based - i.e., any of those in 'modEvAmeth-
ods("threshMeasures")’.

bin.method the method with which to divide the data into groups or bins, for calibration or
reliability measures such as HLfit. The default is NULL, but a valid method
must be specified if 'measures’ includes "HL" or "HL.p". Type modEvAmeth-
ods("getBins") for available options), and see HLfit and getBins for more in-
formation.

verbosity integer specifying the amount of messages or warnings to display. Defaults to
0, but can also be 1 or 2 for more messages from the functions within.

optional arguments to pass to HLfit (if "HL" or "HL.p" are included in *mea-
sures’), namely n.bins, fixed.bin.size, min.bin.size, min.prob.interval or quan-
tile.type.

Value

A data frame with the value of each evaluation measure for each model.

Author(s)
A. Marcia Barbosa

See Also

threshMeasures
Examples
data(rotif.mods)

evall <- multModEv(models = rotif.mods$models[1:6], thresh = 0.5,
bin.method = "n.bins"”, fixed.bin.size = TRUE)

head(evall)
eval2 <- multModEv(models = rotif.mods$models[1:6],
thresh = "preval”, measures = c("AUC", "AUCPR", "CCR",

"Sensitivity"”, "TSS"))

head(eval2)

OA 53

you can also calculate evaluation measures for a set of
observed vs predicted data, rather than from model objects:

obses <- sapply(rotif.mods$models, “[[~, "y")
preds <- sapply(rotif.mods$models, “[[~, "fitted.values")

eval3 <- multModEv(obs.data = obses[, 1:4],
pred.data = preds[, 1:4], thresh = "preval”,
bin.method = "prob.bins")

head(eval3)

OA Overlap Analysis

Description
This function analyses the range of values of the given environmental variables at the sites where a
species has been recorded present.

Usage

OA(data, sp.cols, var.cols)

Arguments
data a data frame with your species’ occurrence data and the predictor variables.
sp.cols index number of the column containing the occurrence data of the species to be
modelled. Currently only one species can be analysed at a time.
var.cols index numbers of the columns containing the predictor variables to be used.
Details

Overlap Analysis is one of the simplest forms of modelling species’ distributions. It assesses the
ranges of values of the given environmental variables at the sites where a species has been recorded
present, and predicts where that species should be able to occur based on those presence data (e.g.
Brito et al. 1999, Arntzen & Teixeira 2006).

OA can also be useful when extrapolating models outside their original scope (geographical area,
time period or spatial resolution), as it can identify which localities are within the model’s domain
- i.e., within the analysed ranges of values of the variables, outside which the model may not be
reliable (e.g. Barbosa et al. 2009). In this case, the response is not a species’ presence, but rather
the sites that have been included in the model. See also the MESS function for a comparison between
modelled and extrapolation environments.

Input data for the OA function are a vector or column with ones and zeros (presences vs. absences
of a species if we want to model its occurrence, or modelled vs. non-modelled sites if we want to

54 optiPair

know which non-modelled sites are within the modelled range), and a matrix or data frame with
the corresponding values of the environmental variables to consider (one variable in each column,
values in rows).

Value

A binary vector whith 1 where the values of all predictors lie within the ranges observed for the
presence records, and 0 otherwise.

Author(s)

A. Marcia Barbosa

References

Arntzen J.W, Teixeira J. (2006) History and new developments in the mapping and modelling of the
distribution of the golden-striped salamander, Chioglossa lusitanica. Zeitschrift fur Feldherpetolo-
gie, Supplement: 1-14.

Barbosa, A.M., Real, R. & Vargas, J.M. (2009) Transferability of environmental favourability mod-
els in geographic space: the case of the Iberian desman (Galemys pyrenaicus) in Portugal and Spain.
Ecological Modelling 220: 747-754.

Brito J.C., Crespo E.G., Paulo O.S. (1999) Modelling wildlife distributions: Logistic Multiple Re-
gression vs Overlap Analysis. Ecography 22: 251-260.
See Also

MESS

Examples

Not run:

load package 'fuzzySim' and its sample data:
require(fuzzySim)

data(rotif.env)

names(rotif.env)

OA(rotif.env, sp.cols = 18, var.cols = 5:17)

End(Not run)

optiPair Optimize the classification threshold for a pair of related model eval-
uation measures.

optiPair 55

Description

This function can optimize a model’s classification threshold based on a pair of model evaluation
measures that balance each other, such as sensitivity-specificity, precision-recall (i.e., positive pre-
dictive power vs. sensitivity), or omission-commission, or underprediction-overprediction (Fielding
& Bell 1997; Liu et al. 2011; Barbosa et al. 2013). The function plots both measures of the given
pair against all thresholds with a given interval, and calculates the optimal sum, difference and mean
of the two measures.

Usage

optiPair(model = NULL, obs = NULL, pred = NULL,

measures = c("Sensitivity”, "Specificity”), interval = 0.01, pbg = FALSE,
plot = TRUE, plot.sum = FALSE, plot.diff = FALSE, coll = "darkblue”,
col2 = "lightblue3"”, ylim = NULL, na.rm = TRUE, exclude.zeros = TRUE,

rm.dup = FALSE, verbosity = 2, ...)
Arguments
model a binary-response model object of class "glm", "gam", "gbm", "randomForest"

or "bart". If this argument is provided, "obs’ and ’pred’ will be extracted with
mod2obspred. Alternatively, you can input the "obs’ and ’pred’ arguments in-
stead of "'model’.

obs alternatively to “'model’ and together with ’pred’, a numeric vector of observed
presences (1) and absences (0) of a binary response variable. Alternatively (and
if *pred’ is a ’SpatRaster’), a two-column matrix or data frame containing, re-
spectively, the x (longitude) and y (latitude) coordinates of the presence points,
in which case the 'obs’ vector will be extracted with ptsrast2obspred. This
argument is ignored if *'model’ is provided.

pred alternatively to 'model’ and together with ’obs’, a vector with the correspond-
ing predicted values of presence probability, habitat suitability, environmental
favourability or alike. Must be of the same length and in the same order as "obs’.
Alternatively (and if "obs’ is a set of point coordinates), a ’SpatRaster’ map of
the predicted values for the entire evaluation region, in which case the ’pred’
vector will be extracted with ptsrast2obspred. This argument is ignored if
’model’ is provided.

measures a character vector of length 2 indicating the pair of measures whose curves to
plot and whose combined threshold to optimize. Available measures can be
obtained with *'modEvAmethods("threshMeasures")’, but note that this func-
tion expects you to use two measures that counter-balance one another, such
as c("Sensitivity", "Specificity") [the default], c("Omission", "Commission"), or
c("Precision”, "Recall").

interval the interval of thresholds at which to calculate the measures. The default is 0.01.

pbg logical value to pass to inputMunch indicating whether to use presence/background
(rather than presence/absence) data. Default FALSE.

plot logical indicating whether or not to plot the pair of measures.

plot.sum logical, whether to plot the sum (+) of both measures in the pair. Defaults to

FALSE.

56

plot.diff

col1
col2

ylim

na.rm

exclude.zeros

rm. dup

verbosity

Value
The output is a list

measures.values

MinDiff
ThreshDiff

MaxSum
ThreshSum
MaxMean

ThreshMean

If plot=TRUE (the

optiPair

logical, whether to plot the difference (-) between both measures in the pair.
Defaults to FALSE.

plot colour for the 1st element in *measures’.
plot colour for the 2nd element in *measures’.

a character vector of length 2 indicating the lower and upper limits for the y axis.
The default is NULL for an automatic definition of *ylim’ based on the values
of the measures and their sum and/or difference if any of these are set to TRUE.

logical, whether NA values should be removed from the calculation of mini-
mum/maximum/mean values to get the optimized measures. Defaults to TRUE.

logical, whether non-finite and zero values should be removed from the calcu-
lation of minimum/maximum/mean values to get the optimized measures. De-
faults to TRUE.

If TRUE and if ’pred’ is a SpatRaster and if there are repeated points within the
same pixel, a maximum of one point per pixel is used to compute the presences.
See examples in ptsrast2obspred. The default is FALSE.

integer specifying the amount of messages to display. Defaults to the maximum
implemented; lower numbers (down to 0) decrease the number of messages.

additional arguments to be passed to the plot function.

with the following components:

a data frame with the values of the chosen pair of measures, as well as their
difference, sum and mean, at each threshold.

numeric value, the minimum difference between both measures.

numeric value, the threshold that minimizes the difference between both mea-
sures.

numeric value, the maximum sum of both measures.
numeric value, the threshold that maximizes the sum of both measures.
numeric value, the maximum mean of both measures.

numeric value, the threshold that maximizes the mean of both measures.

default), a plot is also produced with the value of each of 'measures’ at each

threshold, and horizontal and vertical lines marking, respectively, the threshold and value at which
the difference between the two *measures’ is minimal.

Author(s)

A. Marcia Barbosa

optiThresh 57

References

Barbosa, A.M., Real, R., Munoz, A.-R. & Brown, J.A. (2013) New measures for assessing model
equilibrium and prediction mismatch in species distribution models. Diversity and Distributions 19:
1333-1338

Fielding A.H. & Bell J.E. (1997) A review of methods for the assessment of prediction errors in
conservation presence/absence models. Environmental Conservation 24: 38-49

Liu C., White M., & Newell G. (2011) Measuring and comparing the accuracy of species distribu-
tion models with presence-absence data. Ecography, 34, 232-243.

See Also

getThreshold, optiThresh, threshMeasures

Examples

load sample models:
data(rotif.mods)

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

optiPair(model = mod)

optiPair(model = mod, measures = c("Precision”, "Recall”))

optiPair(model = mod, measures = c("UPR", "OPR"))

optiPair(model = mod, measures = c("CCR"”, "Flscore”))

you can also use 'optiPair' with vectors of observed

and predicted values, instead of a model object:

optiPair(obs = mod$y, pred = mod$fitted.values)

'obs' can also be a table of presence point coordinates
and 'pred' a SpatRaster of predicted values

optiThresh Optimize threshold for model evaluation.

Description

This function computes a number of model evaluation measures at optimal thresholds (see threshMeasures).

Optimization is given for each measure, and/or for all measures according to particular criteria (e.g.

optiThresh

Jimenez-Valverde & Lobo 2007; Liu et al. 2005; Nenzen & Araujo 2011). Results are given nu-
merically and in plots. See getThreshold if you’re after the optimized threshold rather than the

threshold-optimized evaluation measures.

