## ----set_options, include = FALSE--------------------------------------------- knitr::opts_chunk$set( eval = FALSE, # Chunks of codes will not be evaluated by default collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5, # Set device size at rendering time (when plots are generated) fig.align = "center" ) ## ----setup, eval = TRUE, include = FALSE-------------------------------------- library(deepSTRAPP) is_dev_version <- function (pkg = "deepSTRAPP") { # # Check if ran on CRAN # not_cran <- identical(Sys.getenv("NOT_CRAN"), "true") # || interactive() # Version number check version <- tryCatch(as.character(utils::packageVersion(pkg)), error = function(e) "") dev_version <- grepl("\\.9000", version) # not_cran || dev_version return(dev_version) } ## ----adjust_dpi_CRAN, include = FALSE, eval = !is_dev_version()--------------- knitr::opts_chunk$set( dpi = 50 # Lower DPI to save space ) ## ----adjust_dpi_dev, include = FALSE, eval = is_dev_version()----------------- # knitr::opts_chunk$set( # dpi = 72 # Default DPI for the dev version # ) ## ----load_data_cat_3lvl------------------------------------------------------- # # ------ Step 0: Load data ------ # # # ## Load trait df # data(Ponerinae_trait_tip_data, package = "deepSTRAPP") # # dim(Ponerinae_trait_tip_data) # View(Ponerinae_trait_tip_data) # # # Extract categorical data with 3-levels # Ponerinae_cat_3lvl_tip_data <- setNames(object = Ponerinae_trait_tip_data$fake_cat_3lvl_tip_data, # nm = Ponerinae_trait_tip_data$Taxa) # # Here, data represent three types of habitats # table(Ponerinae_cat_3lvl_tip_data) # # ## Select color scheme for states (i.e., habitats) # colors_per_states <- c("forestgreen", "sienna", "goldenrod") # names(colors_per_states) <- c("arboreal", "subterranean", "terricolous") # # ## Load phylogeny with old time-calibration # data(Ponerinae_tree_old_calib, package = "deepSTRAPP") # # plot(Ponerinae_tree_old_calib) # ape::Ntip(Ponerinae_tree_old_calib) == length(Ponerinae_cat_3lvl_tip_data) # # ## Check that trait data and phylogeny are named and ordered similarly # all(names(Ponerinae_cat_3lvl_tip_data) == Ponerinae_tree_old_calib$tip.label) # # ## Reorder trait data as in phylogeny # Ponerinae_cat_3lvl_tip_data <- Ponerinae_cat_3lvl_tip_data[match(x = Ponerinae_tree_old_calib$tip.label, # table = names(Ponerinae_cat_3lvl_tip_data))] # # ## Plot data on tips for visualization # pdf(file = "./Ponerinae_cat_3lvl_data_old_calib_on_phylo.pdf", width = 20, height = 150) # # # Set plotting parameters # old_par <- par(no.readonly = TRUE) # par(mar = c(0.1,0.1,0.1,0.1), oma = c(0,0,0,0)) # bltr # # # Graph presence/absence using plotTree.datamatrix # range_map <- phytools::plotTree.datamatrix( # tree = Ponerinae_tree_old_calib, # X = as.data.frame(Ponerinae_cat_3lvl_tip_data), # fsize = 0.7, yexp = 1.1, # header = TRUE, xexp = 1.25, # colors = colors_per_states) # # # Get plot info in "last_plot.phylo" # plot_info <- get("last_plot.phylo", envir=.PlotPhyloEnv) # # # Add time line # # # Extract root age # root_age <- max(phytools::nodeHeights(Ponerinae_tree_old_calib)) # # # Define ticks # # ticks_labels <- seq(from = 0, to = 100, by = 20) # ticks_labels <- seq(from = 0, to = 120, by = 20) # axis(side = 1, pos = 0, at = (-1 * ticks_labels) + root_age, labels = ticks_labels, cex.axis = 1.5) # legend(x = root_age/2, # y = 0 - 5, adj = 0, # bty = "n", legend = "", title = "Time [My]", title.cex = 1.5) # # # Add a legend # legend(x = plot_info$x.lim[2] - 10, # y = mean(plot_info$y.lim), # # adj = c(0,0), # # x = "topleft", # legend = c("Absence", "Presence"), # pch = 22, pt.bg = c("white","gray30"), pt.cex = 1.8, # cex = 1.5, bty = "n") # # dev.off() # # # Reset plotting parameters # par(old_par) # # ## Inputs needed for Step 1 are the tip_data (Ponerinae_cat_3lvl_tip_data) and the phylogeny # ## (Ponerinae_tree_old_calib), and optionally, a color scheme (colors_per_states). # ## ----load_data_cat_3lvl_eval, eval = TRUE, echo = FALSE----------------------- ## Select color scheme for states colors_per_states <- c("forestgreen", "sienna", "goldenrod") names(colors_per_states) <- c("arboreal", "subterranean", "terricolous") ## ----prepare_trait_data_cat_3lvl---------------------------------------------- # # ------ Step 1: Prepare trait data ------ # # # ## Goal: Map trait evolution on the time-calibrated phylogeny # # # 1.1/ Fit evolutionary models to trait data using Maximum Likelihood. # # 1.2/ Select the best fitting model comparing AICc. # # 1.3/ Infer ancestral characters estimates (ACE) at nodes. # # 1.4/ Run stochastic mapping simulations to generate evolutionary histories # # compatible with the best model and inferred ACE. # # 1.5/ Infer ancestral states along branches. # # - Compute posterior frequencies of each state to produce a `densityMap` for each state. # # library(deepSTRAPP) # # # All these actions are performed by a single function: deepSTRAPP::prepare_trait_data() # ?deepSTRAPP::prepare_trait_data() # # # Run prepare_trait_data with default options # # For categorical trait, an ARD model is assumed by default. # Ponerinae_trait_object <- prepare_trait_data( # tip_data = Ponerinae_cat_3lvl_tip_data, # phylo = Ponerinae_tree_old_calib, # trait_data_type = "categorical", # colors_per_levels = colors_per_states, # nb_simulations = 100, # Reduce number of simulations to save time # seed = 1234) # Set seed for reproducibility # # # Explore output # str(Ponerinae_trait_object, 1) # # # Extract the densityMaps representing the posterior probabilities of states on the phylogeny # Ponerinae_densityMaps <- Ponerinae_trait_object$densityMaps # # # Plot ancestral states as a single continuously mapped phylogeny overlaying # # all state posterior probabilities # plot_densityMaps_overlay(Ponerinae_densityMaps, # colors_per_levels = colors_per_states) # # # Plot posterior probabilities of each state on an independent densityMap # # Plot densityMap for state = "arboreal" # plot(Ponerinae_densityMaps[[1]]) # # Plot densityMap for state = "subterranean" # plot(Ponerinae_densityMaps[[2]]) # # Plot densityMap for state = "terricolous" # plot(Ponerinae_densityMaps[[3]]) # # # Extract the Ancestral Character Estimates (ACE) = trait values at nodes # Ponerinae_ACE <- Ponerinae_trait_object$ace # head(Ponerinae_ACE) # # # ## Inputs needed for Step 2 are the densityMaps, and optionally, the tip_data # ## (Ponerinae_cat_3lvl_tip_data), and the ACE (Ponerinae_ACE) # # ## ----prepare_diversification_data_cat_3lvl------------------------------------ # # ------ Step 2: Prepare diversification data ------ # # # ## Goal: Map evolution of diversification rates and regime shifts on the time-calibrated phylogeny # # # Run a BAMM (Bayesian Analysis of Macroevolutionary Mixtures) # # # You need the BAMM C++ program installed in your machine to run this step. # # See the BAMM website: http://bamm-project.org/ and the companion R package [BAMMtools]. # # # 2.1/ Set BAMM - Record BAMM settings and generate all input files needed for BAMM. # # 2.2/ Run BAMM - Run BAMM and move output files in dedicated directory. # # 2.3/ Evaluate BAMM - Produce evaluation plots and ESS data. # # 2.4/ Import BAMM outputs - Load `BAMM_object` in R and subset posterior samples. # # 2.5/ Clean BAMM files - Remove files generated during the BAMM run. # # # All these actions are performed by a single function: deepSTRAPP::prepare_diversification_data() # ?deepSTRAPP::prepare_diversification_data() # # # Run BAMM workflow with deepSTRAPP # ## This step is time-consuming. You can skip it and load directly the result if needed # Ponerinae_BAMM_object_old_calib <- prepare_diversification_data( # BAMM_install_directory_path = "./software/bamm-2.5.0/", # To adjust to your own path to BAMM # phylo = Ponerinae_tree_old_calib, # prefix_for_files = "Ponerinae_old_calib", # seed = 1234, # Set seed for reproducibility # numberOfGenerations = 10^7, # Set high for optimal run, but will take a long time # BAMM_output_directory_path = "./BAMM_outputs/") # # # Load directly the result # data(Ponerinae_BAMM_object_old_calib) # # This dataset is only available in development versions installed from GitHub. # # It is not available in CRAN versions. # # Use remotes::install_github(repo = "MaelDore/deepSTRAPP") to get the latest development version. # # # Explore output # str(Ponerinae_BAMM_object_old_calib, 1) # # Record the regime shift events and macroevolutionary regimes parameters across posterior samples # str(Ponerinae_BAMM_object_old_calib$eventData, 1) # # Mean speciation rates at tips aggregated across all posterior