
Package ‘misha’
January 27, 2026

Type Package

Title Toolkit for Analysis of Genomic Data

Version 5.4.0

Description A toolkit for analysis of genomic data. The 'misha' package
implements an efficient data structure for storing genomic data, and
provides a set of functions for data extraction, manipulation and
analysis. Some of the 2D genome algorithms were described in Yaffe and Tanay
(2011) <doi:10.1038/ng.947>.

License MIT + file LICENSE

URL https://tanaylab.github.io/misha/,

https://github.com/tanaylab/misha

BugReports https://github.com/tanaylab/misha/issues

Depends R (>= 3.0.0)

Imports magrittr, curl, digest, ps, parallel, utils, tools, yaml

Suggests data.table, dplyr, glue, knitr, readr, rmarkdown, spelling,
stats, stringr, testthat (>= 3.0.0), tibble, withr

Config/testthat/edition 3

Config/testthat/start-first liftover, multifasta-import

Encoding UTF-8

Language en-US

LazyLoad yes

NeedsCompilation yes

OS_type unix

RoxygenNote 7.3.3

VignetteBuilder knitr

Author Misha Hoichman [aut],
Aviezer Lifshitz [aut, cre],
Eitan Yaffe [aut],
Amos Tanay [aut],
Weizmann Institute of Science [cph]

1

https://doi.org/10.1038/ng.947
https://tanaylab.github.io/misha/
https://github.com/tanaylab/misha
https://github.com/tanaylab/misha/issues

2 Contents

Maintainer Aviezer Lifshitz <aviezer.lifshitz@weizmann.ac.il>

Repository CRAN

Date/Publication 2026-01-27 22:50:08 UTC

Contents
misha-package . 5
gbins.quantiles . 6
gbins.summary . 7
gcis_decay . 9
gcluster.run . 10
gcompute_strands_autocorr . 12
gcor . 13
gdataset.example_path . 15
gdataset.info . 16
gdataset.load . 17
gdataset.ls . 18
gdataset.save . 18
gdataset.unload . 19
gdb.convert_to_indexed . 20
gdb.create . 22
gdb.create_genome . 24
gdb.create_linked . 25
gdb.get_readonly_attrs . 26
gdb.info . 27
gdb.init . 28
gdb.mark_cache_dirty . 29
gdb.reload . 30
gdb.set_readonly_attrs . 30
gdir.cd . 31
gdir.create . 32
gdir.cwd . 33
gdir.rm . 33
gdist . 34
gextract . 35
gintervals . 37
gintervals.2d . 38
gintervals.2d.all . 39
gintervals.2d.band_intersect . 40
gintervals.2d.convert_to_indexed . 41
gintervals.all . 42
gintervals.annotate . 43
gintervals.as_chain . 45
gintervals.canonic . 46
gintervals.chrom_sizes . 48
gintervals.convert_to_indexed . 49
gintervals.coverage_fraction . 50

Contents 3

gintervals.covered_bp . 51
gintervals.dataset . 52
gintervals.dbs . 53
gintervals.diff . 54
gintervals.exists . 55
gintervals.force_range . 55
gintervals.import_genes . 56
gintervals.intersect . 57
gintervals.is.bigset . 58
gintervals.liftover . 59
gintervals.load . 62
gintervals.load_chain . 63
gintervals.ls . 65
gintervals.mapply . 66
gintervals.mark_overlaps . 67
gintervals.neighbors . 68
gintervals.neighbors.upstream . 72
gintervals.normalize . 74
gintervals.path . 75
gintervals.quantiles . 76
gintervals.random . 77
gintervals.rbind . 79
gintervals.rm . 80
gintervals.save . 81
gintervals.summary . 82
gintervals.union . 83
gintervals.update . 84
giterator.cartesian_grid . 85
giterator.intervals . 87
glookup . 89
gpartition . 90
gquantiles . 92
grevcomp . 93
gsample . 94
gscreen . 95
gsegment . 96
gseq.comp . 97
gseq.extract . 98
gseq.kmer . 99
gseq.kmer.dist . 101
gseq.pwm . 102
gseq.rev . 104
gseq.revcomp . 105
gsummary . 106
gsynth.bin_map . 107
gsynth.load . 108
gsynth.random . 108
gsynth.replace_kmer . 110

4 Contents

gsynth.sample . 111
gsynth.save . 114
gsynth.train . 114
gtrack.2d.create . 116
gtrack.2d.import . 118
gtrack.2d.import_contacts . 119
gtrack.array.extract . 120
gtrack.array.get_colnames . 122
gtrack.array.import . 123
gtrack.array.set_colnames . 124
gtrack.attr.export . 125
gtrack.attr.get . 126
gtrack.attr.import . 127
gtrack.attr.set . 128
gtrack.convert . 129
gtrack.convert_to_indexed . 129
gtrack.copy . 130
gtrack.create . 131
gtrack.create_dense . 132
gtrack.create_dirs . 134
gtrack.create_pwm_energy . 134
gtrack.create_sparse . 135
gtrack.dataset . 137
gtrack.dbs . 137
gtrack.exists . 138
gtrack.import . 139
gtrack.import_mappedseq . 141
gtrack.import_set . 142
gtrack.info . 144
gtrack.liftover . 145
gtrack.lookup . 147
gtrack.ls . 148
gtrack.modify . 150
gtrack.mv . 151
gtrack.path . 152
gtrack.rm . 152
gtrack.smooth . 153
gtrack.var.get . 155
gtrack.var.ls . 156
gtrack.var.rm . 157
gtrack.var.set . 158
gvtrack.array.slice . 159
gvtrack.create . 160
gvtrack.filter . 168
gvtrack.info . 170
gvtrack.iterator . 171
gvtrack.iterator.2d . 172
gvtrack.ls . 173

misha-package 5

gvtrack.rm . 174
gwget . 175
gwilcox . 176
print.gsynth.model . 177

Index 178

misha-package Toolkit for analysis of genomic data

Description

’misha’ package is intended to help users to efficiently analyze genomic data achieved from various
experiments.

Details

For a complete list of help resources, use library(help = "misha").

The following options are available for the package. Use ’options’ function to alter the value of the
options.

NAME DEFAULT DESCRIPTION
gmax.data.size AUTO Auto-configured based on system RAM and processes.

Formula: min((RAM * 0.7) / gmax.processes, 10GB).
Controls max in-memory result buffer size for streaming/sampling.
Operations like gextract, gscreen use this as upper bound.

gbig.intervals.size 1000000 Threshold for converting interval sets to disk-based
"big" format. When interval count exceeds this, intervals
are stored per-chromosome instead of all in memory.
Note: Independent of gmax.data.size (different purposes).

gmax.mem.usage 10000000 Maximal memory consumption of all child
processes in KB before the limiting algorithm is invoked.

gmax.processes AUTO Auto-configured to 70% of CPU cores.
Maximal number of processes for multitasking.

gmax.processes2core 2 Maximal number of processes per CPU core for multitasking
gmin.scope4process 10000 Minimal scope range (for 2D: surface) assigned to a process

in multitasking mode.
gbuf.size 1000 Size of track expression values buffer.
gmultitask.max.records.factor 64 Multiplier to inflate multitask

max_records estimates to avoid under-allocation.
gtrack.chunk.size 100000 Chunk size in bytes of a 2D track. If ’0’ chunk size

is unlimited.
gtrack.num.chunks 0 Maximal number of 2D track chunks simultaneously stored

in memory.
gmultitasking TRUE Enable/disable automatic parallelization. Some functions

may choose single-threaded mode for very small workloads.

More information about the options can be found in ’User manual’ of the package.

6 gbins.quantiles

Author(s)

Maintainer: Aviezer Lifshitz <aviezer.lifshitz@weizmann.ac.il>

Authors:

• Misha Hoichman <misha@hoichman.com>

• Eitan Yaffe <eitan.yaffe@weizmann.ac.il>

• Amos Tanay <amos.tanay@weizmann.ac.il>

Other contributors:

• Weizmann Institute of Science [copyright holder]

See Also

Useful links:

• https://tanaylab.github.io/misha/

• https://github.com/tanaylab/misha

• Report bugs at https://github.com/tanaylab/misha/issues

gbins.quantiles Calculates quantiles of a track expression for bins

Description

Calculates quantiles of a track expression for bins.

Usage

gbins.quantiles(
...,
expr = NULL,
percentiles = 0.5,
intervals = get("ALLGENOME", envir = .misha),
include.lowest = FALSE,
iterator = NULL,
band = NULL

)

Arguments

... pairs of track expressions (’bin_expr’) that determines the bins and breaks that
define the bins. See gdist.

expr track expression for which quantiles are calculated

percentiles an array of percentiles of quantiles in [0, 1] range

intervals genomic scope for which the function is applied.

https://tanaylab.github.io/misha/
https://github.com/tanaylab/misha
https://github.com/tanaylab/misha/issues

gbins.summary 7

include.lowest if ’TRUE’, the lowest value of the range determined by breaks is included

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expressions.

band track expression band. If ’NULL’ no band is used.

Details

This function is a binned version of ’gquantiles’. For each iterator interval the value of ’bin_expr’
is calculated and assigned to the corresponding bin determined by ’breaks’. The quantiles of ’expr’
are calculated then separately for each bin.

The bins can be multi-dimensional depending on the number of ’bin_expr’-’breaks’ pairs.

The range of bins is determined by ’breaks’ argument. For example: ’breaks=c(x1, x2, x3, x4)’
represents three different intervals (bins): (x1, x2], (x2, x3], (x3, x4].

If ’include.lowest’ is ’TRUE’ the the lowest value will be included in the first interval, i.e. in [x1,
x2].

Value

Multi-dimensional array representing quantiles for each percentile and bin.

See Also

gquantiles, gintervals.quantiles, gdist

Examples

gdb.init_examples()
gbins.quantiles("dense_track", c(0, 0.2, 0.4, 2), "sparse_track",

percentiles = c(0.2, 0.5),
intervals = gintervals(1),
iterator = "dense_track"

)

gbins.summary Calculates summary statistics of a track expression for bins

Description

Calculates summary statistics of a track expression for bins.

8 gbins.summary

Usage

gbins.summary(
...,
expr = NULL,
intervals = get("ALLGENOME", envir = .misha),
include.lowest = FALSE,
iterator = NULL,
band = NULL

)

Arguments

... pairs of track expressions (’bin_expr’) that determines the bins and breaks that
define the bins. See gdist.

expr track expression for which summary statistics is calculated
intervals genomic scope for which the function is applied
include.lowest if ’TRUE’, the lowest value of the range determined by breaks is included
iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on

track expressions.
band track expression band. If ’NULL’ no band is used.

Details

This function is a binned version of ’gsummary’. For each iterator interval the value of ’bin_expr’
is calculated and assigned to the corresponding bin determined by ’breaks’. The summary statistics
of ’expr’ are calculated then separately for each bin.

The bins can be multi-dimensional depending on the number of ’bin_expr’-’breaks’ pairs.

The range of bins is determined by ’breaks’ argument. For example: ’breaks=c(x1, x2, x3, x4)’
represents three different intervals (bins): (x1, x2], (x2, x3], (x3, x4].

If ’include.lowest’ is ’TRUE’ the the lowest value will be included in the first interval, i.e. in [x1,
x2].

Value

Multi-dimensional array representing summary statistics for each bin.

See Also

gsummary, gintervals.summary, gdist

Examples

gdb.init_examples()
gbins.summary("dense_track", c(0, 0.2, 0.4, 2), "sparse_track",

intervals = gintervals(1), iterator = "dense_track"
)

gcis_decay 9

gcis_decay Calculates distribution of contact distances

Description

Calculates distribution of contact distances.

Usage

gcis_decay(
expr = NULL,
breaks = NULL,
src = NULL,
domain = NULL,
intervals = NULL,
include.lowest = FALSE,
iterator = NULL,
band = NULL

)

Arguments

expr track expression

breaks breaks that determine the bin

src source intervals

domain domain intervals

intervals genomic scope for which the function is applied

include.lowest if ’TRUE’, the lowest value of the range determined by breaks is included

iterator 2D track expression iterator. If ’NULL’ iterator is determined implicitly based
on track expressions.

band track expression band. If ’NULL’ no band is used.

Details

A 2D iterator interval ’(chrom1, start1, end1, chrom2, start2, end2)’ is said to represent a contact
between two 1D intervals I1 and I2: ’(chrom1, start1, end1)’ and ’(chrom2, start2, end2)’.

For contacts where ’chrom1’ equals to ’chrom2’ and I1 is within source intervals the function
calculates the distribution of distances between I1 and I2. The distribution is calculated separately
for intra-domain and inter-domain contacts.

An interval is within source intervals if the unification of all source intervals fully overlaps it. ’src’
intervals are allowed to contain overlapping intervals.

Two intervals I1 and I2 are within the same domain (intra-domain contact) if among the domain
intervals exists an interval that fully overlaps both I1 and I2. Otherwise the contact is considered to
be inter-domain. ’domain’ must contain only non-overlapping intervals.

10 gcluster.run

The distance between I1 and I2 is the absolute distance between the centers of these intervals, i.e.:
’|(start1 + end1 - start2 - end2) / 2|’.

The range of distances for which the distribution is calculated is defined by ’breaks’ argument. For
example: ’breaks=c(x1, x2, x3, x4)’ represents three different intervals (bins): (x1, x2], (x2, x3],
(x3, x4].

If ’include.lowest’ is ’TRUE’ the the lowest value will be included in the first interval, i.e. in [x1,
x2]

Value

2-dimensional vector representing the distribution of contact distances for inter and intra domains.

See Also

gdist, gtrack.2d.import_contacts

Examples

gdb.init_examples()

src <- rbind(
gintervals(1, 10, 100),
gintervals(1, 200, 300),
gintervals(1, 400, 500),
gintervals(1, 600, 700),
gintervals(1, 7000, 9100),
gintervals(1, 9000, 18000),
gintervals(1, 30000, 31000),
gintervals(2, 1130, 15000)

)

domain <- rbind(
gintervals(1, 0, 483000),
gintervals(2, 0, 300000)

)

gcis_decay("rects_track", 50000 * (1:10), src, domain)

gcluster.run Runs R commands on a cluster

Description

Runs R commands on a cluster that supports SGE.

gcluster.run 11

Usage

gcluster.run(
...,
opt.flags = "",
max.jobs = 400,
debug = FALSE,
R = "R",
control_dir = NULL

)

Arguments

... R commands

opt.flags optional flags for qsub command

max.jobs maximal number of simultaneously submitted jobs

debug if ’TRUE’, additional reports are printed

R command that launches R

control_dir directory where the control files are stored. Note that this directory should be
accessible from all nodes. If ’NULL’, a temporary directory would be created
under the current misha database.

Details

This function runs R commands on a cluster by distributing them among cluster nodes. It must run
on a machine that supports Sun Grid Engine (SGE). The order in which the commands are executed
can not be guaranteed, therefore the commands must be inter-independent.

Optional flags to ’qsub’ command can be passed through ’opt.flags’ parameter. Users are strongly
recommended to use only ’-l’ flag as other flags might interfere with those that are already used
(-terse, -S, -o, -e, -V). For additional information please refer to the manual of ’qsub’.

The maximal number of simultaneously submitted jobs is controlled by ’max.jobs’.

Set ’debug’ argument to ’TRUE to allow additional report prints.

’gcluster.run’ launches R on the cluster nodes to execute the commands. ’R’ argument specifies
how R executable should be invoked.

Value

Return value (’retv’) is a list, such that ’retv[[i]]’ represents the result of the run of command number
’i’. Each result consists of 4 fields that can be accessed by ’retv[[i]]$FIELDNAME’:

FIELDNAME DESCRIPTION
exit.status Exit status of the command. Possible values: ’success’, ’failure’ or ’interrupted’.
retv Return value of the command.
stdout Standard output of the command.
stderr Standard error of the command.

12 gcompute_strands_autocorr

Examples

gdb.init_examples()
Run only on systems with Sun Grid Engine (SGE)
if (FALSE) {

v <- 17
gcluster.run(

gsummary("dense_track + v"),
{

intervs <- gscreen("dense_track > 0.1", gintervals(1, 2))
gsummary("sparse_track", intervs)

},
gsummary("rects_track")

)
}

gcompute_strands_autocorr

Computes auto-correlation between the strands for a file of mapped
sequences

Description

Calculates auto-correlation between plus and minus strands for the given chromosome in a file of
mapped sequences.

Usage

gcompute_strands_autocorr(
file = NULL,
chrom = NULL,
binsize = NULL,
maxread = 400,
cols.order = c(9, 11, 13, 14),
min.coord = 0,
max.coord = 3e+08

)

Arguments

file the name of the file containing mapped sequences

chrom chromosome for which the auto-correlation is computed

binsize calculate the auto-correlation for bins in the range of [-maxread, maxread]

maxread maximal length of the sequence used for statistics

cols.order order of sequence, chromosome, coordinate and strand columns in file

gcor 13

min.coord minimal coordinate used for statistics

max.coord maximal coordinate used for statistics

Details

This function calculates auto-correlation between plus and minus strands for the given chromosome
in a file of mapped sequences. Each line in the file describes one read. Each column is separated by
a TAB character.

The following columns must be presented in the file: sequence, chromosome, coordinate and strand.
The position of these columns are controlled by ’cols.order’ argument accordingly. The default
value of ’cols.order’ is a vector (9,11,13,14) meaning that sequence is expected to be found at
column number 9, chromosome - at column 11, coordinate - at column 13 and strand - at column
14. The first column should be referenced by 1 and not by 0.

Coordinates that are not in [min.coord, max.coord] range are ignored.

gcompute_strands_autocorr outputs the total statistics and the auto-correlation given by bins. The
size of the bin is indicated by ’binsize’ parameter. Statistics is calculated for bins in the range of
[-maxread, maxread].

Value

Statistics for each strand and auto-correlation by given bins.

Examples

gdb.init_examples()
gcompute_strands_autocorr(paste(.misha$GROOT, "reads", sep = "/"),

"chr1", 50,
maxread = 300

)

gcor Calculates correlation between track expressions

Description

Calculates correlation between track expressions over iterator bins inside the supplied genomic
scope. Expressions are processed in pairs: (expr1, expr2), (expr3, expr4), etc. Only bins where
both expressions are not NaN are used.

14 gcor

Usage

gcor(
expr1 = NULL,
expr2 = NULL,
...,
intervals = NULL,
iterator = NULL,
band = NULL,
method = c("pearson", "spearman", "spearman.exact"),
details = FALSE,
names = NULL

)

Arguments

expr1 first track expression

expr2 second track expression

... additional track expressions, supplied as pairs (expr3, expr4, ...)

intervals genomic scope for which the function is applied

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expression.

band track expression band. If ’NULL’ no band is used.

method correlation method to use. One of ’pearson’ (default), ’spearman’ (approximate,
memory-efficient), or ’spearman.exact’ (exact, requires O(n) memory where n
is number of non-NaN pairs).

details if ’TRUE’ returns summary statistics for each pair, otherwise returns correla-
tions only. For Pearson, includes n, n.na, mean1, mean2, sd1, sd2, cov, cor. For
Spearman methods, includes n, n.na, cor.

names optional names for the pairs. If supplied, length must match the number of pairs.

Value

If ’details’ is ’FALSE’, a numeric vector of correlations. If ’details’ is ’TRUE’, a data frame with
summary statistics for each pair.

See Also

gextract, gscreen, gsummary

Examples

gdb.init_examples()
gcor("dense_track", "sparse_track", intervals = gintervals(1, 0, 10000), iterator = 1000)

Spearman correlation (approximate, memory-efficient)
gcor("dense_track", "sparse_track",

gdataset.example_path 15

intervals = gintervals(1, 0, 10000),
iterator = 1000, method = "spearman"

)

Exact Spearman correlation
gcor("dense_track", "sparse_track",

intervals = gintervals(1, 0, 10000),
iterator = 1000, method = "spearman.exact"

)

gdataset.example_path Create an example dataset on the fly

Description

Creates a small dataset in a temporary directory using the built-in example database. This function
has side effects: it calls gdb.init_examples which resets the working database, and it creates then
deletes temporary tracks (’example_dataset_track’) and intervals (’example_dataset_intervals’) in
that database.

Usage

gdataset.example_path()

Details

This function performs the following steps:

1. Calls gdb.init_examples() to set the working database

2. Removes any existing ’example_dataset_track’ and ’example_dataset_intervals’

3. Creates temporary track and intervals in the example database

4. Saves them to a new dataset in a temporary directory

5. Removes the temporary track and intervals from the example database

This is primarily intended for use in examples and tests. Users should be aware that calling this
function will change their current working database.

Value

Path to the created dataset directory (in a temporary location)

See Also

gdataset.save, gdataset.load, gdb.init_examples

16 gdataset.info

Examples

dataset_path <- gdataset.example_path()
gdataset.load(dataset_path)
gdataset.unload(dataset_path)

gdataset.info Get dataset information

Description

Returns metadata and contents of a dataset.

Usage

gdataset.info(path)

Arguments

path Path to any dataset (loaded or not)

Value

List with dataset information

See Also

gdataset.ls, gdataset.load

Examples

dataset_path <- gdataset.example_path()
gdataset.info(dataset_path)

gdataset.load 17

gdataset.load Load a dataset into the namespace

Description

Loads tracks and intervals from a dataset directory, making them available for analysis alongside
the working database.

Usage

gdataset.load(path, force = FALSE, verbose = FALSE)

Arguments

path Path to a dataset or misha database directory

force If TRUE, ignore name collisions (working db wins; for dataset-to-dataset, later-
loaded wins)

verbose If TRUE, print loaded track/interval names and summary counts

Value

Invisibly returns a list with:

tracks Number of visible tracks loaded

intervals Number of visible intervals loaded
shadowed_tracks

Number of tracks shadowed by collisions

shadowed_intervals

Number of intervals shadowed by collisions

See Also

gdataset.unload, gdataset.save, gdataset.ls

Examples

dataset_path <- gdataset.example_path()
gdataset.load(dataset_path)
gdataset.unload(dataset_path)

18 gdataset.save

gdataset.ls List working database and loaded datasets

Description

Returns a list of the working database and all loaded datasets.

Usage

gdataset.ls(dataframe = FALSE)

Arguments

dataframe If FALSE, return character vector; if TRUE, return data frame

Value

Character vector of paths or data frame with detailed information

See Also

gdataset.load, gdataset.info

Examples

dataset_path <- gdataset.example_path()
gdataset.load(dataset_path)
gdataset.ls()
gdataset.unload(dataset_path)

gdataset.save Save a dataset

Description

Creates a new dataset directory containing selected tracks and/or intervals from the working database.

Usage

gdataset.save(
path,
description,
tracks = NULL,
intervals = NULL,
symlinks = FALSE,
copy_seq = FALSE

)

gdataset.unload 19

Arguments

path Destination directory (must not exist)

description Required description for metadata

tracks Character vector of track names to include

intervals Character vector of interval set names to include

symlinks If TRUE, create symlinks to tracks/intervals instead of copying

copy_seq If TRUE, copy seq/ directory instead of symlinking

Value

Invisible path

See Also

gdataset.load, gdataset.info

Examples

gdb.init_examples()
example_intervs <- gintervals(1, 0, 10000)
gintervals.save("example_dataset_intervals", example_intervs)
gtrack.create(

"example_dataset_track",
"Example dataset track",
"dense_track",
iterator = "example_dataset_intervals"

)
dataset_path <- tempfile("misha_dataset_")
gdataset.save(

path = dataset_path,
description = "Example dataset",
tracks = "example_dataset_track",
intervals = "example_dataset_intervals"

)
gtrack.rm("example_dataset_track", force = TRUE)
gintervals.rm("example_dataset_intervals", force = TRUE)

gdataset.unload Unload a dataset from the namespace

Description

Removes all tracks and intervals from a previously loaded dataset. If a track was shadowing another,
the shadowed track becomes visible again.

20 gdb.convert_to_indexed

Usage

gdataset.unload(path, validate = FALSE)

Arguments

path Path to a previously loaded dataset

validate If TRUE, error if path is not currently loaded; otherwise silently no-op

Value

Invisible NULL

See Also

gdataset.load, gdataset.ls

Examples

dataset_path <- gdataset.example_path()
gdataset.load(dataset_path)
gdataset.unload(dataset_path, validate = TRUE)

gdb.convert_to_indexed

Change Database to Indexed Genome Format

Description

Converts a per-chromosome database to indexed genome format with a single consolidated genome.seq
file and genome.idx index. Optionally also converts tracks and interval sets to indexed format.

Usage

gdb.convert_to_indexed(
groot = NULL,
remove_old_files = FALSE,
force = FALSE,
validate = TRUE,
convert_tracks = FALSE,
convert_intervals = FALSE,
verbose = FALSE,
chunk_size = 104857600

)

gdb.convert_to_indexed 21

Arguments

groot Root directory of the database to change to indexed format. If NULL, uses the
currently active database.

remove_old_files

Logical. If TRUE, removes old per-chromosome files after successful conver-
sion. Default: FALSE.

force Logical. If TRUE, forces the conversion without confirmation. Default: FALSE.
validate Logical. If TRUE, validates the conversion by comparing sequences. Default:

TRUE.
convert_tracks Logical. If TRUE, also converts all eligible tracks to indexed format. Default:

FALSE.
convert_intervals

Logical. If TRUE, also converts all eligible interval sets to indexed format.
Default: FALSE.

verbose Logical. If TRUE, prints verbose messages. Default: FALSE.
chunk_size Integer. The size of the chunk to read from the sequence files. Default: 104857600

(100MB). Reduce if you are running into memory issues.

Details

This function converts a per-chromosome database (with separate .seq files per contig) to indexed
format (single genome.seq + genome.idx). The indexed format provides better performance and
scalability, especially for genomes with many contigs.

Important: Preserving Chromosome Order
For exact conversion that produces bit-for-bit identical results before and after conversion, you
should load the source database first using gsetroot() or gdb.init():

• If database is loaded: Uses chromosome order from ALLGENOME (exact preservation)
• If database is not loaded: Uses order from chrom_sizes.txt (may differ from ALLGENOME)

This ensures that the converted database has the exact same chromosome ordering, which affects
iteration order, interval IDs, and other operations that depend on chromosome order.

The conversion process:

1. Checks if database is already in indexed format
2. Gets chromosome order from ALLGENOME (if loaded) or chrom_sizes.txt
3. Consolidates all per-chromosome .seq files into genome.seq
4. Creates genome.idx with CRC64 checksum
5. Optionally validates the conversion
6. Optionally removes old .seq files
7. If convert_tracks=TRUE, converts all eligible 1D tracks (dense, sparse, array)
8. If convert_intervals=TRUE, converts all eligible interval sets (1D and 2D)

Tracks and intervals that cannot be converted (and are skipped):

• Tracks: 2D tracks, virtual tracks, single-file tracks, already converted tracks
• Intervals: Single-file interval sets, already converted interval sets

22 gdb.create

Value

Invisible NULL

See Also

gdb.create, gdb.init, gtrack.convert_to_indexed, gintervals.convert_to_indexed, gintervals.2d.convert_to_indexed

Examples

Not run:
Recommended: Load database first for exact conversion
gsetroot("/path/to/database")
gdb.convert_to_indexed(

convert_tracks = TRUE,
convert_intervals = TRUE,
remove_old_files = TRUE,
verbose = TRUE

)

Convert current database to indexed format (genome only)
gdb.convert_to_indexed()

Convert specific database without loading it first
Note: chromosome order may differ from ALLGENOME
gdb.convert_to_indexed(groot = "/path/to/database")

Convert genome and all tracks to indexed format
gdb.convert_to_indexed(convert_tracks = TRUE)

Full conversion with validation and cleanup
gsetroot("/path/to/database") # Load first for exact order preservation
gdb.convert_to_indexed(

convert_tracks = TRUE,
convert_intervals = TRUE,
remove_old_files = TRUE,
validate = TRUE,
verbose = TRUE

)

End(Not run)

gdb.create Creates a new Genomic Database

Description

Creates a new Genomic Database.

gdb.create 23

Usage

gdb.create(
groot = NULL,
fasta = NULL,
genes.file = NULL,
annots.file = NULL,
annots.names = NULL,
format = NULL,
verbose = FALSE

)

Arguments

groot path to newly created database

fasta an array of names or URLs of FASTA files. Can contain wildcards for multiple
files

genes.file name or URL of file that contains genes. If ’NULL’ no genes are imported

annots.file name of URL file that contains annotations. If ’NULL’ no annotations are im-
ported

annots.names annotations names

format database format: "indexed" (default, single genome.seq + genome.idx) or "per-
chromosome" (separate .seq file per contig). If NULL, uses the value from
getOption("gmulticontig.indexed_format", TRUE)

verbose if TRUE, prints verbose messages

Details

This function creates a new Genomic Database at the location specified by ’groot’. FASTA files are
converted to ’Seq’ format and appropriate ’chrom_sizes.txt’ file is generated (see "User Manual"
for more details).

Two database formats are supported:

• indexed: Single genome.seq + genome.idx (default). Recommended for genomes with many
contigs. Provides better performance and scalability.

• per-chromosome: Separate .seq file per contig.

If ’genes.file’ is not ’NULL’ four sets of intervals are created in the database: tss, exons, utr3 and
utr5. See gintervals.import_genes for more details about importing genes intervals.

’fasta’, ’genes.file’ and ’annots.file’ can be either a file path or URL in a form of ’ftp://[address]/[file]’.
’fasta’ can also contain wildcards to indicate multiple files. Files that these arguments point to can
be zipped or unzipped.

See the ’Genomes’ vignette for details on how to create a database from common genome sources.

Value

None.

24 gdb.create_genome

See Also

gdb.init, gdb.reload, gintervals.import_genes

Examples

ftp <- "ftp://hgdownload.soe.ucsc.edu/goldenPath/mm10"
mm10_dir <- file.path(tempdir(), "mm10")
only a single chromosome is loaded in this example
see "Genomes" vignette how to download all of them and how
to download other genomes
gdb.create(
mm10_dir,
paste(ftp, "chromosomes", paste0(
"chr", c("X"),
".fa.gz"
), sep = "/"),
paste(ftp, "database/knownGene.txt.gz", sep = "/"),
paste(ftp, "database/kgXref.txt.gz", sep = "/"),
c(
"kgID", "mRNA", "spID", "spDisplayID", "geneSymbol",
"refseq", "protAcc", "description", "rfamAcc",
"tRnaName"
)
)
gdb.init(mm10_dir)
gintervals.ls()
gintervals.all()

gdb.create_genome Create and Load a Genome Database

Description

This function downloads, extracts, and loads a misha genome database for the specified genome.