Usage

optiThresh(model = NULL, obs = NULL, pred = NULL, interval = 0.01,

measures
optimize

c(modEvAmethods("threshMeasures”), modEvAmethods("similarity")),
modEvAmethods("optiThresh”), simplif = FALSE, pbg = FALSE,

plot = TRUE, sep.plots = FALSE, reset.par = TRUE, xlab = "Threshold”,

na.rm =

Arguments

model

obs

pred

pbg
interval

measures

optimize

simplif

plot

TRUE, rm.dup = FALSE, pch = 20, cex = 0.2, col = "darkblue",
verbosity = 2,

.2

non non non

a binary-response model object of class "glm", "gam", "gbm", "randomForest"
or "bart". If this argument is provided, *obs’ and ’pred” will be extracted with
mod2obspred. Alternatively, you can input the obs’ and "pred’ arguments in-
stead of “model’.

alternatively to “'model” and together with ’pred’, a numeric vector of observed
presences (1) and absences (0) of a binary response variable. Alternatively (and
if *pred’ is a ’SpatRaster’), a two-column matrix or data frame containing, re-
spectively, the x (longitude) and y (latitude) coordinates of the presence points,
in which case the 'obs’ vector will be extracted with ptsrast2obspred. This
argument is ignored if *'model’ is provided.

alternatively to 'model’ and together with ’obs’, a vector with the correspond-
ing predicted values of presence probability, habitat suitability, environmental
favourability or alike. Must be of the same length and in the same order as "obs’.
Alternatively (and if 'obs’ is a set of point coordinates), a ’SpatRaster’ map of
the predicted values for the entire evaluation region, in which case the ’pred’
vector will be extracted with ptsrast2obspred. This argument is ignored if
’model’ is provided.

logical value to pass to inputMunch indicating whether to use presence/background
(rather than presence/absence) data. Default FALSE.

numeric value between 0 and 1 indicating the interval between the thresholds at
which to calculate the evaluation measures. Defaults to 0.01.

character vector indicating the names of the model evaluation measures for
which to calculate optimal thresholds. The default is using all measures avail-
able in ’c(modEvAmethods("threshMeasures"), modEvAmethods("similarity"))’.

character vector indicating the threshold optimization criteria to use; "each" cal-
culates the optimal threshold for each model evaluation measure, while the re-
maining options optimize all measures according to the specified criterion. The
default is using all criteria available in *'modEvAmethods("optiThresh")’.

logical, whether to compute a faster simplified version. Used internally in other
functions.

logical, whether to plot the values of each evaluation measure at all thresholds.
Ignored if simplif=TRUE.

optiThresh

sep.plots

reset.par
xlab
na.rm
rm.dup
pch

cex

col

verbosity

Value

59

logical. If TRUE, each plot is shown separately (you need to be recording R
plot history to be able to browse through them all); if FALSE (the default), plots
are combined (using arrangePlots) in the same plotting window; if NA, the
current par () ["mfrow"] is used.

logical. If TRUE (the default), plotting parameters are reset in the end. FALSE
can be useful if the user wants to set their own parameters and combine this with
other plots.

character vector indicating the label of the x axis.

Logical value indicating whether missing values should be ignored in computa-
tions. Defaults to TRUE.

If TRUE and if "pred’ is a SpatRaster and if there are repeated points within the
same pixel, a maximum of one point per pixel is used to compute the presences.
See examples in ptsrast2obspred. The default is FALSE.

plotting character (symbol), argument to pass to plot.
character expansion (size), argument to pass to plot.
colour, argument to pass to plot.

integer specifying the amount of messages to display. Defaults to the maximum
implemented; lower numbers (down to 0) decrease the number of messages.

additional arguments that can be passed to plot.

This function returns a list with the following components:

all.thresholds a data frame with the values of all analysed measures at all analysed thresholds.

optimals.each

if "each" is among the threshold criteria specified in *optimize’, optimals.each
is output as a data frame with the value of each measure at its optimal threshold,
as well as the type of optimal for that measure (which may be the maximum for
measures of goodness such as "Sensitivity", or the minimum for measures of
badness such as "Omission").

optimals.criteria

Note

a data frame with the values of measure at the threshold that maximizes each of
the criteria specified in ’optimize’ (except for "each", see above).

"Sensitivity" is the same as "Recall", and "PPP" (positive predictive power) is the same as "Preci-
sion". "Flscore" is the harmonic mean of precision and recall.

Note

Some measures cannot be calculated for thresholds at which there are zeros in the confusion ma-
trix, hence the eventual ’NaN’ or ’Inf’ in results. Also, optimization may be deceiving for some
measures; use "plot = TRUE’ and inspect the plot(s).

60 optiThresh

Author(s)

A. Marcia Barbosa

References

Jimenez-Valverde A. & Lobo J.M. (2007) Threshold criteria for conversion of probability of species
presence to either-or presence-absence. Acta Oecologica 31: 361-369.

Liu C., Berry PM., Dawson T.P. & Pearson R.G. (2005) Selecting thresholds of occurrence in the
prediction of species distributions. Ecography 28: 385-393.

Nenzen H.K. & Araujo M.B. (2011) Choice of threshold alters projections of species range shifts
under climate change. Ecological Modelling 222: 3346-3354.

See Also

getThreshold, optiPair, threshMeasures

Examples

load sample models:
data(rotif.mods)

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

Not run:
optiThresh(model = mod)

End(Not run)

change some of the parameters:
optiThresh(model = mod, pch = 20,

measures = c("CCR", "Sensitivity”, "kappa", "TSS", "Jaccard", "Flscore"),
ylim = c(@, 1))

you can also use optiThresh with vectors of observed and predicted
values instead of with a model object:

Not run:
optiThresh(obs = mod$y, pred = mod$fitted.values, pch = 20)

End(Not run)

'obs' can also be a table of presence point coordinates
and 'pred' a SpatRaster of predicted values

plotCoeffs 61

plotCoeffs Plot model coefficients with confidence intervals

Description

Gets the coefficient estimates of a model with their 95% confidence intervals, and shows them in a
point range plot.

Usage
plotCoeffs(model, labels = NULL, plot = TRUE, ...)
Arguments
model A model object of class "glm", "Im" or "phylolm".
labels Optional two-column matrix or data frame, with the first column containing
names of variables that appear in 'model’ (in no particular order), and the second
column containing the corresponding names to use as labels in the plot. Can be
useful when the model contains abbreviated variable names, and you want more
complete variable names in the plot.
plot Logical value. If set to FALSE, only the results data frame is produced, and no
plot.
(If plot=TRUE) additional arguments to pass to lollipop, e.g. horizontal =
TRUE.
Details

This function uses summary to get the coefficients (excluding the intercept) and their standard errors
from a fitted model object, and it computes the 95% confidence intervals, i.e. each coefficient
plus/minus 1.96 times its standard error. By default, it also uses 1ol1lipop to produce a point range
plot with those results. In the plot, the labels of coefficients with significant p-values (<= 0.05) are
displayed in bold.

Note that coefficients are only directly comparable if the variables were standardized or if they vary
in the same scale.

Value

A data frame (and a plot).

Author(s)

A. Marcia Barbosa

See Also

varImp, lollipop

62 plotGLM

Examples

get example model:
mod <- glm(am ~ mpg + wt + gear + carb, data = as.data.frame(scale(mtcars)))

summary (mod)

default plot:

plotCoeffs(mod)

with some plot tweaks:

labels <- data.frame(

vars = c("gear”, "wt", "mpg", "carb"),
labs = c("N gears"”, "Weight", "Miles per gallon”, "N carburators”)
)

par(mar = c(3, 10, 2, 1))

plotCoeffs(mod, horiz = TRUE, cex = 2, grid = FALSE, axis.lab = "Coefficients”,

main = "Transmission”, labels = labels, col = "purple")
plotGLM Plot a generalized linear model
Description

This function plots the observed (presence/absence) data and the predicted (probability) values of a
Generalized Linear Model against the y regression equation (logit) values. Only logistic regression
(binomial response, logit link) is currently implemented.

Usage

plotGLM(model = NULL, obs = NULL, pred = NULL, link = "logit",
plot.values = TRUE, plot.digits = 3, xlab = "Logit (Y)",
ylab = "Predicted probability”, main = "Model plot”, na.rm = TRUE,

rm.dup = FALSE, verbosity = 2, ...)
Arguments
model a binary-response model object of class "glm". If this argument is provided,

’obs’ and ’pred’ will be extracted with mod2obspred. Alternatively, you can
input the obs’ and "pred’ arguments instead of *'model’.

plotGLM

obs

pred

link

plot.values

plot.digits

63

alternatively to 'model’ and together with ’pred’, a numeric vector of observed
presences (1) and absences (0) of a binary response variable. Alternatively (and
if *pred’ is a ’SpatRaster’), a two-column matrix or data frame containing, re-
spectively, the x (longitude) and y (latitude) coordinates of the presence points,
in which case the 'obs’ vector will be extracted with ptsrast2obspred. This
argument is ignored if "'model’ is provided.

alternatively to “'model’ and together with ’obs’, a numeric vector with the cor-
responding predicted values of presence probability, habitat suitability, environ-
mental favourability or alike. Must be of the same length and in the same order
as ’obs’. Alternatively (and if "obs’ is a set of point coordinates), a *SpatRaster’
map of the predicted values for the entire evaluation region, in which case the
pred’ vector will be extracted with ptsrast2obspred. This argument is ig-
nored if 'model’ is provided.

the link function of the GLM; only ’logit’ (the default) is implemented.

logical, whether to include in the plot diagnostic values such as explained de-
viance (calculated with the Dsquared function) and pseudo-R-squared measures
(calculated with the RsqGLM function). Defaults to TRUE.

integer number indicating the number of digits to which the values in the plot
should be rounded (if "plot.values = TRUE’). Defaults to 3.

xlab character string specifying the label for the x axis.

ylab character string specifying the label for the y axis.

main character string specifying the title for the plot.

na.rm Logical value indicating whether missing values should be ignored in computa-
tions. Defaults to TRUE.

rm.dup If TRUE and if "pred’ is a SpatRaster and if there are repeated points within the
same pixel, a maximum of one point per pixel is used to compute the presences.
See examples in ptsrast2obspred. The default is FALSE.

verbosity integer specifying the amount of messages to display. Defaults to the maximum
implemented; lower numbers (down to 0) decrease the number of messages.
additional arguments to pass to plot.

Value

This function outputs a plot of model predictions against observations.

Author(s)
A. Marcia Barbosa

References

Guisan A. & Zimmermann N.E. (2000) Predictive habitat distribution models in ecology. Ecologi-
cal Modelling 135: 147-186

Weisberg S. (1980) Applied Linear Regression. Wiley, New York

64 predDensity

See Also

predPlot, predDensity

Examples

load sample models:
data(rotif.mods)

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

plotGLM(model = mod)

plotGLM(model = mod, plot.values = FALSE)

you can also use 'plotGLM' with vectors of observed and
predicted values instead of with a model object:
plotGLM(obs = mod$y, pred = mod$fitted.values)

'obs' can also be a table of presence point coordinates
and 'pred' a SpatRaster of predicted values

predDensity Plot the density of predicted or predictor values for presences and
absences (or background)

Description

This function produces a histogram and/or a kernel density plot of predicted or predictor values
for a binary-response model, optionally separately for the observed presences and absences (or
background, if pbg = TRUE), given either a model object or a vector of predicted (or predictor)
values, and optionally a vector of the corresponding observed values (with O for absence and 1 for
presence). When there are multiple predicted values for each site (e.g. for BART models), it can
also plot a confidence interval.