samples # head(Ponerinae_BAMM_object_old_calib$meanTipLambda) # # Mean extinction rates at tips aggregated across all posterior samples # head(Ponerinae_BAMM_object_old_calib$meanTipMu) # # # Plot mean net diversification rates and regime shifts on the phylogeny # plot_BAMM_rates(Ponerinae_BAMM_object_old_calib, # labels = FALSE, legend = TRUE) # # ## Input needed for Step 3 is the BAMM_object (Ponerinae_BAMM_object) # ## ----run_deepSTRAPP_cat_3lvl-------------------------------------------------- # # ------ Step 3: Run a deepSTRAPP workflow ------ # # # ## Goal: Extract traits, diversification rates and regimes at a given time in the past # ## to test for differences with a STRAPP test # # # 3.1/ Extract trait data at a given time in the past ('focal_time') # # 3.2/ Extract diversification rates and regimes at a given time in the past ('focal_time') # # 3.3/ Compute STRAPP test # # 3.4/ Repeat previous actions for many timesteps along evolutionary time # # # Because we have three levels as trait data, two types of tests can be performed: # # - Overall Kruskal-Wallis tests that test for rate differences across all states at once. # # - post hoc pairwise Dunn's tests that test for rate differences between pairs of states. # # Here, we select 'posthoc_pairwise_tests = TRUE' to conduct post hoc pairwise tests # # in addition to overall Kruskal-Wallis tests. # # # All these actions are performed by a single function: # # For a single 'focal_time': deepSTRAPP::run_deepSTRAPP_for_focal_time() # # For multiple 'time_steps': deepSTRAPP::run_deepSTRAPP_over_time() # ?deepSTRAPP::run_deepSTRAPP_for_focal_time() # ?deepSTRAPP::run_deepSTRAPP_over_time() # # ## Set for five time steps of 5 My. Will generate deepSTRAPP workflows for 0 to 40 Mya. # time_step_duration <- 5 # time_range <- c(0, 40) # # # Run deepSTRAPP on net diversification rates # ## This step is time-consuming. You can skip it and load directly the result if needed # Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40 <- run_deepSTRAPP_over_time( # densityMaps = Ponerinae_densityMaps, # ace = Ponerinae_ACE, # tip_data = Ponerinae_cat_3lvl_data, # trait_data_type = "categorical", # BAMM_object = Ponerinae_BAMM_object_old_calib, # time_range = time_range, # time_step_duration = time_step_duration, # seed = 1234, # Set seed for reproducibility # alpha = 0.10, # Set significance threshold to use for tests # posthoc_pairwise_tests = TRUE, # To run pairwise posthoc tests between pairs of states # # Needed to obtain STRAPP stats and plot evaluation histograms (See 4.2) # return_perm_data = TRUE, # # Needed to get trait data and plot rates through time (See 4.3) # extract_trait_data_melted_df = TRUE, # # Needed to get diversification data and plot rates through time (See 4.3) # extract_diversification_data_melted_df = TRUE, # # Needed to obtain STRAPP stats and plot evaluation histograms (See 4.2) # return_STRAPP_results = TRUE, # # Needed to plot updated densityMaps (See 4.4) # return_updated_trait_data_with_Map = TRUE, # # Needed to map diversification rates on updated phylogenies (See 4.5) # return_updated_BAMM_object = TRUE, # verbose = TRUE, # verbose_extended = TRUE) # # # Load the deepSTRAPP output summarizing results for 0 to 40 My # data(Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, package = "deepSTRAPP") # # This dataset is only available in development versions installed from GitHub. # # It is not available in CRAN versions. # # Use remotes::install_github(repo = "MaelDore/deepSTRAPP") to get the latest development version. # # ## Explore output # str(Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, max.level = 1) # # # See next step for how to generate plots from those outputs # # # Display test summaries # # Can be passed down to [deepSTRAPP::plot_STRAPP_pvalues_over_time()] to generate a plot # # showing the evolution of the test results across time # # # For overall Kruskal-Wallis tests over time-steps # Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$pvalues_summary_df # # For posthoc pairwise Dunn's tests over time-steps # Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$pvalues_summary_df_for_posthoc_pairwise_tests # # # Access STRAPP test results # # Can be passed down to [deepSTRAPP::plot_histograms_STRAPP_tests_over_time()] to