
Package ‘maxLik’
December 29, 2025

Version 1.5-2.2

Title Maximum Likelihood Estimation and Related Tools

Depends R (>= 2.4.0), miscTools (>= 0.6-8), methods

Imports sandwich, generics

Suggests MASS, clue, dlm, plot3D, tibble, tinytest

Description Functions for Maximum Likelihood (ML) estimation, non-linear
optimization, and related tools. It includes a unified way to call
different optimizers, and classes and methods to handle the results from
the Maximum Likelihood viewpoint. It also includes a number of convenience
tools for testing and developing your own models.

License GPL (>= 2)

ByteCompile yes

NeedsCompilation no

Author Ott Toomet [aut, cre],
Arne Henningsen [aut],
Spencer Graves [ctb],
Yves Croissant [ctb],
David Hugh-Jones [ctb],
Luca Scrucca [ctb]

Maintainer Ott Toomet <otoomet@gmail.com>

Repository CRAN

Date/Publication 2025-12-29 15:36:12 UTC

Contents
maxLik-package . 2
activePar . 4
AIC.maxLik . 5
bread.maxLik . 6
compareDerivatives . 7
condiNumber . 9
confint.maxLik . 11

1

2 maxLik-package

fnSubset . 12
gradient . 13
hessian . 15
logLik.maxLik . 16
maxBFGS . 17
MaxControl-class . 21
maximType . 24
maxLik . 25
maxNR . 27
maxSGA . 33
maxValue . 38
nIter . 39
nObs.maxLik . 40
nParam.maxim . 41
numericGradient . 42
objectiveFn . 44
returnCode . 44
storedValues . 46
summary.maxim . 47
summary.maxLik . 49
sumt . 50
tidy.maxLik . 52
vcov.maxLik . 54

Index 56

maxLik-package Maximum Likelihood Estimation

Description

This package contains a set of functions and tools for Maximum Likelihood (ML) estimation. The
focus of the package is on non-linear optimization from the ML viewpoint, and it provides several
convenience wrappers and tools, like BHHH algorithm, variance-covariance matrix and standard
errors.

Details

maxLik package is a set of convenience tools and wrappers focusing on Maximum Likelihood
(ML) analysis, but it also contains tools for other optimization tasks. The package includes a)
wrappers for several existing optimizers (implemented by optim); b) original optimizers, including
Newton-Raphson and Stochastic Gradient Ascent; and c) several convenience tools to use these
optimizers from the ML perspective. Examples are BHHH optimization (maxBHHH) and utilities
that extract standard errors from the estimates. Other highlights include a unified interface for all
included optimizers, tools to test user-provided analytic derivatives, and constrained optimization.

A good starting point to learn about the usage of maxLik are the included vignettes “Introduction:
what is maximum likelihood”, “Maximum likelihood estimation with maxLik” and “Stochastic

maxLik-package 3

Gradient Ascent in maxLik”. Another good source is Henningsen & Toomet (2011), an introduc-
tory paper to the package. Use vignette(package="maxLik") to see the available vignettes, and
vignette("using-maxlik") to read the usage vignette.

From the user’s perspective, the central function in the package is maxLik. In its simplest form it
takes two arguments: the log-likelihood function, and a vector of initial parameter values (see the
example below). It returns an object of class ‘maxLik’ with convenient methods such as summary,
coef, and stdEr. It also supports a plethora of other arguments, for instance one can supply analytic
gradient and Hessian, select the desired optimizer, and control the optimization in different ways.

A useful utility functions in the package is compareDerivatives that allows one to compare the
analytic and numeric derivatives for debugging purposes. Another useful function is condiNumber
for analyzing multicollinearity problems in the estimated models.

In the interest of providing a unified user interface, all the optimizers are implemented as maxi-
mizers in this package. This includes the optim-based methods, such as maxBFGS and maxSGA, the
maximizer version of popular Stochastic Gradient Descent.

Author(s)

Ott Toomet <otoomet@gmail.com>, Arne Henningsen <arne.henningsen@gmail.com>, with con-
tributions from Spencer Graves, Yves Croissant and David Hugh-Jones.

Maintainer: Ott Toomet <otoomet@gmail.com>

References

Henningsen A, Toomet O (2011). “maxLik: A package for maximum likelihood estimation in R.”
Computational Statistics, 26(3), 443-458. doi: doi:10.1007/s0018001002171.

Examples

estimate mean and variance of normal random vector

create random numbers where mu=1, sd=2
set.seed(123)
x <- rnorm(50, 1, 2)

log likelihood function.
Note: 'param' is a 2-vector c(mu, sd)
llf <- function(param) {

mu <- param[1]
sd <- param[2]
llValue <- dnorm(x, mean=mu, sd=sd, log=TRUE)
sum(llValue)

}

Estimate it with mu=0, sd=1 as start values
ml <- maxLik(llf, start = c(mu=0, sigma=1))
print(summary(ml))
Estimates close to c(1,2) :-)

https://doi.org/10.1007/s00180-010-0217-1

4 activePar

activePar free parameters under maximization

Description

Return a logical vector, indicating which parameters were free under maximization, as opposed to
the fixed parameters that are treated as constants. See argument “fixed” for maxNR.

Usage

activePar(x, ...)
Default S3 method:
activePar(x, ...)

Arguments

x object, created by a maximization routine, such as maxNR or maxLik, or derived
from a maximization object.

... further arguments for methods

Details

Several optimization routines allow the user to fix some parameter values (or do it automatically
in some cases). For gradient or Hessian based inference one has to know which parameters carry
optimization-related information.

Value

A logical vector, indicating whether the parameters were free to change during optimization algo-
rithm.

Author(s)

Ott Toomet

See Also

maxNR, nObs

Examples

a two-dimensional exponential hat
f <- function(a) exp(-a[1]^2 - a[2]^2)

maximize wrt. both parameters
free <- maxNR(f, start=1:2)
summary(free) # results should be close to (0,0)
activePar(free)

AIC.maxLik 5

keep the first parameter constant
cons <- maxNR(f, start=1:2, fixed=c(TRUE,FALSE))
summary(cons) # result should be around (1,0)
activePar(cons)

AIC.maxLik Methods for the various standard functions

Description

These are methods for the maxLik related objects. See also the documentation for the corresponding
generic functions

Usage

S3 method for class 'maxLik'
AIC(object, ..., k=2)
S3 method for class 'maxim'
coef(object, ...)
S3 method for class 'maxLik'
coef(object, ...)
S3 method for class 'maxLik'
stdEr(x, eigentol=1e-12, ...)

Arguments

object a ‘maxLik’ object (coef can also handle ‘maxim’ objects)

k numeric, the penalty per parameter to be used; the default ‘k = 2’ is the classical
AIC.

x a ‘maxLik’ object

eigentol The standard errors are only calculated if the ratio of the smallest and largest
eigenvalue of the Hessian matrix is less than “eigentol”. Otherwise the Hessian
is treated as singular.

... other arguments for methods

Details

AIC calculates Akaike’s Information Criterion (and other information criteria).

coef extracts the estimated parameters (model’s coefficients).

stdEr extracts standard errors (using the Hessian matrix).

6 bread.maxLik

Examples

estimate mean and variance of normal random vector
set.seed(123)
x <- rnorm(50, 1, 2)

log likelihood function.
Note: 'param' is a vector
llf <- function(param) {

mu <- param[1]
sigma <- param[2]
return(sum(dnorm(x, mean=mu, sd=sigma, log=TRUE)))

}

Estimate it. Take standard normal as start values
ml <- maxLik(llf, start = c(mu=0, sigma=1))

coef(ml)
stdEr(ml)
AIC(ml)

bread.maxLik Bread for Sandwich Estimator

Description

Extracting an estimator for the ‘bread’ of the sandwich estimator, see bread.

Usage

S3 method for class 'maxLik'
bread(x, ...)

Arguments

x an object of class maxLik.
... further arguments (currently ignored).

Value

Matrix, the inverse of the expectation of the second derivative (Hessian matrix) of the log-likelihood
function with respect to the parameters. In case of the simple Maximum Likelihood, it is equal to
the variance covariance matrix of the parameters, multiplied by the number of observations.

Warnings

The sandwich package is required for this function.

This method works only if the observaton-specific gradient information was available for the esti-
mation. This is the case if the observation-specific gradient was supplied (see the grad argument
for maxLik), or the log-likelihood function returns a vector of observation-specific values.

compareDerivatives 7

Author(s)

Arne Henningsen

See Also

bread, maxLik.

Examples

ML estimation of exponential duration model:
t <- rexp(100, 2)
loglik <- function(theta) log(theta) - theta*t

Estimate with numeric gradient and hessian
a <- maxLik(loglik, start=1)

Extract the "bread"
library(sandwich)
bread(a)

all.equal(bread(a), vcov(a) * nObs(a))

compareDerivatives function to compare analytic and numeric derivatives

Description

This function compares analytic and numerical derivative and prints related diagnostics information.
It is intended for testing and debugging code for analytic derivatives for maximization algorithms.

Usage

compareDerivatives(f, grad, hess=NULL, t0, eps=1e-6,
printLevel=1, print=printLevel > 0,
max.rows=getOption("max.rows", 20),
max.cols=getOption("max.cols", 7),
...)

Arguments

f function to be differentiated. The parameter (vector) of interest must be the first
argument. The function may return a vector, in that case the derivative will be a
matrix.

grad analytic gradient. This may be either a function, returning the analytic gradient,
or a numeric vector, the pre-computed gradient. The function must use the same
set of parameters as f. If f is a vector-valued function, grad must return/be a
matrix where the number of rows equals the number of components of f, and
the number of columns must equal to the number of components in t0.

8 compareDerivatives

hess function returning the analytic hessian. If present, hessian matrices are com-
pared too. Only appropriate for scalar-valued functions.

t0 numeric vector, parameter at which the derivatives are compared. The derivative
is taken with respect to this vector. both fm grad (if function) and hess (if
present) must accept this value as the first parameter.

eps numeric. Step size for numeric differentiation. Central derivative is used.

printLevel numeric: a positive number prints summary of the comparison. 0 does not do
any printing, only returns the comparison results (invisibly).

print deprecated (for backward compatibility only).

max.rows maximum number of matrix rows to be printed.

max.cols maximum number of columns to be printed.

... further arguments to f, grad and hess.

Details

Analytic derivatives (and Hessian) substantially improve the estimation speed and reliability. How-
ever, these are typically hard to program. This utility compares the programmed result and the
(internally calculated) numeric derivative. For every component of f, it prints the parameter value,
analytic and numeric derivative, and their relative difference

rel.diff =
analytic− numeric

1
2 (|analytic|+ |numeric|)

.

If analytic = 0 and numeric = 0, then rel.diff is also set to 0. If analytic derivatives are correct and
the function is sufficiently smooth, expect the relative differences to be less than 10−7.