Usage

gdb.create_genome(genome, path = getwd(), tmpdir = tempdir())

Arguments

genome A character string specifying the genome to download. Supported genomes are
"mm9", "mm10", "mm39", "hg19", and "hg38".

path A character string specifying the directory where the genome will be extracted.
Defaults to genome name (e.g. "mm10") in the current working directory.

tmpdir A character string specifying the directory for storing temporary files. This is
used for storing the downloaded genome file.

gdb.create_linked 25

Details

The function checks if the specified genome is available. If tmpdir, it constructs the download URL,
downloads the genome file, extracts it to the specified directory, and loads the genome database
using gsetroot. The function also calls gdb.reload to reload the genome database.

Value

None.

Examples

mm10_dir <- tempdir()
gdb.create_genome("mm10", path = mm10_dir)
list.files(file.path(mm10_dir, "mm10"))
gsetroot(file.path(mm10_dir, "mm10"))
gintervals.ls()

gdb.create_linked Create a linked database with symlinks to a parent database

Description

Creates a new database directory structure with symbolic links to the parent database’s seq/ directory
and chrom_sizes.txt file.

Usage

gdb.create_linked(path, parent)

Arguments

path Path for the new linked database

parent Path to the parent database (with seq and chrom_sizes.txt)

Details

This is useful for creating a writable database that shares sequence data with a read-only main
database. The new database can be set as the working database via gsetroot(), and then the
parent database can be loaded as a dataset via gdataset.load().

Value

Invisible TRUE on success

See Also

gsetroot, gdb.create, gdataset.load, gdataset.ls

26 gdb.get_readonly_attrs

Examples

Not run:
Create linked database sharing sequence data with main database
gdb.create_linked("~/my_tracks", parent = "/shared/genomics/hg38")

Set linked database as working database and load parent as dataset
gsetroot("~/my_tracks")
gdataset.load("/shared/genomics/hg38")

End(Not run)

gdb.get_readonly_attrs

Returns a list of read-only track attributes

Description

Returns a list of read-only track attributes.

Usage

gdb.get_readonly_attrs()

Details

This function returns a list of read-only track attributes. These attributes are not allowed to be
modified or deleted.

If no attributes are marked as read-only a ’NULL’ is returned.

Value

A list of read-only track attributes.

See Also

gdb.set_readonly_attrs, gtrack.attr.get, gtrack.attr.set

gdb.info 27

gdb.info Get Database Information

Description

Returns information about a misha genome database including format, number of chromosomes,
total genome size, and whether it uses the indexed format.

Usage

gdb.info(groot = NULL)

Arguments

groot Root directory of the database. If NULL, uses the currently active database.

Value

A list with database information:

• path - Full path to the database

• is_db - TRUE if this is a valid misha database

• format - "indexed" or "per-chromosome"

• num_chromosomes - Number of chromosomes/contigs

• genome_size - Total length of genome in bases

• chromosomes - Data frame with chromosome names and sizes

Examples

Not run:
Get info about currently active database
info <- gdb.info()
cat("Database format:", info$format, "\n")
cat("Genome size:", info$genome_size / 1e6, "Mb\n")

Get info about specific database
info <- gdb.info("/path/to/database")

End(Not run)

28 gdb.init

gdb.init Initializes connection with Genomic Database

Description

Initializes connection with Genomic Database: loads the list of tracks, intervals, etc.

Usage

gdb.init(groot = NULL, dir = NULL, rescan = FALSE)

gdb.init_examples()

gsetroot(groot = NULL, dir = NULL, rescan = FALSE)

Arguments

groot the root directory of the Genomic Database

dir the current working directory inside the Genomic Database

rescan indicates whether the file structure should be rescanned

Details

’gdb.init’ initializes the connection with the Genomic Database. It is typically called first prior
to any other function. When the package is attached it internally calls to ’gdb.init.examples’
which opens the connection with the database located at ’PKGDIR/trackdb/test’ directory, where
’PKGDIR’ is the directory where the package is installed.

The current working directory inside the Genomic Database is set to ’dir’. If ’dir’ is ’NULL’, the
current working directory is set to ’GROOT/tracks’.

If ’rescan’ is ’TRUE’, the list of tracks and intervals is achieved by rescanning directory structure
under the current current working directory. Otherwise ’gdb.init’ attempts to use the cached list that
resides in ’groot/.db.cache’ file.

Upon completion the connection is established with the database. If auto-completion mode is
switched on (see ’gset_input_method’) the list of tracks and intervals sets is loaded and added
as variables to the global environment allowing auto-completion of object names with <TAB>
key. Also a few variables are defined at an environment called .misha, and can be accessed us-
ing .misha$variable, e.g. .misha$ALLGENOME. These variables should not be modified by user.

GROOT Root directory of Genomic Database
GWD Current working directory inside Genomic Database
GTRACKS List of all available tracks
GINTERVS List of all available intervals
GVTRACKS List of all available virtual tracks
ALLGENOME List of all chromosomes and their sizes
GITERATOR.INTERVALS A set of iterator intervals for which the track expression is evaluated

gdb.mark_cache_dirty 29

When option ’gmulticontig.indexed_format’ is set to TRUE, the function loads a database with
"indexed" track format.

Value

None.

See Also

gdb.reload, gdb.create, gdir.cd, gtrack.ls, gintervals.ls, gvtrack.ls

gdb.mark_cache_dirty Mark cached track list as dirty

Description

When tracks or interval sets are modified outside of misha (e.g. files copied manually), the cached
inventory may become out of date. Calling this helper marks the cache as dirty so the next gsetroot()
forces a rescan.

Usage

gdb.mark_cache_dirty()

Value

Invisible TRUE if the dirty flag was written, FALSE otherwise.

See Also

gdb.reload, gsetroot

30 gdb.set_readonly_attrs

gdb.reload Reloads database from the disk

Description

Reloads database from disk: list of tracks, intervals, etc.

Usage

gdb.reload(rescan = TRUE)

Arguments

rescan indicates whether the file structure should be rescanned

Details

Reloads Genomic Database from disk: list of tracks, intervals, etc. Use this function if you manually
add tracks or if for any reason the database becomes corrupted. If ’rescan’ is ’TRUE’, the list of
tracks and intervals is achieved by rescanning directory structure under the current current working
directory. Otherwise ’gdb.reload’ attempts to use the cached list that resides in ’GROOT/.db.cache’
file.

Value

No return value, called for side effects.

See Also

gdb.init, gdb.create, gdir.cd,

gdb.set_readonly_attrs

Sets read-only track attributes

Description

Sets read-only track attributes.

Usage

gdb.set_readonly_attrs(attrs)

Arguments

attrs a vector of read-only attributes names or ’NULL’

gdir.cd 31

Details

This function sets the list of read-only track attributes. The specified attributes may or may not
already exist in the tracks.

If ’attrs’ is ’NULL’ the list of read-only attributes is emptied.

Value

None.

See Also

gdb.get_readonly_attrs, gtrack.attr.get, gtrack.attr.set

gdir.cd Changes current working directory in Genomic Database

Description

Changes current working directory in Genomic Database.

Usage

gdir.cd(dir = NULL)

Arguments

dir directory path

Details

This function changes the current working directory in Genomic Database (not to be confused with
shell’s current working directory). The list of database objects - tracks, intervals, track variables -
is rescanned recursively under ’dir’. Object names are updated with the respect to the new current
working directory. Example: a track named ’subdir.dense’ will be referred as ’dense’ once current
working directory is set to ’subdir’. All virtual tracks are removed.

Value

None.

See Also

gdb.init, gdir.cwd, gdir.create, gdir.rm

32 gdir.create

Examples

gdb.init_examples()
gdir.cd("subdir")
gtrack.ls()
gdir.cd("..")
gtrack.ls()

gdir.create Creates a new directory in Genomic Database

Description

Creates a new directory in Genomic Database.

Usage

gdir.create(dir = NULL, showWarnings = TRUE, mode = "0777")

Arguments

dir directory path

showWarnings see ’dir.create’

mode see ’dir.create’

Details

This function creates a new directory in Genomic Database. Creates only the last element in the
specified path.

Value

None.

Note

A new directory cannot be created within an existing track directory.

See Also

dir.create, gdb.init, gdir.cwd, gdir.rm

gdir.cwd 33

gdir.cwd Returns the current working directory in Genomic Database

Description

Returns the absolute path of the current working directory in Genomic Database.

Usage

gdir.cwd()

Details

This function returns the absolute path of the current working directory in Genomic Database (not
to be confused with shell’s current working directory).

Value

A character string of the path.

See Also

gdb.init, gdir.cd, gdir.create, gdir.rm

gdir.rm Deletes a directory from Genomic Database

Description

Deletes a directory from Genomic Database.

Usage

gdir.rm(dir = NULL, recursive = FALSE, force = FALSE)

Arguments

dir directory path

recursive if ’TRUE’, the directory is deleted recursively

force if ’TRUE’, suppresses user confirmation of tracks/intervals removal

Details

This function deletes a directory from Genomic Database. If ’recursive’ is ’TRUE’, the directory is
deleted with all the files/directories it contains. If the directory contains tracks or intervals, the user
is prompted to confirm the deletion. Set ’force’ to ’TRUE’ to suppress the prompt.

34 gdist

Value

None.

See Also

gdb.init, gdir.create, gdir.cd, gdir.cwd

gdist Calculates distribution of track expressions

Description

Calculates distribution of track expressions’ values over the given set of bins.

Usage

gdist(
...,
intervals = NULL,
include.lowest = FALSE,
iterator = NULL,
band = NULL,
dataframe = FALSE,
names = NULL

)

Arguments

... pairs of ’expr’, ’breaks’ where ’expr’ is a track expression and the breaks deter-
mine the bin

intervals genomic scope for which the function is applied

include.lowest if ’TRUE’, the lowest value of the range determined by breaks is included

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expressions.

band track expression band. If ’NULL’ no band is used.

dataframe return a data frame instead of an N-dimensional vector.

names names for track expressions in the returned dataframe (only relevant when dataframe
== TRUE)

gextract 35

Details

This function calculates the distribution of values of the numeric track expressions over the given
set of bins.

The range of bins is determined by ’breaks’ argument. For example: ’breaks=c(x1, x2, x3, x4)’
represents three different intervals (bins): (x1, x2], (x2, x3], (x3, x4].

If ’include.lowest’ is ’TRUE’ the the lowest value will be included in the first interval, i.e. in [x1,
x2]

’gdist’ can work with any number of dimensions. If more than one ’expr’-’breaks’ pair is passed,
the result is a multidimensional vector, and an individual value can be accessed by [i1,i2,...,iN]
notation, where ’i1’ is the first track and ’iN’ is the last track expression.

Value

N-dimensional vector where N is the number of ’expr’-’breaks’ pairs. If dataframe == TRUE - a
data frame with a column for each track expression and an additional column ’n’ with counts.

See Also

gextract

Examples

gdb.init_examples()

calculate the distribution of dense_track for bins:
(0, 0.2], (0.2, 0.5] and (0.5, 1]
gdist("dense_track", c(0, 0.2, 0.5, 1))

calculate two-dimensional distribution:
dense_track vs. sparse_track
gdist("dense_track", seq(0, 1, by = 0.1), "sparse_track",

seq(0, 2, by = 0.2),
iterator = 100

)

gextract Returns evaluated track expression

Description

Returns the result of track expressions evaluation for each of the iterator intervals.

36 gextract

Usage

gextract(
...,
intervals = NULL,
colnames = NULL,
iterator = NULL,
band = NULL,
file = NULL,
intervals.set.out = NULL

)

Arguments

... track expression
intervals genomic scope for which the function is applied
colnames sets the columns names in the returned value. If ’NULL’ names are set to track

expression.
iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on

track expressions.
band track expression band. If ’NULL’ no band is used.
file file name where the function result is optionally outputted in tab-delimited for-

mat
intervals.set.out

intervals set name where the function result is optionally outputted

Details

This function returns the result of track expressions evaluation for each of the iterator intervals. The
returned value is a set of intervals with an additional column for each of the track expressions. This
value can be used as an input for any other function that accepts intervals. If the intervals inside
’intervals’ argument overlap gextract returns the overlapped coordinate more than once.

The order inside the result might not be the same as the order of intervals. An additional column
’intervalID’ is added to the return value. Use this column to refer to the index of the original interval
from the supplied ’intervals’.

If ’file’ parameter is not ’NULL’ the result is outputted to a tab-delimited text file (without ’inter-
valID’ column) rather than returned to the user. This can be especially useful when the result is too
big to fit into the physical memory. The resulted file can be used as an input for ’gtrack.import’ or
’gtrack.array.import’ functions.

If ’intervals.set.out’ is not ’NULL’ the result is saved as an intervals set. Similarly to ’file’ parameter
’intervals.set.out’ can be useful to overcome the limits of the physical memory.

’colnames’ parameter controls the names of the columns that contain the evaluated expressions. By
default the column names match the track expressions.

Value

If ’file’ and ’intervals.set.out’ are ’NULL’ a set of intervals with an additional column for each of
the track expressions and ’columnID’ column.

gintervals 37

See Also

gtrack.array.extract, gsample, gtrack.import, gtrack.array.import, glookup, gpartition,
gdist

Examples

gdb.init_examples()

get values of 'dense_track' for [0, 400), chrom 1
gextract("dense_track", gintervals(1, 0, 400))

get values of 'rects_track' (a 2D track) for a 2D interval
gextract(

"rects_track",
gintervals.2d("chr1", 0, 4000, "chr2", 2000, 5000)

)

gintervals Creates a set of 1D intervals

Description

Creates a set of 1D intervals.

Usage

gintervals(chroms = NULL, starts = 0, ends = -1, strands = NULL)

Arguments

chroms chromosomes - an array of strings with or without "chr" prefixes or an array of
integers (like: ’1’ for "chr1")

starts an array of start coordinates
ends an array of end coordinates. If ’-1’ chromosome size is assumed.
strands ’NULL’ or an array consisting of ’-1’, ’0’ or ’1’ values

Details

This function returns a set of one-dimensional intervals. The returned value can be used in all
functions that accept ’intervals’ argument.

One-dimensional intervals is a data frame whose first three columns are ’chrom’, ’start’ and ’end’.
Each row of the data frame represents a genomic interval of the specified chromosome in the range
of [start, end). Additional columns can be presented in 1D intervals object yet these columns must
be added after the three obligatory ones.

If ’strands’ argument is not ’NULL’ an additional column "strand" is added to the intervals. The
possible values of a strand can be ’1’ (plus strand), ’-1’ (minus strand) or ’0’ (unknown).

38 gintervals.2d

Value

A data frame representing the intervals.

See Also

gintervals.2d, gintervals.force_range

Examples

gdb.init_examples()

the following 3 calls produce identical results
gintervals(1)
gintervals("1")
gintervals("chrX")

gintervals(1, 1000)
gintervals(c("chr2", "chrX"), 10, c(3000, 5000))

gintervals.2d Creates a set of 2D intervals

Description

Creates a set of 2D intervals.

Usage

gintervals.2d(
chroms1 = NULL,
starts1 = 0,
ends1 = -1,
chroms2 = NULL,
starts2 = 0,
ends2 = -1

)

Arguments

chroms1 chromosomes1 - an array of strings with or without "chr" prefixes or an array of
integers (like: ’1’ for "chr1")

starts1 an array of start1 coordinates

ends1 an array of end1 coordinates. If ’-1’ chromosome size is assumed.

chroms2 chromosomes2 - an array of strings with or without "chr" prefixes or an array of
integers (like: ’1’ for "chr1"). If ’NULL’, ’chroms2’ is assumed to be equal to
’chroms1’.

gintervals.2d.all 39

starts2 an array of start2 coordinates

ends2 an array of end2 coordinates. If ’-1’ chromosome size is assumed.

Details

This function returns a set of two-dimensional intervals. The returned value can be used in all
functions that accept ’intervals’ argument.

Two-dimensional intervals is a data frame whose first six columns are ’chrom1’, ’start1’, ’end1’,
’chrom2’, ’start2’ and ’end2’. Each row of the data frame represents two genomic intervals from
two chromosomes in the range of [start, end). Additional columns can be presented in 2D intervals
object yet these columns must be added after the six obligatory ones.

Value

A data frame representing the intervals.

See Also

gintervals, gintervals.force_range

Examples

gdb.init_examples()

the following 3 calls produce identical results
gintervals.2d(1)
gintervals.2d("1")
gintervals.2d("chrX")

gintervals.2d(1, 1000, 2000, "chrX", 400, 800)
gintervals.2d(c("chr2", "chrX"), 10, c(3000, 5000), 1)

gintervals.2d.all Returns 2D intervals that cover the whole genome

Description

Returns 2D intervals that cover the whole genome.

Usage

gintervals.2d.all()

Details

This function returns a set of two-dimensional intervals that cover the whole genome as it is defined
by ’chrom_sizes.txt’ file.

40 gintervals.2d.band_intersect

Value

A data frame representing the intervals.

See Also

gintervals.2d

gintervals.2d.band_intersect

Intersects two-dimensional intervals with a band

Description

Intersects two-dimensional intervals with a band.

Usage

gintervals.2d.band_intersect(
intervals = NULL,
band = NULL,
intervals.set.out = NULL

)

Arguments

intervals two-dimensional intervals

band track expression band. If ’NULL’ no band is used.
intervals.set.out

intervals set name where the function result is optionally outputted

Details

This function intersects each two-dimensional interval from ’intervals’ with ’band’. If the intersec-
tion is not empty, the interval is shrunk to the minimal rectangle that contains the band and added
to the return value.

If ’intervals.set.out’ is not ’NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is ’NULL’ a data frame representing the intervals.

See Also

gintervals.2d, gintervals.intersect

gintervals.2d.convert_to_indexed 41

Examples

gdb.init_examples()
gintervals.2d.band_intersect(gintervals.2d(1), c(10000, 20000))

gintervals.2d.convert_to_indexed

Convert 2D interval set to indexed format

Description

Converts a per-chromosome interval set to indexed format (intervals2d.dat + intervals2d.idx) which
reduces file descriptor usage.

Usage

gintervals.2d.convert_to_indexed(
set.name = NULL,
remove.old = FALSE,
force = FALSE

)

Arguments

set.name name of 2D interval set to convert

remove.old if TRUE, removes old per-chromosome files after successful conversion

force if TRUE, re-converts even if already in indexed format

Details

The indexed format stores all chromosome pairs in a single intervals2d.dat file with an inter-
vals2d.idx index file. This dramatically reduces file descriptor usage, especially for genomes with
many chromosomes (N*(N-1)/2 files to just 2).

Only non-empty pairs are stored in the index, avoiding O(N^2) space overhead.

The conversion process:

1. Scans directory for existing per-pair files

2. Creates temporary intervals2d.dat.tmp and intervals2d.idx.tmp files

3. Concatenates all per-pair files into intervals2d.dat.tmp

4. Builds index with pair offsets and checksums

5. Atomically renames temporary files to final names

6. Optionally removes old per-pair files

The indexed format is 100

42 gintervals.all

Value

invisible NULL

Examples

Not run:
Convert a 2D interval set
gintervals.2d.convert_to_indexed("my_2d_intervals")

Convert and remove old files
gintervals.2d.convert_to_indexed("my_2d_intervals", remove.old = TRUE)

Force re-conversion
gintervals.2d.convert_to_indexed("my_2d_intervals", force = TRUE)

End(Not run)

gintervals.all Returns 1D intervals that cover the whole genome

Description

Returns 1D intervals that cover the whole genome.

Usage

gintervals.all()

Details

This function returns a set of one-dimensional intervals that cover the whole genome as it is defined
by ’chrom_sizes.txt’ file.

Value

A data frame representing the intervals.

See Also

gintervals

gintervals.annotate 43

gintervals.annotate Annotates 1D intervals using nearest neighbors

Description

Annotates one-dimensional intervals by finding nearest neighbors in another set of intervals and
adding selected columns from the neighbors to the original intervals.

Usage

gintervals.annotate(
intervals,
annotation_intervals,
annotation_columns = NULL,
column_names = NULL,
dist_column = "dist",
max_dist = Inf,
na_value = NA,
maxneighbors = 1,
tie_method = c("first", "min.start", "min.end"),
overwrite = FALSE,
keep_order = TRUE,
intervals.set.out = NULL,
...

)

Arguments

intervals Intervals to annotate (1D).
annotation_intervals

Source intervals containing annotation data (1D).
annotation_columns

Character vector of column names to copy from annotation_intervals. If
NULL (default), all non-basic columns are used, i.e. everything beyond the coor-
dinate/strand columns among: chrom, start, end, chrom1, start1, end1, chrom2,
start2, end2, strand.

column_names Optional custom names for the annotation columns. If provided, must have the
same length as annotation_columns. Defaults to using the original names.

dist_column Name of the distance column to include. Use NULL to omit the distance column.
Defaults to "dist".

max_dist Maximum absolute distance. When finite, neighbors with |dist| > max_dist
result in annotation columns being set to na_value for those rows, while the
row itself is retained.

na_value Value(s) to use for annotations when beyond max_dist or when no neighbor is
found. Can be a single scalar recycled for all columns, or a named list/vector
supplying per-column values matching column_names.

44 gintervals.annotate

maxneighbors Maximum number of neighbors per interval (duplicates intervals as needed).
Defaults to 1.

tie_method Tie-breaking when distances are equal: one of "first" (arbitrary but stable),
"min.start" (smaller neighbor start first), or "min.end" (smaller neighbor end
first). Applies when maxneighbors > 1.

overwrite When FALSE (default), errors if selected annotation columns would overwrite
existing columns in intervals. When TRUE, conflicting base columns are re-
placed by the annotation columns.

keep_order If TRUE (default), preserves the original order of intervals rows in the output.
intervals.set.out

intervals set name where the function result is optionally outputted

... Additional arguments forwarded to gintervals.neighbors (e.g., mindist, maxdist).

Details

The function wraps and extends gintervals.neighbors to provide convenient column selec-
tion/renaming, optional distance inclusion, distance thresholding with custom NA values, multiple
neighbors per interval, and deterministic tie-breaking. Currently supports 1D intervals only.

- When annotation_columns = NULL, all non-basic columns present in annotation_intervals
are included. - Setting dist_column = NULL omits the distance column. - If no neighbor is found
for an interval, annotation columns are filled with na_value and the distance (when present) is
NA_real_. - Column name collisions are handled as follows: when overwrite=FALSE a clear error
is emitted; when overwrite=TRUE, base columns with the same names are replaced by annotation
columns.

Value

A data frame containing the original intervals plus the requested annotation columns (and optional
distance column). If maxneighbors > 1, rows may be duplicated per input interval to accommodate
multiple neighbors.

Examples

Prepare toy data
intervs <- gintervals(1, c(1000, 5000), c(1100, 5050))
ann <- gintervals(1, c(900, 5400), c(950, 5500))
ann$remark <- c("a", "b")
ann$score <- c(10, 20)

Basic usage with default columns (all non-basic columns)
gintervals.annotate(intervs, ann)

Select specific columns, with custom names and distance column name
gintervals.annotate(

intervs, ann,
annotation_columns = c("remark"),
column_names = c("ann_remark"),
dist_column = "ann_dist"

)

gintervals.as_chain 45

Distance threshold with scalar NA replacement
gintervals.annotate(

intervs, ann,
annotation_columns = c("remark"),
max_dist = 200,
na_value = "no_ann"

)

Multiple neighbors with deterministic tie-breaking
nbrs <- gintervals.annotate(

gintervals(1, 1000, 1100),
{

x <- gintervals(1, c(800, 1200), c(900, 1300))
x$label <- c("left", "right")
x

},
annotation_columns = "label",
maxneighbors = 2,
tie_method = "min.start"

)
nbrs

Overwrite existing columns in the base intervals
intervs2 <- intervs
intervs2$remark <- c("orig1", "orig2")
gintervals.annotate(intervs2, ann, annotation_columns = "remark", overwrite = TRUE)

gintervals.as_chain Transforms existing intervals to a chain format

Description

Transforms existing intervals to a chain format by validating required columns and adding chain
attributes.

Usage

gintervals.as_chain(
intervals = NULL,
src_overlap_policy = "error",
tgt_overlap_policy = "auto",
min_score = NULL

)

Arguments

intervals a data frame with chain columns: chrom, start, end, strand, chromsrc, startsrc,
endsrc, strandsrc, chain_id, score

46 gintervals.canonic

src_overlap_policy

source overlap policy: "error", "keep", or "discard"
tgt_overlap_policy

target overlap policy: "error", "auto", "auto_first", "auto_longer", "auto_score",
"discard", "keep", or "agg"

min_score optional minimum alignment score threshold

Details

This function checks that the input intervals data frame has all the required columns for a chain
format and adds the necessary attributes. A chain format requires both target coordinates (chrom,
start, end, strand) and source coordinates (chromsrc, startsrc, endsrc, strandsrc), as well as chain_id
and score columns.

Value

A data frame in chain format with chain attributes set

See Also

gintervals.load_chain, gintervals.liftover

Examples

gdb.init_examples()

Create a chain from existing intervals
chain_data <- data.frame(

chrom = "chr1",
start = 1000,
end = 2000,
strand = 0,
chromsrc = "chr1",
startsrc = 5000,
endsrc = 6000,
strandsrc = 0,
chain_id = 1L,
score = 1000.0

)
chain <- gintervals.as_chain(chain_data)

gintervals.canonic Converts intervals to canonic form

Description

Converts intervals to canonic form.

gintervals.canonic 47

Usage

gintervals.canonic(intervals = NULL, unify_touching_intervals = TRUE)

Arguments

intervals intervals to be converted
unify_touching_intervals

if ’TRUE’, touching one-dimensional intervals are unified

Details

This function converts ’intervals’ into a "canonic" form: properly sorted with no overlaps. The
result can be used later in the functions that require the intervals to be in canonic form. Use
’unify_touching_intervals’ to control whether the intervals that touch each other (i.e. the end coor-
dinate of one equals to the start coordinate of the other) are unified. ’unify_touching_intervals’ is
ignored if two-dimensional intervals are used.

Since ’gintervals.canonic’ unifies overlapping or touching intervals, the number of the returned
intervals might be less than the number of the original intervals. To allow the user to find the
origin of the new interval ’mapping’ attribute is attached to the result. It maps between the original
intervals and the resulted intervals. Use ’attr(retv_of_gintervals.canonic, "mapping")’ to retrieve
the map.

Value

A data frame representing the canonic intervals and an attribute ’mapping’ that maps the original
intervals to the resulted ones.

See Also

gintervals, gintervals.2d

Examples

gdb.init_examples()

Create intervals manually by using 'data.frame'.
Note that we add an additional column 'data'.
Return value:
chrom start end data
1 chr1 11000 12000 10
2 chr1 100 200 20
3 chr1 10000 13000 30
4 chr1 10500 10600 40
intervs <- data.frame(

chrom = "chr1",
start = c(11000, 100, 10000, 10500),
end = c(12000, 200, 13000, 10600),
data = c(10, 20, 30, 40)

)

48 gintervals.chrom_sizes

Convert the intervals into the canonic form.
The function discards any columns besides chrom, start and end.
Return value:
chrom start end
1 chr1 100 200
2 chr1 10000 13000
res <- gintervals.canonic(intervs)

By inspecting mapping attribute we can see how the new
intervals were created: "2 1 2 2" means that the first
interval in the result was created from the second interval in
the original set (we look for the indices in mapping where "1"
appears). Likewise the second interval in the result was
created from 3 intervals in the original set. Their indices are
1, 3 and 4 (once again we look for the indices in mapping where
"2" appears).
Return value:
2 1 2 2
attr(res, "mapping")

Finally (and that is the most useful part of 'mapping'
attribute): we add a new column 'data' to our result which is
the mean value of the original data column. The trick is done
using 'tapply' on par with 'mapping' attribute. For example,
20.00000 equals is a result of 'mean(intervs[2,]$data' while
26.66667 is a result of 'mean(intervs[c(1,3,4),]$data)'.
'res' after the following call:
chrom start end data
1 chr1 100 200 20.00000
2 chr1 10000 13000 26.66667
res$data <- tapply(intervs$data, attr(res, "mapping"), mean)

gintervals.chrom_sizes

Returns number of intervals per chromosome

Description

Returns number of intervals per chromosome (or chromosome pair).

Usage

gintervals.chrom_sizes(intervals = NULL)

Arguments

intervals intervals set

gintervals.convert_to_indexed 49

Details

This function returns number of intervals per chromosome (for 1D intervals) or chromosome pair
(for 2D intervals).

Value

Data frame representing number of intervals per chromosome (for 1D intervals) or chromosome
pair (for 2D intervals).

See Also

gintervals.load, gintervals.save, gintervals.exists, gintervals.ls, gintervals, gintervals.2d

Examples

gdb.init_examples()
gintervals.chrom_sizes("annotations")

gintervals.convert_to_indexed

Convert 1D interval set to indexed format

Description

Converts a per-chromosome interval set to indexed format (intervals.dat + intervals.idx) which re-
duces file descriptor usage.

Usage

gintervals.convert_to_indexed(
set.name = NULL,
remove.old = FALSE,
force = FALSE

)

Arguments

set.name name of interval set to convert

remove.old if TRUE, removes old per-chromosome files after successful conversion

force if TRUE, re-converts even if already in indexed format

50 gintervals.coverage_fraction

Details

The indexed format stores all chromosomes in a single intervals.dat file with an intervals.idx index
file. This reduces file descriptor usage from N files (one per chromosome) to just 2 files.

The conversion process:

1. Creates temporary intervals.dat.tmp and intervals.idx.tmp files

2. Concatenates all per-chromosome files into intervals.dat.tmp

3. Builds index with offsets and checksums

4. Atomically renames temporary files to final names

5. Optionally removes old per-chromosome files

The indexed format is 100

Value

invisible NULL

See Also

gintervals.save, gintervals.load

Examples

Not run:
Convert an interval set
gintervals.convert_to_indexed("my_intervals")

Convert and remove old files
gintervals.convert_to_indexed("my_intervals", remove.old = TRUE)

Force re-conversion
gintervals.convert_to_indexed("my_intervals", force = TRUE)

End(Not run)

gintervals.coverage_fraction

Calculate fraction of genomic space covered by intervals

Description

Returns the fraction of a genomic space that is covered by a set of intervals.

Usage

gintervals.coverage_fraction(intervals1 = NULL, intervals2 = NULL)

gintervals.covered_bp 51

Arguments

intervals1 set of one-dimensional intervals (the covering set)

intervals2 set of one-dimensional intervals to be covered (default: NULL, meaning the
entire genome)

Details

This function calculates what fraction of ’intervals2’ is covered by ’intervals1’. If ’intervals2’ is
NULL, it calculates the fraction of the entire genome that is covered by ’intervals1’. Overlapping
intervals in either set are automatically unified before calculation.