generate plot # # showing the null distribution of the test statistics # # # For overall Kruskal-Wallis tests over time-steps # str(Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$STRAPP_results, max.level = 2) # # For posthoc pairwise Dunn's tests over time-steps # # Results are found in the '$posthoc_pairwise_tests' element of each 'STRAPP_result'. # str(lapply(X = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$STRAPP_results, # FUN = function (x) { x$posthoc_pairwise_tests } ), max.level = 3) # # # Access trait data in a melted data.frame # head(Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$trait_data_df_over_time) # # Access the diversification data in a melted data.frame # head(Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$diversification_data_df_over_time) # # Both can be passed down to [deepSTRAPP::plot_rates_through_time()] to generate a plot # # showing the evolution of diversification rates though time in relation to trait values # # # Access updated densityMaps for each focal time # # Can be used to plot densityMaps with branch cut-off at focal time # # with [deepSTRAPP::plot_densityMaps_overlay()] # str(Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_trait_data_with_Map_over_time, max.level = 2) # # # Access updated BAMM_object for each focal time # # Can be used to map rates and regime shifts on phylogeny with branch cut-off # # at focal time with [deepSTRAPP::plot_BAMM_rates()] # str(Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_BAMM_objects_over_time, max.level = 2) # # ## Input needed for Step 4 is the deepSTRAPP object (Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40) # ## ----plot_pvalues_cat_3lvl---------------------------------------------------- # # ------ Step 4: Plot results ------ # # # ## Goal: Summarize the outputs in meaningful plots # # # 4.1/ Plot evolution of STRAPP tests p-values through time # # 4.2/ Plot histogram of STRAPP test stats # # 4.3/ Plot evolution of rates through time in relation to trait values # # 4.4/ Plot rates vs. states across branches for a given 'focal_time' # # 4.5/ Plot updated densityMaps mapping trait evolution for a given 'focal_time' # # 4.6/ Plot updated diversification rates and regimes for a given 'focal_time' # # 4.7/ Combine 4.5 and 4.6 to plot both mapped phylogenies with trait evolution (4.5) # # and diversification rates and regimes (4.6). # # # Each plot is achieved through a dedicated function # # # Load the deepSTRAPP output summarizing results for 0 to 40 My # data(Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, package = "deepSTRAPP") # # This dataset is only available in development versions installed from GitHub. # # It is not available in CRAN versions. # # Use remotes::install_github(repo = "MaelDore/deepSTRAPP") to get the latest development version. # # ### 4.1/ Plot evolution of STRAPP tests p-values through time #### # # # ?deepSTRAPP::plot_STRAPP_pvalues_over_time() # # ## 4.1.1/ Plot results of overall Kruskal-Wallis tests over time # # deepSTRAPP::plot_STRAPP_pvalues_over_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, # alpha = 0.10) # # # # This is the main output of deepSTRAPP. They show the evolution of the significance of # # the STRAPP tests over time. # # Here, overall Kruskal-Wallis tests for rate difference across all states (i.e., habitats) are shown. # # This example highlights the importance of deepSTRAPP as the significance of # # STRAPP tests change over time. # # Differences in net diversification rates are not significant in the present # # (assuming a significant threshold of alpha = 0.10). # # Meanwhile, rates are significantly different in the past between 5 My to 15 My (the green area). # # This result supports the idea that differences in biodiversity across habitats # # (i.e., "arboreal" vs. , "subterranean" vs. "terricolous" ants) can be explained # # by differences of diversification rates that was detected in the past. Without use of deepSTRAPP, # # this conclusion would not have been supported by current diversification rates alone. # # # Note: This is NOT true ecological data. It is not a valid scientific result, # # but an illustration of the use of deepSTRAPP. # # # A next step is to look in details into rate differences across pairs of