Value

A list with following components:

t0 the input argument t0

f.t0 f(t0)

compareGrad a list with components analytic = grad(t0), nmeric = numericGradient(f, t0),
and their rel.diff.

maxRelDiffGrad max(abs(rel.diff))

If hess is also provided, the following optional components are also present:

compareHessian a list with components analytic = hess(t0), numeric = numericGradient(grad,
t0), and their rel.diff.

maxRelDiffHess max(abs(rel.diff)) for the Hessian

Author(s)

Ott Toomet <otoomet@ut.ee> and Spencer Graves

condiNumber 9

See Also

numericGradient deriv

Examples

A simple example with sin(x)' = cos(x)
f <- function(x) c(sin=sin(x))
Dsin <- compareDerivatives(f, cos, t0=c(angle=1))
##
Example of normal log-likelihood. Two-parameter
function.
##
x <- rnorm(100, 1, 2) # generate rnorm x
l <- function(b) sum(dnorm(x, mean=b[1], sd=b[2], log=TRUE))
gradl <- function(b) {

c(mu=sum(x - b[1])/b[2]^2,
sigma=sum((x - b[1])^2/b[2]^3 - 1/b[2]))

}
gradl. <- compareDerivatives(l, gradl, t0=c(mu=1,sigma=2))

##
An example with f returning a vector, t0 = a scalar
##
trig <- function(x)c(sin=sin(x), cos=cos(x))
Dtrig <- function(x)c(sin=cos(x), cos=-sin(x))
Dtrig. <- compareDerivatives(trig, Dtrig, t0=1)

condiNumber Print matrix condition numbers column-by-column

Description

This function prints the condition number of a matrix while adding columns one-by-one. This is
useful for testing multicollinearity and other numerical problems. It is a generic function with a
default method, and a method for maxLik objects.

Usage

condiNumber(x, ...)
Default S3 method:
condiNumber(x, exact = FALSE, norm = FALSE,

printLevel=print.level, print.level=1, digits = getOption("digits"), ...)
S3 method for class 'maxLik'
condiNumber(x, ...)

10 condiNumber

Arguments

x numeric matrix, condition numbers of which are to be printed

exact logical, should condition numbers be exact or approximations (see kappa)

norm logical, whether the columns should be normalised to have unit norm

printLevel numeric, positive value will output the numbers during the calculations. Useful
for interactive work.

print.level same as ‘printLevel’, for backward compatibility

digits minimal number of significant digits to print (only relevant if argument print.level
is larger than zero).

... Further arguments to condiNumber.default are currently ignored; further ar-
guments to condiNumber.maxLik are passed to condiNumber.default.

Details

Statistical model often fail because of a high correlation between the explanatory variables in the
linear index (multicollinearity) or because the evaluated maximum of a non-linear model is virtually
flat. In both cases, the (near) singularity of the related matrices may help to understand the problem.

condiNumber inspects the matrices column-by-column and indicates which variables lead to a jump
in the condition number (cause singularity). If the matrix column name does not immediately
indicate the problem, one may run an OLS model by estimating this column using all the previous
columns as explanatory variables. Those columns that explain almost all the variation in the current
one will have very high t-values.

Value

Invisible vector of condition numbers by column. If the start values for maxLik are named, the
condition numbers are named accordingly.

Author(s)

Ott Toomet

References

Greene, W. (2012): Econometrics Analysis, 7th edition, p. 130.

See Also

kappa

Examples

set.seed(0)
generate a simple nearly multicollinear dataset
x1 <- runif(100)
x2 <- runif(100)
x3 <- x1 + x2 + 0.000001*runif(100) # this is virtually equal to x1 + x2
x4 <- runif(100)

confint.maxLik 11

y <- x1 + x2 + x3 + x4 + rnorm(100)
m <- lm(y ~ -1 + x1 + x2 + x3 + x4)
print(summary(m)) # note the outlandish estimates and standard errors

while R^2 is 0.88. This suggests multicollinearity
condiNumber(model.matrix(m)) # note the value 'explodes' at x3
we may test the results further:
print(summary(lm(x3 ~ -1 + x1 + x2)))
Note the extremely high t-values and R^2: x3 is (almost) completely
explained by x1 and x2

confint.maxLik confint method for maxLik objects

Description

Wald confidence intervals for Maximum Likelihood Estimates

Usage

S3 method for class 'maxLik'
confint(object, parm, level=0.95, ...)

Arguments

object object of class “maxLik” returned by maxLik function

parm the name of parameters to compute the confidence intervals. If omitted, confi-
dence intervals for all parameters are computed.

level the level of confidence interval

... additional arguments to be passed to the other methods

Value

A matrix of lower and upper confidence interval limits (in the first and second column respectively).
The matrix rows are labeled by the parameter names (if any) and columns by the corresponding
distribution quantiles.

Author(s)

Luca Scrucca

See Also

confint for the generic confint function, stdEr for computing standard errors and summary for
summary output that includes statistical significance information.

12 fnSubset

Examples

compute MLE parameters of normal random sample
x <- rnorm(100)
loglik <- function(theta) {

dnorm(x, mean=theta[1], sd=theta[2], log=TRUE)
}
m <- maxLik(loglik, start=c(mu=0, sd=1))
summary(m)
confint(m)
confint(m, "mu", level=0.1)

fnSubset Call fnFull with variable and fixed parameters

Description

Combine variable parameters with with fixed parameters and pass to fnFull. Useful for optimizing
over a subset of parameters without writing a separate function. Values are combined by name if
available. Otherwise, xFull is constructed by position (the default).

Usage

fnSubset(x, fnFull, xFixed, xFull=c(x, xFixed), ...)

Arguments

x Variable parameters to be passed to fnFull.

fnFull Function whose first argument has length = length(xFull).

xFixed Parameter values to be combined with x to construct the first argument for a call
to fnFull.

xFull Prototype initial argument for fnFull.

... Optional arguments passed to fnFull.

Details

This function first confirms that length(x) + length(xFixed) == length(xFull). Next,

• If xFull has names, match at least xFixed by name.

• Else xFull = c(x, xFixes), the default.

Finally, call fnFull(xFull, ...).

Value

value returned by fnFull

gradient 13

Author(s)

Spencer Graves

See Also

optim dlmMLE maxLik maxNR

Examples

##
Example with 'optim'
##
fn <- function(x) (x[2]-2*x[1])^2
note: true minimum is 0 on line 2*x[1] == x[2]
fullEst <- optim(par=c(1,1), method="BFGS", fn=fn)
fullEst$par
par = c(0.6, 1.2) at minimum (not convex)

Fix the last component to 4
est4 <- optim(par=1, fn=fnSubset, method="BFGS", fnFull=fn, xFixed=4)
est4$par
now there is a unique minimun x[1] = 2

Fix the first component
fnSubset(x=1, fnFull=fn, xFixed=c(a=4), xFull=c(a=1, b=2))
After substitution: xFull = c(a=4, b=1),
so fn = (1 - 2*4)^2 = (-7)^2 = 49

est4. <- optim(par=1, fn=fnSubset, method="BFGS",
fnFull=fn, xFixed=c(a=4),
xFull=c(a=1, b=2))

est4.$par
At optimum: xFull=c(a=4, b=8),
so fn = (8 - 2*4)^2 = 0

##
Example with 'maxLik'
##
fn2max <- function(x) -(x[2]-2*x[1])^2
-> need to have a maximum
max4 <- maxLik(fnSubset, start=1, fnFull=fn2max, xFixed=4)
summary(max4)
Similar result using fixed parameters in maxNR, called by maxLik
max4. <- maxLik(fn2max, start=c(1, 4), fixed=2)
summary(max4.)

gradient Extract Gradients Evaluated at each Observation

14 gradient

Description

Extract the gradients of the log-likelihood function evaluated at each observation (‘Empirical Esti-
mating Function’, see estfun).

Usage

S3 method for class 'maxLik'
estfun(x, ...)
S3 method for class 'maxim'
gradient(x, ...)

Arguments

x an object inheriting from class maxim (for gradient) or maxLik. (for estfun.)

... further arguments (currently ignored).

Value

gradient vector, objective function gradient at estimated maximum (or the last calculated
value if the estimation did not converge.)

estfun matrix, observation-wise log-likelihood gradients at the estimated parameter
value evaluated at each observation. Observations in rows, parameters in columns.

Warnings

The sandwich package must be loaded in order to use estfun.

estfun only works if the observaton-specific gradient information was available for the estima-
tion. This is the case of the observation-specific gradient was supplied (see the grad argument for
maxLik), or the log-likelihood function returns a vector of observation-specific values.

Author(s)

Arne Henningsen, Ott Toomet

See Also

hessian, estfun, maxLik.

Examples

ML estimation of exponential duration model:
t <- rexp(10, 2)
loglik <- function(theta) log(theta) - theta*t

Estimate with numeric gradient and hessian
a <- maxLik(loglik, start=1)

gradient(a)
Extract the gradients evaluated at each observation

hessian 15

library(sandwich)
estfun(a)

Estimate with analytic gradient.
Note: it returns a vector
gradlik <- function(theta) 1/theta - t
b <- maxLik(loglik, gradlik, start=1)
gradient(a)
estfun(b)

hessian Hessian matrix

Description

This function extracts the Hessian of the objective function at optimum. The Hessian information
should be supplied by the underlying optimization algorithm, possibly by an approximation.

Usage

hessian(x, ...)
Default S3 method:
hessian(x, ...)

Arguments

x an optimization result of class ‘maxim’ or ‘maxLik’

... other arguments for methods

Value

A numeric matrix, the Hessian of the model at the estimated parameter values. If the maximum is
flat, the Hessian is singular. In that case you may want to invert only the non-singular part of the
matrix. You may also want to fix certain parameters (see activePar).

Author(s)

Ott Toomet

See Also

maxLik, activePar, condiNumber

16 logLik.maxLik

Examples

log-likelihood for normal density
a[1] - mean
a[2] - standard deviation
ll <- function(a) sum(-log(a[2]) - (x - a[1])^2/(2*a[2]^2))
x <- rnorm(100) # sample from standard normal
ml <- maxLik(ll, start=c(1,1))
ignore eventual warnings "NaNs produced in: log(x)"
summary(ml) # result should be close to c(0,1)
hessian(ml) # How the Hessian looks like
sqrt(-solve(hessian(ml))) # Note: standard deviations are on the diagonal
#
Now run the same example while fixing a[2] = 1
mlf <- maxLik(ll, start=c(1,1), activePar=c(TRUE, FALSE))
summary(mlf) # first parameter close to 0, the second exactly 1.0
hessian(mlf)
Note that now NA-s are in place of passive
parameters.
now invert only the free parameter part of the Hessian
sqrt(-solve(hessian(mlf)[activePar(mlf), activePar(mlf)]))
gives the standard deviation for the mean

logLik.maxLik Return the log likelihood value

Description

Return the log likelihood value of objects of class maxLik and summary.maxLik.

Usage

S3 method for class 'maxLik'
logLik(object, ...)
S3 method for class 'summary.maxLik'
logLik(object, ...)

Arguments

object object of class maxLik or summary.maxLik, usually a model estimated with
Maximum Likelihood

... additional arguments to methods

Value

A scalar numeric, log likelihood of the estimated model. It has attribute “df”, number of free
parameters.

maxBFGS 17

Author(s)

Arne Henningsen, Ott Toomet

See Also

maxLik

Examples

ML estimation of exponential duration model:
t <- rexp(100, 2)
loglik <- function(theta) log(theta) - theta*t
gradlik <- function(theta) 1/theta - t
hesslik <- function(theta) -100/theta^2
Estimate with analytic gradient and hessian
a <- maxLik(loglik, gradlik, hesslik, start=1)
print log likelihood value
logLik(a)
print log likelihood value of summary object
b <- summary(a)
logLik(b)

maxBFGS BFGS, conjugate gradient, SANN and Nelder-Mead Maximization

Description

These functions are wrappers for optim, adding constrained optimization and fixed parameters.