Value

A single numeric value between 0 and 1 representing the fraction of ’intervals2’ (or the genome)
covered by ’intervals1’.

See Also

gintervals, gintervals.intersect, gintervals.covered_bp, gintervals.all

Examples

gdb.init_examples()

Create some intervals
intervs1 <- gscreen("dense_track > 0.15")
intervs2 <- gintervals(c("chr1", "chr2"), 0, c(100000, 100000))

Calculate fraction of intervs2 covered by intervs1
gintervals.coverage_fraction(intervs1, intervs2)

Calculate fraction of entire genome covered by intervs1
gintervals.coverage_fraction(intervs1)

gintervals.covered_bp Calculate total base pairs covered by intervals

Description

Returns the total number of base pairs covered by a set of intervals.

Usage

gintervals.covered_bp(intervals = NULL)

52 gintervals.dataset

Arguments

intervals set of one-dimensional intervals

Details

This function first canonicalizes the intervals to remove overlaps and touching intervals, then sums
up the lengths of all resulting intervals. Overlapping intervals are counted only once.

Value

A single numeric value representing the total number of base pairs covered by the intervals.

See Also

gintervals, gintervals.canonic, gintervals.coverage_fraction

Examples

gdb.init_examples()

Create some intervals
intervs <- gintervals(

c("chr1", "chr1", "chr2"),
c(100, 150, 1000),
c(200, 250, 2000)

)

Calculate total bp covered
Note: intervals [100,200) and [150,250) overlap,
so total is (200-100) + (250-150) + (2000-1000) = 100 + 100 + 1000 = 1200
But after canonicalization: [100,250) + [1000,2000) = 150 + 1000 = 1150
gintervals.covered_bp(intervs)

gintervals.dataset Returns the database/dataset path for interval sets

Description

Returns the path of the database or dataset containing an interval set.

Usage

gintervals.dataset(intervals = NULL)

Arguments

intervals interval set name or a vector of interval set names

gintervals.dbs 53

Details

When datasets are loaded, interval sets can come from either the working database or from loaded
datasets. This function returns the source path for each interval set.

Value

A character vector containing the database paths for each interval set. Returns NA for interval sets
that don’t exist in any connected database.

See Also

gintervals.dbs, gintervals.exists, gintervals.ls, gdataset.ls

Examples

gdb.init_examples()
gintervals.dataset("annotations1")

gintervals.dbs Returns all database paths containing an interval set

Description

Returns all database paths that contain a version of an interval set.

Usage

gintervals.dbs(intervals = NULL, dataframe = FALSE)

Arguments

intervals interval set name

dataframe return a data frame with columns intervals and db

Details

When datasets are loaded, an interval set may exist in multiple locations. This function computes
on-demand and returns all such paths.

Value

A named character vector of database paths. If dataframe is TRUE, returns a data frame with
columns intervals and db.

See Also

gintervals.dataset, gintervals.ls, gdataset.ls

54 gintervals.diff

Examples

gdb.init_examples()
gintervals.dbs("annotations1")

gintervals.diff Calculates difference of two intervals sets

Description

Returns difference of two sets of intervals.

Usage

gintervals.diff(intervals1 = NULL, intervals2 = NULL, intervals.set.out = NULL)

Arguments

intervals1, intervals2
set of one-dimensional intervals

intervals.set.out

intervals set name where the function result is optionally outputted

Details

This function returns a genomic space that is covered by ’intervals1’ but not covered by ’intervals2’.

If ’intervals.set.out’ is not ’NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is ’NULL’ a data frame representing the intervals.

See Also

gintervals, gintervals.intersect, gintervals.union

Examples

gdb.init_examples()

intervs1 <- gscreen("dense_track > 0.15")
intervs2 <- gscreen("dense_track < 0.2")

'res3' equals to 'res4'
res3 <- gintervals.diff(intervs1, intervs2)
res4 <- gscreen("dense_track >= 0.2")

gintervals.exists 55

gintervals.exists Tests for a named intervals set existence

Description

Tests for a named intervals set existence.

Usage

gintervals.exists(intervals.set = NULL)

Arguments

intervals.set name of an intervals set

Details

This function returns ’TRUE’ if a named intervals set exists in Genomic Database.

Value

’TRUE’ if a named intervals set exists. Otherwise ’FALSE’.

See Also

gintervals.ls, gintervals.load, gintervals.rm, gintervals.save, gintervals, gintervals.2d

Examples

gdb.init_examples()
gintervals.exists("annotations")

gintervals.force_range

Limits intervals to chromosomal range

Description

Limits intervals to chromosomal range.

Usage

gintervals.force_range(intervals = NULL, intervals.set.out = NULL)

56 gintervals.import_genes

Arguments

intervals intervals
intervals.set.out

intervals set name where the function result is optionally outputted

Details

This function enforces the intervals to be within the chromosomal range [0, chrom length) by al-
tering the intervals’ boundaries. Intervals that lay entirely outside of the chromosomal range are
eliminated. The new intervals are returned.

If ’intervals.set.out’ is not ’NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is ’NULL’ a data frame representing the intervals.

See Also

gintervals, gintervals.2d, gintervals.canonic

Examples

gdb.init_examples()
intervs <- data.frame(

chrom = "chr1",
start = c(11000, -100, 10000, 10500),
end = c(12000, 200, 13000000, 10600)

)
gintervals.force_range(intervs)

gintervals.import_genes

Imports genes and annotations from files

Description

Imports genes and annotations from files.

Usage

gintervals.import_genes(
genes.file = NULL,
annots.file = NULL,
annots.names = NULL

)

gintervals.intersect 57

Arguments

genes.file name or URL of file that contains genes
annots.file name of URL file that contains annotations. If ’NULL’ no annotations are im-

ported
annots.names annotations names

Details

This function reads a definition of genes from ’genes.file’ and returns four sets of intervals: TSS,
exons, 3utr and 5utr. In addition to the regular intervals columns ’strand’ column is added. It
contains ’1’ values for ’+’ strands and ’-1’ values for ’-’ strands.

If annotation file ’annots.file’ is given then annotations are attached too to the intervals. The names
of the annotations as they would appear in the return value must be specified in ’annots.names’
argument.

Both ’genes.file’ and ’annots.file’ can be either a file path or URL in a form of ’ftp://[address]/[file]’.
Files that these arguments point to can be zipped or unzipped.

Examples of ’genes.file’ and ’annots.file’ can be found here:

ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/knownGene.txt.gz ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/kgXref.txt.gz

If a few intervals overlap (for example: two TSS regions) they are all unified to an interval that
covers the whole overlapping region. ’strand’ value is set to ’0’ if two or more of the overlapping
intervals have different strands. The annotations of the overlapping intervals are concatenated to a
single character string separated by semicolons. Identical values of overlapping intervals’ annota-
tion are eliminated.

Value

A list of four intervals sets named ’tss’, ’exons’, ’utr3’ and ’utr5’. ’strand’ column and annotations
are attached to the intevals.

See Also

gintervals, gdb.create

gintervals.intersect Calculates an intersection of two sets of intervals

Description

Calculates an intersection of two sets of intervals.

Usage

gintervals.intersect(
intervals1 = NULL,
intervals2 = NULL,
intervals.set.out = NULL

)

58 gintervals.is.bigset

Arguments

intervals1, intervals2
set of intervals

intervals.set.out

intervals set name where the function result is optionally outputted

Details

This function returns intervals that represent a genomic space which is achieved by intersection of
’intervals1’ and ’intervals2’.

If ’intervals.set.out’ is not ’NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is ’NULL’ a data frame representing the intersection of intervals.

See Also

gintervals.2d.band_intersect, gintervals.diff, gintervals.union, gintervals, gintervals.2d

Examples

gdb.init_examples()

intervs1 <- gscreen("dense_track > 0.15")
intervs2 <- gscreen("dense_track < 0.2")

'intervs3' and 'intervs4' are identical
intervs3 <- gintervals.intersect(intervs1, intervs2)
intervs4 <- gscreen("dense_track > 0.15 & dense_track < 0.2")

gintervals.is.bigset Tests for big intervals set

Description

Tests for big intervals set.

Usage

gintervals.is.bigset(intervals.set = NULL)

Arguments

intervals.set name of an intervals set

gintervals.liftover 59

Details

This function tests whether ’intervals.set’ is a big intervals set. Intervals set is big if it is stored in
big intervals set format and given the current limits it cannot be fully loaded into memory.

Memory limit is controlled by ’gmax.data.size’ option (see: ’getOption("gmax.data.size")’).

Value

’TRUE’ if intervals set is big, otherwise ’FALSE’.

See Also

gintervals.load, gintervals.save, gintervals.exists, gintervals.ls

Examples

gdb.init_examples()
gintervals.is.bigset("annotations")

gintervals.liftover Converts intervals from another assembly

Description

Converts intervals from another assembly to the current one.

Usage

gintervals.liftover(
intervals = NULL,
chain = NULL,
src_overlap_policy = "error",
tgt_overlap_policy = "auto",
min_score = NULL,
include_metadata = FALSE,
canonic = FALSE,
value_col = NULL,
multi_target_agg = c("mean", "median", "sum", "min", "max", "count", "first", "last",

"nth", "max.coverage_len", "min.coverage_len", "max.coverage_frac",
"min.coverage_frac"),

params = NULL,
na.rm = TRUE,
min_n = NULL

)

60 gintervals.liftover

Arguments

intervals intervals from another assembly

chain name of chain file or data frame as returned by ’gintervals.load_chain’
src_overlap_policy

policy for handling source overlaps: "error" (default), "keep", or "discard".
"keep" allows one source interval to map to multiple target intervals, "discard"
discards all source intervals that have overlaps and "error" throws an error if
source overlaps are detected.

tgt_overlap_policy

policy for handling target overlaps. One of:

Policy Description
error Throws an error if any target overlaps are detected.
auto Default. Alias for "auto_score".
auto_score Resolves overlaps by segmenting the target region and selecting the best chain for each segment based on alignment score (highest score wins). Tie-breakers: longest span, then lowest chain_id.
auto_longer Resolves overlaps by segmenting and selecting the chain with the longest span for each segment. Tie-breakers: highest score, then lowest chain_id.
auto_first Resolves overlaps by segmenting and selecting the chain with the lowest chain_id for each segment.
keep Preserves all overlapping intervals.
discard Discards any chain interval that has a target overlap with another chain interval.
agg Segments overlaps into smaller disjoint regions where each region contains all contributing chains, allowing downstream aggregation to process multiple values per region.
best_source_cluster Best source cluster strategy based on source overlap. When multiple chains map a source interval, clusters them by source overlap: if chain source intervals overlap (indicating true duplications), all mappings are retained; if chain source intervals are disjoint (indicating conflicting/alternative mappings), only the cluster with the largest total target length is kept.

min_score optional minimum alignment score threshold. Chains with scores below this
value are filtered out. Useful for excluding low-quality alignments.

include_metadata

logical; if TRUE, adds ’score’ column to the output indicating the alignment
score of the chain used for each mapping. Only applicable with "auto_score" or
"auto" policy.

canonic logical; if TRUE, merges adjacent target intervals that originated from the same
source interval (same intervalID) and same chain (same chain_id). This is useful
when a source interval maps to multiple adjacent target blocks due to chain gaps.

value_col optional character string specifying the name of a numeric column in the inter-
vals data frame to track through the liftover. When specified, this column’s val-
ues are preserved in the output with the same column name. Use with multi_target_agg
to aggregate values when multiple source intervals map to overlapping target re-
gions.

multi_target_agg

aggregation method to use when value_col is specified. One of: "mean", "me-
dian", "sum", "min", "max", "count", "first", "last", "nth", "max.coverage_len",
"min.coverage_len", "max.coverage_frac", "min.coverage_frac". Default: "mean".
Ignored when value_col is NULL.

params additional parameters for specific aggregation methods. Currently only used for
"nth" aggregation, where it specifies which element to select (e.g., params = 2
for second element, or params = list(n = 2)).

gintervals.liftover 61

na.rm logical; if TRUE (default), NA values are removed before aggregation. If FALSE,
any NA in the values will cause the result to be NA. Only used when value_col
is specified.

min_n optional minimum number of non-NA observations required for aggregation. If
fewer observations are available, the result is NA. NULL (default) means no
minimum. Only used when value_col is specified.

Details

This function converts ’intervals’ from another assembly to the current one. Chain file instructs how
the conversion of coordinates should be done. It can be either a name of a chain file or a data frame
in the same format as returned by ’gintervals.load_chain’ function.

The converted intervals are returned. An additional column named ’intervalID’ is added to the
resulted data frame. For each interval in the resulted intervals it indicates the index of the original
interval.

Note: When passing a pre-loaded chain (data frame), overlap policies cannot be specified - they
are taken from the chain’s attributes that were set during loading. When passing a chain file path,
policies can be specified and will be used for loading.

Value

A data frame representing the converted intervals. For 1D intervals, always includes ’intervalID’
(index of original interval) and ’chain_id’ (identifier of the chain that produced the mapping)
columns. The chain_id column is essential for distinguishing results when a source interval maps
to multiple target regions via different chains (duplications). When include_metadata=TRUE, also
includes ’score’ column. When value_col is specified, includes the value column with its original
name.

See Also

gintervals.load_chain, gtrack.liftover, gintervals

Examples

gdb.init_examples()
chainfile <- paste(.misha$GROOT, "data/test.chain", sep = "/")
intervs <- data.frame(

chrom = "chr25", start = c(0, 7000),
end = c(6000, 20000)

)
Liftover with default policies
gintervals.liftover(intervs, chainfile)

Liftover keeping source overlaps (one source interval may map to multiple targets)
gintervals.liftover(intervs, chainfile, src_overlap_policy = "keep")

62 gintervals.load

gintervals.load Loads a named intervals set

Description

Loads a named intervals set.

Usage

gintervals.load(
intervals.set = NULL,
chrom = NULL,
chrom1 = NULL,
chrom2 = NULL

)

Arguments

intervals.set name of an intervals set

chrom chromosome for 1D intervals set

chrom1 first chromosome for 2D intervals set

chrom2 second chromosome for 2D intervals set

Details

This function loads and returns intervals stored in a named intervals set.

If intervals set contains 1D intervals and ’chrom’ is not ’NULL’ only the intervals of the given
chromosome are returned.

Likewise if intervals set contains 2D intervals and ’chrom1’, ’chrom2’ are not ’NULL’ only the
intervals of the given pair of chromosomes are returned.

For big intervals sets ’chrom’ parameter (1D case) / ’chrom1’, ’chrom2’ parameters (2D case) must
be specified. In other words: big intervals sets can be loaded only by chromosome or chromosome
pair.

Value

A data frame representing the intervals.

See Also

gintervals.save, gintervals.is.bigset, gintervals.exists, gintervals.ls, gintervals,
gintervals.2d

gintervals.load_chain 63

Examples

gdb.init_examples()
gintervals.load("annotations")

gintervals.load_chain Loads assembly conversion table from a chain file

Description

Loads assembly conversion table from a chain file.

Usage

gintervals.load_chain(
file = NULL,
src_overlap_policy = "error",
tgt_overlap_policy = "auto",
src_groot = NULL,
min_score = NULL

)

Arguments

file name of chain file
src_overlap_policy

policy for handling source overlaps: "error" (default), "keep", or "discard".
"keep" allows one source interval to map to multiple target intervals, "discard"
discards all source intervals that have overlaps and "error" throws an error if
source overlaps are detected.

tgt_overlap_policy

policy for handling target overlaps. One of:

Policy Description
error Throws an error if any target overlaps are detected.
auto Default. Alias for "auto_score".
auto_score Resolves overlaps by segmenting the target region and selecting the best chain for each segment based on alignment score (highest score wins). Tie-breakers: longest span, then lowest chain_id.
auto_longer Resolves overlaps by segmenting and selecting the chain with the longest span for each segment. Tie-breakers: highest score, then lowest chain_id.
auto_first Resolves overlaps by segmenting and selecting the chain with the lowest chain_id for each segment.
keep Preserves all overlapping intervals.
discard Discards any chain interval that has a target overlap with another chain interval.
agg Segments overlaps into smaller disjoint regions where each region contains all contributing chains, allowing downstream aggregation to process multiple values per region.
best_source_cluster Best source cluster strategy based on source overlap. When multiple chains map a source interval, clusters them by source overlap: if chain source intervals overlap (indicating true duplications), all mappings are retained; if chain source intervals are disjoint (indicating conflicting/alternative mappings), only the cluster with the largest total target length is kept.

64 gintervals.load_chain

src_groot optional path to source genome database for validating source chromosomes
and coordinates. If provided, the function temporarily switches to this database
to verify that all source chromosomes exist and coordinates are within bounds,
then restores the original database.

min_score optional minimum alignment score threshold. Chains with scores below this
value are filtered out. Useful for excluding low-quality alignments.

Details

This function reads a file in ’chain’ format and returns assembly conversion table that can be used
in ’gtrack.liftover’ and ’gintervals.liftover’.

Source overlaps occur when the same source genome position maps to multiple target genome
positions. Target overlaps occur when multiple source positions map to overlapping regions in the
target genome.

The ’src_overlap_policy’ controls how source overlaps are handled:

• "error" (default): Throw an error if source overlaps are detected

• "keep": Keep all mappings, allowing one source to map to multiple targets

• "discard": Remove all chain intervals involved in source overlaps

The ’tgt_overlap_policy’ controls how target overlaps are handled:

• "error": Throw an error if target overlaps are detected

• "auto" (default) / "auto_first": Keep the first overlapping chain (original file order) by trim-
ming or discarding later overlaps while keeping source/target lengths consistent

• "auto_longer": Keep the longer overlapping chain and trim/drop the shorter ones

• "discard": Remove all chain intervals involved in target overlaps

• "keep": Allow target overlaps to remain untouched (liftover must be able to handle them)

Value

A data frame representing assembly conversion table with columns: chrom, start, end, strand,
chromsrc, startsrc, endsrc, strandsrc, chain_id, score.

See Also

gintervals.liftover, gtrack.liftover

Examples

gdb.init_examples()
chainfile <- paste(.misha$GROOT, "data/test.chain", sep = "/")
Load chain file with default policies
gintervals.load_chain(chainfile)

gintervals.ls 65

gintervals.ls Returns a list of named intervals sets

Description

Returns a list of named intervals sets in Genomic Database.

Usage

gintervals.ls(
pattern = "",
db = NULL,
ignore.case = FALSE,
perl = FALSE,
fixed = FALSE,
useBytes = FALSE

)

Arguments

pattern, ignore.case, perl, fixed, useBytes
see ’grep’

db optional database path to filter intervals. If specified, only interval sets from that
database are returned.

Details

This function returns a list of named intervals sets that match the pattern (see ’grep’). If called
without any arguments all named intervals sets are returned.

When multiple databases are connected, the ’db’ parameter can be used to filter intervals to only
those from a specific database.

Value

An array that contains the names of intervals sets.

See Also

grep, gintervals.exists, gintervals.load, gintervals.save, gintervals.rm, gintervals,
gintervals.2d, gintervals.dataset

Examples

gdb.init_examples()
gintervals.ls()
gintervals.ls(pattern = "annot*")

66 gintervals.mapply

gintervals.mapply Applies a function to values of track expressions

Description

Applies a function to values of track expressions for each interval.

Usage

gintervals.mapply(
FUN = NULL,
...,
intervals = NULL,
enable.gapply.intervals = FALSE,
iterator = NULL,
band = NULL,
intervals.set.out = NULL,
colnames = "value"

)

Arguments

FUN function to apply, found via ’match.fun’

... track expressions whose values are used as arguments for ’FUN’

intervals intervals for which track expressions are calculated
enable.gapply.intervals

if ’TRUE’, then a variable ’GAPPLY.INTERVALS’ is available

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expressions.

band track expression band. If ’NULL’ no band is used.
intervals.set.out

intervals set name where the function result is optionally outputted

colnames name of the column that contains the return values of ’FUN’. Default is "value".

Details

This function evaluates track expressions for each interval from ’intervals’. The resulted vectors are
passed then as arguments to ’FUN’.

If the intervals are one-dimensional and have an additional column named ’strand’ whose value is
’-1’, the values of the track expression are placed to the vector in reverse order.

The current interval index (1-based) is stored in ’GAPPLY.INTERVID’ variable that is available
during the execution of ’gintervals.mapply’. There is no guarantee about the order in which the in-
tervals are processed. Do not rely on any specific order and use ’GITERATOR.INTERVID’ variable
to detect the current interval id.

gintervals.mark_overlaps 67

If ’enable.gapply.intervals’ is ’TRUE’, an additional variable ’GAPPLY.INTERVALS’ is defined
during the execution of ’gintervals.mapply’. This variable stores the current iterator intervals prior
to track expression evaluation. Please note that setting ’enable.gapply.intervals’ to ’TRUE’ might
severely affect the run-time of the function.

Note: all the changes made in R environment by ’FUN’ will be void if multitasking mode is
switched on. One should also refrain from performing any other operations in ’FUN’ that might be
not "thread-safe" such as updating files, etc. Please switch off multitasking (’options(gmultitasking
= FALSE)’) if you wish to perform such operations.

If ’intervals.set.out’ is not ’NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is ’NULL’ a data frame representing intervals with an additional column that
contains the return values of ’FUN’. The name of this additional column is specified by the ’col-
names’ parameter.

See Also

mapply

Examples

gdb.init_examples()
gintervals.mapply(

max, "dense_track",
gintervals(c(1, 2), 0, 10000)

)
gintervals.mapply(

function(x, y) {
max(x + y)

}, "dense_track",
"sparse_track", gintervals(c(1, 2), 0, 10000),
iterator = "sparse_track"

)
Using custom column name
gintervals.mapply(

max, "dense_track",
gintervals(c(1, 2), 0, 10000),
colnames = "max_value"

)

gintervals.mark_overlaps

Mark overlapping intervals with a group ID

68 gintervals.neighbors

Description

Mark overlapping intervals with a group ID

Usage

gintervals.mark_overlaps(
intervals,
group_col = "overlap_group",
unify_touching_intervals = TRUE

)

Arguments

intervals intervals set

group_col name of the column to store the overlap group IDs (default: "overlap_group")

unify_touching_intervals

if ’TRUE’, touching one-dimensional intervals are unified

Value

The intervals set with an additional column containing group IDs from gintervals.canonic mapping.
All overlapping intervals will have the same group ID.

Examples

gdb.init_examples()
Create sample overlapping intervals
intervs <- data.frame(

chrom = "chr1",
start = c(11000, 100, 10000, 10500),
end = c(12000, 200, 13000, 10600),
data = c(10, 20, 30, 40)

)

Mark overlapping intervals
intervs_marked <- gintervals.mark_overlaps(intervs)

Use custom column name
intervs_marked <- gintervals.mark_overlaps(intervs, group_col = "my_groups")

gintervals.neighbors Finds neighbors between two sets of intervals

gintervals.neighbors 69

Description

For each interval in ’intervals1’, finds the closest intervals from ’intervals2’. Distance directional-
ity can be determined by either the strand of the target intervals (intervals2, default) or the query
intervals (intervals1). When no strand column is present, all intervals are treated as positive strand
(strand = 1).

Usage

gintervals.neighbors(
intervals1 = NULL,
intervals2 = NULL,
maxneighbors = 1,
mindist = -1e+09,
maxdist = 1e+09,
mindist1 = -1e+09,
maxdist1 = 1e+09,
mindist2 = -1e+09,
maxdist2 = 1e+09,
na.if.notfound = FALSE,
use_intervals1_strand = FALSE,
warn.ignored.strand = TRUE,
intervals.set.out = NULL

)

Arguments

intervals1, intervals2
intervals

maxneighbors maximal number of neighbors

mindist, maxdist
distance range for 1D intervals

mindist1, maxdist1, mindist2, maxdist2
distance range for 2D intervals

na.if.notfound if ’TRUE’ return ’NA’ interval if no matching neighbors were found, otherwise
omit the interval in the answer

use_intervals1_strand

if ’TRUE’ use intervals1 strand column for distance directionality instead of
intervals2 strand. If intervals1 has no strand column, all intervals are treated as
positive strand (strand = 1). Invalid strand values (not -1 or 1) will cause an
error.

warn.ignored.strand

if ’TRUE’ (default) show warning when ’intervals1’ contains a strand column
that will be ignored for distance calculation

intervals.set.out

intervals set name where the function result is optionally outputted

70 gintervals.neighbors

Details

This function finds for each interval in ’intervals1’ the closest ’maxneighbors’ intervals from ’inter-
vals2’.

For 1D intervals the distance must fall in the range of [’mindist’, ’maxdist’].

Distance is defined as the number of base pairs between the the last base pair of the query interval
and the first base pair of the target interval.

Strand handling: By default, distance directionality is determined by the ’strand’ column in
’intervals2’ (if present). If ’use_intervals1_strand’ is TRUE, distance directionality is instead deter-
mined by the ’strand’ column in ’intervals1’. This is particularly useful for TSS analysis where you
want upstream/downstream distances relative to gene direction.

Distance calculation modes:

• **use_intervals1_strand = FALSE (default):** Uses intervals2 strand for directionality

• **use_intervals1_strand = TRUE:** Uses intervals1 strand for directionality

Important: When ’use_intervals1_strand = TRUE’, distance signs are interpreted as:

• **+ strand queries:** Negative distances = upstream, Positive distances = downstream

• **- strand queries:** Negative distances = downstream, Positive distances = upstream

For 2D intervals two distances are calculated and returned for each axis. The distances must fall in
the range of [’mindist1’, ’maxdist1’] for axis 1 and [’mindist2’, ’maxdist2’] for axis 2. For selecting
the closest ’maxneighbors’ intervals Manhattan distance is used (i.e. dist1+dist2).

Note: ’use_intervals1_strand’ is not yet supported for 2D intervals.

The names of the returned columns are made unique using make.unique(colnames(df), sep =
""), assuming ’df’ is the result.

If ’intervals.set.out’ is not ’NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is ’NULL’ a data frame containing the pairs of intervals from ’intervals1’, in-
tervals from ’intervals2’ and an additional column named ’dist’ (’dist1’ and ’dist2’ for 2D intervals)
representing the distance between the corresponding intervals. The intervals from intervals2 would
be changed to ’chrom1’, ’start1’, and ’end1’ and for 2D intervals chrom11, start11, end11 and
chrom22, start22, end22. If ’na.if.notfound’ is ’TRUE’, the data frame contains all the intervals
from ’intervals1’ including those for which no matching neighbor was found. For the latter inter-
vals an ’NA’ neighboring interval is stated. If ’na.if.notfound’ is ’FALSE’, the data frame contains
only intervals from ’intervals1’ for which matching neighbor(s) was found.

See Also

gintervals, gintervals.neighbors.upstream, gintervals.neighbors.downstream

gintervals.neighbors 71

Examples

gdb.init_examples()

Basic intervals
intervs1 <- giterator.intervals("dense_track",

gintervals(1, 0, 4000),
iterator = 233

)
intervs2 <- giterator.intervals(

"sparse_track",
gintervals(1, 0, 2000)

)

Original behavior - no strand considerations
gintervals.neighbors(intervs1, intervs2, 10,

mindist = -300,
maxdist = 500

)

Add strand to intervals2 - affects distance directionality (original behavior)
intervs2$strand <- c(1, 1, -1, 1)
gintervals.neighbors(intervs1, intervs2, 10,

mindist = -300,
maxdist = 500

)

TSS analysis example - use intervals1 (TSS) strand for directionality
tss <- data.frame(

chrom = c("chr1", "chr1", "chr1"),
start = c(1000, 2000, 3000),
end = c(1001, 2001, 3001),
strand = c(1, -1, 1), # +, -, +
gene = c("GeneA", "GeneB", "GeneC")

)

features <- data.frame(
chrom = "chr1",
start = c(500, 800, 1200, 1800, 2200, 2800, 3200),
end = c(600, 900, 1300, 1900, 2300, 2900, 3300),
feature_id = paste0("F", 1:7)

)

Use TSS strand for distance directionality
result <- gintervals.neighbors(tss, features,

maxneighbors = 2,
mindist = -1000, maxdist = 1000,
use_intervals1_strand = TRUE

)

Convenience functions for common TSS analysis
Find upstream neighbors (negative distances for + strand genes)

72 gintervals.neighbors.upstream

upstream <- gintervals.neighbors.upstream(tss, features,
maxneighbors = 2, maxdist = 1000

)

Find downstream neighbors (positive distances for + strand genes)
downstream <- gintervals.neighbors.downstream(tss, features,

maxneighbors = 2, maxdist = 1000
)

Find both directions
both_directions <- gintervals.neighbors.directional(tss, features,

maxneighbors_upstream = 1,
maxneighbors_downstream = 1,
maxdist = 1000

)

gintervals.neighbors.upstream

Directional neighbor finding functions

Description

These functions find neighbors using query strand directionality, where upstream/downstream di-
rectionality is determined by the strand of the query intervals rather than the target intervals. This
is particularly useful for TSS analysis where you want distances relative to gene direction.

Usage

gintervals.neighbors.upstream(
query_intervals,
target_intervals,
maxneighbors = 1,
maxdist = 1e+09,
...

)

gintervals.neighbors.downstream(
query_intervals,
target_intervals,
maxneighbors = 1,
maxdist = 1e+09,
...

)

gintervals.neighbors.directional(
query_intervals,
target_intervals,

gintervals.neighbors.upstream 73

maxneighbors_upstream = 1,
maxneighbors_downstream = 1,
maxdist = 1e+09,
...

)

Arguments

query_intervals

intervals with strand information (query intervals)
target_intervals

intervals to search for neighbors

maxneighbors maximum number of neighbors per query interval (default: 1)

maxdist maximum distance to search (default: 1e+09)

... additional arguments passed to gintervals.neighbors

maxneighbors_upstream

maximum upstream neighbors per query interval (default: 1)
maxneighbors_downstream

maximum downstream neighbors per query interval (default: 1)

Details

Distance interpretation:

• **Positive strand queries:** upstream distances < 0, downstream distances > 0

• **Negative strand queries:** upstream distances > 0, downstream distances < 0

If no strand column is present, all intervals are treated as positive strand.