Usage

predDensity(model = NULL, obs = NULL, pred = NULL, separate = TRUE,

type = "both”, ci = NA, pbg = FALSE, legend.pos = "topright”,

main = "Density of pred values”, na.rm = TRUE, rm.dup = FALSE, xlim = NULL,
verbosity = 2, ...)

predDensity 65

Arguments

model

obs

pred

separate

type

ci

pbg

legend.pos

main

na.rm

rm.dup

x1lim

verbosity

non non "non

a binary-response model object of class "glm", "gam", "gbm", "randomForest"
or "bart". If this argument is provided, ’obs’ and ’pred’ will be extracted with
mod2obspred. Alternatively, you can input the *pred’ (and optionally *obs’)
argument(s) instead of model’.

alternatively to 'model’ and together with *pred’, an optional numeric vector (in
the same order of "pred’) of observed presences (1) and absences (0) of a binary
response variable. If pbg = TRUE, the presences will be appended to the ab-
sences to create the background. Alternatively (and if "pred’ is a *SpatRaster’),
a two-column matrix or data frame containing, respectively, the x (longitude)
and y (latitude) coordinates of the presence points, in which case the "obs’ vec-
tor will be extracted with ptsrast2obspred. This argument may be omitted (to
show the density plot of all pred’ values combined), and it is ignored if "'model’
is provided.

alternatively to 'model’, a vector of predicted values of presence probability,
habitat suitability, environmental favourability or alike; or a vector of values of a
continuous predictor variable. Must be of the same length and in the same order
as “obs’ (if the latter is provided). Alternatively (and if "obs’ is a set of point
coordinates), a ’SpatRaster’ map of the predicted values for the entire evaluation
region, in which case the pred’ vector will be extracted with ptsrast2obspred.
This argument is ignored if *'model’ is provided.

logical value indicating whether prediction densities should be computed sep-
arately for observed presences (ones) and absences (zeros), or for presences
(ones) and background (ones and zeros) if pbg = TRUE. Defaults to TRUE, but
it is automatically changed to FALSE if either "'model’ or ’obs’ are not provided,
or if *ci’ is not NA.

character vector specifying whether to produce a "histogram", a "density" plot,
or "both" (the default). Partial argument matching is used.

optional numeric value for a confidence interval to add to the plot, e.g. 0.95 for
95%. The default is NA. If specified, argument ’separate’ is set to FALSE.

logical value to pass to inputMunch indicating whether to use presence/background

(rather than presence/absence) data. Default FALSE.

character specifying the position for the legend; NA or "n" for no legend. Posi-
tion can be "topright" (the default), "topleft, "bottomright"", "bottomleft", "top",
"bottom", "left", "right", or "center". Partial argument matching is used.

main title for the plot.

logical value indicating whether missing values should be ignored in computa-
tions. Defaults to TRUE.

if TRUE and if pred’ is a SpatRaster and if there are repeated points within the
same pixel, a maximum of one point per pixel is used to compute the presences.
See examples in ptsrast2obspred. The default is FALSE.

numeric vector of length 2 setting the limits for the x axis of the plot. The default
is NULL, for the range of the density of predicted or predictor values.

integer specifying the amount of messages to display. Defaults to the maximum
implemented; lower numbers (down to 0) decrease the number of messages.
additional arguments to pass to hist, e.g. "breaks’ or "border’.

66

Details

For more details, see density and/or hist.

Value

predDensity

This function outputs and plots the object(s) specified in ’type’ — by default, a density object and

a histogram.

Author(s)

A. Marcia Barbosa

See Also

hist, density, predPlot

Examples

load sample models:

data(rotif.mods)

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

compute predDensity with different parameters:

predDensity(model =

predDensity(model =

predDensity(model =

predDensity(model

predDensity(model

mod)
mod,
mod,
mod,

mod,

breaks = seq(@, 1, by = 0.05))

type

type

ci

= "histogram”)

"density")

0.975)

you can also use 'predDensity' with vectors of

observed and predicted values, instead of a model object:

obs <- mod$y

pred <- mod$fitted.values

predDensity(obs = obs, pred

predDensity(pred = pred, ci

'obs' can also be a table of presence point coordinates

pred)

0.95)

and 'pred' a SpatRaster of predicted values

predPlot 67

predPlot Plot predicted values for presences and absences, optionally classified
according to a prediction threshold.

Description

This function plots predicted values separated into observed presences and absences and (optionally
and by default) coloured according to whether they are above or below a given prediction threshold.
The plot imitates (with permission from the author) one of the graphical outputs of the ’summary’
of models built with the embarcadero package (Carlson, 2020), but it can be applied to other types
of models or to a set of observed and predicted values, and it allows specifying a user-defined
threshold.

Usage

predPlot(model = NULL, obs = NULL, pred = NULL, thresh = "preval”, pbg = F
main = "Classified predicted values”, legend.pos = "n", pch = 1, cex = 0.5,
col = c("black”, "grey"), na.rm = TRUE, rm.dup = FALSE, interval = 0.01,

quant = @, verbosity = 2)

Arguments

non non non

model a binary-response model object of class "glm", "gam", "gbm", "randomForest"
or "bart". If this argument is provided, 'obs’ and ’pred’ will be extracted with
mod2obspred. Alternatively, you can input the obs’ and ’pred’ arguments in-
stead of “model’.

obs alternatively to 'model’ and together with ’pred’, a numeric vector of observed
presences (1) and absences (0) of a binary response variable. Alternatively (and
if *pred’ is a ’SpatRaster’), a two-column matrix or data frame containing, re-
spectively, the x (longitude) and y (latitude) coordinates of the presence points,
in which case the 'obs’ vector will be extracted with ptsrast2obspred. This
argument is ignored if *'model’ is provided.

pred alternatively to 'model’ and together with ’obs’, a vector with the correspond-
ing predicted values of presence probability, habitat suitability, environmental
favourability or alike. Must be of the same length and in the same order as "obs’.
Alternatively (and if "obs’ is a set of point coordinates), a ’SpatRaster’ map of
the predicted values for the entire evaluation region, in which case the ’pred’
vector will be extracted with ptsrast2obspred. This argument is ignored if
’model’ is provided.

thresh threshold value to separate predicted presences from predicted absences in *pred’;
can be "preval" (the default), to use the prevalence (i.e. proportion of pres-
ences) in “obs’; or any real number between 0 and 1; or any of the options
available on modEvAmethods("getThreshold") — see Details in getThreshold
for their description. This value, if not NA or NULL, will be used to draw a
vertical line on the plot and to colour the points (predicted values) according to
whether they fall above or below the threshold.

68

pbg

main

legend.pos

pch
cex

col

na.rm

rm. dup

interval

quant

verbosity

Value

predPlot

logical value to pass to inputMunch indicating whether to use presence/background

(rather than presence/absence) data. Default FALSE.
Main title for the plot.

character value specifying the position for the legend on the plot. Can be "bot-
tomleft", "bottom", "bottomright", "topleft", "left", "top", "topright", "right",
"center", or NA or "n" for no legend (the default). Partial argument matching is

used.
plotting character for the presences and absences (see par).
relative size of the plotting character (see par).

vector of length 2 indicating the colours with which to plot predicted presences
and absences (points above and below the threshold), respectively. If "thresh’ is
NA or NULL, all points will have the first of the specified colours.

Logical value indicating whether missing values should be ignored in computa-
tions. Defaults to TRUE.

If TRUE and if ’pred’ is a SpatRaster and if there are repeated points within the
same pixel, a maximum of one point per pixel is used to compute the presences.
See examples in ptsrast2obspred. The default is FALSE.

Argument to pass to optiThresh indicating the interval between the thresholds
to test, if "thresh’ implies optimizing a threshold-based measure. The default
is 0.01. Smaller values may provide more precise results but take longer to
compute.

Numeric value indicating the proportion of presences to discard if thresh="MTP"
(minimum training presence). With the default value 0, MTP will be the thresh-
old at which all observed presences are classified as such; with e.g. quant=0.05,
MTP will be the threshold at which 5% presences will be classified as absences.

integer specifying the amount of messages to display. Defaults to the maximum
implemented; lower numbers (down to 0) decrease the number of messages.

This function outputs a plot as per 'Description’.

Note

Points are jittered randomly along the y axis to minimize visual overlap. So, each run of "pred-
Plot’ (unless you use set.seed first) will produce a different arrangement of points for the same
data, although their x-axis values are faithful.

Author(s)

A. Marcia Barbosa

References

Carlson C.J. (2020) embarcadero: Species distribution modelling with Bayesian additive regression
trees in R. Methods in Ecology and Evolution, 11: 850-858.

prevalence 69

See Also

predDensity, plotGLM

Examples

load sample models:
data(rotif.mods)

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

predPlot(model = mod)

predPlot(model = mod, thresh = 0.5)

you can first select a threshold optimized according to a particular metric:

Not run:

threshold <- optiThresh(mod, measures = "TSS", optimize = "each")
threshold <- threshold$optimals.each[, "threshold"]

threshold

predPlot(model = mod, thresh = threshold)
End(Not run)

you can also use 'predPlot' with vectors of observed and predicted values
instead of a model object:

presabs <- mod$y
prediction <- mod$fitted.values

predPlot(obs = presabs, pred = prediction)

predPlot(obs = presabs, pred = prediction, thresh = 0.5)

'obs' can also be a table of presence point coordinates
and 'pred' a SpatRaster of predicted values

prevalence Prevalence

Description

For building and evaluating species distribution models, the porportion of presences of the species
may be an issue to take into account (e.g. Jimenez-Valverde & Lobo 2006, Barbosa et al. 2013).
The prevalence function calculates this measure.

70

Usage

prevalence

prevalence(obs, model = NULL, event = 1, na.rm = TRUE)

Arguments

obs

model

event

na.rm

Value

a vector or a factor of binary observations (e.g. 1 vs. 0, male vs. female, disease
vs. no disease, etc.). This argument is ignored if 'model’ is provided.

non

alternatively to ’obs’, a binary-response model object of class "glm", "gam",
"gbm", "randomForest" or "bart". If this argument is provided, 'obs’ will be

extracted with mod2obspred.

the value whose prevalence we want to calculate (e.g. 1, "present”, etc.). This
argument is ignored if *'model’ is provided.

logical, whether NA values should be excluded from the calculation. The default
is TRUE.

Numeric value of the prevalence of event in the obs vector.

Author(s)

A. Marcia Barbosa

References

Barbosa A.M., Real R., Munoz A.R. & Brown J.A. (2013) New measures for assessing model
equilibrium and prediction mismatch in species distribution models. Diversity and Distributions, in

press

Jimenez-Valverde A. & Lobo J.M. (2006) The ghost of unbalanced species distribution data in
geographical model predictions. Diversity and Distributions, 12: 521-524.

See Also

evenness

Examples

calculate prevalence from binary vectors:

(x <= rep(c(@, 1), each = 5))

(y <= c(rep(@, 3), rep(1, 7))

(z <= c(rep(@, 7), rep(1, 3)))

prevalence(x)

prevalence(y)

pseudoRsq 71

prevalence(z)

(w <= c(rep("yes"”, 3), rep("nope”, 7)))

revalence(w, event = "yes”
’

calculate prevalence from a model object:
data(rotif.mods)

prevalence(mod = rotif.mods$models[[1]])

pseudoRsq Pseudo-R-squared measures for binary-response models

Description

This function computes several pseudo R-squared statistics for a binomial Generalized Linear
Model object, or for observations and predictions of any binary-response model.