Usage

maxBFGS(fn, grad=NULL, hess=NULL, start, fixed=NULL,
control=NULL,
constraints=NULL,
finalHessian=TRUE,
parscale=rep(1, length=length(start)),
...)

maxCG(fn, grad=NULL, hess=NULL, start, fixed=NULL,
control=NULL,
constraints=NULL,
finalHessian=TRUE,
parscale=rep(1, length=length(start)), ...)

maxSANN(fn, grad=NULL, hess=NULL, start, fixed=NULL,
control=NULL,
constraints=NULL,
finalHessian=TRUE,

18 maxBFGS

parscale=rep(1, length=length(start)),
...)

maxNM(fn, grad=NULL, hess=NULL, start, fixed=NULL,
control=NULL,
constraints=NULL,
finalHessian=TRUE,
parscale=rep(1, length=length(start)),
...)

Arguments

fn function to be maximised. Must have the parameter vector as the first argument.
In order to use numeric gradient and BHHH method, fn must return a vector
of observation-specific likelihood values. Those are summed internally where
necessary. If the parameters are out of range, fn should return NA. See details
for constant parameters.

grad gradient of fn. Must have the parameter vector as the first argument. If NULL,
numeric gradient is used (maxNM and maxSANN do not use gradient). Gradient
may return a matrix, where columns correspond to the parameters and rows to
the observations (useful for maxBHHH). The columns are summed internally.

hess Hessian of fn. Not used by any of these methods, included for compatibility
with maxNR.

start initial values for the parameters. If start values are named, those names are also
carried over to the results.

fixed parameters to be treated as constants at their start values. If present, it is treated
as an index vector of start parameters.

control list of control parameters or a ‘MaxControl’ object. If it is a list, the default
values are used for the parameters that are left unspecified by the user. These
functions accept the following parameters:

reltol sqrt(.Machine$double.eps), stopping condition. Relative convergence tol-
erance: the algorithm stops if the relative improvement between iterations
is less than ‘reltol’. Note: for compatibility reason ‘tol’ is equivalent to
‘reltol’ for optim-based optimizers.

iterlim integer, maximum number of iterations. Default values are 200 for
‘BFGS’, 500 (‘CG’ and ‘NM’), and 10000 (‘SANN’). Note that ‘iteration’
may mean different things for different optimizers.

printLevel integer, larger number prints more working information. Default 0,
no information.

nm_alpha 1, Nelder-Mead simplex method reflection coefficient (see Nelder &
Mead, 1965)

nm_beta 0.5, Nelder-Mead contraction coefficient
nm_gamma 2, Nelder-Mead expansion coefficient
sann_cand NULL or a function for "SANN" algorithm to generate a new candi-

date point; if NULL, Gaussian Markov kernel is used (see argument gr of
optim).

maxBFGS 19

sann_temp 10, starting temperature for the “SANN” cooling schedule. See
optim.

sann_tmax 10, number of function evaluations at each temperature for the
“SANN” optimizer. See optim.

sann_randomSeed 123, integer to seed random numbers to ensure replicability
of “SANN” optimization and preserve R random numbers. Use options like
sann_randomSeed=Sys.time() or sann_randomSeed=sample(100,1) if
you want stochastic results.

constraints either NULL for unconstrained optimization or a list with two components. The
components may be either eqA and eqB for equality-constrained optimization
Aθ + B = 0; or ineqA and ineqB for inequality constraints Aθ + B > 0.
More than one row in ineqA and ineqB corresponds to more than one linear
constraint, in that case all these must be zero (equality) or positive (inequal-
ity constraints). The equality-constrained problem is forwarded to sumt, the
inequality-constrained case to constrOptim2.

finalHessian how (and if) to calculate the final Hessian. Either FALSE (not calculate), TRUE
(use analytic/numeric Hessian) or "bhhh"/"BHHH" for information equality ap-
proach. The latter approach is only suitable for maximizing log-likelihood func-
tion. It requires the gradient/log-likelihood to be supplied by individual obser-
vations, see maxBHHH for details.

parscale A vector of scaling values for the parameters. Optimization is performed on
’par/parscale’ and these should be comparable in the sense that a unit change in
any element produces about a unit change in the scaled value. (see optim)

... further arguments for fn and grad.

Details

In order to provide a consistent interface, all these functions also accept arguments that other opti-
mizers use. For instance, maxNM accepts the ‘grad’ argument despite being a gradient-less method.

The ‘state’ (or ‘seed’) of R’s random number generator is saved at the beginning of the maxSANN
function and restored at the end of this function so this function does not affect the generation
of random numbers although the random seed is set to argument random.seed and the ‘SANN’
algorithm uses random numbers.

Value

object of class "maxim". Data can be extracted through the following functions:

maxValue fn value at maximum (the last calculated value if not converged.)

coef estimated parameter value.

gradient vector, last calculated gradient value. Should be close to 0 in case of normal
convergence.

estfun matrix of gradients at parameter value estimate evaluated at each observation
(only if grad returns a matrix or grad is not specified and fn returns a vector).

hessian Hessian at the maximum (the last calculated value if not converged).

returnCode integer. Success code, 0 is success (see optim).

20 maxBFGS

returnMessage a short message, describing the return code.

activePar logical vector, which parameters are optimized over. Contains only TRUE-s if no
parameters are fixed.

nIter number of iterations. Two-element integer vector giving the number of calls
to fn and gr, respectively. This excludes those calls needed to compute the
Hessian, if requested, and any calls to fn to compute a finite-difference approx-
imation to the gradient.

maximType character string, type of maximization.

maxControl the optimization control parameters in the form of a MaxControl object.

The following components can only be extracted directly (with \$):

constraints A list, describing the constrained optimization (NULL if unconstrained). Includes
the following components:

type type of constrained optimization
outer.iterations number of iterations in the constraints step
barrier.value value of the barrier function

Author(s)

Ott Toomet, Arne Henningsen

References

Nelder, J. A. & Mead, R. A, Simplex Method for Function Minimization, The Computer Journal,
1965, 7, 308-313

See Also

optim, nlm, maxNR, maxBHHH, maxBFGSR for a maxNR-based BFGS implementation.

Examples

Maximum Likelihood estimation of Poissonian distribution
n <- rpois(100, 3)
loglik <- function(l) n*log(l) - l - lfactorial(n)
we use numeric gradient
summary(maxBFGS(loglik, start=1))
you would probably prefer mean(n) instead of that ;-)
Note also that maxLik is better suited for Maximum Likelihood
###
Now an example of constrained optimization
###
f <- function(theta) {

x <- theta[1]
y <- theta[2]
exp(-(x^2 + y^2))
you may want to use exp(- theta %*% theta) instead

}
use constraints: x + y >= 1

MaxControl-class 21

A <- matrix(c(1, 1), 1, 2)
B <- -1
res <- maxNM(f, start=c(1,1), constraints=list(ineqA=A, ineqB=B),
control=list(printLevel=1))
print(summary(res))

MaxControl-class Class "MaxControl"

Description

This is the structure that holds the optimization control options. The corresponding constructors
take the parameters, perform consistency checks, and return the control structure. Alternatively, it
overwrites the supplied parameters in an existing MaxControl structure. There is also a method to
extract the control structure from the estimated ‘maxim’-objects.

Slots

The default values and definition of the slots:

tol 1e-8, stopping condition for maxNR and related optimizers. Stop if the absolute difference be-
tween successive iterations is less than tol, returns code 2.

reltol sqrt(.Machine$double.eps), relative convergence tolerance (used by maxNR related optimiz-
ers, and optim-based optimizers. The algorithm stops if it iteration increases the value by less
than a factor of reltol*(abs(val) + reltol). Returns code 2.

gradtol 1e-6, stopping condition for maxNR and related optimizers. Stops if norm of the gradient is
less than gradtol, returns code 1.

steptol 1e-10, stopping/error condition for maxNR and related optimizers. If qac == "stephalving"
and the quadratic approximation leads to a worse, instead of a better value, or to NA, the step
length is halved and a new attempt is made. If necessary, this procedure is repeated until step
< steptol, thereafter code 3 is returned.

lambdatol 1e-6, (for maxNR related optimizers) controls whether Hessian is treated as negative
definite. If the largest of the eigenvalues of the Hessian is larger than -lambdatol (Hessian
is not negative definite), a suitable diagonal matrix is subtracted from the Hessian (quadratic
hill-climbing) in order to enforce negative definiteness.

qac "stephalving", character, Qadratic Approximation Correction for maxNR related optimizers.
When the new guess is worse than the initial one, program attempts to correct it: "stephalving"
decreases the step but keeps the direction. "marquardt" uses Marquardt (1963) method by
decreasing the step length while also moving closer to the pure gradient direction. It may be
faster and more robust choice in areas where quadratic approximation behaves poorly.

qrtol 1e-10, QR-decomposition tolerance for Hessian inversion in maxNR related optimizers.

marquardt_lambda0 0.01, a positive numeric, initial correction term for Marquardt (1963) cor-
rection in maxNR-related optimizers

marquardt_lambdaStep 2, how much the Marquardt (1963) correction is decreased/increased at
successful/unsuccesful step for maxNR related optimizers

22 MaxControl-class

marquardt_maxLambda 1e12, maximum allowed correction term for maxNR related optimizers.
If exceeded, the algorithm exits with return code 3.

nm_alpha 1, Nelder-Mead simplex method reflection factor (see Nelder & Mead, 1965)
nm_beta 0.5, Nelder-Mead contraction factor
nm_gamma 2, Nelder-Mead expansion factor
sann_cand NULL or a function for "SANN" algorithm to generate a new candidate point; if NULL,

Gaussian Markov kernel is used (see argument gr of optim).
sann_temp 10, starting temperature for the “SANN” cooling schedule. See optim.
sann_tmax 10, number of function evaluations at each temperature for the “SANN” optimizer. See

optim.
sann_randomSeed 123, integer to seed random numbers to ensure replicability of “SANN” opti-

mization and preserve R random numbers. Use options like SANN_randomSeed=Sys.time()
or SANN_randomeSeed=sample(1000,1) if you want stochastic results.
General options for stochastic gradient methods:

SG_learningRate 0.1, learning rate, numeric
SG_batchSize NULL, batch size for Stochastic Gradient Ascent. A positive integer, or NULL for

full-batch gradent ascent.
SG_clip NULL, gradient clipping threshold. This is the max allowed squared Euclidean norm of the

gradient. If the actual norm of the gradient exceeds (square root of) this threshold, the gradient
will be scaled back accordingly while preserving its direction. NULL means no clipping.

SG_patience NULL, or integer. Stopping condition: if the objective function is worse than its largest
value so far this many times, the algorithm stops, and returns not the last parameter value but
the one that gave the best results so far. This is mostly useful if gradient is computed on
training data and the objective function on validation data.

SG_patienceStep 1L, integer. After how many epochs to check the patience value. 1 means to
check (and hence to compute the objective function) at each epoch.
Options for SGA:

SGA_momentum 0, numeric momentum parameter for SGA. Must lie in interval [0, 1].
Options for Adam:

Adam_momentum1 0.9, numeric in [0, 1], the first moment momentum
Adam_momentum2 0.999, numeric in [0, 1], the second moment momentum General options:
iterlim 150, stopping condition (the default differs for different methods). Stop if more than

iterlim iterations performed. Note that ‘iteration’ may mean different things for different
optimizers.

max.rows 20, maximum number of matrix rows to be printed when requesting verbosity in the
optimizers.

max.cols 7, maximum number of columns to be printed. This also applies to vectors that are
printed horizontally.

printLevel 0, the level of verbosity. Larger values print more information. Result depends on the
optimizer. Form print.level is also accepted by the methods for compatibility.

storeParameters FALSE, whether to store and return the parameter values at each epoch. If TRUE,
the stored values can be retrieved with storedParameters-method. The parameters are stored
as a matrix with rows corresponding to the epochs and columns to the parameter components.

storeValues FALSE, whether to store and return the objective function values at each epoch. If
TRUE, the stored values can be retrieved with storedValues-method.