Value

gintervals.neighbors.upstream data frame of upstream neighbors

gintervals.neighbors.downstream data frame of downstream neighbors

gintervals.neighbors.directional list with ’upstream’ and ’downstream’ components

See Also

gintervals.neighbors

Examples

gdb.init_examples()

Create TSS intervals with strand information
tss <- data.frame(

chrom = c("chr1", "chr1", "chr1"),
start = c(1000, 2000, 3000),
end = c(1001, 2001, 3001),

74 gintervals.normalize

strand = c(1, -1, 1), # +, -, +
gene = c("GeneA", "GeneB", "GeneC")

)

Create regulatory features
features <- data.frame(

chrom = "chr1",
start = c(500, 800, 1200, 1800, 2200, 2800, 3200),
end = c(600, 900, 1300, 1900, 2300, 2900, 3300),
feature_id = paste0("F", 1:7)

)

Find upstream neighbors (promoter analysis)
upstream <- gintervals.neighbors.upstream(tss, features,

maxneighbors = 2, maxdist = 1000
)
print(upstream)

Find downstream neighbors (gene body analysis)
downstream <- gintervals.neighbors.downstream(tss, features,

maxneighbors = 2, maxdist = 5000
)
print(downstream)

Find both directions in one call
both <- gintervals.neighbors.directional(tss, features,

maxneighbors_upstream = 1,
maxneighbors_downstream = 1,
maxdist = 1000

)
print(both$upstream)
print(both$downstream)

gintervals.normalize Normalize intervals to fixed or variable sizes

Description

This function normalizes intervals by computing their centers and then expanding them to fixed or
variable sizes, while ensuring they don’t cross chromosome boundaries.

Usage

gintervals.normalize(intervals = NULL, size = NULL, intervals.set.out = NULL)

Arguments

intervals intervals set

size target size(s) for normalized intervals. Can be either:

gintervals.path 75

• A single positive integer: all intervals normalized to this size
• A numeric vector: each interval normalized to its corresponding size. Vec-

tor length must exactly match the number of intervals, OR a single interval
can be provided with multiple sizes to create multiple output intervals (one-
to-many expansion).

intervals.set.out

intervals set name where the function result is saved. If NULL, the result is
returned to the user.

Value

Normalized intervals set with fixed or variable sizes, or NULL if result is saved to intervals.set.out

See Also

gintervals.force_range

Examples

gdb.init_examples()

Single size (all intervals normalized to 500bp)
intervs <- gintervals(1, c(1000, 5000), c(2000, 6000))
gintervals.normalize(intervs, 500)

Vector of sizes (each interval gets its own size)
intervs <- gintervals(1, c(1000, 3000, 5000), c(2000, 4000, 6000))
gintervals.normalize(intervs, c(500, 1000, 750))

One-to-many: single interval with multiple sizes
interv <- gintervals(1, 1000, 2000)
gintervals.normalize(interv, c(500, 1000, 1500))

gintervals.path Returns the path on disk of an interval set

Description

Returns the path on disk of an interval set.

Usage

gintervals.path(intervals.set = NULL)

Arguments

intervals.set name of an interval set or a vector of interval set names

76 gintervals.quantiles

Details

This function returns the actual file system path where an interval set is stored. The function works
with a single interval set name or a vector of names.

Value

A character vector containing the full paths to the interval sets on disk.

See Also

gintervals.exists, gintervals.ls, gtrack.path

Examples

gdb.init_examples()
gintervals.path("annotations")
gintervals.path(c("annotations", "coding"))

gintervals.quantiles Calculates quantiles of a track expression for intervals

Description

Calculates quantiles of a track expression for intervals.

Usage

gintervals.quantiles(
expr = NULL,
percentiles = 0.5,
intervals = NULL,
iterator = NULL,
band = NULL,
intervals.set.out = NULL

)

Arguments

expr track expression for which quantiles are calculated
percentiles an array of percentiles of quantiles in [0, 1] range
intervals set of intervals
iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on

track expressions.
band track expression band. If ’NULL’ no band is used.
intervals.set.out

intervals set name where the function result is optionally outputted

gintervals.random 77

Details

This function calculates quantiles of ’expr’ for each interval in ’intervals’.

If ’intervals.set.out’ is not ’NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is ’NULL’ a set of intervals with additional columns representing quantiles for
each percentile.

See Also

gquantiles, gbins.quantiles

Examples

gdb.init_examples()
intervs <- gintervals(c(1, 2), 0, 5000)
gintervals.quantiles("dense_track",

percentiles = c(0.5, 0.3, 0.9), intervs
)

gintervals.random Generate random genome intervals

Description

Generate random genome intervals with a specified number of regions of a specified size. This
function samples intervals uniformly across the genome, weighted by chromosome length.

Usage

gintervals.random(
size,
n,
dist_from_edge = 3000000,
chromosomes = NULL,
filter = NULL

)

78 gintervals.random

Arguments

size The size of the intervals to generate (in base pairs)

n The number of intervals to generate

dist_from_edge The minimum distance from the edge of the chromosome for a region to start or
end (default: 3e6)

chromosomes The chromosomes to sample from (default: all chromosomes). Can be a charac-
ter vector of chromosome names.

filter A set of intervals to exclude from sampling (default: NULL). Generated inter-
vals will not overlap with these regions.

Details

The function samples intervals randomly across the genome, with chromosomes weighted by their
length. Each interval is guaranteed to:

• Be of the specified size

• Start and end at least dist_from_edge bases away from chromosome boundaries

• Fall entirely within a single chromosome

• Not overlap with any intervals in the filter (if provided)

When a filter is provided, the function pre-computes valid genome segments (regions not in the
filter) and samples from these segments. Note that this can be slow when the filter contains many
intervals.

The function uses R’s random number generator, so set.seed() can be used for reproducibility.

This function is implemented in C++ for high performance and can generate millions of intervals
quickly.

Value

A data.frame with columns chrom, start, and end representing genomic intervals

Examples

Not run:
gdb.init_examples()

Generate 1000 random intervals of 100bp
intervals <- gintervals.random(100, 1000)
head(intervals)

Generate intervals only on chr1 and chr2
intervals <- gintervals.random(100, 1000, chromosomes = c("chr1", "chr2"))

Generate intervals avoiding specific regions
filter_regions <- gintervals(c("chr1", "chr2"), c(1000, 5000), c(2000, 6000))
intervals <- gintervals.random(100, 1000, filter = filter_regions)

Verify no overlaps with filter

gintervals.rbind 79

overlaps <- gintervals.intersect(intervals, filter_regions)
nrow(overlaps) # Should be 0

For reproducibility
set.seed(123)
intervals1 <- gintervals.random(100, 100)
set.seed(123)
intervals2 <- gintervals.random(100, 100)
identical(intervals1, intervals2) # TRUE

End(Not run)

gintervals.rbind Combines several sets of intervals

Description

Combines several sets of intervals into one set.

Usage

gintervals.rbind(..., intervals.set.out = NULL)

Arguments

... intervals sets to combine
intervals.set.out

intervals set name where the function result is optionally outputted

intervals intervals set

Details

This function combines several intervals sets into one set. It works in a similar manner as ’rbind’
yet it is faster. Also it supports intervals sets that are stored in files including the big intervals sets.

If ’intervals.set.out’ is not ’NULL’ the result is saved as an intervals set. If the format of the output
intervals is set to be "big" (determined implicitly based on the result size and options), the order of
the resulted intervals is altered as they are sorted by chromosome (or chromosomes pair - for 2D).

Value

If ’intervals.set.out’ is ’NULL’ a data frame combining intervals sets.

See Also

gintervals, gintervals.2d, gintervals.canonic

80 gintervals.rm

Examples

gdb.init_examples()

intervs1 <- gextract("sparse_track", gintervals(c(1, 2), 1000, 4000))
intervs2 <- gextract("sparse_track", gintervals(c(2, "X"), 2000, 5000))
gintervals.save("testintervs", intervs2)
gintervals.rbind(intervs1, "testintervs")
gintervals.rm("testintervs", force = TRUE)

gintervals.rm Deletes a named intervals set

Description

Deletes a named intervals set.

Usage

gintervals.rm(intervals.set = NULL, force = FALSE, db = NULL)

Arguments

intervals.set name of an intervals set

force if ’TRUE’, suppresses user confirmation of a named intervals set removal

db optional database path. When multiple databases are connected, this specifies
which database to delete the intervals set from. If NULL (the default), the inter-
vals set is deleted from the working database (GROOT).

Details

This function deletes a named intervals set from the Genomic Database. By default ’gintervals.rm’
requires the user to interactively confirm the deletion. Set ’force’ to ’TRUE’ to suppress the user
prompt.

Value

None.

See Also

gintervals.save, gintervals.exists, gintervals.ls, gintervals, gintervals.2d, gtrack.rm

gintervals.save 81

Examples

gdb.init_examples()
intervs <- gintervals(c(1, 2))
gintervals.save("testintervs", intervs)
gintervals.ls()
gintervals.rm("testintervs", force = TRUE)
gintervals.ls()

gintervals.save Creates a named intervals set

Description

Saves intervals to a named intervals set.

Usage

gintervals.save(intervals.set.out = NULL, intervals = NULL)

Arguments

intervals.set.out

name of the new intervals set

intervals intervals to save

Details

This function saves ’intervals’ as a named intervals set.

Value

None.

See Also

gintervals.rm, gintervals.load, gintervals.exists, gintervals.ls, gintervals, gintervals.2d

Examples

gdb.init_examples()
intervs <- gintervals(c(1, 2))
gintervals.save("testintervs", intervs)
gintervals.ls()
gintervals.rm("testintervs", force = TRUE)

82 gintervals.summary

gintervals.summary Calculates summary statistics of track expression for intervals

Description

Calculates summary statistics of track expression for intervals.

Usage

gintervals.summary(
expr = NULL,
intervals = NULL,
iterator = NULL,
band = NULL,
intervals.set.out = NULL

)

Arguments

expr track expression

intervals set of intervals

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expression.

band track expression band. If ’NULL’ no band is used.
intervals.set.out

intervals set name where the function result is optionally outputted

Details

This function returns summary statistics of a track expression for each interval ’intervals’: total
number of bins, total number of bins whose value is NaN, min, max, sum, mean and standard
deviation of the values.

If ’intervals.set.out’ is not ’NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is ’NULL’ a set of intervals with additional columns representing summary
statistics for each percentile and interval.

See Also

gsummary, gbins.summary

gintervals.union 83

Examples

gdb.init_examples()
intervs <- gintervals(c(1, 2), 0, 5000)
gintervals.summary("dense_track", intervs)

gintervals.union Calculates a union of two sets of intervals

Description

Calculates a union of two sets of intervals.

Usage

gintervals.union(
intervals1 = NULL,
intervals2 = NULL,
intervals.set.out = NULL

)

Arguments

intervals1, intervals2
set of one-dimensional intervals

intervals.set.out

intervals set name where the function result is optionally outputted

Details

This function returns intervals that represent a genomic space covered by either ’intervals1’ or
’intervals2’.

If ’intervals.set.out’ is not ’NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is ’NULL’ a data frame representing the union of intervals.

See Also

gintervals.intersect, gintervals.diff, gintervals, gintervals.2d

84 gintervals.update

Examples

gdb.init_examples()

intervs1 <- gscreen("dense_track > 0.15 & dense_track < 0.18")
intervs2 <- gscreen("dense_track >= 0.18 & dense_track < 0.2")

'intervs3' and 'intervs4' are identical
intervs3 <- gintervals.union(intervs1, intervs2)
intervs4 <- gscreen("dense_track > 0.15 & dense_track < 0.2")

gintervals.update Updates a named intervals set

Description

Updates a named intervals set.

Usage

gintervals.update(
intervals.set = NULL,
intervals = "",
chrom = NULL,
chrom1 = NULL,
chrom2 = NULL

)

Arguments

intervals.set name of an intervals set

intervals intervals or ’NULL’

chrom chromosome for 1D intervals set

chrom1 first chromosome for 2D intervals set

chrom2 second chromosome for 2D intervals set

Details

This function replaces all intervals of given chromosome (or chromosome pair) within ’intervals.set’
with ’intervals’. Chromosome is specified by ’chrom’ for 1D intervals set or ’chrom1’, ’chrom2’
for 2D intervals set.

If ’intervals’ is ’NULL’ all intervals of given chromosome are removed from ’intervals.set’.

Value

None.

giterator.cartesian_grid 85

See Also

gintervals.save, gintervals.load, gintervals.exists, gintervals.ls

Examples

gdb.init_examples()
intervs <- gscreen(

"sparse_track > 0.2",
gintervals(c(1, 2), 0, 10000)

)
gintervals.save("testintervs", intervs)
gintervals.load("testintervs")
gintervals.update("testintervs", intervs[intervs$chrom == "chr2",][1:5,], chrom = 2)
gintervals.load("testintervs")
gintervals.update("testintervs", NULL, chrom = 2)
gintervals.load("testintervs")
gintervals.rm("testintervs", force = TRUE)

giterator.cartesian_grid

Creates a cartesian-grid iterator

Description

Creates a cartesian grid two-dimensional iterator that can be used by any function that accepts an
iterator argument.

Usage

giterator.cartesian_grid(
intervals1 = NULL,
expansion1 = NULL,
intervals2 = NULL,
expansion2 = NULL,
min.band.idx = NULL,
max.band.idx = NULL

)

Arguments

intervals1 one-dimensional intervals

expansion1 an array of integers that define expansion around intervals1 centers

intervals2 one-dimensional intervals. If ’NULL’ then ’intervals2’ is considered to be equal
to ’intervals1’

86 giterator.cartesian_grid

expansion2 an array of integers that define expansion around intervals2 centers. If ’NULL’
then ’expansion2’ is considered to be equal to ’expansion1’

min.band.idx, max.band.idx
integers that limit iterator intervals to band

Details

This function creates and returns a cartesian grid two-dimensional iterator that can be used by any
function that accepts an iterator argument.

Assume ’centers1’ and ’centers2’ to be the central points of each interval from ’intervals1’ and
’intervals2’, and ’C1’, ’C2’ to be two points from ’centers1’, ’centers2’ accordingly. Assume also
that the values in ’expansion1’ and ’expansion2’ are unique and sorted.

’giterator.cartesian_grid’ creates a set of all possible unique and non-overlapping two-dimensional
intervals of form: ’(chrom1, start1, end1, chrom2, start2, end2)’. Each ’(chrom1, start1, end1)’ is
created by taking a point ’C1’ - ’(chrom1, coord1)’ and converting it to ’start1’ and ’end1’ such
that ’start1 == coord1+E1[i]’, ’end1 == coord1+E1[i+1]’, where ’E1[i]’ is one of the sorted ’ex-
pansion1’ values. Overlaps between rectangles or expansion beyond the limits of chromosome are
avoided.

’min.band.idx’ and ’max.band.idx’ parameters control whether a pair of ’C1’ and ’C2’ is skipped or
not. If both of these parameters are not ’NULL’ AND if both ’C1’ and ’C2’ share the same chromo-
some AND the delta of indices of ’C1’ and ’C2’ (’C1 index - C2 index’) lays within ’[min.band.idx,
max.band.idx]’ range - only then the pair will be used to create the intervals. Otherwise ’C1-C2’
pair is filtered out. Note: if ’min.band.idx’ and ’max.band.idx’ are not ’NULL’, i.e. band indices
filtering is applied, then ’intervals2’ parameter must be set to ’NULL’.

Value

A list containing the definition of cartesian iterator.

See Also

giterator.intervals

Examples

gdb.init_examples()

intervs1 <- gintervals(
c(1, 1, 2), c(100, 300, 200),
c(300, 500, 300)

)
intervs2 <- gintervals(

c(1, 2, 2), c(400, 1000, 3000),
c(800, 2000, 4000)

)
itr <- giterator.cartesian_grid(

intervs1, c(-20, 100), intervs2,
c(-40, -10, 50)

giterator.intervals 87

)
giterator.intervals(iterator = itr)

itr <- giterator.cartesian_grid(intervs1, c(-20, 50, 100))
giterator.intervals(iterator = itr)

itr <- giterator.cartesian_grid(intervs1, c(-20, 50, 100),
min.band.idx = -1,
max.band.idx = 0

)
giterator.intervals(iterator = itr)

giterator.intervals Returns iterator intervals

Description

Returns iterator intervals given track expression, scope, iterator and band.

Usage

giterator.intervals(
expr = NULL,
intervals = .misha$ALLGENOME,
iterator = NULL,
band = NULL,
intervals.set.out = NULL,
interval_relative = FALSE,
partial_bins = c("clip", "exact", "drop")

)

Arguments

expr track expression

intervals genomic scope

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expression.

band track expression band. If ’NULL’ no band is used.
intervals.set.out

intervals set name where the function result is optionally outputted
interval_relative

if TRUE, and iterator is numeric, bins start at each interval’s start position in-
stead of chromosome position 0. Returns intervalID column. Default: FALSE.

partial_bins how to handle partial bins at interval boundaries when interval_relative is TRUE.
One of "clip" (default, truncate last bin to interval boundary), "exact" or "drop"
(only output full-size bins).

88 giterator.intervals

Details

This function returns a set of intervals used by the iterator intervals for the given track expression,
genomic scope, iterator and band. Some functions accept an iterator without accepting a track
expression (like ’gtrack.create_pwm_energy’). These functions generate the values for each iterator
interval by themselves. Use set ’expr’ to ’NULL’ to simulate the work of these functions.

If ’intervals.set.out’ is not ’NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

When ’interval_relative’ is TRUE, bins are aligned to each input interval’s start position rather than
chromosome position 0. This mode requires a numeric iterator (binsize) and returns an additional
’intervalID’ column indicating which input interval spawned each bin.

Value

If ’intervals.set.out’ is ’NULL’ a data frame representing iterator intervals. When ’interval_relative’
is TRUE, includes an ’intervalID’ column.

See Also

giterator.cartesian_grid

Examples

gdb.init_examples()

iterator is set implicitly to bin size of 'dense' track
giterator.intervals("dense_track", gintervals(1, 0, 200))

iterator = 30
giterator.intervals("dense_track", gintervals(1, 0, 200), 30)

iterator is an intervals set named 'annotations'
giterator.intervals("dense_track", .misha$ALLGENOME, "annotations")

iterator is set implicitly to intervals of 'array_track' track
giterator.intervals("array_track", gintervals(1, 0, 200))

iterator is a rectangle 100000 by 50000
giterator.intervals(

"rects_track",
gintervals.2d(chroms1 = 1, chroms2 = "chrX"),
c(100000, 50000)

)

interval_relative mode: bins aligned to each interval's start
intervs <- gintervals(1, c(100, 500), c(300, 700))
giterator.intervals(NULL, intervs, iterator = 50, interval_relative = TRUE)

glookup 89

glookup Returns values from a lookup table based on track expression

Description

Evaluates track expression and translates the values into bin indices that are used in turn to retrieve
and return values from a lookup table.

Usage

glookup(
lookup_table = NULL,
...,
intervals = NULL,
include.lowest = FALSE,
force.binning = TRUE,
iterator = NULL,
band = NULL,
intervals.set.out = NULL

)

Arguments

lookup_table a multi-dimensional array containing the values that are returned by the function

... pairs of ’expr’, ’breaks’ where ’expr’ is a track expression and the breaks deter-
mine the bin

intervals genomic scope for which the function is applied

include.lowest if ’TRUE’, the lowest value of the range determined by breaks is included

force.binning if ’TRUE’, the values smaller than the minimal break will be translated to index
1, and the values that exceed the maximal break will be translated to index N-
1 where N is the number of breaks. If ’FALSE’ the out-of-range values will
produce NaN values.

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expressions.

band track expression band. If ’NULL’ no band is used.
intervals.set.out

intervals set name where the function result is optionally outputted

Details

This function evaluates the track expression for all iterator intervals and translates this value into
an index based on the breaks. This index is then used to address the lookup table and return the
according value. More than one ’expr’-’breaks’ pair can be used. In that case ’lookup_table’ is
addressed in a multidimensional manner, i.e. ’lookup_table[i1, i2, ...]’.

90 gpartition

The range of bins is determined by ’breaks’ argument. For example: ’breaks = c(x1, x2, x3, x4)’
represents three different intervals (bins): (x1, x2], (x2, x3], (x3, x4].

If ’include.lowest’ is ’TRUE’ then the lowest value is included in the first interval, i.e. in [x1, x2].

’force.binning’ parameter controls what should be done when the value of ’expr’ exceeds the range
determined by ’breaks’. If ’force.binning’ is ’TRUE’ then values smaller than the minimal break
will be translated to index 1, and the values exceeding the maximal break will be translated to index
’M-1’ where ’M’ is the number of breaks. If ’force.binning’ is ’FALSE’ the out-of-range values
will produce ’NaN’ values.

Regardless of ’force.binning’ value if the value of ’expr’ is ’NaN’ then result is ’NaN’ too.

The order inside the result might not be the same as the order of intervals. Use ’intervalID’ column
to refer to the index of the original interval from the supplied ’intervals’.

If ’intervals.set.out’ is not ’NULL’ the result (without ’columnID’ column) is saved as an intervals
set. Use this parameter if the result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is ’NULL’ a set of intervals with additional ’value’ and ’columnID’ columns.

See Also

gtrack.lookup, gextract, gpartition, gdist

Examples

gdb.init_examples()

one-dimensional lookup table
breaks1 <- seq(0.1, 0.2, length.out = 6)
glookup(1:5, "dense_track", breaks1, gintervals(1, 0, 200))

two-dimensional lookup table
t <- array(1:15, dim = c(5, 3))
breaks2 <- seq(0.31, 0.37, length.out = 4)
glookup(

t, "dense_track", breaks1, "2 * dense_track", breaks2,
gintervals(1, 0, 200)

)

gpartition Partitions the values of track expression

Description

Converts the values of track expression to intervals that match corresponding bin.

gpartition 91

Usage

gpartition(
expr = NULL,
breaks = NULL,
intervals = NULL,
include.lowest = FALSE,
iterator = NULL,
band = NULL,
intervals.set.out = NULL

)

Arguments

expr track expression

breaks breaks that determine the bin

intervals genomic scope for which the function is applied

include.lowest if ’TRUE’, the lowest value of the range determined by breaks is included

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expression.

band track expression band. If ’NULL’ no band is used.

intervals.set.out

intervals set name where the function result is optionally outputted

Details

This function converts first the values of track expression into 1-based bin’s index according ’breaks’
argument. It returns then the intervals with the corresponding bin’s index.

The range of bins is determined by ’breaks’ argument. For example: ’breaks=c(x1, x2, x3, x4)’
represents three different intervals (bins): (x1, x2], (x2, x3], (x3, x4].

If ’include.lowest’ is ’TRUE’ the the lowest value will be included in the first interval, i.e. in [x1,
x2].

If ’intervals.set.out’ is not ’NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is ’NULL’ a set of intervals with an additional column that indicates the corre-
sponding bin index.

See Also

gscreen, gextract, glookup, gdist

92 gquantiles

Examples

gdb.init_examples()
breaks <- seq(0, 0.2, by = 0.05)
gpartition("dense_track", breaks, gintervals(1, 0, 5000))

gquantiles Calculates quantiles of a track expression

Description

Calculates the quantiles of a track expression for the given percentiles.

Usage

gquantiles(
expr = NULL,
percentiles = 0.5,
intervals = get("ALLGENOME", envir = .misha),
iterator = NULL,
band = NULL

)

Arguments

expr track expression

percentiles an array of percentiles of quantiles in [0, 1] range

intervals genomic scope for which the function is applied

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expression.

band track expression band. If ’NULL’ no band is used.

Details

This function calculates the quantiles for the given percentiles.

If data size exceeds the limit (see: ’getOption(gmax.data.size)’), the data is randomly sampled to
fit the limit. A warning message is generated. The seed of the pseudo-random generator can be
controlled through ’grnd.seed’ option.

Note: this function is capable to run in multitasking mode. Sampling may vary according to the
extent of multitasking. Since multitasking depends on the number of available CPU cores, running
the function on two different machines might give different results. Please switch off multitasking if
you want to achieve identical results on any machine. For more information regarding multitasking
please refer "User Manual".

grevcomp 93

Value

An array that represent quantiles.

See Also

gbins.quantiles, gintervals.quantiles, gdist

Examples

gdb.init_examples()
gquantiles("dense_track", c(0.1, 0.6, 0.8), gintervals(c(1, 2)))

grevcomp Get reverse complement of DNA sequence

Description

Takes a DNA sequence string and returns its reverse complement.

Usage

grevcomp(seq)

Arguments

seq A character vector containing DNA sequences (using A,C,G,T). Ignores other
characters and NA values.

Value

A character vector of the same length as the input, containing the reverse complement sequences

Examples

grevcomp("ACTG") # Returns "CAGT"
grevcomp(c("ACTG", "GGCC")) # Returns c("CAGT", "GGCC")
grevcomp(c("ACTG", NA, "GGCC")) # Returns c("CAGT", NA, "GGCC")

94 gsample

gsample Returns samples from the values of track expression

Description

Returns a sample of the specified size from the values of track expression.

Usage

gsample(expr = NULL, n = NULL, intervals = NULL, iterator = NULL, band = NULL)

Arguments

expr track expression

n a number of items to choose

intervals genomic scope for which the function is applied

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expression.

band track expression band. If ’NULL’ no band is used.

Details

This function returns a sample of the specified size from the values of track expression. If ’n’ is
less than the total number of values, the data is randomly sampled. The seed of the pseudo-random
generator can be controlled through ’grnd.seed’ option.

If ’n’ is higher than the total number of values, all values are returned (yet reshuffled).

Value

An array that represent quantiles.

See Also

gextract

Examples

gdb.init_examples()
gsample("sparse_track", 10)

gscreen 95

gscreen Finds intervals that match track expression

Description

Finds all intervals where track expression is ’TRUE’.

Usage

gscreen(
expr = NULL,
intervals = NULL,
iterator = NULL,
band = NULL,
intervals.set.out = NULL

)

Arguments

expr logical track expression

intervals genomic scope for which the function is applied

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expression.

band track expression band. If ’NULL’ no band is used.

intervals.set.out

intervals set name where the function result is optionally outputted

Details

This function finds all intervals where track expression’s value is ’TRUE’.

If ’intervals.set.out’ is not ’NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is ’NULL’ a set of intervals that match track expression.

See Also

gsegment, gextract

96 gsegment

Examples

gdb.init_examples()
gscreen("dense_track > 0.2 & sparse_track < 0.4",

iterator = "dense_track"
)

gsegment Divides track expression into segments

Description

Divides the values of track expression into segments by using Wilcoxon test.

Usage

gsegment(
expr = NULL,
minsegment = NULL,
maxpval = 0.05,
onetailed = TRUE,
intervals = NULL,
iterator = NULL,
intervals.set.out = NULL

)

Arguments

expr track expression
minsegment minimal segment size
maxpval maximal P-value that separates two adjacent segments
onetailed if ’TRUE’, Wilcoxon test is performed one tailed, otherwise two tailed
intervals genomic scope for which the function is applied
iterator track expression iterator of "fixed bin" type. If ’NULL’ iterator is determined

implicitly based on track expression.
intervals.set.out

intervals set name where the function result is optionally outputted

Details

This function divides the values of track expression into segments, where each segment size is at
least of ’minsegment’ size and the P-value of comparing the segment with the first ’minsegment’
values from the next segment is at most ’maxpval’. Comparison is done using Wilcoxon (also
known as Mann-Whitney) test.

If ’intervals.set.out’ is not ’NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

gseq.comp 97

Value

If ’intervals.set.out’ is ’NULL’ a set of intervals where each interval represents a segment.

See Also

gscreen, gwilcox

Examples

gdb.init_examples()
gsegment("dense_track", 5000, 0.0001)

gseq.comp Complement DNA sequence

Description

Takes a DNA sequence string and returns its complement (without reversing).

Usage

gseq.comp(seq)

Arguments

seq A character vector containing DNA sequences (using A,C,G,T). Preserves case
and handles NA values.

Value

A character vector of the same length as the input, containing the complemented sequences

See Also

gseq.revcomp, gseq.rev

Examples

gseq.comp("ACTG") # Returns "TGAC"
gseq.comp(c("ACTG", "GGCC")) # Returns c("TGAC", "CCGG")
gseq.comp(c("ACTG", NA, "GGCC")) # Returns c("TGAC", NA, "CCGG")

98 gseq.extract

gseq.extract Returns DNA sequences

Description

Returns DNA sequences for given intervals

Usage

gseq.extract(intervals = NULL)

Arguments

intervals intervals for which DNA sequence is returned

Details

This function returns an array of sequence strings for each interval from ’intervals’. If intervals
contain an additional ’strand’ column and its value is ’-1’, the reverse-complementary sequence is
returned.

Value

An array of character strings representing DNA sequence.

See Also

gextract

Examples

gdb.init_examples()
intervs <- gintervals(c(1, 2), 10000, 10020)
gseq.extract(intervs)

gseq.kmer 99

gseq.kmer Score DNA sequences with a k-mer over a region of interest

Description

Counts exact matches of a k-mer in DNA sequences over a specified region of interest (ROI). The
ROI is defined by start_pos and end_pos (1-based, inclusive), with optional extension controlled
by extend.

Usage

gseq.kmer(
seqs,
kmer,
mode = c("count", "frac"),
strand = 0L,
start_pos = NULL,
end_pos = NULL,
extend = FALSE,
skip_gaps = TRUE,
gap_chars = c("-", ".")

)

Arguments

seqs character vector of DNA sequences (A/C/G/T/N; case-insensitive)

kmer single character string containing the k-mer to search for (A/C/G/T only)

mode character; one of "count" or "frac"

strand integer; 1=forward, -1=reverse, 0=both strands (default: 0)

start_pos integer or NULL; 1-based inclusive start of ROI (default: 1)

end_pos integer or NULL; 1-based inclusive end of ROI (default: sequence length)

extend logical or integer; extension of allowed window starts (default: FALSE)

skip_gaps logical; if TRUE, treat gap characters as holes and skip them while scanning.
Windows are k consecutive non-gap bases (default: TRUE)

gap_chars character vector; which characters count as gaps (default: c("-", "."))

Details

This function counts k-mer occurrences in DNA sequences directly without requiring a genomics
database. For detailed documentation on k-mer counting parameters, see gvtrack.create (func-
tions "kmer.count" and "kmer.frac").

The ROI (region of interest) is defined by start_pos and end_pos. The extend parameter con-
trols whether k-mer matches can extend beyond the ROI boundaries. For palindromic k-mers, use
strand=1 or -1 to avoid double counting.

100 gseq.kmer

When skip_gaps=TRUE, characters specified in gap_chars are treated as gaps. Windows are de-
fined as k consecutive non-gap bases. The frac denominator counts the number of possible logical
starts (non-gap windows) in the region. start_pos and end_pos are interpreted as physical coor-
dinates on the full sequence.

Value

Numeric vector with counts (for "count" mode) or fractions (for "frac" mode). Returns 0 when
sequence is too short or ROI is invalid.