Usage

pseudoRsg(model = NULL, obs = NULL, pred = NULL, use = "pairwise.complete.obs”,
plot = TRUE, plot.type = "lollipop”, na.rm = TRUE, rm.dup = FALSE,

verbosity = 2, ...)
Arguments
model a binary-response model object of class "glm". Alternatively, you can input the

“obs’ and "pred’ values of any other binary-response model.

obs alternatively to *'model’ and together with "pred’, a vector of observed presences
(1) and absences (0) of a binary response variable. Alternatively (and if *pred’
is a “SpatRaster’), a two-column matrix or data frame containing, respectively,
the x (longitude) and y (latitude) coordinates of the presence points, in which
case the "obs’ vector will be extracted with ptsrast2obspred. This argument
is ignored if "'model’ is provided.

pred alternatively to 'model’ and together with ’obs’, a numeric vector with the cor-
responding predicted values of presence probability. Must be of the same length
and in the same order as obs’. Alternatively (and if "obs’ is a set of point co-
ordinates), a *SpatRaster’ map of the predicted values for the entire evaluation
region, in which case the "pred’ vector will be extracted with ptsrast2obspred.
This argument is ignored if *'model’ is provided.

use argument to be passed to cor for handling mising values.

plot logical value indicating whether or not to display a bar chart or (by default) a
lollipop chart of the calculated measures.

72 pseudoRsq

plot.type character value indicating the type of plot to produce (if plot=TRUE). Can be
"lollipop" (the default) or "barplot".

na.rm Logical value indicating whether missing values should be ignored in computa-
tions. Defaults to TRUE.

rm.dup If TRUE and if "pred’ is a SpatRaster and if there are repeated points within the

same pixel, a maximum of one point per pixel is used to compute the presences.
See examples in ptsrast2obspred. The default is FALSE.

verbosity integer specifying the amount of messages to display. Defaults to the maximum
implemented; lower numbers (down to 0) decrease the number of messages.

additional arguments to pass to the plotting function (see Examples).

Details

Implemented measures include the pseudo R-squared values of McFadden (1974), Cox & Snell
(1989), Nagelkerke (1991, which corresponds to the corrected Cox-Snell, eliminating its upper
bound), and Tjur (2009). See Allison (2014) for a brief review of these measures. Note that Tjur’s
R-squared can only be calculated for models with a binomial response variable; otherwise, NA will
be returned.

Note also that pseudo R-squared values tend to be considerably lower than those of the R-squared
for ordinary regression analysis, and they should not be judged by the same standards for a "good
fit". For example, for McFadden’s R-squared, values of 0.2 to 0.4 represent an excellent fit (Mc-
Fadden, 1979).

Value

The function returns a named list of the calculated R-squared values.

Note

This function was previously named RsqGLM.

Author(s)

A. Marcia Barbosa

References

Allison P. (2014) Measures of fit for logistic regression. SAS Global Forum, Paper 1485-2014
Cox, D.R. & Snell E.J. (1989) The Analysis of Binary Data, 2nd ed. Chapman and Hall, London

McFadden, D. (1974) Conditional logit analysis of qualitative choice behavior. In: Zarembka P.
(ed.) Frontiers in Economics. Academic Press, New York

McFadden, D. (1979) Quantitative Methods for Analyzing Travel Behaviour on Individuals: Some
Recent Developments. Chapter 15 in Behavioural Travel Modelling. Edited by David Hensher and
Peter Stopher.

Nagelkerke, N.J.D. (1991) A note on a general definition of the coefficient of determination. Biometrika,
78: 691-692

Tjur T. (2009) Coefficients of determination in logistic regression models - a new proposal: the
coefficient of discrimination. The American Statistician, 63: 366-372.

ptsrast2obspred 73

See Also

Dsquared, AUC, threshMeasures, HLfit, MillerCalib

Examples

load sample models:
data(rotif.mods)

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

pseudoRsqg(model = mod)
you can also use pseudoRsq with vectors of observed and predicted values
instead of a model object:

pseudoRsq(obs = mod$y, pred = mod$fitted.values)

plotting arguments can be modified:
par(mar = c(6, 3, 2, 1))

pseudoRsq(obs = mod$y, pred = mod$fitted.values, col = "seagreen”, border = NA,

ylim = c(@, 1), main = "Pseudo-R-squared values")
ptsrast2obspred Observed and predicted values from presence points and a raster map.
Description

This function takes presence points or coordinates and a raster map of model predictions, and it
returns a data frame with two columns containing, respectively, the observed (presence or no pres-
ence) and the predicted value for each pixel. Duplicate points (i.e., points falling in the same pixel,
whether or not they have the exact same coordinates) can be kept or removed.

Usage

ptsrast2obspred(pts, rst, rm.dup = FALSE, na.rm = FALSE, verbosity = 2)

Arguments
pts a’SpatVector’ map of the presence points, or a two-column matrix or data frame
containing their x (longitude) and y (latitude) coordinates, respectively.
rst a one-layer ’SpatRaster’ map of the model predictions, in the same CRS as

‘pts’. If you have a raster map in another format, you can try to convert it with
*terra::rast()’

74 ptsrast2obspred

rm.dup logical, whether repeated points within the same pixel should be removed. See
Examples. The default is FALSE.

na.rm logical, whether presence points with missing or non-finite values of ’rst’ should
be excluded from the output. The default is FALSE.

verbosity integer value indicating the amount of messages to display. Defaults to 2, for

the maximum amount of messages.

Value

This function outputs a data frame with one column containing the observed (1 for presence, 0 for
absence) and another column containing the corresponding predicted values from ’rst’.

Author(s)
A. Marcia Barbosa

Examples

Not run:
you can run these examples if you have the 'terra' package installed

require(terra)

get an example raster map:
rst <- terra::rast(system.file("ex/elev.tif", package = "terra"))
rst <- terra::aggregate(rst, 10)

plot(rst)

generate some random presence points within it:
set.seed(8)
presences <- terra::spatSample(as.polygons(ext(rst)), 10)

plot(presences, add = TRUE)

use 'ptsrast2obspred' on this points + raster data:

without removing duplicates (the default):

obspred <- ptsrast2obspred(pts = crds(presences), rst = rst)

obspred

nrow(obspred) # you get as many 'obs' as pixels + additional points per pixel
sum(obspred$obs) # as many presences as points that overlay 'pred’

with removal of duplicates:

obspred_rmdup <- ptsrast2obspred(pts = crds(presences), rst = rst[[1]1],

rm.dup = TRUE) # you get as many 'obs' as pixels

obspred_rmdup

nrow(obspred_rmdup) # you get as many 'obs' as pixels

sum(obspred_rmdup$obs) # as many presences as pixels that contain (one or more) points

End(Not run)

quantReclass 75

quantReclass Reclassify continuous values based on quantiles

Description

This function takes the continuous predictions of a model of suitability (e.g. the continuous Bioclim
envelope model, computed by the bioclim function of the dismo package or the envelope function
of the predicts package), and reclassifies them according to their quantiles.

Usage

quantReclass(pred, by = 0.01, na.rm = TRUE)

Arguments
pred a ‘numeric’ vector or a ’SpatRaster’ map of predicted suitability values.
by numeric value indicating which quantiles to compute, e.g. 0.01 for percentiles
(the default), 0.1 for deciles, etc.
na.rm logical value indicating whether NA values should be ignored when computing
the quantiles. Defaults to TRUE.
Details

This function was created by Formoso-Freire et al. (2023) to reclassify continuous Bioclim predic-
tions into ranked suitability values, rescaling them into relative suitability. Modern implementations
of Bioclim compute a percentile distribution of the values of each environmental variable at species
presence localities. Then, the closer to the 50th percentile (the median), the more suitable a location
is according to that variable (Hijmans et al. 2020; Hijmans 2023). However, the more variables
are included in the model, the less suitable any location becomes, because it is less likely to be
close to the median for all variables. The proposed rescaling procedure removes the dependence of
Bioclim predictions on the number of variables included, and it has shown to provide more realistic
predictions (Formoso-Freire et al., 2023).

Value

This function returns an object of the same class as ’pred” with the reclassified values.

Author(s)

A. Marcia Barbosa, Victoria Formoso-Freire, Andres Baselga, Carola Gomez-Rodriguez

References

Formoso-Freire V., Barbosa A.M., Baselga A., Gomez-Rodriguez C. (2023) Predicting the spatio-
temporal pattern of range expansion under lack of equilibrium with climate. Biological Conserva-
tion, 288: 110361

76 range0l

Hijmans R.J., Phillips S., Leathwick J. & Elith J. (2020). dismo: Species distribution modelling
(1.3.5). https://CRAN.R-project.org/package=dismo

Hijmans R.J. (2023). predicts: Spatial Prediction Tools. R package version 0.1-11. https://CRAN.R-
project.org/package=predicts
See Also

getThreshold, bioclim in package dismo, envelope in package predicts

Examples

simulate some sample data:

set.seed(2023)

bioclim_pred <- runif(n = 10, min = @, max = 1)
bioclim_pred

quantReclass(pred = bioclim_pred, by = 0.1)

rangeoi Shrink or stretch a vector to make it range between 0 and 1

Description
This function re-scales a numeric vector so that it ranges between 0 and 1. So, the lowest value
becomes 0, the highest becomes 1, and the ones in the middle retain their rank and relative diference.
Usage

range@1(x, na.rm = TRUE)

Arguments

X a numeric vector.

na.rm logical, whether to remove NA values.
Details

This function was borrowed from http://stackoverflow.com/questions/5468280/scale-a-series-between-
two-points-in-1/5468527#5468527 and adapted to handle also missing values.

Value

A numeric vector of the same length as the input, now with the values ranging from O to 1.

Author(s)
A. Marcia Barbosa

RMSE

See Also

standardo1

Examples

range@1(0:10)

range@1(-12.3 :

77

21.7)

RMSE

Root mean square error

Description

This function computes the root mean square error of a model object or a set of observed and
predicted values or maps. THIS FUNCTION IS NOW DEPRECATED, AS THE RMSE HAS
BEEN INCLUDED ALONG OTHER METRICS IN THE NEW errorMeasures FUNCTION.

Usage

RMSE (model = NULL, obs = NULL, pred = NULL, na.rm = TRUE, rm.dup = FALSE,

verbosity = 2)

Arguments

model

obs

pred

na.rm

rm. dup

verbosity

a model object of class implemented in mod2obspred. If this argument is pro-
vided, obs’ and "pred’ will be extracted with that function. Alternatively, you
can input the *obs’ and ’pred’ arguments instead of 'model’.

alternatively to 'model’ and together with ’pred’, a numeric vector of observed
values of the response variable. Alternatively (and if "pred’ is a ’SpatRaster’),
a two-column matrix or data frame containing, respectively, the x (longitude)
and y (latitude) coordinates of presence points, in which case the ’obs’ vector
of presences and absences will be extracted with ptsrast2obspred. This argu-
ment is ignored if *'model’ is provided.

alternatively to *'model’ and together with ’obs’, a vector with the corresponding
predicted values, of the same length and in the same order as obs’. Alternatively
(and if *obs’ is a set of point coordinates), a ’SpatRaster’ map of the predicted
values for the entire evaluation region, in which case the *pred’ vector will be
extracted with ptsrast2obspred. This argument is ignored if *model’ is pro-
vided.

Logical value indicating whether missing values should be ignored in computa-
tions. Defaults to TRUE.