MaxControl-class 23

Methods

maxControl (...) creates a “MaxControl” object. The arguments must be in the form option1
= value1, option2 = value2, The options should be slot names, but the method also
supports selected other parameter forms for compatibility reasons e.g. “print.level” instead of
“printLevel”. In case there are more than one option with similar name, the last one overwrites
the previous values. This allows the user to override default parameters in the control list. See
example in maxLik-package.

maxControl (x = "MaxControl", ...) overwrites parameters of an existing “MaxControl” ob-
ject. The ‘. . . ’ argument must be in the form option1 = value1, option2 = value2,
In case there are more than one option with similar name, only the last one is taken into ac-
count. This allows the user to override default parameters in the control list. See example in
maxLik-package.

maxControl (x = "maxim") extracts “MaxControl” structure from an estimated model

show shows the parameter values

Details

Typically, the control options are supplied in the form of a list, in which case the corresponding
default values are overwritten by the user-specified ones. However, one may also create the control
structure by maxControl(opt1=value1, opt2=value2, ...) and supply such value directly to the
optimizer. In this case the optimization routine takes all the values from the control object.

Note

Several control parameters can also be supplied directly to the optimization routines.

Author(s)

Ott Toomet

References

• Nelder, J. A. & Mead, R. A (1965) Simplex Method for Function Minimization The Computer
Journal 7, 308–313

• Marquardt, D. W. (1963) An Algorithm for Least-Squares Estimation of Nonlinear Parameters
Journal of the Society for Industrial and Applied Mathematics 11, 431–441

Examples

library(maxLik)
Create a 'maxControl' object:
maxControl(tol=1e-4, sann_tmax=7, printLevel=2)

Optimize quadratic form t(D) %*% W %*% D with p.d. weight matrix,
s.t. constraints sum(D) = 1
quadForm <- function(D) {

return(-t(D) %*% W %*% D)
}
eps <- 0.1

24 maximType

W <- diag(3) + matrix(runif(9), 3, 3)*eps
D <- rep(1/3, 3)

initial values
create control object and use it for optimization
co <- maxControl(printLevel=2, qac="marquardt", marquardt_lambda0=1)
res <- maxNR(quadForm, start=D, control=co)
print(summary(res))
Now perform the same with no trace information
co <- maxControl(co, printLevel=0)
res <- maxNR(quadForm, start=D, control=co) # no tracing information
print(summary(res)) # should be the same as above
maxControl(res) # shows the control structure

maximType Type of Minimization/Maximization

Description

Returns the type of optimization as supplied by the optimisation routine.

Usage

maximType(x)

Arguments

x object of class ’maxim’ or another object which involves numerical optimisa-
tion.

Value

A text message, describing the involved optimisation algorithm

Author(s)

Ott Toomet

See Also

maxNR

Examples

maximize two-dimensional exponential hat. True maximum c(2,1):
f <- function(a) exp(-(a[1] - 2)^2 - (a[2] - 1)^2)
m <- maxNR(f, start=c(0,0))
coef(m)
maximType(m)
Now use BFGS maximisation.
m <- maxBFGS(f, start=c(0,0))
maximType(m)

maxLik 25

maxLik Maximum likelihood estimation

Description

This is the main interface for the maxLik package, and the function that performs Maximum Like-
lihood estimation. It is a wrapper for different optimizers returning an object of class "maxLik".
Corresponding methods handle the likelihood-specific properties of the estimates, including stan-
dard errors.

Usage

maxLik(logLik, grad = NULL, hess = NULL, start, method,
constraints=NULL, ...)

Arguments

logLik log-likelihood function. Must have the parameter vector as the first argument.
Must return either a single log-likelihood value, or a numeric vector where each
component is log-likelihood of the corresponding individual observation.

grad gradient of log-likelihood. Must have the parameter vector as the first argument.
Must return either a single gradient vector with length equal to the number of pa-
rameters, or a matrix where each row is the gradient vector of the corresponding
individual observation. If NULL, numeric gradient will be used.

hess hessian of log-likelihood. Must have the parameter vector as the first argument.
Must return a square matrix. If NULL, numeric Hessian will be used.

start numeric vector, initial value of parameters. If it has names, these will also be
used for naming the results.

method maximisation method, currently either "NR" (for Newton-Raphson), "BFGS"
(for Broyden-Fletcher-Goldfarb-Shanno), "BFGSR" (for the BFGS algorithm
implemented in R), "BHHH" (for Berndt-Hall-Hall-Hausman), "SANN" (for
Simulated ANNealing), "CG" (for Conjugate Gradients), or "NM" (for Nelder-
Mead). Lower-case letters (such as "nr" for Newton-Raphson) are allowed.
The default method is "NR" for unconstrained problems, and "NM" or "BFGS"
for constrained problems, depending on if the grad argument was provided.
"BHHH" is a good alternative given the likelihood is returned observation-wise
(see maxBHHH).
Note that stochastic gradient ascent (SGA) is currently not supported as this
method seems to be rarely used for maximum likelihood estimation.

constraints either NULL for unconstrained maximization or a list, specifying the constraints.
See maxBFGS.

... further arguments, such as control, iterlim, or tol, are passed to the selected
maximisation routine, i.e. maxNR, maxBFGS, maxBFGSR, maxBHHH, maxSANN, maxCG,
or maxNM (depending on argument method). Arguments not used by the optimiz-
ers are forwarded to logLik, grad and hess.

26 maxLik

Details

maxLik supports constrained optimization in the sense that constraints are passed further to the
underlying optimization routines, and suitable default method is selected. However, no attempt is
made to correct the resulting variance-covariance matrix. Hence the inference may be wrong. A
corresponding warning is issued by the summary method.

Value

object of class ’maxLik’ which inherits from class ’maxim’. Useful methods include

• AIC: estimated parameter value

• coef: estimated parameter value

• logLik: log-likelihood value

• nIter: number of iterations

• stdEr: standard errors

• summary: print summary table with estimates, standard errors, p, and z-values.

• vcov: variance-covariance matrix

Warning

The constrained maximum likelihood estimation should be considered experimental. In particular,
the variance-covariance matrix is not corrected for constrained parameter space.

Author(s)

Ott Toomet, Arne Henningsen

See Also

maxNR, nlm and optim for different non-linear optimisation routines, see maxBFGS for the con-
strained maximization examples.

Examples

Estimate the parameter of exponential distribution
t <- rexp(100, 2)
loglik <- function(theta) log(theta) - theta*t
gradlik <- function(theta) 1/theta - t
hesslik <- function(theta) -100/theta^2
Estimate with numeric gradient and hessian
a <- maxLik(loglik, start=1, control=list(printLevel=2))
summary(a)
##
Estimate with analytic gradient and hessian.
require much smaller tolerance
setting 'tol=0' or negative essentially disables this stopping criterion
a <- maxLik(loglik, gradlik, hesslik, start=1,

control=list(tol=-1, reltol=1e-12, gradtol=1e-12))
summary(a)

maxNR 27

##
Next, we give an example with vector argument:
fit normal distribution by estimating mean and standard deviation
by maximum likelihood
##
loglik <- function(param) {

param: vector of 2, c(mean, standard deviation)
mu <- param[1]
sigma <- param[2]
ll <- -0.5*N*log(2*pi) - N*log(sigma) - sum(0.5*(x - mu)^2/sigma^2)

can use dnorm(x, mu, sigma, log=TRUE) instead
ll

}
x <- rnorm(100, 1, 2) # use mean=1, stdd=2
N <- length(x)
res <- maxLik(loglik, start=c(0,1)) # use 'wrong' start values
summary(res)
##
Same example, but now with named parameters and a fixed value
##
resFix <- maxLik(loglik, start=c(mu=0, sigma=1), fixed="sigma")
summary(resFix) # 'sigma' is exactly 1.000 now.

maxNR Newton- and Quasi-Newton Maximization

Description

Unconstrained and equality-constrained maximization based on the quadratic approximation (New-
ton) method. The Newton-Raphson, BFGS (Broyden 1970, Fletcher 1970, Goldfarb 1970, Shanno
1970), and BHHH (Berndt, Hall, Hall, Hausman 1974) methods are available.

Usage

maxNR(fn, grad = NULL, hess = NULL, start,
constraints = NULL, finalHessian = TRUE, bhhhHessian=FALSE,
fixed = NULL, activePar = NULL, control=NULL, ...)

maxBFGSR(fn, grad = NULL, hess = NULL, start,
constraints = NULL, finalHessian = TRUE,
fixed = NULL, activePar = NULL, control=NULL, ...)

maxBHHH(fn, grad = NULL, hess = NULL, start,
finalHessian = "BHHH", ...)

Arguments

fn the function to be maximized. It must have the parameter vector as the first
argument and it must return either a single number, or a numeric vector (this is
is summed internally). If the BHHH method is used and argument gradient is
not given, fn must return a numeric vector of observation-specific log-likelihood

28 maxNR

values. If the parameters are out of range, fn should return NA. See details for
constant parameters.
fn may also return attributes "gradient" and/or "hessian". If these attributes are
set, the algorithm uses the corresponding values as gradient and Hessian.

grad gradient of the objective function. It must have the parameter vector as the first
argument and it must return either a gradient vector of the objective function,
or a matrix, where columns correspond to individual parameters. The column
sums are treated as gradient components. If NULL, finite-difference gradients are
computed. If BHHH method is used, grad must return a matrix, where rows
corresponds to the gradient vectors for individual observations and the columns
to the individual parameters. If fn returns an object with attribute gradient,
this argument is ignored.

hess Hessian matrix of the function. It must have the parameter vector as the first
argument and it must return the Hessian matrix of the objective function. If
missing, finite-difference Hessian, based on gradient, is computed. Hessian is
used by the Newton-Raphson method only, and eventually by the other methods
if finalHessian is requested.

start initial parameter values. If start values are named, those names are also carried
over to the results.

constraints either NULL for unconstrained optimization or a list with two components. The
components may be either eqA and eqB for equality-constrained optimization
Aθ + B = 0; or ineqA and ineqB for inequality constraints Aθ + B > 0.
More than one row in ineqA and ineqB corresponds to more than one linear
constraint, in that case all these must be zero (equality) or positive (inequal-
ity constraints). The equality-constrained problem is forwarded to sumt, the
inequality-constrained case to constrOptim2.

finalHessian how (and if) to calculate the final Hessian. Either FALSE (do not calculate),
TRUE (use analytic/finite-difference Hessian) or "bhhh"/"BHHH" for the infor-
mation equality approach. The latter approach is only suitable for maximizing
log-likelihood functions. It requires the gradient/log-likelihood to be supplied
by individual observations. Note that computing the (actual, not BHHH) final
Hessian does not carry any extra penalty for the NR method, but does for the
other methods.

bhhhHessian logical. Indicating whether to use the information equality approximation (Bernd,
Hall, Hall, and Hausman, 1974) for the Hessian. This effectively transforms
maxNR into maxBHHH and is mainly designed for internal use.

fixed parameters to be treated as constants at their start values. If present, it is treated
as an index vector of start parameters.

activePar this argument is retained for backward compatibility only; please use argument
fixed instead.