See Also

gvtrack.create for detailed k-mer parameter documentation

Examples

Not run:
Example sequences
seqs <- c("CGCGCGCGCG", "ATATATATAT", "ACGTACGTACGT")

Count CG dinucleotides on both strands
gseq.kmer(seqs, "CG", mode = "count", strand = 0)

Count on forward strand only
gseq.kmer(seqs, "CG", mode = "count", strand = 1)

Get CG fraction
gseq.kmer(seqs, "CG", mode = "frac", strand = 0)

Count in a specific region
gseq.kmer(seqs, "CG", mode = "count", start_pos = 2, end_pos = 8)

Allow k-mer to extend beyond ROI boundaries
gseq.kmer(seqs, "CG", mode = "count", start_pos = 2, end_pos = 8, extend = TRUE)

Calculate GC content by summing G and C fractions
g_frac <- gseq.kmer(seqs, "G", mode = "frac", strand = 1)
c_frac <- gseq.kmer(seqs, "C", mode = "frac", strand = 1)
gc_content <- g_frac + c_frac
gc_content

Compare AT counts on different strands
at_forward <- gseq.kmer(seqs, "AT", mode = "count", strand = 1)
at_reverse <- gseq.kmer(seqs, "AT", mode = "count", strand = -1)
at_both <- gseq.kmer(seqs, "AT", mode = "count", strand = 0)
data.frame(forward = at_forward, reverse = at_reverse, both = at_both)

End(Not run)

gseq.kmer.dist 101

gseq.kmer.dist Compute k-mer distribution in genomic intervals

Description

Counts the occurrence of all k-mers (of size k) within the specified genomic intervals, optionally
excluding masked regions.

Usage

gseq.kmer.dist(intervals, k = 6L, mask = NULL)

Arguments

intervals Genomic intervals to analyze
k Integer k-mer size (1-10). Default is 6.
mask Optional intervals to exclude from counting. Positions within the mask will not

contribute to k-mer counts.

Value

A data frame with columns:

kmer Character string representing the k-mer sequence
count Number of occurrences of this k-mer

Only k-mers with count > 0 are included. K-mers containing N bases are not counted.

See Also

gseq.extract, gseq.kmer

Examples

gdb.init_examples()

Count all 6-mers in first 10kb of chr1
intervals <- data.frame(chrom = "chr1", start = 0, end = 10000)
kmer_dist <- gseq.kmer.dist(intervals, k = 6)
head(kmer_dist)

Count dinucleotides
dinucs <- gseq.kmer.dist(intervals, k = 2)
dinucs

Count with mask
mask <- data.frame(chrom = "chr1", start = 5000, end = 6000)
kmer_dist_masked <- gseq.kmer.dist(intervals, k = 6, mask = mask)

102 gseq.pwm

gseq.pwm Score DNA sequences with a PWM over a region of interest

Description

Scores full DNA sequences using a Position Weight Matrix (PWM) over a specified region of in-
terest (ROI). The ROI is defined by start_pos and end_pos (1-based, inclusive), with optional
extension controlled by extend. All reported positions are on the full input sequence.

Usage

gseq.pwm(
seqs,
pssm,
mode = c("lse", "max", "pos", "count"),
bidirect = TRUE,
strand = 0L,
score.thresh = 0,
start_pos = NULL,
end_pos = NULL,
extend = FALSE,
spat.factor = NULL,
spat.bin = 1L,
spat.min = NULL,
spat.max = NULL,
return_strand = FALSE,
skip_gaps = TRUE,
gap_chars = c("-", "."),
neutral_chars = c("N", "n", "*"),
neutral_chars_policy = c("average", "log_quarter", "na"),
prior = 0.01

)

Arguments

seqs character vector of DNA sequences (A/C/G/T/N; case-insensitive)

pssm numeric matrix or data frame with columns named A, C, G, T (additional columns
are allowed and will be ignored)

mode character; one of "lse", "max", "pos", or "count"

bidirect logical; if TRUE, scans both strands (default: TRUE)

strand integer; 1=forward, -1=reverse, 0=both strands (default: 0)

score.thresh numeric; score threshold for mode="count" (default: 0)

start_pos integer or NULL; 1-based inclusive start of ROI (default: 1)

end_pos integer or NULL; 1-based inclusive end of ROI (default: sequence length)

extend logical or integer; extension of allowed window starts (default: FALSE)

gseq.pwm 103

spat.factor numeric vector; spatial weighting factors (optional)

spat.bin integer; bin size for spatial weighting

spat.min numeric; start of scanning window

spat.max numeric; end of scanning window

return_strand logical; if TRUE and mode="pos", returns data.frame with pos and strand
columns

skip_gaps logical; if TRUE, treat gap characters as holes and skip them while scanning.
Windows are w consecutive non-gap bases (default: TRUE)

gap_chars character vector; which characters count as gaps (default: c("-", "."))

neutral_chars character vector; bases treated as unknown and scored with the average log prob-
ability per position (default: c("N", "n", "*"))

neutral_chars_policy

character string; how to treat neutral characters. One of "average" (default; use
the column’s mean log-probability), "log_quarter" (always use log(1/4)),
or "na" (return NA when a neutral character is encountered in the scanning
window).

prior numeric; pseudocount added to frequencies (default: 0.01). Set to 0 for no
pseudocounts.

Details

This function scores DNA sequences directly without requiring a genomics database. For detailed
documentation on PWM scoring modes, parameters, and spatial weighting, see gvtrack.create
(functions "pwm", "pwm.max", "pwm.max.pos", "pwm.count").

The ROI (region of interest) is defined by start_pos and end_pos. The extend parameter controls
whether motif matches can extend beyond the ROI boundaries.

When skip_gaps=TRUE, characters specified in gap_chars are treated as gaps. Windows are de-
fined as w consecutive non-gap bases. All positions (pos) are reported as 1-based indices on the
original full sequence (including gaps). start_pos and end_pos are interpreted as physical coor-
dinates on the full sequence.

Neutral characters (neutral_chars, default c("N", "n", "*")) are treated as unknown bases in
both orientations. Each neutral contributes the mean log-probability of the corresponding PSSM
column, yielding identical penalties on forward and reverse strands without hard-coded background
scores. In mode = "max" the reported value is the single best strand score after applying any spatial
weights; forward and reverse contributions are not aggregated. This matches the default behavior
of the PWM virtual tracks (pwm.max, pwm.max.pos, etc.).

Value

Numeric vector (for "lse"/"max"/"count" modes), integer vector (for "pos" mode), or data.frame
with pos and strand columns (for "pos" mode with return_strand=TRUE). Returns NA when no
valid windows exist.

See Also

gvtrack.create for detailed PWM parameter documentation

104 gseq.rev

Examples

Not run:
Create a PSSM (position-specific scoring matrix) with frequency values
pssm <- matrix(

c(
0.7, 0.1, 0.1, 0.1, # Position 1: mostly A
0.1, 0.7, 0.1, 0.1, # Position 2: mostly C
0.1, 0.1, 0.7, 0.1, # Position 3: mostly G
0.1, 0.1, 0.1, 0.7 # Position 4: mostly T

),
ncol = 4, byrow = TRUE

)
colnames(pssm) <- c("A", "C", "G", "T")

Example sequences
seqs <- c("ACGTACGTACGT", "GGGGACGTCCCC", "TTTTTTTTTTT")

Score sequences using log-sum-exp (default mode)
gseq.pwm(seqs, pssm, mode = "lse")

Get maximum score
gseq.pwm(seqs, pssm, mode = "max")

Find position of best match
gseq.pwm(seqs, pssm, mode = "pos")

Find position with strand information
gseq.pwm(seqs, pssm, mode = "pos", bidirect = TRUE, return_strand = TRUE)

Count matches above threshold
gseq.pwm(seqs, pssm, mode = "count", score.thresh = 0.5)

Score only a region of interest
gseq.pwm(seqs, pssm, mode = "max", start_pos = 3, end_pos = 10)

Allow matches to extend beyond ROI boundaries
gseq.pwm(seqs, pssm, mode = "count", start_pos = 5, end_pos = 8, extend = TRUE)

Spatial weighting example: higher weight in the center
spatial_weights <- c(0.5, 1.0, 2.0, 1.0, 0.5)
gseq.pwm(seqs, pssm,

mode = "lse",
spat.factor = spatial_weights,
spat.bin = 2

)

End(Not run)

gseq.rev Reverse DNA sequence

gseq.revcomp 105

Description

Takes a DNA sequence string and returns its reverse (without complementing).

Usage

gseq.rev(seq)

Arguments

seq A character vector containing DNA sequences. Preserves case and handles NA
values.

Value

A character vector of the same length as the input, containing the reversed sequences

See Also

gseq.revcomp, gseq.comp

Examples

gseq.rev("ACTG") # Returns "GTCA"
gseq.rev(c("ACTG", "GGCC")) # Returns c("GTCA", "CCGG")
gseq.rev(c("ACTG", NA, "GGCC")) # Returns c("GTCA", NA, "CCGG")

gseq.revcomp Get reverse complement of DNA sequence

Description

Alias for grevcomp. Takes a DNA sequence string and returns its reverse complement.

Usage

gseq.revcomp(seq)

Arguments

seq A character vector containing DNA sequences (using A,C,G,T). Ignores other
characters and NA values.

Value

A character vector of the same length as the input, containing the reverse complement sequences

106 gsummary

See Also

grevcomp, gseq.rev, gseq.comp

Examples

gseq.revcomp("ACTG") # Returns "CAGT"
gseq.revcomp(c("ACTG", "GGCC")) # Returns c("CAGT", "GGCC")

gsummary Calculates summary statistics of track expression

Description

Calculates summary statistics of track expression.

Usage

gsummary(expr = NULL, intervals = NULL, iterator = NULL, band = NULL)

Arguments

expr track expression

intervals genomic scope for which the function is applied

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expression.

band track expression band. If ’NULL’ no band is used.

Details

This function returns summary statistics of a track expression: total number of bins, total number
of bins whose value is NaN, min, max, sum, mean and standard deviation of the values.

Value

An array that represents summary statistics.

See Also

gintervals.summary, gbins.summary

Examples

gdb.init_examples()
gsummary("rects_track")

gsynth.bin_map 107

gsynth.bin_map Create a bin mapping from value-based merge specifications

Description

Converts value-based bin merge specifications into a bin_map named vector that can be used with
gsynth.train. This allows you to specify merges using actual track values rather than bin indices.

Usage

gsynth.bin_map(breaks, merge_ranges = NULL)

Arguments

breaks Numeric vector of bin boundaries (same as used in gsynth.train)

merge_ranges List of merge specifications. Each specification is a named list with:

from Numeric vector of length 2 c(min, max) defining the source value range
to merge. Use -Inf or Inf for open-ended ranges. Can also be a single
number (shorthand for c(value, Inf)).

to Numeric vector of length 2 c(min, max) defining the target bin that source
bins should map to. Must match an existing bin defined by breaks.

Value

A named vector (bin_map) compatible with bin_map parameter in gsynth.train. The names are
source bin indices (1-based), and values are target bin indices (1-based).

See Also

gsynth.train

Examples

Define breaks for GC content [0, 1] in 0.025 increments
breaks <- seq(0, 1, 0.025)

Merge all GC content above 70% (0.7) into the bin (0.675, 0.7]
bin_map <- gsynth.bin_map(

breaks = breaks,
merge_ranges = list(

list(from = 0.7, to = c(0.675, 0.7))
)

)

Multiple merges: merge low GC (< 0.3) and high GC (> 0.7) into middle bins
bin_map2 <- gsynth.bin_map(

breaks = breaks,
merge_ranges = list(

108 gsynth.random

list(from = c(-Inf, 0.3), to = c(0.4, 0.425)), # low GC -> (0.4, 0.425]
list(from = 0.7, to = c(0.675, 0.7)) # high GC -> (0.675, 0.7]

)
)

gsynth.load Load a gsynth.model from disk

Description

Loads a previously saved Markov model from an RDS file.

Usage

gsynth.load(file)

Arguments

file Path to the saved model file

Value

A gsynth.model object

See Also

gsynth.save, gsynth.train

gsynth.random Generate random genome sequences

Description

Generates random DNA sequences based on nucleotide probabilities without using a trained Markov
model. Each nucleotide is sampled independently according to the specified probabilities.

Usage

gsynth.random(
intervals = NULL,
output_path = NULL,
output_format = c("misha", "fasta", "vector"),
nuc_probs = c(A = 0.25, C = 0.25, G = 0.25, T = 0.25),
mask_copy = NULL,
seed = NULL,
n_samples = 1,
iterator = 1

)

gsynth.random 109

Arguments

intervals Genomic intervals to sample. If NULL, uses all chromosomes.

output_path Path to the output file (ignored when output_format = "vector")

output_format Output format:

• "misha": .seq binary format (default)
• "fasta": FASTA text format
• "vector": Return sequences as a character vector (does not write to file)

nuc_probs Nucleotide probabilities. Can be specified as:

• A named vector: c(A = 0.3, C = 0.2, G = 0.2, T = 0.3)

• An unnamed vector in A, C, G, T order: c(0.3, 0.2, 0.2, 0.3)

Probabilities are automatically normalized to sum to 1. Default is uniform (0.25
each).

mask_copy Optional intervals to copy from the original genome instead of random sam-
pling. Use this to preserve specific regions exactly as they appear in the refer-
ence.

seed Random seed for reproducibility. If NULL, uses current random state.

n_samples Number of samples to generate per interval. Default is 1.

iterator Iterator for position resolution. Default is 1 (base-pair resolution). Larger values
may speed up processing but are typically not needed for random sampling.

Details

Unlike gsynth.sample which uses a trained Markov model to generate sequences that preserve
k-mer statistics, gsynth.random generates purely random sequences where each nucleotide is sam-
pled independently. This is useful for generating baseline random sequences or sequences with
specific GC content.

Nucleotide ordering: When using an unnamed vector for nuc_probs, the order is A, C, G, T.
Named vectors can be in any order.

Value

When output_format is "misha" or "fasta", returns invisible NULL and writes the random sequences
to output_path. When output_format is "vector", returns a character vector of sequences (length =
n_intervals * n_samples).

See Also

gsynth.sample, gsynth.train

Examples

gdb.init_examples()

Generate random sequences with uniform nucleotide probabilities
seqs <- gsynth.random(

110 gsynth.replace_kmer

intervals = gintervals(1, 0, 1000),
output_format = "vector",
seed = 42

)

Generate GC-rich sequences (60% GC)
gc_rich <- gsynth.random(

intervals = gintervals(1, 0, 1000),
output_format = "vector",
nuc_probs = c(A = 0.2, C = 0.3, G = 0.3, T = 0.2),
seed = 42

)

Generate AT-rich sequences
at_rich <- gsynth.random(

intervals = gintervals(1, 0, 1000),
output_format = "vector",
nuc_probs = c(A = 0.35, C = 0.15, G = 0.15, T = 0.35),
seed = 42

)

gsynth.replace_kmer Iteratively replace a k-mer in the genome

Description

Performs an iterative replacement of a target k-mer with a replacement sequence. This is useful
for creating synthetic genomes with specific motifs removed (e.g., creating a CpG-null genome by
iteratively swapping CG to GC).

Usage

gsynth.replace_kmer(
target,
replacement,
output_path = NULL,
output_format = c("misha", "fasta", "vector"),
intervals = NULL,
check_composition = TRUE

)

Arguments

target The k-mer sequence to remove (e.g., "CG").

replacement The replacement sequence (e.g., "GC").

output_path Path to the output file (ignored when output_format = "vector").

output_format Output format:

gsynth.sample 111

• "misha": .seq binary format (default)
• "fasta": FASTA text format
• "vector": Return sequences as a character vector (does not write to file)

intervals Genomic intervals to process. If NULL, uses all chromosomes.

check_composition

Logical. If TRUE (default), ensures target and replacement have the same nu-
cleotide composition (preserving exact base counts).

Details

Bubble Sort / Iterative Logic: The function scans the sequence and replaces occurrences of
target with replacement. If a replacement creates a new instance of target (e.g., removing
"CG" with "GC" in the sequence "CCG" -> "CGC"), the new instance is also replaced. This con-
tinues until the sequence is free of the target k-mer.

When target and replacement are permutations of each other (e.g., "CG" and "GC"), this acts as
a "bubble sort" of nucleotides, moving bases locally without altering the total GC content or base
counts of the genome.

Value

When output_format is "misha" or "fasta", returns invisible NULL and writes to output_path. When
output_format is "vector", returns a character vector of modified sequences.

Examples

Not run:
Robust removal of all CpG dinucleotides (preserving GC%)
gsynth.replace_kmer(

target = "CG",
replacement = "GC",
output_path = "genome_no_cpg.seq",
output_format = "misha"

)

End(Not run)

gsynth.sample Sample a synthetic genome from a trained Markov model

Description

Generates a synthetic genome by sampling from a trained stratified Markov-5 model. The generated
genome preserves the k-mer statistics of the original genome within each stratification bin.

112 gsynth.sample

Usage

gsynth.sample(
model,
output_path = NULL,
output_format = c("misha", "fasta", "vector"),
mask_copy = NULL,
seed = NULL,
intervals = NULL,
n_samples = 1,
bin_merge = NULL

)

Arguments

model A gsynth.model object from gsynth.train

output_path Path to the output file (ignored when output_format = "vector")
output_format Output format:

• "misha": .seq binary format (default)
• "fasta": FASTA text format
• "vector": Return sequences as a character vector (does not write to file)

mask_copy Optional intervals to copy from the original genome instead of sampling. Use
this to preserve specific regions (e.g., repeats, regulatory elements) exactly as
they appear in the reference. Regions not in mask_copy will be sampled using
the Markov model. Note: mask_copy intervals should be non-overlapping and
sorted by start position within each chromosome. Overlapping intervals may
result in only the first overlapping region being copied, with subsequent overlaps
skipped due to cursor advancement during sequential processing.

seed Random seed for reproducibility. If NULL, uses current random state.
intervals Genomic intervals to sample. If NULL, uses all chromosomes.
n_samples Number of samples to generate per interval. Default is 1. When n_samples > 1

and output_format = "fasta", headers include "_sampleN". When output_format
= "vector", returns n_samples * n_intervals sequences.

bin_merge Optional list of bin merge specifications to apply during sampling, one per di-
mension (length must equal model$n_dims). Each element should be:

• A list of merge specifications (same format as in gsynth.train: each spec
is list(from = ..., to = ...))

• Or NULL to use the bin mapping from training for that dimension
This allows merging sparse bins at sampling time without re-training. Example
for a 2D model:

bin_merge = list(
Dimension 1: merge bins with values >= 0.8 to bin [0.7, 0.8)
list(list(from = c(0.8, Inf), to = c(0.7, 0.8))),
Dimension 2: use training-time bin_map (no override)
NULL

)

gsynth.sample 113

Details

N bases during sampling: When the sampler needs to initialize the first 5-mer context and encoun-
ters regions with only N bases, it falls back to uniform random base selection until a valid context is
established. Similarly, if a bin has no learned statistics (sparse bin with NA CDF), uniform sampling
is used for that position.

Sparse bins: If the model has sparse bins (from min_obs during training), a warning is issued
when sampling regions that fall into these bins. Consider using bin_merge to redirect sparse bins
to well-populated ones.

Value

When output_format is "misha" or "fasta", returns invisible NULL and writes the synthetic genome
to output_path. When output_format is "vector", returns a character vector of sequences (length =
n_intervals * n_samples).

See Also

gsynth.train, gsynth.save

Examples

gdb.init_examples()

Create virtual tracks
gvtrack.create("g_frac", NULL, "kmer.frac", kmer = "G")
gvtrack.create("c_frac", NULL, "kmer.frac", kmer = "C")
gvtrack.create("cg_frac", NULL, "kmer.frac", kmer = "CG")
gvtrack.create("masked_frac", NULL, "masked.frac")

Define repeat mask (regions to preserve from original)
repeats <- gscreen("masked_frac > 0.5",

intervals = gintervals.all(),
iterator = 100

)

Train model (excluding repeats from training)
model <- gsynth.train(

list(expr = "g_frac + c_frac", breaks = seq(0, 1, 0.025)),
list(expr = "cg_frac", breaks = c(0, 0.01, 0.02, 0.03, 0.04, 0.2)),
mask = repeats,
iterator = 200,
min_obs = 1000

)

Sample with mask_copy to preserve repeats from original genome
temp_dir <- tempdir()
synthetic_genome_file <- file.path(temp_dir, "synthetic_genome.fa")
gsynth.sample(model, synthetic_genome_file,

output_format = "fasta",
mask_copy = repeats,
seed = 60427,

114 gsynth.train

bin_merge = list(
list(list(from = 0.7, to = c(0.675, 0.7))),
list(list(from = 0.04, to = c(0.03, 0.04)))

)
)

gsynth.save Save a gsynth.model to disk

Description

Saves a trained Markov model to an RDS file for later use.

Usage

gsynth.save(model, file)

Arguments

model A gsynth.model object from gsynth.train

file Path to save the model

See Also

gsynth.load, gsynth.train

gsynth.train Train a stratified Markov-5 model from genome sequences

Description

Computes a 5th-order Markov model optionally stratified by bins of one or more track expressions
(e.g., GC content and CG dinucleotide frequency). This model can be used to generate synthetic
genomes that preserve the k-mer statistics of the original genome within each stratification bin.
When called with no dimension specifications, trains a single unstratified model.

Usage

gsynth.train(
...,
mask = NULL,
intervals = NULL,
iterator = NULL,
pseudocount = 1,
min_obs = 0

)

gsynth.train 115

Arguments

... Zero or more dimension specifications. Each specification is a list containing:

expr Track expression for this dimension (required)
breaks Numeric vector of bin boundaries for this dimension (required)
bin_merge Optional list of merge specifications for merging sparse bins. Each

specification is a named list with ’from’ and ’to’ elements.

If no dimensions are provided, trains an unstratified model with a single bin.

mask Optional intervals to exclude from training. Regions in the mask will not con-
tribute to k-mer counts. Can be computed using gscreen().

intervals Genomic intervals to process. If NULL, uses all chromosomes.

iterator Iterator for track evaluation, determines the resolution at which track values are
computed.

pseudocount Pseudocount added to all k-mer counts to avoid zero probabilities. Default is 1.

min_obs Minimum number of observations (6-mers) required per bin. Bins with fewer
observations will be marked as NA (not learned) and a warning will be issued.
Default is 0 (no minimum). During sampling, NA bins will fall back to uniform
sampling unless merged via bin_merge.

Details

Strand symmetry: The training process counts both the forward strand 6-mer and its reverse com-
plement for each position, ensuring strand-symmetric transition probabilities. This means the re-
ported total_kmers is approximately double the number of genomic positions processed.

N bases: Positions where the 6-mer contains any N (unknown) bases are skipped during training
and counted in total_n. The model only learns from valid A/C/G/T sequences.

Value

A gsynth.model object containing:

n_dims Number of stratification dimensions

dim_specs List of dimension specifications (expr, breaks, num_bins, bin_map)

dim_sizes Vector of bin counts per dimension

total_bins Total number of bins (product of dim_sizes)

total_kmers Total number of valid 6-mers counted

per_bin_kmers Number of 6-mers counted per bin

total_masked Number of positions skipped due to mask

total_n Number of positions skipped due to N bases

model_data Internal model data (counts and CDFs)

See Also

gsynth.sample, gsynth.save, gsynth.load, gsynth.bin_map

116 gtrack.2d.create

Examples

gdb.init_examples()

Create virtual tracks for stratification
gvtrack.create("g_frac", NULL, "kmer.frac", kmer = "G")
gvtrack.create("c_frac", NULL, "kmer.frac", kmer = "C")
gvtrack.create("cg_frac", NULL, "kmer.frac", kmer = "CG")
gvtrack.create("masked_frac", NULL, "masked.frac")

Define repeat mask
repeats <- gscreen("masked_frac > 0.5",

intervals = gintervals.all(),
iterator = 100

)

Train unstratified model (no stratification)
model_0d <- gsynth.train(

mask = repeats,
intervals = gintervals.all(),
iterator = 200

)

Train model with 2D stratification (GC content and CG dinucleotide)
model <- gsynth.train(

list(
expr = "g_frac + c_frac",
breaks = seq(0, 1, 0.025),
bin_merge = list(list(from = 0.7, to = c(0.675, 0.7)))

),
list(

expr = "cg_frac",
breaks = c(0, 0.01, 0.02, 0.03, 0.04, 0.2),
bin_merge = list(list(from = 0.04, to = c(0.03, 0.04)))

),
mask = repeats,
intervals = gintervals.all(),
iterator = 200

)

gtrack.2d.create Creates a ’Rectangles’ track from intervals and values

Description

Creates a ’Rectangles’ track from intervals and values.

gtrack.2d.create 117

Usage

gtrack.2d.create(
track = NULL,
description = NULL,
intervals = NULL,
values = NULL

)

Arguments

track track name

description a character string description

intervals a set of two-dimensional intervals

values an array of numeric values - one for each interval

Details

This function creates a new ’Rectangles’ (two-dimensional) track with values at given intervals.
’description’ is added as a track attribute.

When multiple databases are connected via gsetroot, the track is created in the current working
directory (.misha$GWD), which defaults to the last connected database. Use gdir.cd with an
absolute path to change where new tracks are created.

Value

None.

See Also

gtrack.create, gtrack.create_sparse, gtrack.smooth, gtrack.modify, gtrack.rm, gtrack.info,
gdir.create, gtrack.attr.get

Examples

gdb.init_examples()
intervs1 <- gintervals.2d(

1, (1:4) * 200, (1:4) * 200 + 100,
1, (1:4) * 300, (1:4) * 300 + 200

)
intervs2 <- gintervals.2d(

"X", (7:10) * 100, (7:10) * 100 + 50,
2, (1:4) * 200, (1:4) * 200 + 130

)
intervs <- rbind(intervs1, intervs2)
gtrack.2d.create(

"test_rects", "Test 2d track", intervs,
runif(dim(intervs)[1], 1, 100)

)

118 gtrack.2d.import

gextract("test_rects", .misha$ALLGENOME)
gtrack.rm("test_rects", force = TRUE)

gtrack.2d.import Creates a 2D track from tab-delimited file

Description

Creates a 2D track from tab-delimited file(s).

Usage

gtrack.2d.import(track = NULL, description = NULL, file = NULL)

Arguments

track track name

description a character string description

file vector of file paths

Details

This function creates a 2D track track from one or more tab-delimited files. Each file must start with
a header describing the columns. The first 6 columns must have the following names: ’chrom1’,
’start1’, ’end1’, ’chrom2’, ’start2’, ’end2’. The last column is designated for the value and it may
have an arbitrary name. The header is followed by a list of intervals and a value for each interval.
Overlapping intervals are forbidden.

One can learn about the format of the tab-delimited file by running ’gextract’ function on a 2D track
with a ’file’ parameter set to the name of the file.

If all the imported intervals represent a point (i.e. end == start + 1) a ’Points’ track is created
otherwise it is a ’Rectangles’ track.

’description’ is added as a track attribute.

Note: temporary files are created in the directory of the track during the run of the function. A
few of them need to be kept simultaneously open. If the number of chromosomes and / or intervals
is particularly high, a few thousands files might be needed to be opened simultaneously. Some
operating systems limit the number of open files per user, in which case the function might fail with
"Too many open files" or similar error. The workaround could be:

1. Increase the limit of simultaneously opened files (the way varies depending on your operating
system). 2. Increase the value of ’gmax.data.size’ option. Higher values of ’gmax.data.size’ option
will increased memory usage of the function but create fewer temporary files.

Value

None.

gtrack.2d.import_contacts 119

See Also

gtrack.rm, gtrack.info, gdir.create

gtrack.2d.import_contacts

Creates a track from a file of inter-genomic contacts

Description

Creates a track from a file of inter-genomic contacts.

Usage

gtrack.2d.import_contacts(
track = NULL,
description = NULL,
contacts = NULL,
fends = NULL,
allow.duplicates = TRUE

)

Arguments

track track name

description a character string description

contacts vector of contacts files

fends name of fragment ends file
allow.duplicates

if ’TRUE’ duplicated contacts are allowed

Details

This function creates a ’Points’ (two-dimensional) track from contacts files. If ’allow.duplicates’ is
’TRUE’ duplicated contacts are allowed and summed up, otherwise an error is reported.

Contacts (coord1, coord2) within the same chromosome are automatically doubled to include also
’(coord2, coord1)’ unless ’coord1’ equals to ’coord2’.

Contacts may come in one or more files.

If ’fends’ is ’NULL’ contacts file is expected to be in "intervals-value" tab-separated format. The
file starts with a header defining the column names. The first 6 columns must have the following
names: ’chrom1’, ’start1’, ’end1’, ’chrom2’, ’start2’, ’end2’. The last column is designated for the
value and it may have an arbitrary name. The header is followed by a list of intervals and a value for
each interval. An interval of form (chrom1, start1, end1, chrom2, start2, end2) is added as a point
(X, Y) to the resulted track where X = (start1 + end1) / 2 and Y = (start2 + end2) / 2.

One can see an example of "intervals-value" format by running ’gextract’ function on a 2D track
with a ’file’ parameter set to the name of the file.

120 gtrack.array.extract

If ’fends’ is not ’NULL’ contacts file is expected to be in "fends-value" tab-separated format. It
should start with a header containing at least 3 column names ’fend1’, ’fend2’ and ’count’ in arbi-
trary order followed by lines each defining a contact between two fragment ends.

COLUMN VALUE DESCRIPTION
fend1 Integer ID of the first fragment end
fend2 Integer ID of the second fragment end
count Numeric Value associated with the contact

A fragment ends file is also in tab-separated format. It should start with a header containing at least
3 column names ’fend’, ’chr’ and ’coord’ in arbitrary order followed by lines each defining a single
fragment end.

COLUMN VALUE DESCRIPTION
fend Unique integer ID of the fragment end
chr Chromosome name Can be specified with or without "chr" prefix, like: "X" or "chrX"
coord Integer Coordinate

’description’ is added as a track attribute.

Note: temporary files are created in the directory of the track during the run of the function. A
few of them need to be kept simultaneously open. If the number of chromosomes and / or contacts
is particularly high, a few thousands files might be needed to be opened simultaneously. Some
operating systems limit the number of open files per user, in which case the function might fail with
"Too many open files" or similar error. The workaround could be:

1. Increase the limit of simultaneously opened files (the way varies depending on your operating
system). 2. Increase the value of ’gmax.data.size’ option. Higher values of ’gmax.data.size’ option
will increased memory usage of the function but create fewer temporary files.

Value

None.

See Also

gtrack.2d.import, gtrack.rm, gtrack.info, gdir.create

gtrack.array.extract Returns values from ’Array’ track

Description

Returns values from ’Array’ track.

gtrack.array.extract 121

Usage

gtrack.array.extract(
track = NULL,
slice = NULL,
intervals = NULL,
file = NULL,
intervals.set.out = NULL

)

Arguments

track track name

slice a vector of column names or column indices or ’NULL’

intervals genomic scope for which the function is applied

file file name where the function result is to be saved. If ’NULL’ result is returned
to the user.

intervals.set.out

intervals set name where the function result is optionally outputted

Details

This function returns the column values of an ’Array’ track in the genomic scope specified by
’intervals’. ’slice’ parameter determines which columns should appear in the result. The columns
can be indicated by their names or their indices. If ’slice’ is ’NULL’ the values of all track columns
are returned.