If TRUE and if ’pred’ is a SpatRaster and if there are repeated points within the
same pixel, a maximum of one point per pixel is used to compute the presences.
See examples in ptsrast2obspred. The default is FALSE.

integer specifying the amount of messages to display. Defaults to the maximum
implemented; lower numbers (down to 0) decrease the number of messages.

78 RMSE

Details

The root mean square error is computed as the square root of the mean of the squared differences
between observed and predicted values. It is (approximately) the same as the standard deviation
of the model residuals (prediction errors), i.e., a measure of how spread out these residuals are, or
how concentrated the observations are around the model prediction line. The smaller the RMSE,
the better.

Value

The function returns a numeric value indicating the root mean square error of the model predictions.

Author(s)

A. Marcia Barbosa

References
Kenney J.F. & Keeping E.S. (1962) Root Mean Square. "Mathematics of Statistics", 3rd ed. Prince-
ton, NJ: Van Nostrand, pp. 59-60.

See Also

errorMeasures, plotGLM, RsqGLM, Dsquared

Examples

load sample models:
data(rotif.mods)

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

RMSE (model = mod)
you can also use RMSE with vectors of observed and predicted values
instead of with a model object:

presabs <- mod$y
prediction <- mod$fitted.values

RMSE (obs = presabs, pred = prediction)

'obs' can also be a table of presence point coordinates
and 'pred' a SpatRaster of predicted values

rotif.mods 79

rotif.mods Rotifer distribution models

Description

A set of generalized linear models of rotifer species distributions on TDWG level 4 regions of
the world (Fontaneto et al. 2012), together with their predicted values. Mind that these models
are provided just as sample data and have limited application, due to limitations in the underlying
distribution records. See Details for more information.

Usage

data(rotif.mods)

Format

A list of 2 elements:

$ predictions: a data.frame with 291 observations of 60 variables, namely the presence probability
(P) and environmental favourability (F) for each of 30 species of rotifers, obtained from the rotif.env
dataset in the *fuzzySim’ R-Forge package

$ models: a list of the 30 generalized linear model (g1m) objects which generated those predictions.

Details

These models were obtained with the "'multGLM’ function and the rotif.env dataset from R-Forge
package *fuzzySim’ using the following code:

require(fuzzySim)
data(rotif.env)

rotif.mods <- multGLM(data = rotif.env, sp.cols = 18:47, var.cols = 5:17, step = FALSE, trim =
TRUE)

See package ’fuzzySim’ (currently available on R-Forge at http://fuzzysim.r-forge.r-project.
org) for more information on the source data that were used to build these models.

References

Fontaneto D., Barbosa A.M., Segers H. & Pautasso M. (2012) The ’rotiferologist’ effect and other
global correlates of species richness in monogonont rotifers. Ecography, 35: 174-182.

Examples

data(rotif.mods)
head(rotif.mods$predictions)
rotif.mods$models[[1]]

http://fuzzysim.r-forge.r-project.org
http://fuzzysim.r-forge.r-project.org

80 RsqGLM

RsqGLM R-squared measures for GLMs

Description
This function calculates some (pseudo) R-squared statistics for binomial Generalized Linear Mod-
els. It is now DEPRECATED, please use pseudoRsq instead.

Usage

RsgGLM(model = NULL, obs = NULL, pred = NULL, use = "pairwise.complete.obs”,
plot = TRUE, plot.type = "lollipop”, na.rm = TRUE, rm.dup = FALSE,

verbosity = 2, ...)
Arguments

model see pseudoRsq
obs see pseudoRsq
pred see pseudoRsq
use see pseudoRsq
plot see pseudoRsq
plot.type see pseudoRsq
na.rm see pseudoRsq
rm. dup see pseudoRsq
verbosity see pseudoRsq

see pseudoRsq

Details

See pseudoRsg.

Value

See pseudoRsaq.

Author(s)
A. Marcia Barbosa

Examples

This function is DEPRECATED, please see \code{\link{pseudoRsq}} instead.

similarity 81

similarity Similarity measures

Description

This function computes similarity indices for evaluating the classification accuracy of a species dis-
tribution (or ecological niche, or bioclimatic envelope...) model against observed presence-absence
data, upon the choice of a threshold value above which the model is considered to predict that
the species is expected to be present rather than absent. These metrics were proposed for model
evaluation by Li & Guo (2013) and Leroy et al. (2018) — see Details.

Usage

similarity(model = NULL, obs = NULL, pred = NULL, thresh,
measures = modEvAmethods("similarity”), simplif = FALSE, pbg = FALSE,
plot = TRUE, plot.type = "lollipop”, plot.ordered = FALSE, verbosity = 2,

interval = 0.01, quant = @, na.rm = TRUE, rm.dup = FALSE, ...)
Arguments
model a binary-response model object of class "glm", "gam", "gbm", "randomForest"

or "bart". If this argument is provided, 'obs’ and ’pred’ will be extracted with
mod2obspred. Alternatively, you can input the "obs’ and ’pred’ arguments in-
stead of "model’.

obs alternatively to “'model’ and together with ’pred’, a numeric vector of observed
presences (1) and absences (0) of a binary response variable. Alternatively (and
if *pred’ is a ’SpatRaster’), a two-column matrix or data frame containing, re-
spectively, the x (longitude) and y (latitude) coordinates of the presence points,
in which case the 'obs’ vector will be extracted with ptsrast2obspred. This
argument is ignored if *'model’ is provided.

pred alternatively to 'model” and together with *obs’, a vector with the correspond-
ing predicted values of presence probability, habitat suitability, environmental
favourability or alike. Must be of the same length and in the same order as "obs’.
Alternatively (and if obs’ is a set of point coordinates), a ’SpatRaster’ map of
the predicted values for the entire evaluation region, in which case the ’pred’
vector will be extracted with ptsrast2obspred. This argument is ignored if
’model’ is provided.

thresh threshold to separate predicted presences from predicted absences in *'model’ or
“pred’; can be a numeric value between 0 and 1, or any of the options provided
with modEvAmethods("getThreshold"”). See Details in getThreshold for a
description of the available options, and also Details below for a more informed
choice.

measures character vector of the similarity indices to use. By default, all metrics available
through modEvAmethods(”similarity") are included.

simplif logical, whether to calculate a faster, simplified version. Used internally by other
functions in the package. Defaults to FALSE.

82 similarity

pbg logical value to pass to inputMunch indicating whether to use presence/background
(rather than presence/absence) data. Default FALSE.

plot logical, whether to produce a bar chart or (by default) a lollipop chart of the
calculated measures. Defaults to TRUE.

plot.type character value indicating the type of plot to produce (if plot=TRUE). Can be
"lollipop" (the default) or "barplot”.

plot.ordered logical, whether to plot the measures in decreasing order rather than in input
order. Defaults to FALSE.

verbosity integer specifying the amount of messages to display. Defaults to the maximum
implemented; lower numbers (down to 0) decrease the number of messages.

interval Numeric value, used if ’thresh’ is a threshold optimization method such as
"maxKappa" or "maxTSS", indicating the interval between the thresholds to
test. The default is 0.01. Smaller values may provide more precise results but
take longer to compute.

quant Numeric value indicating the proportion of presences to discard if thresh="MTP"
(minimum training presence). With the default value 0, MTP will be the thresh-
old at which all observed presences are classified as such; with e.g. quant=0.05,
MTP will be the threshold at which 5% presences will be classified as absences.

na.rm Logical value indicating whether missing values should be ignored in computa-
tions. Defaults to TRUE.

rm.dup If TRUE and if "pred’ is a SpatRaster and if there are repeated points within the
same pixel, a maximum of one point per pixel is used to compute the presences.
See examples in ptsrast2obspred. The default is FALSE.

additional arguments to be passed to the plot function, e.g. ylim=c(0, 1).

Details

Commonly used threshold-based metrics of model evaluation, such as the True Skill Statistic (TSS)
implemented in the threshMeasures function, are conditioned by species prevalence in the mod-
elled sample. To overcome this, Leroy et al. (2018) propose using the similary indices of Sorensen
and Jaccard for model evaluation, which they show to be (unlike the TSS) independent of preva-
lence. This function implements such indices in a model evaluation context.

Leroy et al. (2018) point out that Sorensen’s index is equivalent to the F-measure (or F1 score, which
is also implemented in the threshMeasures function), and that Jaccard’s index is half the proxy
of the F-measure previously proposed by Li & Guo (2013) for evaluating presence-background
models.

Value

If *simplif=TRUE’, the output is a numeric matrix with the name and value of each measure. If
*simplif=FALSE’ (the default), the ouptut is a list with the following components:

N the number of observations (records) in the analysis.

Threshold the threshold value used to calculate the measures’.

similarity a numeric matrix with the name and value of each measure.

standard(01 83

Author(s)
A. Marcia Barbosa

References

Leroy B., Delsol R., Hugueny B., Meynard C.M., Barhoumi C., Barbet-Massin M. & Bellard C.
(2018) Without quality presence-absence data, discrimination metrics such as TSS can be mislead-
ing measures of model performance. Journal of Biogeography 45(9):1994-2002

Li W. & Guo Q. (2013) How to assess the prediction accuracy of species presence-absence models
without absence data? Ecography 36(7):788-799

See Also

threshMeasures, optiThresh

Examples

load sample models:
data(rotif.mods)

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

similarity(model = mod, thresh = 0.5)

similarity(model = mod, thresh = 0.5, simplif = TRUE, ylim = c(@, 1))

similarity(model = mod, thresh = "maxJaccard")
or thresh = "maxTSS", "MTP", etc.

you can also use similarity with vectors of observed and
predicted values instead of with a model object:

similarity(obs = mod$y, pred = mod$fitted.values, thresh = "maxJaccard")

'obs' can also be a table of presence point coordinates
and 'pred' a SpatRaster of predicted values

standardo1 Standardize to 0-1 (or vice-versa)

Description

This function converts the score of a measure that ranges from -1 to 1 (e.g. a kappa or TSS value
obtained for a model) into its (linearly) corresponding value in 0-to-1 scale, so that it can be com-
pared directly with measures that range between 0 and 1 (such as CCR or AUC). It can also perform
the conversion in the opposite direction.

84 standard01

Usage

standard@1(score, direction = c("-1+1to01", "01to-1+1"))

Arguments
score numeric value indicating the score of the measure of interest.
direction character value indicating the direction in which to perform the standardization.
The default, "-1+1to01", can be switched to "01to-1+1".
Details

While most of the threshold-based measures of model evaluation range theoretically from O to 1,
some of them (such as Cohen’s kappa and the true skill statistic, TSS) may range from -1 to 1
(Allouche et al. 2006). Thus, the values of different measures may not be directly comparable (Bar-
bosa 2015). We do not usually get negative values of TSS or kappa (nor values under 0.5 for CCR
or AUC, for example) because that only happens when model predictions perform worse than ran-
dom guesses; still, such values are mathematically possible, and can occur e.g. when extrapolating
models to regions where where the species-environment relationships differ. This standardization
is included as an option in the threshMeasures function.

Value

The numeric value of ’score’ when re-scaled to the 0-to-1 (or to the -1 to +1) scale.

Note
Note that this is not the same as re-scaling a vector so that it ranges between 0 and 1, which is done
by rangeo1.