control list of control parameters. The control parameters used by these optimizers are

tol 10−8, stopping condition. Stop if the absolute difference between successive
iterations is less than tol. Return code=2.
If set to a negative value, the criterion is never fulfilled, and hence disabled.

maxNR 29

reltol sqrt(.Machine$double.eps), stopping condition. Relative convergence tol-
erance: the algorithm stops if the relative improvement between iterations
is less than ‘reltol’. Return code 8. Negative value disables condition.

gradtol stopping condition. Stop if norm of the gradient is less than gradtol.
Return code 1. Negative value disables condition.

steptol 1e-10, stopping/error condition. If qac == "stephalving" and the quadratic
approximation leads to a worse, instead of a better value, or to NA, the step
length is halved and a new attempt is made. If necessary, this procedure is
repeated until step < steptol, thereafter code 3 is returned.

lambdatol 10−6, controls whether Hessian is treated as negative definite. If the
largest of the eigenvalues of the Hessian is larger than -lambdatol (Hessian
is not negative definite), a suitable diagonal matrix is subtracted from the
Hessian (quadratic hill-climbing) in order to enforce negative definiteness.

qrtol 10−10, QR-decomposition tolerance for the Hessian inversion.
qac "stephalving", Quadratic Approximation Correction. When the new guess

is worse than the initial one, the algorithm attemts to correct it: "stephalv-
ing" decreases the step but keeps the direction, "marquardt" uses Marquardt
(1963) method by decreasing the step length while also moving closer to
the pure gradient direction. It may be faster and more robust choice in areas
where quadratic approximation behaves poorly. maxNR and maxBHHH only.

marquardt_lambda0 10−2, positive numeric, initial correction term for Mar-
quardt (1963) correction.

marquardt_lambdaStep 2, how much the Marquardt (1963) correction term is
decreased/increased at each successful/unsuccesful step. maxNR and maxBHHH
only.

marquardt_maxLambda 1012, maximum allowed Marquardt (1963) correc-
tion term. If exceeded, the algorithm exits with return code 3. maxNR and
maxBHHH only.

iterlim stopping condition. Stop if more than iterlim iterations, return code=4.
printLevel this argument determines the level of printing which is done during

the optimization process. The default value 0 means that no printing occurs,
1 prints the initial and final details, 2 prints all the main tracing information
for every iteration. Higher values will result in even more output.

... further arguments to fn, grad and hess. Further arguments to maxBHHH are also
passed to maxNR. To maintain compatibility with the earlier versions, . . . also
passes a number of control options (tol, reltol, gradtol, steptol, lambdatol,
qrtol, iterlim) to the optimizers.

Details

The idea of the Newton method is to approximate the function at a given location by a multidimen-
sional quadratic function, and use the estimated maximum as the start value for the next iteration.
Such an approximation requires knowledge of both gradient and Hessian, the latter of which can
be quite costly to compute. Several methods for approximating Hessian exist, including BFGS and
BHHH.

The BHHH (information equality) approximation is only valid for log-likelihood functions. It re-
quires the score (gradient) values by individual observations and hence those must be returned by

30 maxNR

individual observations by grad or fn. The Hessian is approximated as the negative of the sum of
the outer products of the gradients of individual observations, or, in the matrix form,

HBHHH = − 1

N

N∑
i=1

[
∂ℓ(ϑ)

ϑ

∂ℓ(ϑ)

ϑ′

]

The functions maxNR, maxBFGSR, and maxBHHH can work with constant parameters, useful if a pa-
rameter value converges to the boundary of support, or for testing. One way is to put fixed to
non-NULL, specifying which parameters should be treated as constants. The parameters can also
be fixed in runtime (only for maxNR and maxBHHH) by signaling it with the fn return value. See
Henningsen & Toomet (2011) for details.

Value

object of class "maxim". Data can be extracted through the following methods:

\link{maxValue}

fn value at maximum (the last calculated value if not converged.)
\link[=coef.maxim]{coef}

estimated parameter value.

gradient vector, last calculated gradient value. Should be close to 0 in case of normal
convergence.

estfun matrix of gradients at parameter value estimate evaluated at each observation
(only if grad returns a matrix or grad is not specified and fn returns a vector).

hessian Hessian at the maximum (the last calculated value if not converged).

returnCode return code:

1 gradient close to zero (normal convergence).
2 successive function values within tolerance limit (normal convergence).
3 last step could not find higher value (probably not converged). This is related

to line search step getting too small, usually because hitting the boundary of
the parameter space. It may also be related to attempts to move to a wrong
direction because of numerical errors. In some cases it can be helped by
changing steptol.

4 iteration limit exceeded.
5 infinite value.
6 infinite gradient.
7 infinite Hessian.
8 successive function values within relative tolerance limit (normal convergence).
9 (BFGS) Hessian approximation cannot be improved because of gradient did

not change. May be related to numerical approximation problems or wrong
analytic gradient.

100 Initial value out of range.

returnMessage a short message, describing the return code.

activePar logical vector, which parameters are optimized over. Contains only TRUE-s if no
parameters are fixed.

maxNR 31

nIter number of iterations.

maximType character string, type of maximization.

maxControl the optimization control parameters in the form of a MaxControl object.

The following components can only be extracted directly (with \$):

last.step a list describing the last unsuccessful step if code=3 with following components:

theta0 previous parameter value
f0 fn value at theta0
climb the movement vector to the maximum of the quadratic approximation

constraints A list, describing the constrained optimization (NULL if unconstrained). Includes
the following components:

type type of constrained optimization
outer.iterations number of iterations in the constraints step
barrier.value value of the barrier function

Warning

No attempt is made to ensure that user-provided analytic gradient/Hessian is correct. The users
are encouraged to use compareDerivatives function, designed for this purpose. If analytic gradi-
ent/Hessian are wrong, the algorithm may not converge, or may converge to a wrong point.

As the BHHH method uses the likelihood-specific information equality, it is only suitable for max-
imizing log-likelihood functions!

Quasi-Newton methods, including those mentioned above, do not work well in non-concave re-
gions. This is especially the case with the implementation in maxBFGSR. The user is advised to
experiment with various tolerance options to achieve convergence.

Author(s)

Ott Toomet, Arne Henningsen, function maxBFGSR was originally developed by Yves Croissant (and
placed in ’mlogit’ package)

References

Berndt, E., Hall, B., Hall, R. and Hausman, J. (1974): Estimation and Inference in Nonlinear
Structural Models, Annals of Social Measurement 3, 653–665.

Broyden, C.G. (1970): The Convergence of a Class of Double-rank Minimization Algorithms, Jour-
nal of the Institute of Mathematics and Its Applications 6, 76–90.

Fletcher, R. (1970): A New Approach to Variable Metric Algorithms, Computer Journal 13, 317–
322.

Goldfarb, D. (1970): A Family of Variable Metric Updates Derived by Variational Means, Mathe-
matics of Computation 24, 23–26.

Henningsen, A. and Toomet, O. (2011): maxLik: A package for maximum likelihood estimation in
R Computational Statistics 26, 443–458

Marquardt, D.W., (1963) An Algorithm for Least-Squares Estimation of Nonlinear Parameters,
Journal of the Society for Industrial & Applied Mathematics 11, 2, 431–441

32 maxNR

Shanno, D.F. (1970): Conditioning of Quasi-Newton Methods for Function Minimization, Mathe-
matics of Computation 24, 647–656.

See Also

maxLik for a general framework for maximum likelihood estimation (MLE); maxBHHH for maxi-
mizations using the Berndt, Hall, Hall, Hausman (1974) algorithm (which is a wrapper function to
maxNR); maxBFGS for maximization using the BFGS, Nelder-Mead (NM), and Simulated Annealing
(SANN) method (based on optim), also supporting inequality constraints; nlm for Newton-Raphson
optimization; and optim for different gradient-based optimization methods.

Examples

Fit exponential distribution by ML
t <- rexp(100, 2) # create data with parameter 2
loglik <- function(theta) sum(log(theta) - theta*t)
Note the log-likelihood and gradient are summed over observations
gradlik <- function(theta) sum(1/theta - t)
hesslik <- function(theta) -100/theta^2
Estimate with finite-difference gradient and Hessian
a <- maxNR(loglik, start=1, control=list(printLevel=2))
summary(a)
You would probably prefer 1/mean(t) instead ;-)

The same example with analytic gradient and Hessian
a <- maxNR(loglik, gradlik, hesslik, start=1)
summary(a)

BFGS estimation with finite-difference gradient
a <- maxBFGSR(loglik, start=1)
summary(a)

For the BHHH method we need likelihood values and gradients
of individual observations, not the sum of those
loglikInd <- function(theta) log(theta) - theta*t
gradlikInd <- function(theta) 1/theta - t
Estimate with analytic gradient
a <- maxBHHH(loglikInd, gradlikInd, start=1)
summary(a)

Example with a vector argument: Estimate the mean and
variance of a random normal sample by maximum likelihood
Note: you might want to use maxLik instead
loglik <- function(param) {

param is a 2-vector of c(mean, sd)
mu <- param[1]
sigma <- param[2]
ll <- -0.5*N*log(2*pi) - N*log(sigma) - sum(0.5*(x - mu)^2/sigma^2)
ll

}
x <- rnorm(100, 1, 2) # use mean=1, sd=2
N <- length(x)

maxSGA 33

res <- maxNR(loglik, start=c(0,1)) # use 'wrong' start values
summary(res)

The previous example with named parameters and a fixed value
resFix <- maxNR(loglik, start=c(mu=0, sigma=1), fixed="sigma")
summary(resFix) # 'sigma' is exactly 1.000 now.

Constrained optimization
###
We maximize exp(-x^2 - y^2) where x+y = 1
hatf <- function(theta) {

x <- theta[1]
y <- theta[2]
exp(-(x^2 + y^2))
Note: you may prefer exp(- theta %*% theta) instead

}
use constraints: x + y = 1
A <- matrix(c(1, 1), 1, 2)
B <- -1
res <- maxNR(hatf, start=c(0,0), constraints=list(eqA=A, eqB=B),

control=list(printLevel=1))
print(summary(res))

maxSGA Stochastic Gradient Ascent

Description

Stochastic Gradient Ascent–based optimizers

Usage

maxSGA(fn = NULL, grad = NULL, hess = NULL, start,
nObs,
constraints = NULL, finalHessian = FALSE,
fixed = NULL, control=NULL, ...)

maxAdam(fn = NULL, grad = NULL, hess = NULL, start,
nObs,
constraints = NULL, finalHessian = FALSE,
fixed = NULL, control=NULL, ...)