The order inside the result might not be the same as the order of intervals. An additional column
’intervalID’ is added to the return value. Use this column to refer to the index of the original interval
from the supplied ’intervals’.

If ’file’ parameter is not ’NULL’ the result is saved to a tab-delimited text file (without ’intervalID’
column) rather than returned to the user. This can be especially useful when the result is too big
to fit into the physical memory. The resulted file can be used as an input for ’gtrack.array.import’
function.

If ’intervals.set.out’ is not ’NULL’ the result is saved as an intervals set. Similarly to ’file’ parameter
’intervals.set.out’ can be useful to overcome the limits of the physical memory.

Value

If ’file’ and ’intervals.set.out’ are ’NULL’ a set of intervals with additional columns for ’Array’
track column values and ’columnID’.

See Also

gextract, gtrack.array.get_colnames, gtrack.array.import

122 gtrack.array.get_colnames

Examples

gdb.init_examples()
gtrack.array.extract(

"array_track", c("col3", "col5"),
gintervals(1, 0, 2000)

)

gtrack.array.get_colnames

Returns column names of array track

Description

Returns column names of array track.

Usage

gtrack.array.get_colnames(track = NULL)

Arguments

track track name

Details

This function returns the column names of an array track.

Value

A character vector with column names.

See Also

gtrack.array.set_colnames, gtrack.array.extract, gvtrack.array.slice, gtrack.info

Examples

gtrack.array.get_colnames("array_track")

gtrack.array.import 123

gtrack.array.import Creates an array track from array tracks or files

Description

Creates an array track from array tracks or files.

Usage

gtrack.array.import(track = NULL, description = NULL, ...)

Arguments

track name of the newly created track

description a character string description

... array track or name of a tab-delimited file

Details

This function creates a new ’Array’ track from one or more "sources". Each source can be either
another ’Array’ track or a tab-delimited file that contains one-dimensional intervals and column
values that should be added to the newly created track. One can learn about the exact format of the
file by running ’gtrack.array.extract’ or ’gextract’ functions with a ’file’ parameter and inspecting
the output file.

There might be more than one source used to create the new track. In that case the new track will
contain the columns from all the sources. The equally named columns are merged. Intervals that
appear in one source but not in the other are added and the values for the missing columns are set
to NaN. Intervals with all NaN values are not added. Partial overlaps between two intervals from
different sources are forbidden.

’description’ is added as a track attribute.

Value

None.

See Also

gextract, gtrack.array.extract, gtrack.array.set_colnames, gtrack.rm, gtrack.info,
gdir.create

Examples

f1 <- tempfile()
gextract("sparse_track", gintervals(1, 5000, 20000), file = f1)
f2 <- tempfile()
gtrack.array.extract("array_track", c("col2", "col3", "col4"),

124 gtrack.array.set_colnames

gintervals(1, 0, 20000),
file = f2

)
f3 <- tempfile()
gtrack.array.extract("array_track", c("col1", "col3"),

gintervals(1, 0, 20000),
file = f3

)

gtrack.array.import("test_track1", "Test array track 1", f1, f2)
gtrack.array.extract("test_track1", NULL, .misha$ALLGENOME)

gtrack.array.import(
"test_track2", "Test array track 2",
"test_track1", f3

)
gtrack.array.extract("test_track2", NULL, .misha$ALLGENOME)

gtrack.rm("test_track1", TRUE)
gtrack.rm("test_track2", TRUE)
unlink(c(f1, f2, f3))

gtrack.array.set_colnames

Sets column names of array track

Description

Sets column names of array track.

Usage

gtrack.array.set_colnames(track = NULL, names = NULL)

Arguments

track track name

names vector of column names

Details

This sets the column names of an array track.

Value

None.

gtrack.attr.export 125

See Also

gtrack.array.get_colnames, gtrack.array.extract, gvtrack.array.slice, gtrack.info

Examples

old.names <- gtrack.array.get_colnames("array_track")
new.names <- paste("modified", old.names, sep = "_")
gtrack.array.set_colnames("array_track", new.names)
gtrack.array.get_colnames("array_track")
gtrack.array.set_colnames("array_track", old.names)
gtrack.array.get_colnames("array_track")

gtrack.attr.export Returns track attributes values

Description

Returns track attributes values.

Usage

gtrack.attr.export(tracks = NULL, attrs = NULL)

Arguments

tracks a vector of track names or ’NULL’

attrs a vector of attribute names or ’NULL’

Details

This function returns a data frame that contains track attributes values. Column names of the data
frame consist of the attribute names, row names contain the track names.

The list of required tracks is specified by ’tracks’ argument. If ’tracks’ is ’NULL’ the attribute
values of all existing tracks are returned.

Likewise the list of required attributes is controlled by ’attrs’ argument. If ’attrs’ is ’NULL’ all
attribute values of the specified tracks are returned. The columns are also sorted then by "popularity"
of an attribute, i.e. the number of tracks containing this attribute. This sorting is not applied if ’attrs’
is not ’NULL’.

Empty character string in a table cell marks a non-existing attribute.

Value

A data frame containing track attributes values.

126 gtrack.attr.get

See Also

gtrack.attr.import, gtrack.attr.get, gtrack.attr.set

Examples

gdb.init_examples()
gtrack.attr.export()
gtrack.attr.export(tracks = c("sparse_track", "dense_track"))
gtrack.attr.export(attrs = "created.by")

gtrack.attr.get Returns value of a track attribute

Description

Returns value of a track attribute.

Usage

gtrack.attr.get(track = NULL, attr = NULL)

Arguments

track track name
attr attribute name

Details

This function returns the value of a track attribute. If the attribute does not exist an empty sting is
returned.

Value

Track attribute value.

See Also

gtrack.attr.import, gtrack.attr.set

Examples

gdb.init_examples()
gtrack.attr.set("sparse_track", "test_attr", "value")
gtrack.attr.get("sparse_track", "test_attr")
gtrack.attr.set("sparse_track", "test_attr", "")

gtrack.attr.import 127

gtrack.attr.import Imports track attributes values

Description

Imports track attributes values.

Usage

gtrack.attr.import(table = NULL, remove.others = FALSE)

Arguments

table a data frame containing attribute values

remove.others specifies what to do with the attributes that are not in the table

Details

This function makes imports attribute values contained in a data frame ’table’. The format of a
table is similar to the one returned by ’gtrack.attr.export’. The values of the table must be character
strings. Column names of the table should specify the attribute names, while row names should
contain the track names.

The specified attributes of the specified tracks are modified. If an attribute value is an empty string
this attribute is removed from the track.

If ’remove.others’ is ’TRUE’ all non-readonly attributes that do not appear in the table are removed,
otherwise they are preserved unchanged.

Error is reported on an attempt to modify a value of a read-only attribute.

Value

None.

See Also

gtrack.attr.import, gtrack.attr.set, gtrack.attr.get, gdb.get_readonly_attrs

Examples

gdb.init_examples()
t <- gtrack.attr.export()
t$newattr <- as.character(1:dim(t)[1])
gtrack.attr.import(t)
gtrack.attr.export(attrs = "newattr")

roll-back the changes
t$newattr <- ""

128 gtrack.attr.set

gtrack.attr.import(t)

gtrack.attr.set Assigns value to a track attribute

Description

Assigns value to a track attribute.

Usage

gtrack.attr.set(track = NULL, attr = NULL, value = NULL)

Arguments

track track name

attr attribute name

value value

Details

This function creates a track attribute and assigns ’value’ to it. If the attribute already exists its value
is overwritten.

If ’value’ is an empty string the attribute is removed.

Error is reported on an attempt to modify a value of a read-only attribute.

Value

None.

See Also

gtrack.attr.get, gtrack.attr.import, gtrack.var.set, gdb.get_readonly_attrs

Examples

gdb.init_examples()
gtrack.attr.set("sparse_track", "test_attr", "value")
gtrack.attr.get("sparse_track", "test_attr")
gtrack.attr.set("sparse_track", "test_attr", "")

gtrack.convert 129

gtrack.convert Converts a track to the most current format

Description

Converts a track (if needed) to the most current format.

Usage

gtrack.convert(src.track = NULL, tgt.track = NULL)

Arguments

src.track source track name

tgt.track target track name. If ’NULL’ the source track is overwritten.

Details

This function converts a track to the most current format. It should be used if a track created by an
old version of the library cannot be read anymore by the newer version. The old track is given by
’src.track’. After conversion a new track ’tgt.track’ is created. If ’tgt.track’ is ’NULL’ the source
track is overwritten.

Value

None

See Also

gtrack.create, gtrack.2d.create, gtrack.create_sparse

gtrack.convert_to_indexed

Convert a track to indexed format

Description

Converts a per-chromosome track to indexed format (track.dat + track.idx).

Usage

gtrack.convert_to_indexed(track = NULL)

Arguments

track track name to convert

130 gtrack.copy

Details

This function converts a track from the per-chromosome file format to single-file indexed format.
The indexed format dramatically reduces file descriptor usage for genomes with many contigs and
provides better performance for parallel access.

The function performs the following steps:

1. Validates that all per-chromosome files have consistent metadata

2. Creates track.dat by concatenating all per-chromosome files

3. Creates track.idx with offset/length information for each chromosome

4. Uses atomic operations (fsync + rename) to ensure data integrity

5. Removes the old per-chromosome files after successful conversion

Value

None

See Also

gtrack.create, gtrack.create_sparse, gtrack.create_dense

Examples

Not run:
Convert a track to indexed format
gtrack.convert_to_indexed("my_track")

End(Not run)

gtrack.copy Copies a track

Description

Creates a copy of an existing track.

Usage

gtrack.copy(src = NULL, dest = NULL)

Arguments

src source track name

dest destination track name

gtrack.create 131

Details

This function creates a copy of a track. The new track is created in the current working directory
(.misha$GWD), which may be in a different database than the source track when multiple databases
are connected.

Value

None.

See Also

gtrack.mv, gtrack.rm, gtrack.exists, gtrack.ls

Examples

gdb.init_examples()
gtrack.copy("dense_track", "dense_track_copy")
gtrack.exists("dense_track_copy")
gtrack.rm("dense_track_copy", force = TRUE)

gtrack.create Creates a track from a track expression

Description

Creates a track from a track expression.

Usage

gtrack.create(
track = NULL,
description = NULL,
expr = NULL,
iterator = NULL,
band = NULL

)

Arguments

track track name

description a character string description

expr track expression

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expression.

band track expression band. If ’NULL’ no band is used.

132 gtrack.create_dense

Details

This function creates a new track named track. The values of the track are determined by evaluation
of ’expr’ - a numeric track expression. The type of the new track is determined by the type of
the iterator. ’Fixed bin’, ’Sparse’ or ’Rectangles’ track can be created accordingly. ’description’ is
added as a track attribute.

When multiple databases are connected via gsetroot, the track is created in the current working
directory (.misha$GWD), which defaults to the last connected database. Use gdir.cd with an
absolute path to change where new tracks are created.

Value

None.

See Also

gtrack.2d.create, gtrack.create_sparse, gtrack.smooth, gtrack.modify, gtrack.rm, gtrack.info,
gdir.create

Examples

gdb.init_examples()

Creates a new track that is a sum of values from 'dense' and
2 * non-nan values of 'sparse' track. The new track type is
Dense with a bin size that equals to '70'.
gtrack.create("mixed_track", "Test track",

"dense_track +
replace(sparse_track, is.nan(sparse_track), 0) * 2",

iterator = 70
)
gtrack.info("mixed_track")
gtrack.rm("mixed_track", force = TRUE)

gtrack.create_dense Creates a ’Dense’ track from intervals and values

Description

Creates a ’Dense’ track from intervals and values.

Usage

gtrack.create_dense(
track = NULL,
description = NULL,
intervals = NULL,

gtrack.create_dense 133

values = NULL,
binsize = NULL,
defval = NaN

)

Arguments

track track name

description a character string description

intervals a set of one-dimensional intervals

values an array of numeric values - one for each interval

binsize bin size of the newly created ’Dense’ track

defval default track value for genomic regions not covered by the intervals

Details

This function creates a new ’Dense’ track with values at given intervals. ’description’ is added as a
track attribute.

Value

None.

See Also

gtrack.create_sparse, gtrack.import, gtrack.modify, gtrack.rm, gtrack.info

Examples

gdb.init_examples()
intervs <- gintervals.load("annotations")
gtrack.create_dense(

"test_dense", "Test dense track", intervs,
1:dim(intervs)[1], 50, 0

)
gextract("test_dense", .misha$ALLGENOME)
gtrack.rm("test_dense", force = TRUE)

134 gtrack.create_pwm_energy

gtrack.create_dirs Create directories needed for track creation

Description

This function creates the directories needed for track creation. For example, if the track name is
’proj.sample.my_track’, this function creates the directories ’proj’ and ’sample’. Use this function
with caution - a long track name may create a deep directory structure.

Usage

gtrack.create_dirs(track, mode = "0777")

Arguments

track name of the track
mode see ’dir.create’

Value

None.

Examples

gdb.init_examples()

This creates the directories 'proj' and 'sample'
gtrack.create_dirs("proj.sample.my_track")

gtrack.create_pwm_energy

Creates a new track from PSSM energy function

Description

Creates a new track from PSSM energy function.

Usage

gtrack.create_pwm_energy(
track = NULL,
description = NULL,
pssmset = NULL,
pssmid = NULL,
prior = NULL,
iterator = NULL

)

gtrack.create_sparse 135

Arguments

track track name

description a character string description

pssmset name of PSSM set: ’pssmset.key’ and ’pssmset.data’ must be presented in ’GROOT/pssms’
directory

pssmid PSSM id

prior prior

iterator track expression iterator for the newly created track

Details

This function creates a new track with values of a PSSM energy function. PSSM parameters (nu-
cleotide probability per position and pluralization) are determined by ’pssmset’ key and data files
(’pssmset.key’ and ’pssmset.data’). These two files must be located in ’GROOT/pssms’ directory.
The type of the created track is determined by the type of the iterator. ’description’ is added as a
track attribute.

Value

None.

See Also

gtrack.create, gtrack.2d.create, gtrack.create_sparse, gtrack.smooth, gtrack.modify,
gtrack.rm, gtrack.info, gdir.create

Examples

gdb.init_examples()
gtrack.create_pwm_energy("pwm_energy_track", "Test track", "pssm",

3, 0.01,
iterator = 100

)
gextract("pwm_energy_track", gintervals(1, 0, 1000))

gtrack.create_sparse Creates a ’Sparse’ track from intervals and values

Description

Creates a ’Sparse’ track from intervals and values.

136 gtrack.create_sparse

Usage

gtrack.create_sparse(
track = NULL,
description = NULL,
intervals = NULL,
values = NULL

)

Arguments

track track name

description a character string description

intervals a set of one-dimensional intervals

values an array of numeric values - one for each interval

Details

This function creates a new ’Sparse’ track with values at given intervals. ’description’ is added as a
track attribute.

When multiple databases are connected via gsetroot, the track is created in the current working
directory (.misha$GWD), which defaults to the last connected database. Use gdir.cd with an
absolute path to change where new tracks are created.

Value

None.

See Also

gtrack.create, gtrack.2d.create, gtrack.smooth, gtrack.modify, gtrack.rm, gtrack.info,
gdir.create

Examples

gdb.init_examples()
intervs <- gintervals.load("annotations")
gtrack.create_sparse(

"test_sparse", "Test track", intervs,
1:dim(intervs)[1]

)
gextract("test_sparse", .misha$ALLGENOME)
gtrack.rm("test_sparse", force = TRUE)

gtrack.dataset 137

gtrack.dataset Returns the database/dataset path for a track

Description

Returns the path of the database or dataset containing a track.

Usage

gtrack.dataset(track = NULL)

Arguments

track track name or a vector of track names

Details

When datasets are loaded, tracks can come from either the working database or from loaded datasets.
This function returns the source path for each track.

Value

Character vector of database/dataset paths. Returns NA for non-existent tracks.

See Also

gtrack.dbs, gtrack.exists, gtrack.ls, gdataset.ls

Examples

gdb.init_examples()
gtrack.dataset("dense_track")

gtrack.dbs Returns the database paths that contain track(s)

Description

Returns all database paths that contain a version of a track.

Usage

gtrack.dbs(track = NULL, dataframe = FALSE)

138 gtrack.exists

Arguments

track track name or a vector of track names

dataframe return a data frame with columns track and db instead of a named character
vector.

Details

When datasets are loaded, a track may exist in multiple locations (working database and/or datasets).
This function computes on-demand and returns all such paths, which is useful for debugging when
using force=TRUE with gdataset.load().

Value

A named character vector of database paths for each track. If dataframe is TRUE, returns a
data frame with columns track and db, with multiple rows per track when it appears in multiple
databases.

See Also

gtrack.dataset, gtrack.exists, gtrack.ls, gdataset.ls

Examples

gdb.init_examples()
gtrack.dbs("dense_track")
gtrack.dbs(gtrack.ls(), dataframe = TRUE)

gtrack.exists Tests for a track existence

Description

Tests for a track existence.

Usage

gtrack.exists(track = NULL)

Arguments

track track name

Details

This function returns ’TRUE’ if a track exists in Genomic Database.

gtrack.import 139

Value

’TRUE’ if a track exists. Otherwise ’FALSE’.

See Also

gtrack.ls, gtrack.info, gtrack.create, gtrack.rm

Examples

gdb.init_examples()
gtrack.exists("dense_track")

gtrack.import Creates a track from WIG / BigWig / BedGraph / BED / tab-delimited
file

Description

Creates a track from WIG / BigWig / BedGraph / BED / tab-delimited file

Usage

gtrack.import(
track = NULL,
description = NULL,
file = NULL,
binsize = NULL,
defval = NaN,
attrs = NULL

)

Arguments

track track name

description a character string description

file file path

binsize bin size of the newly created ’Dense’ track or ’0’ for a ’Sparse’ track

defval default track value

attrs a named vector or list of attributes to be set on the track after import

140 gtrack.import

Details

This function creates a track from WIG / BigWig / BedGraph / tab-delimited file. Zipped files are
supported (file name must have ’.gz’ or ’.zip’ suffix).

Tab-delimited files must start with a header line with the following column names (tab-separated):
’chrom’, ’start’, ’end’, and exactly one value column name (e.g. ’value’). Each subsequent line
provides a single interval: - chrom: chromosome name (e.g. ’chr1’) - start: 0-based start coordinate
(inclusive) - end: 0-based end coordinate (exclusive) - value: numeric value (floating point allowed);
exactly one value column is supported

Columns must be separated by tabs. Coordinates must refer to chromosomes existing in the current
genome. Missing values can be specified as ’NaN’.

BED files (.bed/.bed.gz/.bed.zip) are also supported. If the BED ’score’ column (5th column) exists
and is numeric, it is used as the interval value; otherwise a constant value of 1 is used. For BED
inputs, ’binsize’ controls the output type: if ’binsize’ is 0 the track is ’Sparse’; otherwise the track
is ’Dense’ with bin-averaged values based on overlaps with BED intervals (and ’defval’ for regions
not covered).

If ’binsize’ is 0 the resulted track is created in ’Sparse’ format. Otherwise the ’Dense’ format is
chosen with a bin size equal to ’binsize’. The values that were not defined in input file file are
substituted by ’defval’ value.

’description’ is added as a track attribute.

When multiple databases are connected via gsetroot, the track is created in the current working
directory (.misha$GWD), which defaults to the last connected database. Use gdir.cd with an
absolute path to change where new tracks are created.

Value

None.

See Also

gtrack.import_set, gtrack.rm, gtrack.info, gdir.create, gextract

Examples

gdb.init_examples()

Create a simple WIG file for demonstration
temp_file <- tempfile(fileext = ".wig")
writeLines(c(

"track type=wiggle_0 name=\"example track\"",
"fixedStep chrom=chr1 start=1 step=1",
"1.5",
"2.0",
"1.8",
"3.2"

), temp_file)

gtrack.import_mappedseq 141

Basic import
gtrack.import("example_track", "Example track from WIG file",

temp_file,
binsize = 1

)
gtrack.info("example_track")
gtrack.rm("example_track", force = TRUE)

Import with custom attributes
attrs <- c("author" = "researcher", "version" = "1.0", "experiment" = "test")
gtrack.import("example_track_with_attrs", "Example track with attributes",

temp_file,
binsize = 1, attrs = attrs

)

Check that attributes were set
gtrack.attr.get("example_track_with_attrs", "author")
gtrack.attr.get("example_track_with_attrs", "version")
gtrack.attr.get("example_track_with_attrs", "experiment")

Clean up
gtrack.rm("example_track_with_attrs", force = TRUE)

gtrack.import_mappedseq

Creates a track from a file of mapped sequences

Description

Creates a track from a file of mapped sequences.

Usage

gtrack.import_mappedseq(
track = NULL,
description = NULL,
file = NULL,
pileup = 0,
binsize = -1,
cols.order = c(9, 11, 13, 14),
remove.dups = TRUE

)

Arguments

track track name

description a character string description

142 gtrack.import_set

file name of mapped sequences file

pileup interval expansion

binsize bin size of a dense track

cols.order order of sequence, chromosome, coordinate and strand columns in mapped se-
quences file or NULL if SAM file is used

remove.dups if ’TRUE’ the duplicated coordinates are counted only once.

Details

This function creates a track from a file of mapped sequences. The file can be in SAM format or in
a general TAB delimited text format where each line describes a single read.

For a SAM file ’cols.order’ must be set to ’NULL’.

For a general TAB delimited text format the following columns must be presented in the file: se-
quence, chromosome, coordinate and strand. The position of these columns should be specified in
’cols.order’ argument. The default value of ’cols.order’ is an array of (9, 11, 13, 14) meaning that
sequence is expected to be found at column number 9, chromosome - at column 11, coordinate -
at column 13 and strand - at column 14. The column indices are 1-based, i.e. the first column is
referenced by 1. Chromosome needs a prefix ’chr’ e.g. ’chr1’. Valid strand values are ’+’ or ’F’ for
forward strand and ’-’ or ’R’ for the reverse strand.

Each read at given coordinate can be "expanded" to cover an interval rather than a single point. The
length of the interval is controlled by ’pileup’ argument. The direction of expansion depends on
the strand value. If ’pileup’ is ’0’, no expansion is performed and the read is converted to a single
point. The track is created in sparse format. If ’pileup’ is greater than zero, the output track is in
dense format. ’binsize’ controls the bin size of the dense track.

If ’remove.dups’ is ’TRUE’ the duplicated coordinates are counted only once.

’description’ is added as a track attribute.

’gtrack.import_mappedseq’ returns the statistics of the conversion process.

Value

A list of conversion process statistics.

See Also

gtrack.rm, gtrack.info, gdir.create

gtrack.import_set Creates one or more tracks from multiple WIG / BigWig / BedGraph /
tab-delimited files on disk or FTP

Description

Creates one or more tracks from WIG / BigWig / BedGraph / tab-delimited files on disk or FTP.

gtrack.import_set 143

Usage

gtrack.import_set(
description = NULL,
path = NULL,
binsize = NULL,
track.prefix = NULL,
defval = NaN

)

Arguments

description a character string description

path file path or URL (may contain wildcards)

binsize bin size of the newly created ’Dense’ track or ’0’ for a ’Sparse’ track

track.prefix prefix for a track name

defval default track value

Details

This function is similar to ’gtrack.import’ however unlike the latter it can create multiple tracks.
Additionally the files can be fetched from an FTP server.

The files are expected to be in WIG / BigWig / BedGraph / tab-delimited formats. One can learn
about the format of the tab-delimited file by running ’gextract’ function with a ’file’ parameter set
to the name of the file. Zipped files are supported (file name must have ’.gz’ or ’.zip’ suffix).

Files are specified by ’path’ argument. ’path’ can be also a URL of an FTP server in the form of
’ftp://[address]/[files]’. If ’path’ is a URL, the files are first downloaded from FTP server to a tempo-
rary directory and then imported to tracks. The temporary directory is created at ’GROOT/downloads’.

Regardless whether ’path’ is file path or to a URL, it can contain wildcards. Hence multiple files
can be imported (and downloaded) at once.

If ’binsize’ is 0 the resulted tracks are created in ’Sparse’ format. Otherwise the ’Dense’ format
is chosen with a bin size equal to ’binsize’. The values that were not defined in input file file are
substituted by ’defval’ value.

The name of a each created track is of ’[track.prefix][filename]’ form, where ’filename’ is the name
of the WIG file. For example, if ’track.prefix’ equals to "wigs."" and an input file name is ’mydata’,
a track named ’wigs.mydata’ is created. If ’track.prefix’ is ’NULL’ no prefix is appended to the
name of the created track.

Existing tracks are not overwritten and no new directories are automatically created.

’description’ is added to the created tracks as an attribute.

’gtrack.import_set’ does not stop if an error occurs while importing a file. It rather continues im-
porting the rest of the files.

’gtrack.import_set’ returns the names of the files that were successfully imported and those that
failed.

144 gtrack.info

Value

Names of files that were successfully imported and those that failed.

See Also

gtrack.import, gwget, gtrack.rm, gtrack.info, gdir.create, gextract

gtrack.info Returns information about a track

Description

Returns information about a track.

Usage

gtrack.info(track = NULL, validate = FALSE)

Arguments

track track name

validate if TRUE, validates the track index file integrity (for indexed tracks). Default:
FALSE

Details

Returns information about the track (type, dimensions, size in bytes, etc.). The fields in the returned
value vary depending on the type of the track.

Value

A list that contains track properties

See Also

gtrack.exists, gtrack.ls

Examples

gdb.init_examples()
gtrack.info("dense_track")
gtrack.info("rects_track")

gtrack.liftover 145

gtrack.liftover Imports a track from another assembly

Description

Imports a track from another assembly.

Usage

gtrack.liftover(
track = NULL,
description = NULL,
src.track.dir = NULL,
chain = NULL,
src_overlap_policy = "error",
tgt_overlap_policy = "auto",
multi_target_agg = c("mean", "median", "sum", "min", "max", "count", "first", "last",

"nth", "max.coverage_len", "min.coverage_len", "max.coverage_frac",
"min.coverage_frac"),

params = NULL,
na.rm = TRUE,
min_n = NULL,
min_score = NULL

)

Arguments

track name of a created track

description a character string description

src.track.dir path to the directory of the source track

chain name of chain file or data frame as returned by ’gintervals.load_chain’
src_overlap_policy

policy for handling source overlaps: "error" (default), "keep", or "discard".
"keep" allows one source interval to map to multiple target intervals, "discard"
discards all source intervals that have overlaps and "error" throws an error if
source overlaps are detected.

tgt_overlap_policy

policy for handling target overlaps. One of:

Policy Description
error Throws an error if any target overlaps are detected.
auto Default. Alias for "auto_score".
auto_score Resolves overlaps by segmenting the target region and selecting the best chain for each segment based on alignment score (highest score wins). Tie-breakers: longest span, then lowest chain_id.
auto_longer Resolves overlaps by segmenting and selecting the chain with the longest span for each segment. Tie-breakers: highest score, then lowest chain_id.
auto_first Resolves overlaps by segmenting and selecting the chain with the lowest chain_id for each segment.

146 gtrack.liftover

keep Preserves all overlapping intervals.
discard Discards any chain interval that has a target overlap with another chain interval.
agg Segments overlaps into smaller disjoint regions where each region contains all contributing chains, allowing downstream aggregation to process multiple values per region.
best_source_cluster Best source cluster strategy based on source overlap. When multiple chains map a source interval, clusters them by source overlap: if chain source intervals overlap (indicating true duplications), all mappings are retained; if chain source intervals are disjoint (indicating conflicting/alternative mappings), only the cluster with the largest total target length is kept.

multi_target_agg

aggregation/selection policy for contributors that land on the same target locus.
When multiple source intervals map to overlapping regions in the target genome
(after applying tgt_overlap_policy), their values must be combined into a single
value.

params additional parameters for aggregation (e.g., for "nth" aggregation)

na.rm logical indicating whether NA values should be removed before aggregation
(default: TRUE)

min_n minimum number of non-NA values required for aggregation. If fewer values
are available, the result will be NA.

min_score optional minimum alignment score threshold. Chains with scores below this
value are filtered out. Useful for excluding low-quality alignments.

Details

This function imports a track located in ’src.track.dir’ of another assembly to the current database.
Chain file instructs how the conversion of coordinates should be done. It can be either a name of a
chain file or a data frame in the same format as returned by ’gintervals.load_chain’ function. The
name of the newly created track is specified by ’track’ argument and ’description’ is added as a
track attribute.

Note: When passing a pre-loaded chain (data frame), overlap policies cannot be specified - they
are taken from the chain’s attributes that were set during loading. When passing a chain file path,
policies can be specified and will be used for loading. Aggregation parameters (multi_target_agg,
params, na.rm, min_n) can always be specified regardless of chain type.

Value

None.

Note

Terminology note for UCSC chain format users: In the UCSC chain format specification, the fields
prefixed with ’t’ (tName, tStart, tEnd, etc.) are called "target" or "reference", while fields prefixed
with ’q’ (qName, qStart, qEnd, etc.) are called "query". However, misha uses reversed terminol-
ogy: UCSC’s "target/reference" corresponds to misha’s "source" (chromsrc, startsrc, endsrc), and
UCSC’s "query" corresponds to misha’s "target" (chrom, start, end).

See Also

gintervals.load_chain, gintervals.liftover

gtrack.lookup 147

gtrack.lookup Creates a new track from a lookup table based on track expression

Description

Evaluates track expression and translates the values into bin indices that are used in turn to retrieve
values from a lookup table and create a track.

Usage

gtrack.lookup(
track = NULL,
description = NULL,
lookup_table = NULL,
...,
include.lowest = FALSE,
force.binning = TRUE,
iterator = NULL,
band = NULL

)

Arguments

track track name

description a character string description

lookup_table a multi-dimensional array containing the values that are returned by the function

... pairs of track expressions and breaks

include.lowest if ’TRUE’, the lowest value of the range determined by breaks is included

force.binning if ’TRUE’, the values smaller than the minimal break will be translated to index
1, and the values that exceed the maximal break will be translated to index N-
1 where N is the number of breaks. If ’FALSE’ the out-of-range values will
produce NaN values.

iterator track expression iterator. If ’NULL’ iterator is determined implicitly based on
track expressions.

band track expression band. If ’NULL’ no band is used.