Author(s)

A. Marcia Barbosa

References

Allouche O., Tsoar A. & Kadmon R. (2006) Assessing the accuracy of species distribution models:
prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 1223-1232

Barbosa, A.M. (2015) Re-scaling of model evaluation measures to allow direct comparison of their
values. The Journal of Brief Ideas, 18 Feb 2015, DOI: 10.5281/zenodo.15487

See Also

threshMeasures, range@1

threshMeasures 85

Examples

standard01(0.6)
standard@1(0.6, direction = "-1+1to@1")

standard@1(@.6, direction = "@1to-1+1")

threshMeasures Threshold-based measures of model evaluation

Description

This function calculates a number of measures (described in Fielding & Bell 1997; Liu et al.
2011; Barbosa et al. 2013; Wunderlich et al. 2019) for evaluating the classification accuracy of a
species distribution (or ecological niche, or bioclimatic envelope) model against observed presence-
(pseudo)absence data, upon the choice of a threshold value above which the model is considered to
predict that the species should be present.

Usage

threshMeasures(model = NULL, obs = NULL, pred = NULL, thresh,

measures = modEvAmethods("threshMeasures”)[-grep(”0OddsRatio”,
modEvAmethods (" threshMeasures”))], simplif = FALSE, pbg = FALSE, plot = TRUE,
plot.type = "lollipop"”, ylim = "auto@"”, plot.ordered = FALSE, standardize = TRUE,

verbosity = 2, interval = 0.01, quant = @, na.rm = TRUE, rm.dup = FALSE, ...)
Arguments
model a binary-response model object of class "glm", "gam", "gbm", "randomForest"

or "bart". If this argument is provided, 'obs’ and ’pred’ will be extracted with
mod2obspred. Alternatively, you can input the "obs’ and ’pred’ arguments in-
stead of "model’.

obs alternatively to 'model’ and together with ’pred’, a numeric vector of observed
presences (1) and absences (0) of a binary response variable. Alternatively (and
if *pred’ is a ’SpatRaster’), a two-column matrix or data frame containing, re-
spectively, the x (longitude) and y (latitude) coordinates of the presence points,
in which case the 'obs’ vector will be extracted with ptsrast2obspred. This
argument is ignored if *'model’ is provided.

pred alternatively to 'model’ and together with *obs’, a vector with the correspond-
ing predicted values of presence probability, habitat suitability, environmental
favourability or alike. Must be of the same length and in the same order as "obs’.
Alternatively (and if 'obs’ is a set of point coordinates), a ’SpatRaster’ map of
the predicted values for the entire evaluation region, in which case the ’pred’
vector will be extracted with ptsrast2obspred. This argument is ignored if
’model’ is provided.

86

thresh

measures

simplif

pbg

plot

plot.type

ylim

plot.ordered

standardize

verbosity

interval

quant

na.rm

rm. dup

threshMeasures

threshold to separate predicted presences from predicted absences in *'model’ or
"pred’; can be a numeric value between 0 and 1, or any of the options provided
with modEvAmethods("getThreshold”). See Details in getThreshold for a
description of the available options, and also Details below for a more informed
choice.

character vector of the evaluation metrics to use. By default, all metrics available
through modEvAmethods ("threshMeasures”) are included, except for "Odd-
sRatio" which usually yields overly large values that stand out in the plot.

logical, whether to calculate a faster, simplified version. Used internally by other
functions in the package. Defaults to FALSE.

logical value to pass to inputMunch indicating whether to use presence/background

(rather than presence/absence) data. Default FALSE.

logical, whether to produce a bar chart or (by default) a lollipop chart of the
calculated measures. Defaults to TRUE.

character value indicating the type of plot to produce (if plot=TRUE). Can be
"lollipop" (the default) or "barplot”.

either a numeric vector of length 2 specifying the limits (minimum, maximum)
for the y axis; or "auto" to fit the y axis to the existing minimum and maximum
values; or "autoQ" (the new default) to fit the top of the y axis to the maxi-
mum existing values, and the bottom to zero or the minimum existing value
(whichever is lower).

logical, whether to plot the measures in decreasing order rather than in input
order. Defaults to FALSE.

logical, whether to change measures that may range between -1 and +1 (namely
kappa and TSS) to their corresponding value in the 0O-to-1 scale (skappa and
sTSS), so that they can compare directly to other measures (see standarde?).
The default is TRUE, but a message is displayed to inform the user about it.

integer specifying the amount of messages to display. Defaults to the maximum
implemented; lower numbers (down to 0) decrease the number of messages.

Numeric value, used if ’thresh’ is a threshold optimization method such as
"maxKappa" or "maxTSS", indicating the interval between the thresholds to
test. The default is 0.01. Smaller values may provide more precise results but
take longer to compute.

Numeric value indicating the proportion of presences to discard if thresh="MTP"
(minimum training presence). With the default value 0, MTP will be the thresh-
old at which all observed presences are classified as such; with e.g. quant=0.05,
MTP will be the threshold at which 5% presences will be classified as absences.

Logical value indicating whether missing values should be ignored in computa-
tions. Defaults to TRUE.

If TRUE and if ’pred’ is a SpatRaster and if there are repeated points within the
same pixel, a maximum of one point per pixel is used to compute the presences.
See examples in ptsrast2obspred. The default is FALSE.

additional arguments to be passed to the plot function.

threshMeasures 87

Details

The metrics implemented in this function are based on the confusion (or contingency) matrix, and
they are described in dedicated publications (Fielding & Bell 1997; Liu et al. 2011; Barbosa et al.
2013; Wunderlich et al. 2019). All of them require a threshold value to separate continuous into
binary predictions.

The threshold value can be chosen according to a number of criteria (see e.g. Liu et al. 2005,
2013; Jimenez-Valverde & Lobo 2007; Nenzen & Araujo 2011). You can choose a fixed numeric
value, or set ’thresh’ to "preval" (species’ prevalence or proportion of presences in the data in-
put to this function), or calculate optimal threshold values according to different criteria with the
getThreshold function (see also optiThresh and optiPair). If you are using "environmental
favourability" as input *pred’ data (Real et al. 2006; see *Fav’ function in R package fuzzySim),
then the 0.5 threshold equates to using training prevalence in presence probability as given by lo-
gistic regression (GLM with binomial error distribution and logit link function).

While most of these threshold-based measures range from O to 1, some of them (such as kappa
and TSS) may range from -1 to 1 (Allouche et al. 2006), so their raw scores are not directly
comparable. ’threshMeasures’ includes an option (used by default) to standardize these measures
to 0-1 (Barbosa 2015) using the standard@1 function, so that you obtain the standardized versions
skappa and sTSS.

This function can also be used to calculate the agreement between different presence-absence (or
other types of binary) data, as e.g. Barbosa et al. (2012) did for comparing mammal distribution
data from atlas and range maps. Notice, however, that some of these measures, such as TSS or
NMI, are not symmetrical (obs vs. pred is different from pred vs. obs).

Note that most of these metrics are correlated with the species’ prevalence (proportion of presences)
in the modelled sample, so they can over-inflate the perception of model accuracy for restricted
species (as does the AUC of the ROC curve). This is the case even for metrics initially alleged to be
prevalence-independent, such as TSS (Allouche et al. 2006), as was later shown for real-world data
(e.g. Somodi et al. 2017). See similarity for alternative, less prevalence-dependent metrics.

Value

If *simplif=TRUE’, the output is a numeric matrix with the name and value of each measure. If
*simplif=FALSE’ (the default), the ouptut is a list with the following components:

N the number of observations (records) in the analysis.
Prevalence the prevalence (proportion of presences) in "obs’.
Threshold the threshold value used to calculate the measures’.
ConfusionMatrix

the confusion matrix obtained with the used threshold.

ThreshMeasures a numeric matrix with the name and value of each measure.

Note
"Sensitivity" is the same as "Recall", and "PPP" (positive predictive power) is the same as "Preci-
sion". They are both here to match the terminology familiar to different audiences.

Some of the implemented measures (like NMI, UPR, OPR, PPP, NPP) cannot be calculated for
thresholds at which there are zeros in the confusion matrix, so they can produce NaN values.

88 threshMeasures

Author(s)

A. Marcia Barbosa

References

Allouche O., Tsoar A. & Kadmon R. (2006) Assessing the accuracy of species distribution models:
prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 1223-1232.

Barbosa, A.M. (2015) Re-scaling of model evaluation measures to allow direct comparison of their
values. The Journal of Brief Ideas, 18 Feb 2015, DOI: 10.5281/zenodo.15487

Barbosa A.M., Estrada A., Marquez A.L., Purvis A. & Orme C.D.L. (2012) Atlas versus range
maps: robustness of chorological relationships to distribution data types in European mammals.
Journal of Biogeography 39: 1391-1400

Barbosa A.M., Real R., Munoz A.R. & Brown J.A. (2013) New measures for assessing model
equilibrium and prediction mismatch in species distribution models. Diversity and Distributions
19: 1333-1338

Fielding A.H. & Bell J.E. (1997) A review of methods for the assessment of prediction errors in
conservation presence/absence models. Environmental Conservation 24: 38-49

Jimenez-Valverde A. & Lobo J.M. (2007) Threshold criteria for conversion of probability of species
presence to either-or presence-absence. Acta Oecologica 31: 361-369

Liu C., Berry PM., Dawson T.P. & Pearson R.G. (2005) Selecting thresholds of occurrence in the
prediction of species distributions. Ecography 28: 385-393

Liu C., White M. & Newell G. (2011) Measuring and comparing the accuracy of species distribution
models with presence-absence data. Ecography 34: 232-243

Liu C., White M. & Newell G. (2013) Selecting thresholds for the prediction of species occurrence
with presence-only data. Journal of Biogeography, 40: 778-789

Nenzen H.K. & Araujo M.B. (2011) Choice of threshold alters projections of species range shifts
under climate change. Ecological Modelling 222: 3346-3354

Real R., Barbosa A.M. & Vargas J.M. (2006) Obtaining environmental favourability functions from
logistic regression. Environmental and Ecological Statistics 13: 237-245

Somodi I., Lepesi N., Botta-Dukat Z. (2017) Prevalence dependence in model goodness mea-
sures with special emphasis on true skill statistics. Ecology and Evolution, 7(3):863-872. doi:
10.1002/ece3.2654

Wunderlich R.F,, Lin Y.-P., Anthony J., Petway J.R. (2019) Two alternative evaluation metrics to
replace the true skill statistic in the assessment of species distribution models. Nature Conservation
35: 97-116

See Also

similarity, optiThresh, optiPair, AUC

Examples

load sample models:
data(rotif.mods)

varlmp 89

choose a particular model to play with:
mod <- rotif.mods$models[[1]]

threshMeasures(model = mod, simplif = TRUE, thresh = 0.5)
threshMeasures(model = mod, thresh = "preval”)
threshMeasures(model = mod, plot.ordered = TRUE, thresh = "preval”)

threshMeasures(model = mod, measures = c("CCR", "TSS", "kappa"),
thresh = "preval”)

threshMeasures(model = mod, plot.ordered = TRUE, thresh = "preval")

you can also use threshMeasures with vectors of observed and
predicted values instead of with a model object:
threshMeasures(obs = mod$y, pred = mod$fitted.values, thresh = "preval”)

'obs' can also be a table of presence point coordinates
and 'pred' a SpatRaster of predicted values

varImp Variable importance.