Arguments

fn the function to be maximized. As the objective function values are not directly
used for optimization, this argument is optional, given grad is provided. It must
have the parameter vector as the first argument, and it must have an argument
index to specify the integer index of the selected observations. It must return
either a single number, or a numeric vector (this is is summed internally). If

34 maxSGA

the parameters are out of range, fn should return NA. See details for constant
parameters.
fn may also return attributes "gradient" and/or "hessian". If these attributes are
set, the algorithm uses the corresponding values as gradient and Hessian.

grad gradient of the objective function. It must have the parameter vector as the
first argument, and it must have an argument index to specify the integer index
of selected observations. It must return either a gradient vector of the objec-
tive function, or a matrix, where columns correspond to individual parameters.
The column sums are treated as gradient components. If NULL, finite-difference
gradients are computed. If fn returns an object with attribute gradient, this
argument is ignored.
If grad is not supplied, it is computed by finite-difference method using fn.
However, this is only adviseable for small-scale tests, not for any production
run. Obviously, fn must be correctly defined in that case.

hess Hessian matrix of the function. Mainly for compatibility reasons, only used
for computing the final Hessian if asked to do so by setting finalHessian to
TRUE. It must have the parameter vector as the first argument and it must return
the Hessian matrix of the objective function. If missing, either finite-difference
Hessian, based on gradient or BHHH approach is computed if asked to do so.

start initial parameter values. If these have names, the names are also used for results.

nObs number of observations. This is used to partition the data into individual batches.
The resulting batch indices are forwarded to the grad function through the ar-
gument index.

constraints either NULL for unconstrained optimization or a list with two components. The
components may be either eqA and eqB for equality-constrained optimization
Aθ + B = 0; or ineqA and ineqB for inequality constraints Aθ + B > 0.
More than one row in ineqA and ineqB corresponds to more than one linear
constraint, in that case all these must be zero (equality) or positive (inequal-
ity constraints). The equality-constrained problem is forwarded to sumt, the
inequality-constrained case to constrOptim2.

finalHessian how (and if) to calculate the final Hessian. Either FALSE (do not calculate), TRUE
(use analytic/finite-difference Hessian) or "bhhh"/"BHHH" for the information
equality approach. The latter approach is only suitable when working with a log-
likelihood function, and it requires the gradient/log-likelihood to be supplied by
individual observations.
Hessian matrix is not often used for optimization problems where one applies
SGA, but even if one is not interested in standard errors, it may provide use-
ful information about the model performance. If computed by finite-difference
method, the Hessian computation may be very slow.

fixed parameters to be treated as constants at their start values. If present, it is treated
as an index vector of start parameters.

control list of control parameters. The ones used by these optimizers are

SGA_momentum 0, numeric momentum parameter for SGA. Must lie in in-
terval [0, 1]. See details.
Adam-specific parameters

maxSGA 35

Adam_momentum1 0.9, numeric in interval (0, 1), the first moment momen-
tum

Adam_momentum2 0.999, numeric in interval (0, 1), the second moment mo-
mentum General stochastic gradient parameters:

SG_learningRate step size the SGA algorithm takes in the gradient direction.
If 1, the step equals to the gradient value. A good value is often 0.01–0.3

SG_batchSize SGA batch size, an integer between 1 and nObs. If NULL (de-
fault), the full batch gradient is computed.

SG_clip NULL, gradient clipping threshold. The algorithm ensures that ||g(θ)||22 ≤
κ where κ is the SG_clip value. If the actual norm of the gradient exceeds
(square root of) κ, the gradient will be scaled back accordingly while pre-
serving its direction. NULL means no clipping.
Stopping conditions:

gradtol stopping condition. Stop if norm of the gradient is less than gradtol.
Default 0, i.e. do not use this condition. This condition is useful if the
objective is to drive full batch gradient to zero on training data. It is not a
good objective in case of the stochastic gradient, and if the objective is to
optimize the objective on validation data.

SG_patience NULL, or integer. Stopping condition: the algorithm counts how
many times the objective function has been worse than its best value so far,
and if this exceeds SG_patience, the algorithm stops.

SG_patienceStep 1L, integer. After how many epochs to check the patience
value. 1 means to check at each epoch, and hence to compute the objective
function. This may be undesirable if the objective function is costly to
compute.

iterlim stopping condition. Stop if more than iterlim epochs, return code=4.
Epoch is a set of iterations that cycles through all observations. In case of
full batch, iterations and epochs are equivalent. If iterlim = 0, does not do
any learning and returns the initial values unchanged.

printLevel this argument determines the level of printing which is done during
the optimization process. The default value 0 means that no printing occurs,
1 prints the initial and final details, 2 prints all the main tracing information
for every epoch. Higher values will result in even more output.

storeParameters logical, whether to store and return the parameter values at
each epoch. If TRUE, the stored values can be retrieved with storedParameters-
method. The parameters are stored as a matrix with rows corresponding to
the epochs and columns to the parameter components. There are iterlim
+ 1 rows, where the first one corresponds to the initial parameters.
Default FALSE.

storeValues logical, whether to store and return the objective function values at
each epoch. If TRUE, the stored values can be retrieved with storedValues-
method. There are iterlim + 1 values, where the first one corresponds to
the value at the initial parameters.
Default FALSE.

See maxControl for more information.
... further arguments to fn, grad and hess. To maintain compatibility with the

earlier versions, . . . also passes certain control options to the optimizers.

36 maxSGA

Details

Gradient Ascent (GA) is a optimization method where the algorithm repeatedly takes small steps in
the gradient’s direction, the parameter vector θ is updated as θ ← theta + learningrate · ∇f(θ).
In case of Stochastic GA (SGA), the gradient is not computed on the full set of observations but on
a small subset, batch, potentially a single observation only. In certain circumstances this converges
much faster than when using all observation (see Bottou et al, 2018).

If SGA_momentum is positive, the SGA algorithm updates the parameters θ in two steps. First, the
momentum is used to update the “velocity” v as v ← momentum · v + learningrate · ∇f(θ), and
thereafter the parameter θ is updates as θ ← θ + v. Initial velocity is set to 0.

The Adam algorithm is more complex and uses first and second moments of stochastic gradients to
automatically adjust the learning rate. See Goodfellow et al, 2016, page 301.

The function fn is not directly used for optimization, only for printing or as a stopping condition.
In this sense it is up to the user to decide what the function returns, if anything. For instance, it may
be useful for fn to compute the objective function on either full training data, or on validation data,
and just ignore the index argument. The latter is useful if using patience-based stopping. However,
one may also choose to select the observations determined by the index to compute the objective
function on the current data batch.

Value

object of class "maxim". Data can be extracted through the following methods:

\link{maxValue}

fn value at maximum (the last calculated value if not converged.)
\link{coef} estimated parameter value.
\link{gradient}

vector, last calculated gradient value. Should be close to 0 in case of normal
convergence.

estfun matrix of gradients at parameter value estimate evaluated at each observation
(only if grad returns a matrix or grad is not specified and fn returns a vector).

\link{hessian} Hessian at the maximum (the last calculated value if not converged).
\link{storedValues}

return values stored at each epoch
\link{storedParameters}

return parameters stored at each epoch
\link{returnCode}

a numeric code that describes the convergence or error.
\link{returnMessage}

a short message, describing the return code.
\link{activePar}

logical vector, which parameters are optimized over. Contains only TRUE-s if no
parameters are fixed.

\link{nIter} number of iterations.
\link{maximType}

character string, type of maximization.
\link{maxControl}

the optimization control parameters in the form of a MaxControl object.

maxSGA 37

Author(s)

Ott Toomet, Arne Henningsen

References

Bottou, L.; Curtis, F. & Nocedal, J.: Optimization Methods for Large-Scale Machine Learning
SIAM Review, 2018, 60, 223–311.

Goodfellow, I.; Bengio, Y.; Courville, A. (2016): Deep Learning, MIT Press

Henningsen, A. and Toomet, O. (2011): maxLik: A package for maximum likelihood estimation in
R Computational Statistics 26, 443–458

See Also

A good starting point to learn about the usage of stochastic gradient ascent in maxLik package is
the vignette “Stochastic Gradient Ascent in maxLik”.

The other related functions are maxNR for Newton-Raphson, a popular Hessian-based maximization;
maxBFGS for maximization using the BFGS, Nelder-Mead (NM), and Simulated Annealing (SANN)
method (based on optim), also supporting inequality constraints; maxLik for a general framework
for maximum likelihood estimation (MLE); optim for different gradient-based optimization meth-
ods.

Examples

estimate the exponential distribution parameter by ML
set.seed(1)
t <- rexp(100, 2)
loglik <- function(theta, index) sum(log(theta) - theta*t[index])
Note the log-likelihood and gradient are summed over observations
gradlik <- function(theta, index) sum(1/theta - t[index])
Estimate with full-batch
a <- maxSGA(loglik, gradlik, start=1, control=list(iterlim=1000,

SG_batchSize=10), nObs=100)
note that loglik is not really needed, and is not used
here, unless more print verbosity is asked

summary(a)
##
demonstrate the usage of index, and using
fn for computing the objective function on validation data.
Create a linear model where variables are very unequally scaled
##
OLS loglik function: compute the function value on validation data only
loglik <- function(beta, index) {

e <- yValid - XValid %*% beta
-crossprod(e)/length(y)

}
OLS gradient: compute it on training data only
Use 'index' to select the subset corresponding to the minibatch
gradlik <- function(beta, index) {

e <- yTrain[index] - XTrain[index,,drop=FALSE] %*% beta
g <- t(-2*t(XTrain[index,,drop=FALSE]) %*% e)

38 maxValue

-g/length(index)
}
N <- 1000
two random variables: one with scale 1, the other with 100
X <- cbind(rnorm(N), rnorm(N, sd=100))
beta <- c(1, 1) # true parameter values
y <- X %*% beta + rnorm(N, sd=0.2)
training-validation split
iTrain <- sample(N, 0.8*N)
XTrain <- X[iTrain,,drop=FALSE]
XValid <- X[-iTrain,,drop=FALSE]
yTrain <- y[iTrain]
yValid <- y[-iTrain]
##
do this without momentum: learning rate must stay small for the gradient not to explode
cat(" No momentum:\n")
a <- maxSGA(loglik, gradlik, start=c(10,10),

control=list(printLevel=1, iterlim=50,
SG_batchSize=30, SG_learningRate=0.0001, SGA_momentum=0
), nObs=length(yTrain))

print(summary(a)) # the first component is off, the second one is close to the true value
do with momentum 0.99
cat(" Momentum 0.99:\n")
a <- maxSGA(loglik, gradlik, start=c(10,10),

control=list(printLevel=1, iterlim=50,
SG_batchSize=30, SG_learningRate=0.0001, SGA_momentum=0.99
no momentum
), nObs=length(yTrain))

print(summary(a)) # close to true value

maxValue Function value at maximum

Description

Returns the function value at (estimated) maximum.

Usage

maxValue(x, ...)
S3 method for class 'maxim'
maxValue(x, ...)

Arguments

x a statistical model, or a result of maximisation, created by maxLik, maxNR or
another optimizer.

... further arguments for other methods

nIter 39

Value

numeric, the value of the objective function at maximum. In general, it is the last calculated value
in case the process did not converge.

Author(s)

Ott Toomet

See Also

maxLik, maxNR

Examples

Estimate the exponential distribution parameter:
t <- rexp(100, 2)
loglik <- function(theta) sum(log(theta) - theta*t)
Estimate with numeric gradient and numeric Hessian
a <- maxNR(loglik, start=1)
maxValue(a)

nIter Return number of iterations for iterative models

Description

Returns the number of iterations for iterative models. The default method assumes presence of a
component iterations in x.

Usage

nIter(x, ...)
Default S3 method:
nIter(x, ...)

Arguments

x a statistical model, or a result of maximisation, created by maxLik, maxNR or
another optimizer.

... further arguments for methods

Details

This is a generic function. The default method returns the component x$iterations.

Value

numeric, number of iterations. Note that ‘iteration’ may mean different things for different optimiz-
ers.

40 nObs.maxLik

Author(s)

Ott Toomet

See Also

maxLik, maxNR

Examples

Estimate the exponential distribution parameter:
t <- rexp(100, 2)
loglik <- function(theta) sum(log(theta) - theta*t)
Estimate with numeric gradient and numeric Hessian
a <- maxNR(loglik, start=1)
nIter(a)

nObs.maxLik Number of Observations

Description

Returns the number of observations for statistical models, estimated by Maximum Likelihood using
maxLik.