Details

This function evaluates the track expression for all iterator intervals and translates this value into an
index based on the breaks. This index is then used to address the lookup table and create with its
values a new track. More than one ’expr’-’breaks’ pair can be used. In that case ’lookup_table’ is
addressed in a multidimensional manner, i.e. ’lookup_table[i1, i2, ...]’.

The range of bins is determined by ’breaks’ argument. For example: ’breaks = c(x1, x2, x3, x4)’
represents three different intervals (bins): (x1, x2], (x2, x3], (x3, x4].

148 gtrack.ls

If ’include.lowest’ is ’TRUE’ the the lowest value is included in the first interval, i.e. in [x1, x2].

’force.binning’ parameter controls what should be done when the value of ’expr’ exceeds the range
determined by ’breaks’. If ’force.binning’ is ’TRUE’ then values smaller than the minimal break
will be translated to index 1, and the values exceeding the maximal break will be translated to index
’M-1’ where ’M’ is the number of breaks. If ’force.binning’ is ’FALSE’ the out-of-range values
will produce ’NaN’ values.

Regardless of ’force.binning’ value if the value of ’expr’ is ’NaN’ then the value in the track would
be ’NaN’ too.

’description’ is added as a track attribute.

Value

None.

See Also

glookup, gtrack.2d.create, gtrack.create_sparse, gtrack.smooth, gtrack.modify, gtrack.rm,
gtrack.info, gdir.create

Examples

gdb.init_examples()

one-dimensional example
breaks1 <- seq(0.1, 0.2, length.out = 6)
gtrack.lookup(

"lookup_track", "Test track", 1:5, "dense_track",
breaks1

)
gtrack.rm("lookup_track", force = TRUE)

two-dimensional example
t <- array(1:15, dim = c(5, 3))
breaks2 <- seq(0.31, 0.37, length.out = 4)
gtrack.lookup(

"lookup_track", "Test track", t, "dense_track",
breaks1, "2 * dense_track", breaks2

)
gtrack.rm("lookup_track", force = TRUE)

gtrack.ls Returns a list of track names

Description

Returns a list of track names in Genomic Database.

gtrack.ls 149

Usage

gtrack.ls(
...,
db = NULL,
ignore.case = FALSE,
perl = FALSE,
fixed = FALSE,
useBytes = FALSE

)

Arguments

... these arguments are of either form ’pattern’ or ’attribute = pattern’

db optional database path to filter tracks. If specified, only tracks from that database
are returned.

ignore.case, perl, fixed, useBytes
see ’grep’

Details

This function returns a list of tracks whose name or track attribute value match a pattern (see ’grep’).
If called without any arguments all tracks are returned.

If pattern is specified without a track attribute (i.e. in the form of ’pattern’) then filtering is applied
to the track names. If pattern is supplied with a track attribute (i.e. in the form of ’name = pattern’)
then track attribute is matched against the pattern.

Multiple patterns are applied one after another. The resulted list of tracks should match all the
patterns.

When multiple databases are connected, the ’db’ parameter can be used to filter tracks to only those
from a specific database.

Value

An array that contains the names of tracks that match the supplied patterns.

See Also

grep, gtrack.exists, gtrack.create, gtrack.rm, gtrack.dataset

Examples

gdb.init_examples()

get all track names
gtrack.ls()

get track names that match the pattern "den*"
gtrack.ls("den*")

150 gtrack.modify

get track names whose "created.by" attribute match the pattern
"create_sparse"
gtrack.ls(created.by = "create_sparse")

get track names whose names match the pattern "den*" and whose
"created.by" attribute match the pattern "track"
gtrack.ls("den*", created.by = "track")

gtrack.modify Modifies track contents

Description

Modifies ’Dense’ track contents.

Usage

gtrack.modify(track = NULL, expr = NULL, intervals = NULL)

Arguments

track track name

expr track expression

intervals genomic scope for which track is modified

Details

This function modifies the contents of a ’Dense’ track by the values of ’expr’. ’intervals’ argument
controls which portion of the track is modified. The iterator policy is set internally to the bin size
of the track.

Value

None.

See Also

gtrack.create, gtrack.rm

gtrack.mv 151

Examples

gdb.init_examples()
intervs <- gintervals(1, 300, 800)
gextract("dense_track", intervs)
gtrack.modify("dense_track", "dense_track * 2", intervs)
gextract("dense_track", intervs)
gtrack.modify("dense_track", "dense_track / 2", intervs)

gtrack.mv Renames or moves a track

Description

Renames a track or moves it to a different namespace within the same database.

Usage

gtrack.mv(src = NULL, dest = NULL)

Arguments

src source track name
dest destination track name

Details

This function renames a track or moves it to a different namespace (directory) within the same
database. The track cannot be moved to a different database. Use gtrack.copy followed by
gtrack.rm if you need to move a track between databases.

Value

None.

See Also

gtrack.copy, gtrack.rm, gtrack.exists, gtrack.ls

Examples

gdb.init_examples()
gtrack.create_sparse("test_track", "Test", gintervals(1, 0, 100), 1)
gtrack.mv("test_track", "renamed_track")
gtrack.exists("renamed_track")
gtrack.rm("renamed_track", force = TRUE)

152 gtrack.rm

gtrack.path Returns the path on disk of a track

Description

Returns the path on disk of a track.

Usage

gtrack.path(track = NULL)

Arguments

track track name or a vector of track names

Details

This function returns the actual file system path where a track is stored. The function works with a
single track name or a vector of track names.

Value

A character vector containing the full paths to the tracks on disk.

See Also

gtrack.exists, gtrack.ls, gintervals.path

Examples

gdb.init_examples()
gtrack.path("dense_track")
gtrack.path(c("dense_track", "sparse_track"))

gtrack.rm Deletes a track

Description

Deletes a track.

Usage

gtrack.rm(track = NULL, force = FALSE, db = NULL)

gtrack.smooth 153

Arguments

track track name

force if ’TRUE’, suppresses user confirmation of a named track removal

db optional database path to delete the track from when multiple databases are con-
nected

Details

This function deletes a track from the Genomic Database. By default ’gtrack.rm’ requires the user
to interactively confirm the deletion. Set ’force’ to ’TRUE’ to suppress the user prompt.

Value

None.

See Also

gtrack.exists, gtrack.ls, gtrack.create, gtrack.2d.create, gtrack.create_sparse, gtrack.smooth

Examples

gdb.init_examples()
gtrack.create("new_track", "Test track", "2 * dense_track")
gtrack.exists("new_track")
gtrack.rm("new_track", force = TRUE)
gtrack.exists("new_track")

gtrack.smooth Creates a new track from smoothed values of track expression

Description

Creates a new track from smoothed values of track expression.

Usage

gtrack.smooth(
track = NULL,
description = NULL,
expr = NULL,
winsize = NULL,
weight_thr = 0,
smooth_nans = FALSE,
alg = "LINEAR_RAMP",
iterator = NULL

)

154 gtrack.smooth

Arguments

track track name

description a character string description

expr track expression

winsize size of smoothing window

weight_thr smoothing weight threshold

smooth_nans if ’FALSE’ track value is always set to ’NaN’ if central window value is ’NaN’,
otherwise it is calculated from the rest of non ’NaN’ values

alg smoothing algorithm - "MEAN" or "LINEAR_RAMP"

iterator track expression iterator of ’Fixed bin’ type

Details

This function creates a new ’Dense’ track named ’track’. The values of the track are results of
smoothing the values of ’expr’.

Each track value at coordinate ’C’ is determined by smoothing non ’NaN’ values of ’expr’ over the
window around ’C’. The window size is controlled by ’winsize’ and is given in coordinate units
(not in number of bins), defining the total regions to be considered when smoothing (on both sides
of the central point). Two different algorithms can be used for smoothing:

"MEAN" - an arithmetic average.

"LINEAR_RAMP" - a weighted arithmetic average, where the weights linearly decrease as the
distance from the center of the window increases.

’weight_thr’ determines the function behavior when some of the values in the window are missing
or ’NaN’ (missing values may occur at the edges of each chromosome when the window covers
an area beyond chromosome boundaries). ’weight_thr’ sets the weight sum threshold below which
smoothing algorithm returns ’NaN’ rather than a smoothing value based on non ’NaN’ values in the
window.

’smooth_nans’ controls what would be the smoothed value if the central value in the window
is ’NaN’. If ’smooth_nans’ is ’FALSE’ then the smoothed value is set to ’NaN’ regardless of
’weight_thr’ parameter. Otherwise it is calculated normally.

’description’ is added as a track attribute.

Iterator policy must be of "fixed bin" type.

Value

None.

See Also

gtrack.create, gtrack.2d.create, gtrack.create_sparse, gtrack.modify, gtrack.rm, gtrack.info,
gdir.create

gtrack.var.get 155

Examples

gdb.init_examples()
gtrack.smooth("smoothed_track", "Test track", "dense_track", 500)
gextract("dense_track", "smoothed_track", gintervals(1, 0, 1000))
gtrack.rm("smoothed_track", force = TRUE)

gtrack.var.get Returns value of a track variable

Description

Returns value of a track variable.

Usage

gtrack.var.get(track = NULL, var = NULL)

Arguments

track track name

var track variable name

Details

This function returns the value of a track variable. If the variable does not exist an error is reported.

Value

Track variable value.

See Also

gtrack.var.set, gtrack.var.ls, gtrack.var.rm

Examples

gdb.init_examples()
gtrack.var.set("sparse_track", "test_var", 1:10)
gtrack.var.get("sparse_track", "test_var")
gtrack.var.rm("sparse_track", "test_var")

156 gtrack.var.ls

gtrack.var.ls Returns a list of track variables for a track

Description

Returns a list of track variables for a track.

Usage

gtrack.var.ls(
track = NULL,
pattern = "",
ignore.case = FALSE,
perl = FALSE,
fixed = FALSE,
useBytes = FALSE

)

Arguments

track track name
pattern, ignore.case, perl, fixed, useBytes

see ’grep’

Details

This function returns a list of track variables of a track that match the pattern (see ’grep’). If called
without any arguments all track variables of a track are returned.

Value

An array that contains the names of track variables.

See Also

grep, gtrack.var.get, gtrack.var.set, gtrack.var.rm

Examples

gdb.init_examples()
gtrack.var.ls("sparse_track")
gtrack.var.set("sparse_track", "test_var1", 1:10)
gtrack.var.set("sparse_track", "test_var2", "v")
gtrack.var.ls("sparse_track")
gtrack.var.ls("sparse_track", pattern = "2")
gtrack.var.rm("sparse_track", "test_var1")
gtrack.var.rm("sparse_track", "test_var2")

gtrack.var.rm 157

gtrack.var.rm Deletes a track variable

Description

Deletes a track variable.

Usage

gtrack.var.rm(track = NULL, var = NULL)

Arguments

track track name

var track variable name

Details

This function deletes a track variable.

Value

None.

See Also

gtrack.var.get, gtrack.var.set, gtrack.var.ls

Examples

gdb.init_examples()
gtrack.var.set("sparse_track", "test_var1", 1:10)
gtrack.var.set("sparse_track", "test_var2", "v")
gtrack.var.ls("sparse_track")
gtrack.var.rm("sparse_track", "test_var1")
gtrack.var.rm("sparse_track", "test_var2")
gtrack.var.ls("sparse_track")

158 gtrack.var.set

gtrack.var.set Assigns value to a track variable

Description

Assigns value to a track variable.

Usage

gtrack.var.set(track = NULL, var = NULL, value = NULL)

Arguments

track track name

var track variable name

value value

Details

This function creates a track variable and assigns ’value’ to it. If the track variable already exists its
value is overwritten.

Value

None.

See Also

gtrack.var.get, gtrack.var.ls, gtrack.var.rm

Examples

gdb.init_examples()
gtrack.var.set("sparse_track", "test_var", 1:10)
gtrack.var.get("sparse_track", "test_var")
gtrack.var.rm("sparse_track", "test_var")

gvtrack.array.slice 159

gvtrack.array.slice Defines rules for a single value calculation of a virtual ’Array’ track

Description

Defines how a single value within an interval is achieved for a virtual track based on ’Array’ track.

Usage

gvtrack.array.slice(vtrack = NULL, slice = NULL, func = "avg", params = NULL)

Arguments

vtrack virtual track name

slice a vector of column names or column indices or ’NULL’

func, params see below

Details

A track (regular or virtual) used in a track expression is expected to return one value for each track
interval. ’Array’ tracks store multiple values per interval (one for each ’column’) and hence if used
in a track expression one must define the way of how a single value should be deduced from several
ones.

By default if an ’Array’ track is used in a track expressions, its interval value would be the average
of all column values that are not NaN. ’gvtrack.array.slice’ allows to select specific columns and to
specify the function applied to their values.

’slice’ parameter allows to choose the columns. Columns can be indicated by their names or their
indices. If ’slice’ is ’NULL’ the non-NaN values of all track columns are used.

’func’ parameter determines the function applied to the columns’ values. Use the following table
for a reference of all valid functions and parameters combinations:

func = "avg", params = NULL
Average of columns’ values.

func = "max", params = NULL
Maximum of columns’ values.

func = "min", params = NULL
Minimum of columns’ values.

func = "stdev", params = NULL
Unbiased standard deviation of columns’ values.

func = "sum", params = NULL
Sum of columns’ values.

func = "quantile", params = [Percentile in the range of [0, 1]]
Quantile of columns’ values.

160 gvtrack.create

Value

None.

See Also

gvtrack.create, gtrack.array.get_colnames, gtrack.array.extract

Examples

gdb.init_examples()
gvtrack.create("vtrack1", "array_track")
gvtrack.array.slice("vtrack1", c("col2", "col4"), "max")
gextract("vtrack1", gintervals(1, 0, 1000))

gvtrack.create Creates a new virtual track

Description

Creates a new virtual track.

Usage

gvtrack.create(
vtrack = NULL,
src = NULL,
func = NULL,
params = NULL,
dim = NULL,
sshift = NULL,
eshift = NULL,
filter = NULL,
...

)

Arguments

vtrack virtual track name

src source (track/intervals). NULL for PWM functions. For value-based tracks,
provide a data frame with columns chrom, start, end, and one numeric value
column. The data frame functions as an in-memory sparse track and supports
all track-based summarizer functions. Intervals must not overlap.

func function name (see above)

params function parameters (see above)

gvtrack.create 161

dim use ’NULL’ or ’0’ for 1D iterators. ’1’ converts 2D iterator to (chrom1, start1,
end1) , ’2’ converts 2D iterator to (chrom2, start2, end2)

sshift shift of ’start’ coordinate

eshift shift of ’end’ coordinate

filter genomic mask to apply. Can be:

• A data.frame with columns ’chrom’, ’start’, ’end’ (intervals to mask)
• A character string naming an intervals set
• A character string naming a track (must be intervals-type track)
• A list of any combination of the above (all will be unified)
• NULL to clear the filter

... additional PWM parameters

Details

This function creates a new virtual track named ’vtrack’ with the given source, function and param-
eters. ’src’ can be either a track, intervals (1D or 2D), or a data frame with intervals and a numeric
value column (value-based track). The tables below summarize the supported combinations.

Value-based tracks Value-based tracks are data frames containing genomic intervals with associ-
ated numeric values. They function as in-memory sparse tracks without requiring track creation
in the database. To create a value-based track, provide a data frame with columns chrom, start,
end, and one numeric value column (any name is acceptable). Value-based tracks support all track-
based summarizer functions (e.g., avg, min, max, sum, stddev, quantile, nearest, exists, size,
first, last, sample, and position functions), but do not support overlapping intervals. They be-
have like sparse tracks in aggregation: values are aggregated using count-based averaging (each
interval contributes equally regardless of length), not coverage-based averaging.

Track-based summarizers

Source func params Description
Track avg NULL Average track value in the iterator interval.
Track (1D) exists vals (optional) Returns 1 if any value exists (or specific vals if provided), 0 otherwise.
Track (1D) first NULL First value in the iterator interval.
Track (1D) last NULL Last value in the iterator interval.
Track max NULL Maximum track value in the iterator interval.
Track min NULL Minimum track value in the iterator interval.
Dense / Sparse / Array track nearest NULL Average value inside the iterator; for sparse tracks with no samples in the interval, falls back to the closest sample outside the interval (by genomic distance).
Track (1D) sample NULL Uniformly sampled source value from the iterator interval.
Track (1D) size NULL Number of non-NaN values in the iterator interval.
Dense / Sparse / Array track stddev NULL Unbiased standard deviation of values in the iterator interval.
Dense / Sparse / Array track sum NULL Sum of values in the iterator interval.
Dense / Sparse / Array track quantile Percentile in [0, 1] Quantile of values in the iterator interval.
Dense track global.percentile NULL Percentile of the interval average relative to the full-track distribution.
Dense track global.percentile.max NULL Percentile of the interval maximum relative to the full-track distribution.
Dense track global.percentile.min NULL Percentile of the interval minimum relative to the full-track distribution.

Track position summarizers

162 gvtrack.create

Source func params Description
Track (1D) first.pos.abs NULL Absolute genomic coordinate of the first value.
Track (1D) first.pos.relative NULL Zero-based position (relative to interval start) of the first value.
Track (1D) last.pos.abs NULL Absolute genomic coordinate of the last value.
Track (1D) last.pos.relative NULL Zero-based position (relative to interval start) of the last value.
Track (1D) max.pos.abs NULL Absolute genomic coordinate of the maximum value inside the iterator interval.
Track (1D) max.pos.relative NULL Zero-based position (relative to interval start) of the maximum value.
Track (1D) min.pos.abs NULL Absolute genomic coordinate of the minimum value inside the iterator interval.
Track (1D) min.pos.relative NULL Zero-based position (relative to interval start) of the minimum value.
Track (1D) sample.pos.abs NULL Absolute genomic coordinate of a uniformly sampled value.
Track (1D) sample.pos.relative NULL Zero-based position (relative to interval start) of a uniformly sampled value.

For max.pos.relative, min.pos.relative, first.pos.relative, last.pos.relative, sample.pos.relative,
iterator modifiers (including sshift / eshift and 1D projections generated via gvtrack.iterator)
are applied before the position is reported. In other words, the returned coordinate is always 0-based
and measured from the start of the iterator interval after all modifier adjustments.

Interval-based summarizers

Source func params Description
1D intervals distance Minimal distance from center (default 0) Signed distance using normalized formula when inside intervals, distance to edge when outside; see notes below for exact formula.
1D intervals distance.center NULL Distance from iterator center to the closest interval center, NA if outside all intervals.
1D intervals distance.edge NULL Edge-to-edge distance from iterator interval to closest source interval (like gintervals.neighbors); see notes below for strand handling.
1D intervals coverage NULL Fraction of iterator length covered by source intervals (after unifying overlaps).
1D intervals neighbor.count Max distance (>= 0) Number of source intervals whose edge-to-edge distance from the iterator interval is within params (no unification).

2D track summarizers

Source func params Description
2D track area NULL Area covered by intersections of track rectangles with the iterator interval.
2D track weighted.sum NULL Weighted sum of values where each weight equals the intersection area.

Motif (PWM) summarizers

Source func Key params Description
NULL (sequence) pwm pssm, bidirect, prior, extend, spat_* Log-sum-exp score of motif likelihoods across all anchors inside the iterator interval.
NULL (sequence) pwm.max pssm, bidirect, prior, extend, spat_* Maximum log-likelihood score among all anchors (per-position union across strands).
NULL (sequence) pwm.max.pos pssm, bidirect, prior, extend, spat_* 1-based position of the best-scoring anchor (signed by strand when bidirect = TRUE); coordinates are always relative to the iterator interval after any gvtrack.iterator() shifts/extensions.
NULL (sequence) pwm.count pssm, score.thresh, bidirect, prior, extend, strand, spat_* Count of anchors whose score exceeds score.thresh (per-position union).

K-mer summarizers

Source func Key params Description
NULL (sequence) kmer.count kmer, extend, strand Number of k-mer occurrences whose anchor lies inside the iterator interval.

gvtrack.create 163

NULL (sequence) kmer.frac kmer, extend, strand Fraction of possible anchors within the interval that match the k-mer.

Masked sequence summarizers

Source func Key params Description
NULL (sequence) masked.count NULL Number of masked (lowercase) base pairs in the iterator interval.
NULL (sequence) masked.frac NULL Fraction of base pairs in the iterator interval that are masked (lowercase).

The sections below provide additional notes for motif, interval, k-mer, and masked sequence func-
tions.

Motif (PWM) notes

• pssm: Position-specific scoring matrix (matrix or data frame) with columns A, C, G, T; extra
columns are ignored.

• bidirect: When TRUE (default), both strands are scanned and combined per genomic start
(per-position union). The strand argument is ignored. When FALSE, only the strand speci-
fied by strand is scanned.

• prior: Pseudocount added to frequencies (default 0.01). Set to 0 to disable.

• extend: Extends the fetched sequence so boundary-anchored motifs retain full context (de-
fault TRUE). The END coordinate is padded by motif_length - 1 for all strand modes; anchors
must still start inside the iterator.

• Neutral characters (N, n, *) contribute the mean log-probability of the corresponding PSSM
column on both strands.

• strand: Used only when bidirect = FALSE; 1 scans the forward strand, -1 scans the reverse
strand. For pwm.max.pos, strand = -1 reports the hit position at the end of the match (still
relative to the forward orientation).

• score.thresh: Threshold for pwm.count. Anchors with log-likelihood >= score.thresh
are counted; only one count per genomic start.

• Spatial weighting (spat_factor, spat_bin, spat_min, spat_max): optional position-dependent
weights applied in log-space. Provide a positive numeric vector spat_factor; spat_bin (in-
teger > 0) defines bin width; spat_min/spat_max restrict the scanning window.

• pwm.max.pos: Positions are reported 1-based relative to the final scan window (after iterator
shifts and spatial trimming). Ties resolve to the most 5’ anchor; the forward strand wins ties at
the same coordinate. Values are signed when bidirect = TRUE (positive for forward, negative
for reverse).

Spatial weighting enables position-dependent weighting for modeling positional biases. Bins are 0-
indexed from the scan start. When using gvtrack.iterator() shifts (e.g., sshift = -50, eshift
= 50), bins index from the expanded scan window start, not the original interval. Both strands use
the same bin at each genomic position. Positions beyond the last bin reuse the final bin’s weight.
If the window size is not divisible by spat_bin, the last bin is shorter (e.g., scanning 500 bp with
40 bp bins yields bins 0-11 of 40 bp plus bin 12 of 20 bp). Use spat_min and spat_max to restrict
scanning to a range divisible by spat_bin if needed.

164 gvtrack.create

PWM parameters can be supplied either as a single list (params) or via named arguments (see
examples).

Interval distance notes

distance: Given the center ’C’ of the current iterator interval, returns ’DC * X/2’ where ’DC’ is
the normalized distance to the center of the interval that contains ’C’, and ’X’ is the value of the
parameter (default: 0). If no interval contains ’C’, the result is ’D + X/2’ where ’D’ is the distance
between ’C’ and the edge of the closest interval.

distance.center: Given the center ’C’ of the current iterator interval, returns NaN if ’C’ is outside
of all intervals, otherwise returns the distance between ’C’ and the center of the closest interval.

distance.edge: Computes edge-to-edge distance from the iterator interval to the closest source in-
terval, using the same calculation as gintervals.neighbors. Returns 0 for overlapping intervals.
Distance sign depends on the strand column of source intervals; returns unsigned (absolute) distance
if no strand column exists. Returns NA if no source intervals exist on the current chromosome.

For distance and distance.center, distance can be positive or negative depending on the po-
sition of the coordinate relative to the interval and the strand (-1 or 1) of the interval. Distance is
always positive if strand = 0 or if the strand column is missing. The result is NA if no intervals exist
for the current chromosome.

Difference between distance functions: The distance function measures from the center of the
iterator interval (a single coordinate point) to the closest edge of source intervals when outside, or
returns a normalized distance within the interval when inside. The distance.center function mea-
sures from the center of the iterator interval to the center of source intervals. The distance.edge
function measures edge-to-edge distance between intervals, exactly like gintervals.neighbors.
Use distance.edge when you need the same distance computation as gintervals.neighbors
within a virtual track context.

K-mer notes

• kmer: DNA sequence (case-insensitive) to count.

• extend: If TRUE (default), counts kmers whose anchor lies in the interval even if the kmer
extends beyond it; when FALSE, only kmers fully contained in the interval are considered.

• strand: 1 counts forward-strand occurrences, -1 counts reverse-strand occurrences, 0 counts
both strands (default). For palindromic kmers, consider using 1 or -1 to avoid double counting.

K-mer parameters can be supplied as a list or via named arguments (see examples).

Modify iterator behavior with ’gvtrack.iterator’ or ’gvtrack.iterator.2d’.

Value

None.

See Also

gvtrack.info, gvtrack.iterator, gvtrack.iterator.2d, gvtrack.array.slice, gvtrack.ls,
gvtrack.rm

gvtrack.iterator, gvtrack.iterator.2d, gvtrack.filter

gvtrack.create 165

Examples

gdb.init_examples()

gvtrack.create("vtrack1", "dense_track", "max")
gvtrack.create("vtrack2", "dense_track", "quantile", 0.5)
gextract("dense_track", "vtrack1", "vtrack2",

gintervals(1, 0, 10000),
iterator = 1000

)

gvtrack.create("vtrack3", "dense_track", "global.percentile")
gvtrack.create("vtrack4", "annotations", "distance")
gdist(

"vtrack3", seq(0, 1, l = 10), "vtrack4",
seq(-500, 500, 200)

)

gvtrack.create("cov", "annotations", "coverage")
gextract("cov", gintervals(1, 0, 1000), iterator = 100)

pssm <- matrix(
c(

0.7, 0.1, 0.1, 0.1, # Example PSSM
0.1, 0.7, 0.1, 0.1,
0.1, 0.1, 0.7, 0.1,
0.1, 0.1, 0.7, 0.1,
0.1, 0.1, 0.7, 0.1,
0.1, 0.1, 0.7, 0.1

),
ncol = 4, byrow = TRUE

)
colnames(pssm) <- c("A", "C", "G", "T")
gvtrack.create(

"motif_score", NULL, "pwm",
list(pssm = pssm, bidirect = TRUE, prior = 0.01)

)
gvtrack.create("max_motif_score", NULL, "pwm.max",

pssm = pssm, bidirect = TRUE, prior = 0.01
)
gvtrack.create("max_motif_pos", NULL, "pwm.max.pos",

pssm = pssm
)
gextract(

c(
"dense_track", "motif_score", "max_motif_score",
"max_motif_pos"

),
gintervals(1, 0, 10000),
iterator = 500

)

166 gvtrack.create

Kmer counting examples
gvtrack.create("cg_count", NULL, "kmer.count", kmer = "CG", strand = 1)
gvtrack.create("cg_frac", NULL, "kmer.frac", kmer = "CG", strand = 1)
gextract(c("cg_count", "cg_frac"), gintervals(1, 0, 10000), iterator = 1000)

gvtrack.create("at_pos", NULL, "kmer.count", kmer = "AT", strand = 1)
gvtrack.create("at_neg", NULL, "kmer.count", kmer = "AT", strand = -1)
gvtrack.create("at_both", NULL, "kmer.count", kmer = "AT", strand = 0)
gextract(c("at_pos", "at_neg", "at_both"), gintervals(1, 0, 10000), iterator = 1000)

GC content
gvtrack.create("g_frac", NULL, "kmer.frac", kmer = "G")
gvtrack.create("c_frac", NULL, "kmer.frac", kmer = "C")
gextract("g_frac + c_frac", gintervals(1, 0, 10000),

iterator = 1000,
colnames = "gc_content"

)

Masked base pair counting
gvtrack.create("masked_count", NULL, "masked.count")
gvtrack.create("masked_frac", NULL, "masked.frac")
gextract(c("masked_count", "masked_frac"), gintervals(1, 0, 10000), iterator = 1000)

Combined with GC content (unmasked regions only)
gvtrack.create("gc", NULL, "kmer.frac", kmer = "G")
gextract("gc * (1 - masked_frac)",

gintervals(1, 0, 10000),
iterator = 1000,
colnames = "gc_unmasked"

)

Value-based track examples
Create a data frame with intervals and numeric values
intervals_with_values <- data.frame(

chrom = "chr1",
start = c(100, 300, 500),
end = c(200, 400, 600),
score = c(10, 20, 30)

)
Use as value-based sparse track (functions like sparse track)
gvtrack.create("value_track", intervals_with_values, "avg")
gvtrack.create("value_track_max", intervals_with_values, "max")
gextract(c("value_track", "value_track_max"),

gintervals(1, 0, 10000),
iterator = 1000

)

Spatial PWM examples
Create a PWM with higher weight in the center of intervals
pssm <- matrix(

c(
0.7, 0.1, 0.1, 0.1,
0.1, 0.7, 0.1, 0.1,

gvtrack.create 167

0.1, 0.1, 0.7, 0.1,
0.1, 0.1, 0.1, 0.7

),
ncol = 4, byrow = TRUE

)
colnames(pssm) <- c("A", "C", "G", "T")

Spatial factors: low weight at edges, high in center
For 200bp intervals with 40bp bins: bins 0, 40, 80, 120, 160
spatial_weights <- c(0.5, 1.0, 2.0, 1.0, 0.5)

gvtrack.create(
"spatial_pwm", NULL, "pwm",
list(

pssm = pssm,
bidirect = TRUE,
spat_factor = spatial_weights,
spat_bin = 40L

)
)

Compare with non-spatial PWM
gvtrack.create(

"regular_pwm", NULL, "pwm",
list(pssm = pssm, bidirect = TRUE)

)

gextract(c("spatial_pwm", "regular_pwm"),
gintervals(1, 0, 10000),
iterator = 200

)

Using spatial parameters with iterator shifts
gvtrack.create(

"spatial_extended", NULL, "pwm.max",
pssm = pssm,
spat_factor = c(0.5, 1.0, 2.0, 2.5, 2.0, 1.0, 0.5),
spat_bin = 40L

)
Scan window will be 280bp (100bp + 2*90bp)
gvtrack.iterator("spatial_extended", sshift = -90, eshift = 90)
gextract("spatial_extended", gintervals(1, 0, 10000), iterator = 100)

Using spat_min/spat_max to restrict scanning to a window
For 500bp intervals, scan only positions 30-470 (440bp window)
gvtrack.create(

"window_pwm", NULL, "pwm",
pssm = pssm,
bidirect = TRUE,
spat_min = 30, # 1-based position
spat_max = 470 # 1-based position

)
gextract("window_pwm", gintervals(1, 0, 10000), iterator = 500)

168 gvtrack.filter

Combining spatial weighting with window restriction
Scan positions 50-450 with spatial weights favoring the center
gvtrack.create(

"window_spatial_pwm", NULL, "pwm",
pssm = pssm,
bidirect = TRUE,
spat_factor = c(0.5, 1.0, 2.0, 2.5, 2.0, 1.0, 0.5, 1.0, 0.5, 0.5),
spat_bin = 40L,
spat_min = 50,
spat_max = 450

)
gextract("window_spatial_pwm", gintervals(1, 0, 10000), iterator = 500)

gvtrack.filter Attach or clear a genomic mask filter on a virtual track

Description

Attaches or clears a genomic mask filter on a virtual track. When a filter is attached, the virtual
track function is evaluated only over the unmasked regions (i.e., regions not covered by the filter
intervals).