Description

This function computes, and optionally plots, variable importance for an input model object of an
implemented class. Note that "importance” is a vague concept which can be measured in different
ways, and not all importance type options are available for all model classes (see Arguments and
Details).

Usage

varImp(model, imp.type = "each"”, relative = TRUE, reorder = TRUE,
group.cats = FALSE, n.per = 10, data = NULL, n.trees = 100, plot = TRUE,
plot.type = "lollipop”, error.bars = "sd", ylim = "auto@",

col = c("steelblue4”, "coral2"), plot.points = TRUE, legend = TRUE,

grid = TRUE, verbosity = 2, ...)
Arguments
model a (binary-response) model object of class "glm" (of package stats), "Gam" (of

package gam), "gam" (of package mgcev), "gbm" (of package gbm), "GBMFit"
(of package gbm3), "randomForest" (of package randomForest), "maxnet" (of
package maxnet), "bart" (of package dbarts), "pbart" or "lbart" (of package
BART), or a list produced by function "flexBART" or "probit_flexBART" of
package flexBART.

90

imp.type

relative

reorder

group.cats

n.per

data

n.trees

plot

plot.type

error.bars

varlmp

character value indicating the type of variable importance to compute, i.e. the
metric with which importance is measured. Partial argument matching is used.
Implemented options are:

* "each" (the default), to extract the measure provided by each model object
or summary (note that this is different across model classes — see Details)

 "permutation”, to randomly shuffle each variable in turn (a given number
of times) and average the root mean squared difference between the actual
model predictions and those obtained with the shuffled variable. Note this
can be considerably slower, especially for computationally intensive mod-
els. Use set.seed() first if you want exactly reproducible results.

logical value (default TRUE) indicating whether to divide the absolute impor-
tance values by their total sum, to get a measure of relative variable importance
ranging from O to 1. Applies when imp.type="permutation”, or to GLM and
BART models when imp.type="each".

logical value indicating whether to sort the variables in decreasing order of im-
portance. The default is TRUE. If set to FALSE, the variables retain their input
order.

logical value indicating whether to aggregate all factor levels of each (one-hot
encoded) categorical variable into a single variable, by summing up their pro-
portions of branches used. Used if 'model’ is of class ’bart’, *pbart’ or ’lbart’, in
whose outputs the contributions of categorical variables are split by their factor
levels. The default is FALSE. NOTE that this may incorrectly group variables
that have the same name with a different numeric suffix (e.g. "02" and "03", or
"soil_type_1", "soil_type_2"), so revise your results if you set this to TRUE!

(if imp.type="permutation") number of permutations for each variable. The de-
fault is 10.

(if imp.type="permutation") matrix or data frame with the predictor variables
for which to compute permutation importance. The default is to extract data
from the model object if it contains this information (e.g. for models of class
"elm", "GBMFit", or "bart" computed with keeptrees=TRUE), or an error mes-
sage otherwise, in which case the user needs to provide this argument. Note that
only the variables actually included in the model should be provided in ’data’.

(if imp.type="permutation") argument required by predict.GBMFit () if 'model’
is of class "GBMFit". The default is 100.

logical value indicating whether to produce a plot with the results. The default
is TRUE.

(if plot=TRUE) character value indicating the type of plot to produce. Can be
"lollipop" (the default), "barplot", or "boxplot". Note that the latter is only
useful when model’ contains several importance values per variable (e.g. for
models of class "bart"). Partial argument matching is used.

character value indicating the type of error metric to compute (and plot, if
plot=TRUE) if the input contains the necessary information (i.e., for Bayesian
models like BART) and if the *plot.type’ is appropriate (i.e. "lollipop" or "barplot").
Can be "sd" (the default) for the standard deviation; "range" for the minimum
and maximum value across the ones available; a numeric value between 0 and

varlmp 91

1 for the corresponding confidence interval (e.g. 0.95 for 95%), computed with
quantile; or NA for no error bars.

ylim (if plot=TRUE) either a numeric vector of length 2 specifying the limits (min-
imum, maximum) for the y axis; or "auto" to fit the y axis to the existing min-
imum and maximum values; or "auto0" (the new default) to fit the top of the y
axis to the maximum existing values, and the bottom to zero.

col (if plot=TRUE) character or integer vector of length 1 or 2 specifying the plot-
ting colours for the variables with positive and negative effect on the response,
when this info is available (e.g. for models of class "glm" when imp.type="each").

plot.points (if plot=TRUE) logical, whether or not to add to the plot the individual im-
portance points (rather than just the mean importance value, and the error bar if
error.bars=TRUE) for each variable. By default it is TRUE (following Weissger-
ber et al. 2015), but it only holds for model objects that include several possible
importance values per variable (i.e. BART models).

legend logical, whether or not to draw a legend. Used only if plot=TRUE and if the out-
put includes negative values (i.e., if 'model’ is of class *glm’ and imp.type="each"
and there are variables with positive and negative coefficients).

grid (if plot=TRUE) logical, whether or not to add a grid to the plot. The default is
TRUE.
verbosity integer specifying the amount of messages to display. Defaults to the maximum

implemented; lower numbers (down to 0) decrease the number of messages.

(if plot=TRUE) additional arguments that can be used for the plot (depending on
"plot.type’), e.g. 'main’, ’cex.axis’ (for lol1lipop or boxplot) or ’cex.names’
(for barplot).

Details

Variable importance is a non-objective characteristic which can be measured in a variety of ways —
e.g., the weight of a variable in a model (e.g. how strong its coefficient is, or how many times it is
used); how much worse the model would be without it (according to a given performance metric);
or how different the predictions would be if the variable were shuffled or not used. If you compute
variable importance with different methods (e.g. with the functions suggested in the "See also"
section), you are likely to get varied results.

In this function, when imp.type="each" (the default), variable importance in a model of class "glm"
(obtained with the glm function) can be measured by the magnitude of the absolute z-value test
statistic, which is provided with summary(model). The ’varImp’ function outputs the absolute z
value of each variable (or, if relative=TRUE - the default, the relative z value, obtained by dividing
the absolute z value by the sum of z absolute values in the model). In the plot (by default), different
colours are used for variables with positive and negative relationships with the response.

If the input model is of class "gbm" of the gbm package, variable importance is obtained from
summary . gbm(model) and divided by 100 to get the result as a proportion rather than a percentage
(for consistency). See the help file of that function for details.

If the input model is of class "randomForest" of the randomForest package, variable importance is
obtained with model$importance. See the help file of randomForest for details.

92 varlmp

If the input model is of class "bart" of the dbarts package, or of class "pbart" or "lbart" of the
BART package, or a list produced by function "probit_flexBART" of the flexBART package, vari-
able importance is obtained as the mean (if relative=TRUE, the default) or the total number (if
relative=FALSE) of regression tree splits where each variable is used. If "error.bars’ is not NA, the
error is also computed according to the specified metric ("sd" or standard deviation by default).

If imp. type is set instead to "permutation”, each variable is randomly shuffled n.per times, and
the root mean squared difference is computed between the model predictions and those with the
shuffled variable.

Value

This function outputs, and optionally plots, a named numeric vector of variable importance, as
measured by ’imp.type’ (see Details). If the model is Bayesian (BART) and ’error.bars’ is not NA,
the output is a row-named data frame with the mean as well as the lower and upper bounds of the
error bars (according to the specified error metric - the default is standard deviation) of variable
importance.

Author(s)
A. Marcia Barbosa

References

Greenwell B.M. & Boehmke B.C. (2020) Variable Importance Plots - An Introduction to the vip
Package". The R Journal, 2020: https://journal.r-project.org/articles/RJ-2020-013/

Weissgerber T.L., Milic N.M., Winham S.J. & Garovic V.D. (2015) Beyond Bar and Line Graphs:
Time for a New Data Presentation Paradigm. PLOS Biol 13:e1002128. https://doi.org/10.1371/JOURNAL.PBIO.1002128

See Also

plotCoeffs; summary.glm; caret: :varImp; embarcadero: :varimp; enmpa: :var_importance;
predicts::varImportance;biomod2: :bm_VariablesImportance; iml::Featurelmp; ingredients::feature_import
mmpf: :permutationImportance; package varImp; package vip; numerous packages that imple-

ment Shapley values

Examples

load sample models:

data(rotif.mods)

choose a particular model to play with:

mod <- rotif.mods$models[[1]1]

get variable importance for this model:

varImp(model = mod,

varPart

93

cex.axis = 0.6)

varImp(model = mod,

imp.type = "perm”,
cex.axis = 0.6)

change some more parameters:

par(mar = c(9, 4, 2.5, 1))
varImp(model = mod,

relative = FALSE,

col = c("darkgreen”, "orange"),

plot.type = "barplot”,

cex.names = 0.85,

ylim = c(0, 5),

main = "Variable importance in \n my model”)

varPart

Variation partitioning

Description

This function performs variation partitioning (Borcard et al. 1992) among two factors (e.g. Ribas
et al. 2006) or three factors (e.g. Real et al. 2003) for either linear regression models (LM) or
generalized linear models (GLM).

Usage
varPart(A, B, C = NA, AB, AC = NA, BC = NA, ABC = NA, model.type = NULL,
A.name = "Factor A", B.name = "Factor B", C.name = "Factor C",
model = NULL, groups = NULL, pred.type = "Y", cor.method = "pearson”,
return.models = FALSE, plot = TRUE, plot.digits = 3, cex.names = 1.5,
cex.values = 1.2, main = "", cex.main = 2, plot.unexpl = TRUE, colr = FALSE)
Arguments
A numeric value of the R-squared of the regression of the response variable on

AB

AC

the variables related to factor ’A’. NOTE: INSTEAD of this and the next 10
arguments, you can use arguments “'model’ and ’groups’ below.

numeric value of the R-squared of the regression of the response variable on the
variables related to factor 'B’

(optionally, if there are 3 factors) numeric value of the R-squared of the regres-
sion of the response on the variables related to factor *’C’

numeric value of the R-squared of the regression of the response on the variables
of factors A’ and "B’ simultaneously

(if there are 3 factors) numeric value of the R-squared of the regression of the
response on the variables of factors A’ and *C’ simultaneously

94

BC

ABC

model. type
A.name
B.name
C.name

model

groups

pred.type

cor.method

return.models

plot
plot.digits

cex.names

cex.values

main

cex.main

plot.unexpl

colr

varPart

(if there are 3 factors) numeric value of the R-squared of the regression of the
response on the variables of factors B’ and *C’ simultaneously

(if there are 3 factors) numeric value of the R-squared of the regression of the
response on the variables of factors *A’, B’ and *C’ simultaneously

deprecated argument, kept here for back-compatibility

character string indicating the name of factor "A’

character string indicating the name of factor 'B’

character string indicating the name of factor *C’ (if there are 3 factors)

a model object of class glm’ (for linear models, instead of 'Im’ you can use
use “glm’ with family=gaussian). If this argument is provided, all previous ar-
guments are ignored, as they are computed instead from *'model’ and *groups’.