Usage

S3 method for class 'maxLik'
nObs(x, ...)

Arguments

x a statistical model estimated by Maximum Likelihood using maxLik.

... further arguments (currently ignored).

Details

The nObs method for “maxLik” objects can return the number of observations only if log-likelihood
function (or the gradient) returns values by individual observation.

Value

numeric, number of observations

Author(s)

Arne Henningsen, Ott Toomet

nParam.maxim 41

See Also

nObs, maxLik, nParam.

Examples

fit a normal distribution by ML
generate a variable from normally distributed random numbers
x <- rnorm(100, 1, 2)
log likelihood function (for individual observations)
llf <- function(param) {

return(dnorm(x, mean = param[1], sd = param[2], log = TRUE))
}
ML method
ml <- maxLik(llf, start = c(mu = 0, sigma = 1))
return number of onservations
nObs(ml)

nParam.maxim Number of model parameters

Description

This function returns the number of model parameters.

Usage

S3 method for class 'maxim'
nParam(x, free=FALSE, ...)

Arguments

x a model returned by a maximisation method from the maxLik package.

free logical, whether to report only the free parameters or the total number of param-
eters (default)

... other arguments for methods

Details

Free parameters are the parameters with no equality restrictions. Some parameters may be jointly
restricted (e.g. sum of two probabilities equals unity). In this case the total number of parameters
may depend on the normalization.

Value

Number of parameters in the model

42 numericGradient

Author(s)

Ott Toomet

See Also

nObs for number of observations

Examples

fit a normal distribution by ML
generate a variable from normally distributed random numbers
x <- rnorm(100, 1, 2)
log likelihood function (for individual observations)
llf <- function(param) {

return(dnorm(x, mean = param[1], sd = param[2], log = TRUE))
}
ML method
ml <- maxLik(llf, start = c(mu = 0, sigma = 1))
return number of parameters
nParam(ml)

numericGradient Functions to Calculate Numeric Derivatives

Description

Calculate (central) numeric gradient and Hessian, including of vector-valued functions.

Usage

numericGradient(f, t0, eps=1e-06, fixed, ...)
numericHessian(f, grad=NULL, t0, eps=1e-06, fixed, ...)
numericNHessian(f, t0, eps=1e-6, fixed, ...)

Arguments

f function to be differentiated. The first argument must be the parameter vector
with respect to which it is differentiated. For numeric gradient, f may return a
(numeric) vector, for Hessian it should return a numeric scalar

grad function, gradient of f

t0 vector, the parameter values

eps numeric, the step for numeric differentiation

fixed logical index vector, fixed parameters. Derivative is calculated only with re-
spect to the parameters for which fixed == FALSE, NA is returned for the fixed
parameters. If missing, all parameters are treated as active.

... furter arguments for f

numericGradient 43

Details

numericGradient numerically differentiates a (vector valued) function with respect to it’s (vector
valued) argument. If the functions value is a Nval × 1 vector and the argument is Npar × 1 vector,
the resulting gradient is a Nval ×Npar matrix.

numericHessian checks whether a gradient function is present. If yes, it calculates the gradient of
the gradient, if not, it calculates the full numeric Hessian (numericNHessian).

Value

Matrix. For numericGradient, the number of rows is equal to the length of the function value
vector, and the number of columns is equal to the length of the parameter vector.

For the numericHessian, both numer of rows and columns is equal to the length of the parameter
vector.

Warning

Be careful when using numerical differentiation in optimization routines. Although quite precise in
simple cases, they may work very poorly in more complicated conditions.

Author(s)

Ott Toomet

See Also

compareDerivatives, deriv

Examples

A simple example with Gaussian bell surface
f0 <- function(t0) exp(-t0[1]^2 - t0[2]^2)
numericGradient(f0, c(1,2))
numericHessian(f0, t0=c(1,2))

An example with the analytic gradient
gradf0 <- function(t0) -2*t0*f0(t0)
numericHessian(f0, gradf0, t0=c(1,2))
The results should be similar as in the previous case

The central numeric derivatives are often quite precise
compareDerivatives(f0, gradf0, t0=1:2)
The difference is around 1e-10

44 returnCode

objectiveFn Optimization Objective Function

Description

This function returns the optimization objective function from a ‘maxim’ object.

Usage

objectiveFn(x, ...)
S3 method for class 'maxim'
objectiveFn(x, ...)

Arguments

x an optimization result, inheriting from class ‘maxim’

... other arguments for methods

Value

function, the function that was optimized. It can be directly called, given that all necessary variables
are accessible from the current environment.

Author(s)

Ott Toomet

Examples

hatf <- function(theta) exp(- theta %*% theta)
res <- maxNR(hatf, start=c(0,0))
print(summary(res))
print(objectiveFn(res))
print(objectiveFn(res)(2)) # 0.01832

returnCode Success or failure of the optimization

Description

These function extract success or failure information from optimization objects. The returnCode
gives a numeric code, and returnMessage a brief description about the success or failure of the op-
timization, and point to the problems occured (see documentation for the corresponding functions).

returnCode 45

Usage

returnCode(x, ...)
Default S3 method:
returnCode(x, ...)
S3 method for class 'maxLik'
returnCode(x, ...)
returnMessage(x, ...)
S3 method for class 'maxim'
returnMessage(x, ...)
S3 method for class 'maxLik'
returnMessage(x, ...)

Arguments

x object, usually an optimization result

... further arguments for other methods

Details

returnMessage and returnCode are a generic functions, with methods for various optimisation
algorithms. The message should either describe the convergence (stopping condition), or the prob-
lem.

The known codes and the related messages are:

1 gradient close to zero (normal convergence).

2 successive function values within tolerance limit (normal convergence).

3 last step could not find higher value (probably not converged). This is related to line search step
getting too small, usually because hitting the boundary of the parameter space. It may also be
related to attempts to move to a wrong direction because of numerical errors. In some cases it
can be helped by changing steptol.

4 iteration limit exceeded.

5 Infinite value.

6 Infinite gradient.

7 Infinite Hessian.

8 Successive function values withing relative tolerance limit (normal convergence).

9 (BFGS) Hessian approximation cannot be improved because of gradient did not change. May be
related to numerical approximation problems or wrong analytic gradient.

10 Lost patience: the optimizer has hit an inferior value too many times (see maxSGA for more
information)

100 Initial value out of range.

Value

Integer for returnCode, character for returnMessage. Different optimization routines may define
it in a different way.

46 storedValues

Author(s)

Ott Toomet

See Also

maxNR, maxBFGS

Examples

maximise the exponential bell
f1 <- function(x) exp(-x^2)
a <- maxNR(f1, start=2)
returnCode(a) # should be success (1 or 2)
returnMessage(a)
Now try to maximise log() function
a <- maxNR(log, start=2)
returnCode(a) # should give a failure (4)
returnMessage(a)

storedValues Return the stored values of optimization

Description

Retrieve the objective function value for each iteration if stored during the optimization.

Usage

storedValues(x, ...)
S3 method for class 'maxim'
storedValues(x, ...)
storedParameters(x, ...)
S3 method for class 'maxim'
storedParameters(x, ...)

Arguments

x a result of maximization, created by maxLik, maxSGA or another optimizer.

... further arguments for other methods

Details

These is a generic method. If asked by control parameter storeValues=TRUE or storeParameters=TRUE,
certain optimization methods store the objective function value and the parameter value at each
epoch. These methods retrieves the stored values.

summary.maxim 47

Value

• storedValues: a numeric vector, one value for each iteration

• storedParameters: a numeric matrix with rows corresponding to the iterations and columns
to the parameter components.

In both cases, the first value stored corresponds to the initial parameter.

Author(s)

Ott Toomet

See Also

maxSGA, maxControl

Examples

Estimate the exponential distribution parameter
t <- rexp(100, 2)
loglik <- function(theta, index) sum(log(theta) - theta*t[index])
Estimate with numeric gradient and numeric Hessian
a <- maxSGA(loglik, start=1,

control=list(storeValues=TRUE, storeParameters=TRUE, iterlim=10),
nObs=100)

storedValues(a)
storedParameters(a)

summary.maxim Summary method for maximization

Description

Summarizes the general maximization results in a way that does not assume the function is log-
likelihood.

Usage

S3 method for class 'maxim'
summary(object, hessian=FALSE, unsucc.step=FALSE, ...)
S3 method for class 'summary.maxim'
print(x,

max.rows=getOption("max.rows", 20),
max.cols=getOption("max.cols", 7),
...)

48 summary.maxim

Arguments

object optimization result, object of class maxim. See maxNR.

hessian logical, whether to display Hessian matrix.

unsucc.step logical, whether to describe last unsuccesful step if code == 3

x object of class summary.maxim, summary of maximization result.

max.rows maximum number of rows to be printed. This applies to the resulting coefficients
(as those are printed as a matrix where the other column is the gradient), and to
the Hessian if requested.

max.cols maximum number of columns to be printed. Only Hessian output, if requested,
uses this argument.

... currently not used.

Value

Object of class summary.maxim, intended to be printed with corresponding print method.

Author(s)

Ott Toomet

See Also

maxNR, returnCode, returnMessage

Examples

minimize a 2D quadratic function:
f <- function(b) {

x <- b[1]; y <- b[2];
val <- -(x - 2)^2 - (y - 3)^2 # concave parabola
attr(val, "gradient") <- c(-2*x + 4, -2*y + 6)
attr(val, "hessian") <- matrix(c(-2, 0, 0, -2), 2, 2)
val

}
Note that NR finds the minimum of a quadratic function with a single
iteration. Use c(0,0) as initial value.
res <- maxNR(f, start = c(0,0))
summary(res)
summary(res, hessian=TRUE)

summary.maxLik 49

summary.maxLik summary the Maximum-Likelihood estimation

Description

Summary the Maximum-Likelihood estimation including standard errors and t-values.

Usage

S3 method for class 'maxLik'
summary(object, eigentol=1e-12, ...)
S3 method for class 'summary.maxLik'
coef(object, ...)

Arguments

object object of class ’maxLik’, or ’summary.maxLik’, usually a result from Maximum-
Likelihood estimation.

eigentol The standard errors are only calculated if the ratio of the smallest and largest
eigenvalue of the Hessian matrix is less than “eigentol”. Otherwise the Hessian
is treated as singular.

... currently not used.

Value

An object of class ’summary.maxLik’ with following components:

type type of maximization.

iterations number of iterations.

code code of success.

message a short message describing the code.

loglik the loglik value in the maximum.

estimate numeric matrix, the first column contains the parameter estimates, the second the standard
errors, third t-values and fourth corresponding probabilities.

fixed logical vector, which parameters are treated as constants.

NActivePar number of free parameters.

constraints information about the constrained optimization. Passed directly further from maxim-
object. NULL if unconstrained maximization.

Author(s)

Ott Toomet, Arne Henningsen

50 sumt

See Also

maxLik for maximum likelihood estimation, confint for confidence intervals, and tidy and glance
for alternative quick summaries of the ML results.

Examples

ML estimation of exponential distribution:
t <- rexp(100, 2)
loglik <- function(theta) log(theta) - theta*t
gradlik <- function(theta) 1/theta - t
hesslik <- function(theta) -100/theta^2
Estimate with numeric gradient and hessian
a <- maxLik(loglik, start=1, control=list(printLevel=2))
summary(a)
Estimate with analytic gradient and hessian
a <- maxLik(loglik, gradlik, hesslik, start=1, control=list(printLevel=2))
summary(a)

sumt Equality-constrained optimization

Description

Sequentially Unconstrained Maximization Technique (SUMT) based optimization for linear equal-
ity constraints.