Usage

gvtrack.filter(vtrack = NULL, filter = NULL)

Arguments

vtrack virtual track name

filter genomic mask to apply. Can be:

• A data.frame with columns ’chrom’, ’start’, ’end’ (intervals to mask)
• A character string naming an intervals set
• A character string naming a track (must be intervals-type track)
• A list of any combination of the above (all will be unified)
• NULL to clear the filter

Details

The filter defines regions to exclude from virtual track evaluation. The virtual track function will be
evaluated only on the complement of the filter. Once a filter is attached to a virtual track, it applies
to all subsequent extractions of that virtual track until explicitly cleared with filter = NULL.

Order of Operations:
Filters are applied after iterator modifiers (sshift/eshift/dim). The order is:

1. Apply iterator modifiers (gvtrack.iterator with sshift/eshift)

2. Subtract mask from the modified intervals

gvtrack.filter 169

3. Evaluate virtual track function over unmasked regions

Semantics by function type:

• Aggregations (avg/sum/min/max/stddev/quantile): Length-weighted over unmasked regions

• coverage: Returns (covered length in unmasked region) / (total unmasked length)

• distance/distance.center: Unaffected by mask (pure geometry)

• PWM/kmer: Masked bases act as hard boundaries; matches cannot span masked regions.
Important: When extend=TRUE (the default), motifs at the boundaries of unmasked segments
can use bases from the adjacent masked regions to complete the motif scoring. For example,
if a 4bp motif starts at position 1998 in an unmasked region that ends at 2000, and positions
2000-2002 are masked, the motif will still be scored using the masked bases. In other words,
motif matches starting positions must be in unmasked regions, but the motif sequence itself
can extend into masked regions when extend=TRUE. Set extend=FALSE to prevent any use of
masked bases in scoring.

Completely Masked Intervals: If an entire iterator interval is masked, the function returns NA (not
0).

Value

None (invisibly).

See Also

gvtrack.create, gvtrack.iterator, gvtrack.info

Examples

gdb.init_examples()

Basic usage: Excluding specific regions
gvtrack.create("vtrack1", "dense_track", func = "avg")

Create intervals to mask (e.g., repetitive regions)
repeats <- gintervals(c(1, 1), c(100, 500), c(200, 600))

Attach filter - track will be evaluated excluding these regions
gvtrack.filter("vtrack1", filter = repeats)

Extract values - masked regions are excluded from calculation
result_filtered <- gextract("vtrack1", gintervals(1, 0, 1000))

Check filter info
gvtrack.info("vtrack1")

Clear the filter and compare
gvtrack.filter("vtrack1", filter = NULL)
result_unfiltered <- gextract("vtrack1", gintervals(1, 0, 1000))

170 gvtrack.info

Using multiple filter sources (combined automatically)
centromeres <- gintervals(1, 10000, 15000)
telomeres <- gintervals(1, 0, 1000)
combined_mask <- list(repeats, centromeres, telomeres)

gvtrack.filter("vtrack1", filter = combined_mask)
result_multi_filter <- gextract("vtrack1", gintervals(1, 0, 20000))

Filters work with iterator modifiers
gvtrack.create("vtrack2", "dense_track", func = "sum")
gvtrack.filter("vtrack2", filter = repeats)
gvtrack.iterator("vtrack2", sshift = -50, eshift = 50)

Iterator shifts applied first, then mask subtracted
result_shifted <- gextract("vtrack2", gintervals(1, 1000, 2000), iterator = 100)

gvtrack.info Returns the definition of a virtual track

Description

Returns the definition of a virtual track.

Usage

gvtrack.info(vtrack = NULL)

Arguments

vtrack virtual track name

Details

This function returns the internal representation of a virtual track.

Value

Internal representation of a virtual track.

See Also

gvtrack.create

Examples

gdb.init_examples()
gvtrack.create("vtrack1", "dense_track", "max")
gvtrack.info("vtrack1")

gvtrack.iterator 171

gvtrack.iterator Defines modification rules for a one-dimensional iterator in a virtual
track

Description

Defines modification rules for a one-dimensional iterator in a virtual track.

Usage

gvtrack.iterator(vtrack = NULL, dim = NULL, sshift = 0, eshift = 0)

Arguments

vtrack virtual track name

dim use ’NULL’ or ’0’ for 1D iterators. ’1’ converts 2D iterator to (chrom1, start1,
end1) , ’2’ converts 2D iterator to (chrom2, start2, end2)

sshift shift of ’start’ coordinate

eshift shift of ’end’ coordinate

Details

This function defines modification rules for one-dimensional iterator intervals in a virtual track.

’dim’ converts a 2D iterator interval (chrom1, start1, end1, chrom2, start2, end2) to a 1D interval. If
’dim’ is ’1’ the interval is converted to (chrom1, start1, end1). If ’dim’ is ’2’ the interval is converted
to (chrom2, start2, end2). If 1D iterator is used ’dim’ must be set to ’NULL’ or ’0’ (meaning: no
conversion is made).

Iterator interval’s ’start’ coordinate is modified by adding ’sshift’. Similarly ’end’ coordinate is
altered by adding ’eshift’.

Value

None.

See Also

gvtrack.create, gvtrack.iterator.2d

Examples

gdb.init_examples()

gvtrack.create("vtrack1", "dense_track")
gvtrack.iterator("vtrack1", sshift = 200, eshift = 200)
gextract("dense_track", "vtrack1", gintervals(1, 0, 500))

172 gvtrack.iterator.2d

gvtrack.create("vtrack2", "dense_track")
gvtrack.iterator("vtrack2", dim = 1)
gextract("vtrack2", gintervals.2d(1, 0, 1000, 1, 0, -1),

iterator = "rects_track"
)

gvtrack.iterator.2d Defines modification rules for a two-dimensional iterator in a virtual
track

Description

Defines modification rules for a two-dimensional iterator in a virtual track.

Usage

gvtrack.iterator.2d(
vtrack = NULL,
sshift1 = 0,
eshift1 = 0,
sshift2 = 0,
eshift2 = 0

)

Arguments

vtrack virtual track name

sshift1 shift of ’start1’ coordinate

eshift1 shift of ’end1’ coordinate

sshift2 shift of ’start2’ coordinate

eshift2 shift of ’end2’ coordinate

Details

This function defines modification rules for one-dimensional iterator intervals in a virtual track.

Iterator interval’s ’start1’ coordinate is modified by adding ’sshift1’. Similarly ’end1’, ’start2’,
’end2’ coordinates are altered by adding ’eshift1’, ’sshift2’ and ’eshift2’ accordingly.

Value

None.

See Also

gvtrack.create, gvtrack.iterator

gvtrack.ls 173

Examples

gdb.init_examples()
gvtrack.create("vtrack1", "rects_track")
gvtrack.iterator.2d("vtrack1", sshift1 = 1000, eshift1 = 2000)
gextract(

"rects_track", "vtrack1",
gintervals.2d(1, 0, 5000, 2, 0, 5000)

)

gvtrack.ls Returns a list of virtual track names

Description

Returns a list of virtual track names.

Usage

gvtrack.ls(
pattern = "",
ignore.case = FALSE,
perl = FALSE,
fixed = FALSE,
useBytes = FALSE

)

Arguments

pattern, ignore.case, perl, fixed, useBytes
see ’grep’

Details

This function returns a list of virtual tracks that exist in current R environment that match the pattern
(see ’grep’). If called without any arguments all virtual tracks are returned.

Value

An array that contains the names of virtual tracks.

See Also

grep, gvtrack.create, gvtrack.rm

174 gvtrack.rm

Examples

gdb.init_examples()
gvtrack.create("vtrack1", "dense_track", "max")
gvtrack.create("vtrack2", "dense_track", "quantile", 0.5)
gvtrack.ls()
gvtrack.ls(pattern = "*2")

gvtrack.rm Deletes a virtual track

Description

Deletes a virtual track.

Usage

gvtrack.rm(vtrack = NULL)

Arguments

vtrack virtual track name

Details

This function deletes a virtual track from current R environment.

Value

None.

See Also

gvtrack.create, gvtrack.ls

Examples

gdb.init_examples()
gvtrack.create("vtrack1", "dense_track", "max")
gvtrack.create("vtrack2", "dense_track", "quantile", 0.5)
gvtrack.ls()
gvtrack.rm("vtrack1")
gvtrack.ls()

gwget 175

gwget Downloads files from FTP server

Description

Downloads multiple files from FTP server

Usage

gwget(url = NULL, path = NULL)

Arguments

url URL of FTP server

path directory path where the downloaded files are stored

Details

This function downloads files from FTP server given by ’url’. The address in ’url’ can contain
wildcards to download more than one file at once. Files are downloaded to a directory given by
’path’ argument. If ’path’ is ’NULL’, file are downloaded into ’GROOT/downloads’.

Value

An array of file names that have been downloaded.

See Also

gtrack.import_set

Examples

gdb.init_examples()

outdir <- tempdir()
gwget("ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/chromosomes/md5sum.txt", path = outdir)

176 gwilcox

gwilcox Calculates Wilcoxon test on sliding windows over track expression

Description

Calculates Wilcoxon test on sliding windows over the values of track expression.

Usage

gwilcox(
expr = NULL,
winsize1 = NULL,
winsize2 = NULL,
maxpval = 0.05,
onetailed = TRUE,
what2find = 1,
intervals = NULL,
iterator = NULL,
intervals.set.out = NULL

)

Arguments

expr track expression

winsize1 number of values in the first sliding window

winsize2 number of values in the second sliding window

maxpval maximal P-value

onetailed if ’TRUE’, Wilcoxon test is performed one tailed, otherwise two tailed

what2find if ’-1’, lows are searched. If ’1’, peaks are searched. If ’0’, both peaks and lows
are searched

intervals genomic scope for which the function is applied

iterator track expression iterator of "fixed bin" type. If ’NULL’ iterator is determined
implicitly based on track expression.

intervals.set.out

intervals set name where the function result is optionally outputted

Details

This function runs a Wilcoxon test (also known as a Mann-Whitney test) over the values of track
expression in the two sliding windows having an identical center. The sizes of the windows are
specified by ’winsize1’ and ’winsize2’. ’gwilcox’ returns intervals where the smaller window tested
against a larger window gives a P-value below ’maxpval’. The test can be one or two tailed.

’what2find’ argument controls what should be searched: peaks, lows or both.

If ’intervals.set.out’ is not ’NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

print.gsynth.model 177

Value

If ’intervals.set.out’ is ’NULL’ a data frame representing the intervals with an additional ’pval’
column where P-value is below ’maxpval’.

See Also

gscreen, gsegment

Examples

gdb.init_examples()
gwilcox("dense_track", 100000, 1000,

maxpval = 0.01,
what2find = 1

)

print.gsynth.model Print summary of a gsynth.model

Description

Print summary of a gsynth.model

Usage

S3 method for class 'gsynth.model'
print(x, ...)

Arguments

x A gsynth.model object

... Additional arguments (ignored)

Index

∗ ~ALLGENOME
gintervals.2d.all, 39
gintervals.all, 42

∗ ~DNA
gseq.extract, 98

∗ ~Mann-Whitney
gsegment, 96
gwilcox, 176

∗ ~TSS
gintervals.neighbors, 68

∗ ~annotate
gintervals.neighbors, 68

∗ ~apply
gintervals.mapply, 66

∗ ~array
gtrack.array.extract, 120
gtrack.array.get_colnames, 122
gtrack.array.import, 123
gtrack.array.set_colnames, 124
gvtrack.array.slice, 159

∗ ~attribute
gdb.get_readonly_attrs, 26
gdb.set_readonly_attrs, 30
gtrack.attr.export, 125
gtrack.attr.get, 126
gtrack.attr.import, 127
gtrack.attr.set, 128

∗ ~attr
gdb.get_readonly_attrs, 26
gdb.set_readonly_attrs, 30
gtrack.attr.export, 125
gtrack.attr.get, 126
gtrack.attr.import, 127
gtrack.attr.set, 128

∗ ~auto-correlation
gcompute_strands_autocorr, 12

∗ ~autocorrelation
gcompute_strands_autocorr, 12

∗ ~band

gintervals.2d.band_intersect, 40
∗ ~bedgraph

gtrack.import, 139
gtrack.import_set, 142

∗ ~bigwig
gtrack.import, 139
gtrack.import_set, 142

∗ ~canonic
gintervals.canonic, 46

∗ ~cartesian
giterator.cartesian_grid, 85

∗ ~cd
gdir.cd, 31

∗ ~chain
gintervals.as_chain, 45
gintervals.liftover, 59
gintervals.load_chain, 63
gtrack.liftover, 145

∗ ~chromosomes
gintervals.2d.all, 39
gintervals.all, 42

∗ ~chromosome
gintervals.2d.all, 39
gintervals.all, 42

∗ ~cluster
gcluster.run, 10

∗ ~columns
gtrack.array.get_colnames, 122
gtrack.array.set_colnames, 124

∗ ~contacts
gcis_decay, 9
gtrack.2d.import_contacts, 119

∗ ~convert
gtrack.convert, 129

∗ ~correlation
gcompute_strands_autocorr, 12

∗ ~coverage
gintervals.coverage_fraction, 50
gintervals.covered_bp, 51

178

INDEX 179

∗ ~create
gdb.create, 22
gdb.create_linked, 25
gdir.create, 32
gtrack.2d.create, 116
gtrack.array.import, 123
gtrack.create, 131
gtrack.create_dense, 132
gtrack.create_sparse, 135

∗ ~cwd
gdir.cwd, 33

∗ ~database
gdb.create, 22
gdb.create_linked, 25
gdb.init, 28
gdir.cd, 31
gdir.create, 32
gdir.cwd, 33
gdir.rm, 33
gintervals.dataset, 52
gintervals.dbs, 53
gtrack.dataset, 137
gtrack.dbs, 137

∗ ~data
gdb.init, 28
gdir.cd, 31
gdir.create, 32
gdir.cwd, 33
gdir.rm, 33

∗ ~db
gdb.create_linked, 25
gdb.init, 28
gdb.reload, 30
gdir.cd, 31
gdir.create, 32
gdir.cwd, 33
gdir.rm, 33

∗ ~dense
gtrack.create_dense, 132

∗ ~diff
gintervals.diff, 54

∗ ~directory
gdir.cd, 31
gdir.create, 32
gdir.cwd, 33
gdir.rm, 33

∗ ~dir
gdir.cd, 31

gdir.create, 32
gdir.cwd, 33
gdir.rm, 33

∗ ~distribution
gdist, 34

∗ ~energy
gtrack.create_pwm_energy, 134

∗ ~extract
gextract, 35
glookup, 89
gseq.extract, 98
gtrack.array.extract, 120

∗ ~filter
gvtrack.filter, 168

∗ ~folder
gdir.cd, 31
gdir.create, 32
gdir.cwd, 33
gdir.rm, 33

∗ ~fragment
gtrack.2d.import_contacts, 119

∗ ~ftp
gwget, 175

∗ ~gcompute_strands_autocorr
gcompute_strands_autocorr, 12

∗ ~genes
gdb.create, 22
gintervals.import_genes, 56

∗ ~genome
gintervals.2d.all, 39
gintervals.all, 42

∗ ~genomics
gintervals.coverage_fraction, 50
gintervals.covered_bp, 51

∗ ~import
gintervals.import_genes, 56
gtrack.array.import, 123

∗ ~info
gtrack.info, 144

∗ ~intersect
gintervals.2d.band_intersect, 40
gintervals.intersect, 57

∗ ~intervals
gintervals, 37
gintervals.2d, 38
gintervals.as_chain, 45
gintervals.canonic, 46
gintervals.chrom_sizes, 48

180 INDEX

gintervals.dataset, 52
gintervals.dbs, 53
gintervals.exists, 55
gintervals.force_range, 55
gintervals.import_genes, 56
gintervals.is.bigset, 58
gintervals.liftover, 59
gintervals.load, 62
gintervals.load_chain, 63
gintervals.ls, 65
gintervals.neighbors, 68
gintervals.path, 75
gintervals.rm, 80
gintervals.save, 81
gintervals.update, 84
giterator.intervals, 87
gscreen, 95
gtrack.ls, 148

∗ ~interval
gscreen, 95

∗ ~iterator
giterator.cartesian_grid, 85
giterator.intervals, 87

∗ ~liftover
gintervals.as_chain, 45
gintervals.liftover, 59
gintervals.load_chain, 63
gtrack.liftover, 145

∗ ~lookup
glookup, 89
gtrack.lookup, 147

∗ ~ls
gintervals.ls, 65
gtrack.ls, 148
gtrack.var.ls, 156
gvtrack.ls, 173

∗ ~mapped
gtrack.import_mappedseq, 141

∗ ~mapply
gintervals.mapply, 66

∗ ~modify
gtrack.modify, 150

∗ ~nearest
gintervals.neighbors, 68

∗ ~neighbors
gintervals.neighbors, 68

∗ ~neighbor
gintervals.neighbors, 68

∗ ~partition
gpartition, 90

∗ ~path
gintervals.dataset, 52
gintervals.dbs, 53
gintervals.path, 75
gtrack.dataset, 137
gtrack.dbs, 137
gtrack.path, 152

∗ ~percentiles
gbins.quantiles, 6
gintervals.quantiles, 76
gquantiles, 92

∗ ~property
gtrack.info, 144

∗ ~pssm
gtrack.create_pwm_energy, 134

∗ ~pwd
gdir.cwd, 33

∗ ~pwm
gtrack.create_pwm_energy, 134

∗ ~quantiles
gbins.quantiles, 6
gintervals.quantiles, 76
gquantiles, 92

∗ ~rbind
gintervals.rbind, 79

∗ ~rm
gdir.rm, 33

∗ ~sample
gsample, 94

∗ ~screen
gscreen, 95

∗ ~segment
gsegment, 96

∗ ~sequence
gseq.extract, 98
gtrack.import_mappedseq, 141

∗ ~smooth
gtrack.smooth, 153

∗ ~sparse
gtrack.create_sparse, 135

∗ ~statistics
gintervals.summary, 82
gsummary, 106

∗ ~strand
gintervals.neighbors, 68

∗ ~summary

INDEX 181

gbins.summary, 7
gintervals.summary, 82
gsummary, 106

∗ ~track
gtrack.2d.create, 116
gtrack.2d.import, 118
gtrack.2d.import_contacts, 119
gtrack.array.import, 123
gtrack.convert, 129
gtrack.copy, 130
gtrack.create, 131
gtrack.create_dense, 132
gtrack.create_pwm_energy, 134
gtrack.create_sparse, 135
gtrack.dataset, 137
gtrack.dbs, 137
gtrack.exists, 138
gtrack.import, 139
gtrack.import_mappedseq, 141
gtrack.import_set, 142
gtrack.info, 144
gtrack.liftover, 145
gtrack.lookup, 147
gtrack.modify, 150
gtrack.mv, 151
gtrack.path, 152
gtrack.rm, 152
gtrack.smooth, 153

∗ ~union
gintervals.union, 83

∗ ~variable
gtrack.var.get, 155
gtrack.var.ls, 156
gtrack.var.rm, 157
gtrack.var.set, 158

∗ ~virtual
gvtrack.array.slice, 159
gvtrack.create, 160
gvtrack.filter, 168
gvtrack.info, 170
gvtrack.iterator, 171
gvtrack.iterator.2d, 172
gvtrack.ls, 173
gvtrack.rm, 174

∗ ~wig
gtrack.import, 139
gtrack.import_set, 142

∗ ~wilcoxon

gsegment, 96
gwilcox, 176

∗ package
misha-package, 5

dir.create, 32

gbins.quantiles, 6, 77, 93
gbins.summary, 7, 82, 106
gcis_decay, 9
gcluster.run, 10
gcompute_strands_autocorr, 12
gcor, 13
gdataset.example_path, 15
gdataset.info, 16, 18, 19
gdataset.load, 15, 16, 17, 18–20, 25
gdataset.ls, 16, 17, 18, 20, 25, 53, 137, 138
gdataset.save, 15, 17, 18
gdataset.unload, 17, 19
gdb.convert_to_indexed, 20
gdb.create, 22, 22, 25, 29, 30, 57
gdb.create_genome, 24
gdb.create_linked, 25
gdb.get_readonly_attrs, 26, 31, 127, 128
gdb.info, 27
gdb.init, 22, 24, 28, 30–34
gdb.init_examples, 15
gdb.init_examples (gdb.init), 28
gdb.mark_cache_dirty, 29
gdb.reload, 24, 29, 30
gdb.set_readonly_attrs, 26, 30
gdir.cd, 29, 30, 31, 33, 34, 117, 132, 136, 140
gdir.create, 31, 32, 33, 34, 117, 119, 120,

123, 132, 135, 136, 140, 142, 144,
148, 154

gdir.cwd, 31, 32, 33, 34
gdir.rm, 31–33, 33
gdist, 6–8, 10, 34, 37, 90, 91, 93
gextract, 14, 35, 35, 90, 91, 94, 95, 98, 121,

123, 140, 144
gintervals, 37, 39, 42, 47, 49, 51, 52, 54–58,

61, 62, 65, 70, 79–81, 83
gintervals.2d, 38, 38, 40, 47, 49, 55, 56, 58,

62, 65, 79–81, 83
gintervals.2d.all, 39
gintervals.2d.band_intersect, 40, 58
gintervals.2d.convert_to_indexed, 22,

41
gintervals.all, 42, 51

182 INDEX

gintervals.annotate, 43
gintervals.as_chain, 45
gintervals.canonic, 46, 52, 56, 79
gintervals.chrom_sizes, 48
gintervals.convert_to_indexed, 22, 49
gintervals.coverage_fraction, 50, 52
gintervals.covered_bp, 51, 51
gintervals.dataset, 52, 53, 65
gintervals.dbs, 53, 53
gintervals.diff, 54, 58, 83
gintervals.exists, 49, 53, 55, 59, 62, 65,

76, 80, 81, 85
gintervals.force_range, 38, 39, 55, 75
gintervals.import_genes, 23, 24, 56
gintervals.intersect, 40, 51, 54, 57, 83
gintervals.is.bigset, 58, 62
gintervals.liftover, 46, 59, 64, 146
gintervals.load, 49, 50, 55, 59, 62, 65, 81,

85
gintervals.load_chain, 46, 61, 63, 146
gintervals.ls, 29, 49, 53, 55, 59, 62, 65, 76,

80, 81, 85
gintervals.mapply, 66
gintervals.mark_overlaps, 67
gintervals.neighbors, 68, 73
gintervals.neighbors.directional

(gintervals.neighbors.upstream),
72

gintervals.neighbors.downstream, 70
gintervals.neighbors.downstream

(gintervals.neighbors.upstream),
72

gintervals.neighbors.upstream, 70, 72
gintervals.normalize, 74
gintervals.path, 75, 152
gintervals.quantiles, 7, 76, 93
gintervals.random, 77
gintervals.rbind, 79
gintervals.rm, 55, 65, 80, 81
gintervals.save, 49, 50, 55, 59, 62, 65, 80,

81, 85
gintervals.summary, 8, 82, 106
gintervals.union, 54, 58, 83
gintervals.update, 84
giterator.cartesian_grid, 85, 88
giterator.intervals, 86, 87
glookup, 37, 89, 91, 148
gpartition, 37, 90, 90

gquantiles, 7, 77, 92
grep, 65, 149, 156, 173
grevcomp, 93, 105, 106
gsample, 37, 94
gscreen, 14, 91, 95, 97, 177
gsegment, 95, 96, 177
gseq.comp, 97, 105, 106
gseq.extract, 98, 101
gseq.kmer, 99, 101
gseq.kmer.dist, 101
gseq.pwm, 102
gseq.rev, 97, 104, 106
gseq.revcomp, 97, 105, 105
gsetroot, 25, 29, 117, 132, 136, 140
gsetroot (gdb.init), 28
gsummary, 8, 14, 82, 106
gsynth.bin_map, 107, 115
gsynth.load, 108, 114, 115
gsynth.random, 108
gsynth.replace_kmer, 110
gsynth.sample, 109, 111, 115
gsynth.save, 108, 113, 114, 115
gsynth.train, 107–109, 112–114, 114
gtrack.2d.create, 116, 129, 132, 135, 136,

148, 153, 154
gtrack.2d.import, 118, 120
gtrack.2d.import_contacts, 10, 119
gtrack.array.extract, 37, 120, 122, 123,

125, 160
gtrack.array.get_colnames, 121, 122, 125,

160
gtrack.array.import, 37, 121, 123
gtrack.array.set_colnames, 122, 123, 124
gtrack.attr.export, 125
gtrack.attr.get, 26, 31, 117, 126, 126, 127,

128
gtrack.attr.import, 126, 127, 127, 128
gtrack.attr.set, 26, 31, 126, 127, 128
gtrack.convert, 129
gtrack.convert_to_indexed, 22, 129
gtrack.copy, 130, 151
gtrack.create, 117, 129, 130, 131, 135, 136,

139, 149, 150, 153, 154
gtrack.create_dense, 130, 132
gtrack.create_dirs, 134
gtrack.create_pwm_energy, 134
gtrack.create_sparse, 117, 129, 130, 132,

133, 135, 135, 148, 153, 154

INDEX 183

gtrack.dataset, 137, 138, 149
gtrack.dbs, 137, 137
gtrack.exists, 131, 137, 138, 138, 144, 149,

151–153
gtrack.import, 37, 133, 139, 144
gtrack.import_mappedseq, 141
gtrack.import_set, 140, 142, 175
gtrack.info, 117, 119, 120, 122, 123, 125,

132, 133, 135, 136, 139, 140, 142,
144, 144, 148, 154

gtrack.liftover, 61, 64, 145
gtrack.lookup, 90, 147
gtrack.ls, 29, 131, 137–139, 144, 148,

151–153
gtrack.modify, 117, 132, 133, 135, 136, 148,

150, 154
gtrack.mv, 131, 151
gtrack.path, 76, 152
gtrack.rm, 80, 117, 119, 120, 123, 131–133,

135, 136, 139, 140, 142, 144,
148–151, 152, 154

gtrack.smooth, 117, 132, 135, 136, 148, 153,
153

gtrack.var.get, 155, 156–158
gtrack.var.ls, 155, 156, 157, 158
gtrack.var.rm, 155, 156, 157, 158
gtrack.var.set, 128, 155–157, 158
gvtrack.array.slice, 122, 125, 159, 164
gvtrack.create, 99, 100, 103, 160, 160,

169–174
gvtrack.filter, 164, 168
gvtrack.info, 164, 169, 170
gvtrack.iterator, 164, 169, 171, 172
gvtrack.iterator.2d, 164, 171, 172
gvtrack.ls, 29, 164, 173, 174
gvtrack.rm, 164, 173, 174
gwget, 144, 175
gwilcox, 97, 176

mapply, 67
misha (misha-package), 5
misha-package, 5

print.gsynth.model, 177

	misha-package
	gbins.quantiles
	gbins.summary
	gcis_decay
	gcluster.run
	gcompute_strands_autocorr
	gcor
	gdataset.example_path
	gdataset.info
	gdataset.load
	gdataset.ls
	gdataset.save
	gdataset.unload
	gdb.convert_to_indexed
	gdb.create
	gdb.create_genome
	gdb.create_linked
	gdb.get_readonly_attrs
	gdb.info
	gdb.init
	gdb.mark_cache_dirty
	gdb.reload
	gdb.set_readonly_attrs
	gdir.cd
	gdir.create
	gdir.cwd
	gdir.rm
	gdist
	gextract
	gintervals
	gintervals.2d
	gintervals.2d.all
	gintervals.2d.band_intersect
	gintervals.2d.convert_to_indexed
	gintervals.all
	gintervals.annotate
	gintervals.as_chain
	gintervals.canonic
	gintervals.chrom_sizes
	gintervals.convert_to_indexed
	gintervals.coverage_fraction
	gintervals.covered_bp
	gintervals.dataset
	gintervals.dbs
	gintervals.diff
	gintervals.exists
	gintervals.force_range
	gintervals.import_genes
	gintervals.intersect
	gintervals.is.bigset
	gintervals.liftover
	gintervals.load
	gintervals.load_chain
	gintervals.ls
	gintervals.mapply
	gintervals.mark_overlaps
	gintervals.neighbors
	gintervals.neighbors.upstream
	gintervals.normalize
	gintervals.path
	gintervals.quantiles
	gintervals.random
	gintervals.rbind
	gintervals.rm
	gintervals.save
	gintervals.summary
	gintervals.union
	gintervals.update
	giterator.cartesian_grid
	giterator.intervals
	glookup
	gpartition
	gquantiles
	grevcomp
	gsample
	gscreen
	gsegment
	gseq.comp
	gseq.extract
	gseq.kmer
	gseq.kmer.dist
	gseq.pwm
	gseq.rev
	gseq.revcomp
	gsummary
	gsynth.bin_map
	gsynth.load
	gsynth.random
	gsynth.replace_kmer
	gsynth.sample
	gsynth.save
	gsynth.train
	gtrack.2d.create
	gtrack.2d.import
	gtrack.2d.import_contacts
	gtrack.array.extract
	gtrack.array.get_colnames
	gtrack.array.import
	gtrack.array.set_colnames
	gtrack.attr.export
	gtrack.attr.get
	gtrack.attr.import
	gtrack.attr.set
	gtrack.convert
	gtrack.convert_to_indexed
	gtrack.copy
	gtrack.create
	gtrack.create_dense
	gtrack.create_dirs
	gtrack.create_pwm_energy
	gtrack.create_sparse
	gtrack.dataset
	gtrack.dbs
	gtrack.exists
	gtrack.import
	gtrack.import_mappedseq
	gtrack.import_set
	gtrack.info
	gtrack.liftover
	gtrack.lookup
	gtrack.ls
	gtrack.modify
	gtrack.mv
	gtrack.path
	gtrack.rm
	gtrack.smooth
	gtrack.var.get
	gtrack.var.ls
	gtrack.var.rm
	gtrack.var.set
	gvtrack.array.slice
	gvtrack.create
	gvtrack.filter
	gvtrack.info
	gvtrack.iterator
	gvtrack.iterator.2d
	gvtrack.ls
	gvtrack.rm
	gwget
	gwilcox
	print.gsynth.model
	Index