data frame with 2 columns, the 1st one containing the names of the variables,
and the 2nd one containing the names of the factors in which they should be
grouped (e.g. climatic, human, topographic) for the variation partitioning. This
argument is required (and only used) if "'model’ is provided.

character value specifying the type of predictions among which to calculate the
R-squared values, or squared correlations. Can be "Y" (the default) for the ’link’
function (in the scale of the predictor variables), "P" for using the ’response’
(e.g. in the scale of probability for models of family binomial), or "F" for using
favourability (i.e., probability after removing the effect of modelled prevalence,
as in the "Fav’ function of package fuzzySim); see Details. This argument is
only used if 'model’ is provided.

character value to pass to the "'method’ argument of cor specifying the correla-
tion coefficient to use. The default is "pearson”. This argument is only used if
’model’ is provided.

logical value indicating whether to include in the output the model obtained for
each group of variables. The default is FALSE. This argument is only used if
’model’ is provided.

logical, whether to plot the variation partitioning diagram. The default is TRUE.

integer value of the number of digits to which to round the values in the plot.
The default is 3.

numeric value indicating character expansion factor to define the size of the
names of the factors displayed in the plot.

numeric value indicating character expansion factor to define the size of the
values displayed in the plot.

optional character string indicating the main title for the plot. The default is
empty.

numeric value indicating character expansion factor to define the font size of the
plot title (if provided).

logical value indicating whether the amount of unexplained variation should be
included in the plot. The default is TRUE.

logical value indicating whether or not to colour the circles in the plot. The
default is FALSE for back-compatibility.

varPart 95

Details

If you have linear models (i.e. GLMs of family Gaussian), input data for ’varPart’ are the coeffi-
cients of determination (R-squared values) of the linear regressions of the response variable on all
the variables in the model, on the variables related to each particular factor, and (when there are 3
factors) on the variables related to each pair of factors. The outputs are the amounts of variance ex-
plained exclusively by each factor, the amounts explained exclusively by the overlapping effects of
each pair of factors, and the amount explained by the overlap of the 3 factors if this is the case (e.g.
Real et al. 2003). The amount of variation not explained by the complete model is also provided.

If you have generalized linear models (GLMs) such as logistic regression (see glm), you have no
true R-squared values; inputs can then be the squared coefficients of correlation between the model
predictions given by each factor (or pair of factors) and the predictions of the complete model.
Predictions can be probability (e.g. Munoz & Real 2006), favourability (Baez et al. 2012, Estrada
et al. 2016), or the ’logit’ linear predictor (Real et al. 2013); the correltion coefficient can be e.g.
Pearson’s (Munoz & Real 2006) or Spearman’s (Baez et al. 2012). An adjusted R-squared can
also be used (De Araujo et al. 2014). In GLMs, the "total variation" (AB or ABC, depending on
whether you have two or three factors) is 1 (correlation of the predictions of the complete model
with themselves), and output values are not the total amounts of variance (of the response variable)
explained by variable groups and their overlaps, but rather their proportional contribution to the
total variation explained by the model.

Value

This function returns a data frame indicating the proportion of variance accounted for by each of
the factors or groups, and (if "plot = TRUE’) a Venn diagram of the contributions of each factor or
overlap. If 'return.models=TRUE’, the output includes also the model obtained for each group of
variables.

Note
These results derive from arithmetic operations between your input values, and they always sum up
to 1; if your input is incorrect, the results will be incorrect as well, even if they sum up to 1.

This function had a bug up to modEvVA version 0.8: a badly placed line break prevented the ABC
overlap from being calculated correctly. Thanks to Jurica Levatic for pointing this out and helping
to solve it!

Oswald van Ginkel also suggested a fix to some plotting awkwardness when using only two factors,
and a nice option for colouring the plot. Many thanks!

Author(s)
A. Marcia Barbosa

References

Baez J.C., Estrada A., Torreblanca D. & Real R (2012) Predicting the distribution of cryptic species:
the case of the spur-thighed tortoise in Andalusia (southern Iberian Peninsula). Biodiversity and
Conservation 21: 65-78

Borcard D., Legendre P., Drapeau P. (1992) Partialling out the spatial component of ecological
variation. Ecology 73: 1045-1055

96

varPart

De Araujo C.B., Marcondes-Machado L.O. & Costa G.C. (2014) The importance of biotic interac-
tions in species distribution models: a test of the Eltonian noise hypothesis using parrots. Journal
of Biogeography 41: 513-523

Estrada A., Delgado M.P., Arroyo B., Traba J., Morales M.B. (2016) Forecasting Large-Scale Habi-

tat Suitability of European Bustards under Climate Change: The Role of Environmental and Geo-
graphic Variables. PLoS ONE 11(3): e0149810

Munoz A.-R. & Real R. (2006) Assessing the potential range expansion of the exotic monk parakeet
in Spain. Diversity and Distributions 12: 656-665

Real R., Barbosa A.M., Porras D., Kin M.S., Marquez A.L., Guerrero J.C., Palomo L.J., Justo E.R.
& Vargas J.M. (2003) Relative importance of environment, human activity and spatial situation in
determining the distribution of terrestrial mammal diversity in Argentina. Journal of Biogeography
30: 939-947

Real R., Romero D., Olivero J., Estrada A. & Marquez A.L. (2013) Estimating how inflated or
obscured effects of climate affect forecasted species distribution. PLoS ONE 8: 53646

Ribas A., Barbosa A.M., Casanova J.C., Real R., Feliu C. & Vargas J.M. (2006) Geographical

patterns of the species richness of helminth parasites of moles (Talpa spp.) in Spain: separating the
effect of sampling effort from those of other conditioning factors. Vie et Milieu 56: 1-8

Examples

if you have a linear model (LM), use (non-adjusted) R-squared values
for each factor and for their combinations as inputs:

with 2 factors:

varPart(A = 0.456, B = 0.315, AB = 0.852, A.name = "Spatial”,
B.name = "Environmental”, main = "Small whale")

varPart(A = 0.456, B = 0.315, AB = 0.852, A.name = "Spatial”,
B.name = "Environmental”, main = "Small whale”, colr = TRUE)

with 3 factors:

varPart(A = 0.456, B = ©0.315, C = 0.281, AB = 0.051, BC = 0.444,
AC = 0.569, ABC = 0.624, A.name = "Spatial”, B.name = "Human",
C.name = "Environmental”, main = "Small whale")

varPart(A = 0.456, B = 0.315, C = 0.281, AB = 0.051, BC = 0.444,
AC = 0.569, ABC = 0.624, A.name = "Spatial”, B.name = "Human",
C.name = "Environmental”, main = "Small whale”, colr = TRUE)

if you have a generalized linear model (GLM),
you can use squared Pearson correlation coefficients of the
predictions of each factor with those of the complete model:

varPart(A = (-0.005)*2, B = 0.698%2, C = 0.922*2, AB = 0.696"2,
BC = 0.994%2, AC = 0.953"*2, ABC = 1, A.name = "Topographic”,
B.name = "Climatic”, C.name = "Geographic”, main = "Big bird")

varPart

but "Unexplained variation” can be deceiving in these cases
(see Details); try also adding 'plot.unexpl = FALSE'
if you have a model object and a table classifying the variables into groups:

data(rotif.mods)
mod <- rotif.mods$models[[2]]

head(mod$model)

vars <- colnames(mod$model)[-1]

vars

var_groups <- data.frame(vars = vars, groups = c("Spatial”, "Spatial”,
"Climate”, "Climate"”, "Climate"”, "Human"))

var_groups

varPart(model = mod, groups = var_groups)
varPart(model = mod, groups = var_groups, pred.type = "P", colr = TRUE)

Index

+ datasets
rotif.mods, 79

+ package
modEvA-package, 3

applyThreshold, 4
arrangePlots, 7, 59
arrows, 42

AUC, 8, 73, 87, 88
axis, 42

barplot, 42,72, 82, 86, 90, 91
boxplot, 90, 91
Boyce, 12,41, 48

confusionlLabel, 16, 19
confusionMatrix, /7,18
cor, 13,71, 94

density, 65, 66
Dsquared, 20, 41, 48, 63, 73

errorMeasures, 22, 77
evaluate, 24
evenness, 26, 70

family, 21

getBins, 27, 35-37, 50-52

getModEqn, 30

getThreshold, 5, 6, 31, 50, 57, 58, 60, 67, 76,
81, 86, 87

ggplot2: :geom_pointrange(), 42

glm, 62,79, 91, 95

hist, 65, 66
HLfit, 15, 28, 29,34, 41,48, 51, 52,73

image, 19
inputMunch, 5, 9, 14, 21, 32, 38, 55, 58, 65,
68, 82, 86

98

jitter, 68

layout, 7

loglLik, 41

loglLike, 39
lollipop, 41, 61, 72, 82, 86, 90, 91

MESS, 43, 53, 54

MillerCalib, 15, 37,41, 46, 51,73

mod2obspred, 5, 8, 13, 16, 18, 20, 23, 27, 32,
34, 38, 39, 46, 49, 55, 58, 62, 65, 67,
70,77,81, 85

modEVA (modEvA-package), 3

modEvA-package, 3

modEvAmethods, 50

mtext, 42

multModEv, 50, 51, 51

0A, 45,53

optiPair, 33, 54, 60, 87, 88

optiThresh, 5, 32, 33, 50, 51, 57,57, 68, 83,
87, 88

par, 42, 59, 68

plot, 7, 10, 14, 19, 35,42, 47, 56, 59, 63, 82,
86

plotCoeffs, 42, 61, 92

plotGLM, 22, 24,62, 69, 78

points, 42

predDensity, 64, 64, 69

predPlot, 64, 66, 67

prevalence, 26, 49, 50, 67, 69

pseudoRsq, 71, 80

ptsrast2obspred, 5, 8, 10, 13, 16-21, 23, 27,
28, 32, 34, 35, 3840, 46, 47, 55, 56,
58, 59, 63, 65,67, 68,71, 72,73, 77,
81, 82, 85, 86

quantile, 28, 29, 35,75, 91
quantReclass, 75

INDEX

rangeo1, 76, 84

RMSE, 24, 41,77

rotif.mods, 79
round, 9, 14, 63, 94

RsqGLM, 22, 24, 41, 48, 63, 78, 80

set.seed, 68
similarity, 50, 81, 87, 88
standard@1, 52, 77, 83, 86, 87
summary, 61

summary.glm, 92

threshMeasures, 6, 11, 16—19, 25, 26, 32, 33,
50-52, 57,60, 73, 82-84, 85

varImp, 49,61, 89
varPart, 93

99

	modEvA-package
	applyThreshold
	arrangePlots
	AUC
	Boyce
	confusionLabel
	confusionMatrix
	Dsquared
	errorMeasures
	evaluate
	evenness
	getBins
	getModEqn
	getThreshold
	HLfit
	inputMunch
	logLike
	lollipop
	MESS
	MillerCalib
	mod2obspred
	modEvAmethods
	multModEv
	OA
	optiPair
	optiThresh
	plotCoeffs
	plotGLM
	predDensity
	predPlot
	prevalence
	pseudoRsq
	ptsrast2obspred
	quantReclass
	range01
	RMSE
	rotif.mods
	RsqGLM
	similarity
	standard01
	threshMeasures
	varImp
	varPart
	Index