This implementation is primarily intended to be called from other maximization routines, such as
maxNR.

Usage

sumt(fn, grad=NULL, hess=NULL,
start,
maxRoutine, constraints,
SUMTTol = sqrt(.Machine$double.eps),
SUMTPenaltyTol = sqrt(.Machine$double.eps),
SUMTQ = 10,
SUMTRho0 = NULL,
printLevel=print.level, print.level = 0, SUMTMaxIter = 100, ...)

Arguments

fn function of a (single) vector parameter. The function may have more arguments
(passed by . . .), but those are not treated as the parameter.

grad gradient function of fn. NULL if missing

hess function, Hessian of the fn. NULL if missing

start numeric, initial value of the parameter

sumt 51

maxRoutine maximization algorithm, such as maxNR

constraints list, information for constrained maximization. Currently two components are
supported: eqA and eqB for linear equality constraints: Aβ + B = 0. The user
must ensure that the matrices A and B are conformable.

SUMTTol stopping condition. If the estimates at successive outer iterations are close
enough, i.e. maximum of the absolute value over the component difference is
smaller than SUMTTol, the algorithm stops.
Note this does not necessarily mean that the constraints are satisfied. If the
penalty function is too “weak”, SUMT may repeatedly find the same optimum.
In that case a warning is issued. The user may set SUMTTol to a lower value,
e.g. to zero.

SUMTPenaltyTol stopping condition. If the barrier value (also called penalty) (Aβ+B)′(Aβ+B)
is less than SUMTTol, the algorithm stops

SUMTQ a double greater than one, controlling the growth of the rho as described in
Details. Defaults to 10.

SUMTRho0 Initial value for rho. If not specified, a (possibly) suitable value is selected. See
Details.
One should consider supplying SUMTRho0 in case where the unconstrained prob-
lem does not have a maximum, or the maximum is too far from the constrained
value. Otherwise the authomatically selected value may not lead to convergence.

printLevel Integer, debugging information. Larger number prints more details.

print.level same as ‘printLevel’, for backward compatibility

SUMTMaxIter Maximum SUMT iterations

... Other arguments to maxRoutine and fn.

Details

The Sequential Unconstrained Minimization Technique is a heuristic for constrained optimization.
To minimize a function f subject to constraints, it uses a non-negative penalty function P , such that
P (x) is zero iff x satisfies the constraints. One iteratively minimizes f(x) + ϱkP (x), where the ϱ
values are increased according to the rule ϱk+1 = qϱk for some constant q > 1, until convergence
is achieved in the sense that the barrier value P (x)′P (x) is close to zero. Note that there is no
guarantee that the global constrained optimum is found. Standard practice recommends to use the
best solution found in “sufficiently many” replications.

Any of the maximization algorithms in the maxLik, such as maxNR, can be used for the uncon-
strained step.

Analytic gradient and hessian are used if provided.

Value

Object of class ’maxim’. In addition, a component

constraints A list, describing the constrained optimization. Includes the following compo-
nents:

type type of constrained optimization

52 tidy.maxLik

barrier.value value of the penalty function at maximum
code code for the stopping condition
message a short message, describing the stopping condition
outer.iterations number of iterations in the SUMT step

Note

In case of equality constraints, it may be more efficient to enclose the function in a wrapper func-
tion. The wrapper calculates full set of parameters based on a smaller set of parameters, and the
constraints.

Author(s)

Ott Toomet, Arne Henningsen

See Also

sumt in package clue.

Examples

We maximize exp(-x^2 - y^2) where x+y = 1
hatf <- function(theta) {

x <- theta[1]
y <- theta[2]
exp(-(x^2 + y^2))
Note: you may prefer exp(- theta %*% theta) instead

}
use constraints: x + y = 1
A <- matrix(c(1, 1), 1, 2)
B <- -1
res <- sumt(hatf, start=c(0,0), maxRoutine=maxNR,

constraints=list(eqA=A, eqB=B))
print(summary(res))

tidy.maxLik tidy and glance methods for maxLik objects

Description

These methods return summary information about the estimated model. Both require the tibble
package to be installed.

Usage

S3 method for class 'maxLik'
tidy(x, ...)
S3 method for class 'maxLik'
glance(x, ...)

tidy.maxLik 53

Arguments

x object of class ’maxLik’.

... Not used.

Value

For tidy(), a tibble with columns:

term The name of the estimated parameter (parameters are sequentially numbered if names miss-
ing).

estimate The estimated parameter.

std.error The standard error of the estimate.

statistic The z-statistic of the estimate.

p.value The p-value.

This is essentially the same table as summary-method prints, just in form of a tibble (data frame).

For glance(), a one-row tibble with columns:

df The degrees of freedom of the model.

logLik The log-likelihood of the model.

AIC Akaike’s Information Criterion for the model.

nobs The number of observations, if this is available, otherwise NA.

Author(s)

David Hugh-Jones

See Also

The functions tidy and glance in package generics, and summary to display the “standard” sum-
mary information.

Examples

Example with a single parameter
t <- rexp(100, 2)
loglik <- function(theta) log(theta) - theta*t
a <- maxLik(loglik, start=2)
tidy(a)
glance(a)
Example with a parameter vector
x <- rnorm(100)
loglik <- function(theta) {

dnorm(x, mean=theta[1], sd=theta[2], log=TRUE)
}
a <- maxLik(loglik, start=c(mu=0, sd=1))
tidy(a)
glance(a)

54 vcov.maxLik

vcov.maxLik Variance Covariance Matrix of maxLik objects

Description

Extract variance-covariance matrices from maxLik objects.

Usage

S3 method for class 'maxLik'
vcov(object, eigentol=1e-12, ...)

Arguments

object a ‘maxLik’ object.

eigentol eigenvalue tolerance, controlling when the Hessian matrix is treated as numeri-
cally singular.

... further arguments (currently ignored).

Details

The standard errors are only calculated if the ratio of the smallest and largest eigenvalue of the
Hessian matrix is less than “eigentol”. Otherwise the Hessian is treated as singular.

Value

the estimated variance covariance matrix of the coefficients. In case of the estimated Hessian is
singular, it’s values are Inf. The values corresponding to fixed parameters are zero.

Author(s)

Arne Henningsen, Ott Toomet

See Also

vcov, maxLik.

Examples

ML estimation of exponential random variables
t <- rexp(100, 2)
loglik <- function(theta) log(theta) - theta*t
gradlik <- function(theta) 1/theta - t
hesslik <- function(theta) -100/theta^2
Estimate with numeric gradient and hessian
a <- maxLik(loglik, start=1, control=list(printLevel=2))
vcov(a)
Estimate with analytic gradient and hessian

vcov.maxLik 55

a <- maxLik(loglik, gradlik, hesslik, start=1)
vcov(a)

Index

∗ debugging
condiNumber, 9

∗ math
compareDerivatives, 7
condiNumber, 9
numericGradient, 42

∗ methods
activePar, 4
AIC.maxLik, 5
bread.maxLik, 6
gradient, 13
hessian, 15
logLik.maxLik, 16
maximType, 24
maxValue, 38
nIter, 39
nObs.maxLik, 40
nParam.maxim, 41
objectiveFn, 44
returnCode, 44
storedValues, 46
summary.maxim, 47
vcov.maxLik, 54

∗ models
summary.maxLik, 49

∗ optimize
activePar, 4
fnSubset, 12
hessian, 15
maxBFGS, 17
maximType, 24
maxLik, 25
maxNR, 27
maxSGA, 33
objectiveFn, 44
sumt, 50

∗ print
summary.maxim, 47

∗ utilities

compareDerivatives, 7
condiNumber, 9
fnSubset, 12
MaxControl-class, 21
numericGradient, 42
returnCode, 44

activePar, 4, 15
AIC, 26
AIC.maxLik, 5

bread, 6, 7
bread (bread.maxLik), 6
bread.maxLik, 6

coef, 3, 26
coef.maxim (AIC.maxLik), 5
coef.maxLik (AIC.maxLik), 5
coef.summary.maxLik (summary.maxLik), 49
compareDerivatives, 3, 7, 31, 43
condiNumber, 3, 9, 15
confint, 11, 50
confint (confint.maxLik), 11
confint.maxLik, 11
constrOptim2, 19, 28, 34

deriv, 9, 43
dlmMLE, 13

estfun, 14
estfun (gradient), 13

fnSubset, 12

glance, 50, 53
glance.maxLik (tidy.maxLik), 52
gradient, 13

hessian, 14, 15

kappa, 10

56

INDEX 57

logLik, 26
logLik.maxLik, 16
logLik.summary.maxLik (logLik.maxLik),

16

maxAdam (maxSGA), 33
maxBFGS, 3, 17, 25, 26, 32, 37, 46
maxBFGSR, 20, 25
maxBFGSR (maxNR), 27
maxBHHH, 2, 19, 20, 25, 32
maxBHHH (maxNR), 27
maxCG, 25
maxCG (maxBFGS), 17
MaxControl, 20, 31, 36
maxControl, 35, 47
maxControl (MaxControl-class), 21
maxControl,MaxControl-method

(MaxControl-class), 21
maxControl,maxim-method

(MaxControl-class), 21
maxControl,missing-method

(MaxControl-class), 21
MaxControl-class, 21
maximType, 24
maxLik, 3, 4, 6, 7, 10, 11, 13–15, 17, 25, 32,

37–41, 46, 50, 54
maxLik-package, 2, 23
maxNM, 25
maxNM (maxBFGS), 17
maxNR, 4, 13, 18, 20–22, 24–26, 27, 37–40, 46,

48, 50, 51
maxSANN, 25
maxSANN (maxBFGS), 17
maxSGA, 3, 33, 45–47
maxValue, 38

nIter, 26, 39
nlm, 20, 26, 32
nObs, 4, 41, 42
nObs.maxLik, 40
nParam, 41
nParam.maxim, 41
numericGradient, 9, 42
numericHessian (numericGradient), 42
numericNHessian (numericGradient), 42

objectiveFn, 44
optim, 2, 3, 13, 17–22, 26, 32, 37

print.maxLik (maxLik), 25

print.summary.maxim (summary.maxim), 47

returnCode, 44, 48
returnMessage, 48
returnMessage (returnCode), 44

show,MaxControl-method
(MaxControl-class), 21

stdEr, 3, 11, 26
stdEr.maxLik (AIC.maxLik), 5
storedParameters, 22, 35
storedParameters (storedValues), 46
storedValues, 22, 35, 46
summary, 3, 11, 26, 53
summary.maxim, 47
summary.maxLik, 49
sumt, 19, 28, 34, 50, 52

tidy, 50, 53
tidy.maxLik, 52

vcov, 26, 54
vcov.maxLik, 54

	maxLik-package
	activePar
	AIC.maxLik
	bread.maxLik
	compareDerivatives
	condiNumber
	confint.maxLik
	fnSubset
	gradient
	hessian
	logLik.maxLik
	maxBFGS
	MaxControl-class
	maximType
	maxLik
	maxNR
	maxSGA
	maxValue
	nIter
	nObs.maxLik
	nParam.maxim
	numericGradient
	objectiveFn
	returnCode
	storedValues
	summary.maxim
	summary.maxLik
	sumt
	tidy.maxLik
	vcov.maxLik
	Index