states (i.e., habitats). # # For this, we can plot the results of the post hoc pairwise tests. # # ## 4.1.2/ Plot results of posthoc pairwise Dunn's tests over time # # deepSTRAPP::plot_STRAPP_pvalues_over_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, # plot_posthoc_tests = TRUE) # To plot results of post hoc pairwise tests instead # # # Here, post hoc pairwise Dunn's tests for rate difference between pairs of states are shown. # # These results show that differences in rates were only detected between "arboreal" # # and "terricolous" ants between 2 My to 15 My (the green area), providing more detailed insights on # # how type of habitats may affect diversification rates. # # Note: This is NOT true ecological data. It is not a valid scientific result, # # but an illustration of the use of deepSTRAPP. # # This highlights the critical use of deepSTRAPP in revealing differences in diversification rates # # occurring in the past, that may drive current biodiversity patterns. # ## ----plot_pvalues_cat_3lvl_eval_dev, eval = is_dev_version(), echo = FALSE---- # # # Load the deepSTRAPP output summarizing results for 0 to 40 My # data(Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, package = "deepSTRAPP") # # # Produce the results of overall Kruskal-Wallis tests over time # ggplot_STRAPP_pvalues <- deepSTRAPP::plot_STRAPP_pvalues_over_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, # alpha = 0.10, display_plot = FALSE) # # Adjust main title size # ggplot_STRAPP_pvalues <- ggplot_STRAPP_pvalues + # ggplot2::theme(plot.title = ggplot2::element_text(size = 18)) # # Print plot # print(ggplot_STRAPP_pvalues) # # # Produce the results of posthoc pairwise Dunn's tests over time # ggplot_STRAPP_pvalues_posthoc <- deepSTRAPP::plot_STRAPP_pvalues_over_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, # plot_posthoc_tests = TRUE, # To plot results of post hoc pairwise tests instead # display_plot = FALSE) # # Adjust main title size + legend # ggplot_STRAPP_pvalues_posthoc <- ggplot_STRAPP_pvalues_posthoc + # ggplot2::theme( # plot.title = ggplot2::element_text(size = 18), # legend.title = ggplot2::element_text(size = 12), # legend.position.inside = c(0.30, 0.40), # legend.text = ggplot2::element_text(size = 9)) # # Print plot # print(ggplot_STRAPP_pvalues_posthoc) # ## ----plot_pvalues_cat_3lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"---- # Plot pre-rendered graph knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.1_plot_pvalues_1.PNG") knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.1_plot_pvalues_2.PNG") ## ----plot_histogram_STRAPP_tests_overall_cat_3lvl----------------------------- # ### 4.2/ Plot histogram of STRAPP test stats #### # # # Plot an histogram of the distribution of the test statistics used to assess # # the significance of STRAPP tests # # For a single 'focal_time': deepSTRAPP::plot_histogram_STRAPP_test_for_focal_time() # # For multiple 'time_steps': deepSTRAPP::plot_histograms_STRAPP_tests_over_time() # # # ?deepSTRAPP::plot_histogram_STRAPP_test_for_focal_time # # ?deepSTRAPP::plot_histograms_STRAPP_tests_over_time # # ## These functions are used to provide visual illustration of the results of each STRAPP test. # # They can be used to complement the provision of the statistical results summarized in Step 3. # # # Display the time-steps # Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$time_steps # # ## 4.2.1/ Plot results from overall Kruskal-Wallis tests across all states #### # # # Plot the histogram of overall Kruskal-Wallis stats for time-step n°3 = 10 My # plot_histogram_STRAPP_test_for_focal_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, # focal_time = 10) # # # The black line represents the expected value under the null hypothesis H0 # # => Δ Kruskal-Wallis H-stat = 0. # # The histogram shows the distribution of the test statistics as observed across # # the 1000 posterior samples from BAMM. # # The red line represents the significance threshold for which 90% of the observed data # # exhibited a higher value than expected. # # Since this red line is below the null expectation (quantile 10% = 6.942), # # the test is significant for a value of alpha = 0.10. # # However, this significance must be discussed in regards to the relatively generous # # significance threshold chosen here (alpha = 0.10). # # # Plot the histograms of overall Kruskal-Wallis stats for all time-steps # plot_histograms_STRAPP_tests_over_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40) # # ## 4.2.2/ Plot results from posthoc pairwise Dunn's tests between pairs of states #### # # # Plot the histogram of posthoc pairwise Dunn's stats for time-step n°3 = 10 My # plot_histogram_STRAPP_test_for_focal_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, # plot_posthoc_tests = TRUE, # To plot results of post hoc pairwise tests instead # focal_time = 10) # # # Each facet represent a pairwise post hoc test conducted across a given pair of states. # # In each facet, the black line represents the expected value under the null hypothesis H0 # # => Δ Dunn's Z-stat = 0. # # The red line represents the significance threshold for which 90% of the observed data # # exhibited a higher value than expected. # # This red line is below the null expectation for the "arboreal != subterranean" and # # "subterranean != terricolous" pairs. This means the test is not significant for these pairs of habitats. # # The red line is above the null expectation for the "arboreal != terricolous" pair # # (Q10% = 1.695, p = 0.025). This means the test is significant for this pair of habitat. # # This is the pair that is driving the significance detected in the previous plot # # when looking at differences across all habitats. # # This significance must still be discussed in regards to the relatively generous # # significance threshold chosen here (alpha = 0.10). # # # Plot the histograms of posthoc pairwise Dunn's stats for all time-steps # plot_histograms_STRAPP_tests_over_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, # plot_posthoc_tests = TRUE) # To plot results of post hoc pairwise tests instead # ## ----plot_histogram_STRAPP_tests_cat_3lvl_eval_dev, fig.width = 8.5, fig.height = 6, out.width = "100%", eval = is_dev_version(), echo = FALSE---- # # Plot the histogram of test stats for time-step n°3 = 10 My # plot_histogram_STRAPP_test_for_focal_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, # focal_time = 10) # # # Plot the histogram of test stats for time-step n°3 = 10 My # ggplot_STRAPP_pvalues_posthoc <- plot_histogram_STRAPP_test_for_focal_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, # plot_posthoc_tests = TRUE, # To plot results of post hoc pairwise tests instead # focal_time = 10) ## ----plot_histogram_STRAPP_tests_cat_3lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"---- # Plot pre-rendered graph knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.2_plot_histograms_1.PNG") knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.2_plot_histograms_2.PNG") ## ----plot_rates_through_time_cat_3lvl----------------------------------------- # ### 4.3/ Plot evolution of rates through time ~ trait data #### # # # ?deepSTRAPP::plot_rates_through_time() # # # Generate ggplot # plot_rates_through_time(deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, # colors_per_levels = colors_per_states, # plot_CI = TRUE) # # # This plot helps to visualize how differences in rates evolved over time. # # # You can see that both type of ants "arboreal" and "terricolous" had fairly different rates over time, # # with differences detected as significant between 2 to 15 My. # # Meanwhile, "subterranean" ants exhibited intermediate diversification levels. # # This plot, alongside results of deepSTRAPP, supports the Diversification Rate Hypothesis in showing # # how "terricolous" ant lineages may have accumulated faster, especially between 2 to 15 My. # # It hints that "terricolous" ant lineages are fairly recent as no lineage in this state/habitat # # is inferred to have existed before 25 Mya. # # The larger uncertainty across estimates of diversification rates for "terricolous" ant lineages # # also hints at their relatively lower number due to their recent emergence. # # # Note: This is NOT true ecological data. It is not a valid scientific result, # # but an illustration of the use of deepSTRAPP. # ## ----plot_rates_through_time_cat_3lvl_eval_dev, fig.width = 8.5, out.width = "100%", eval = is_dev_version(), echo = FALSE---- # # Produce RTT plot # ggplot_RTT_list <- plot_rates_through_time(deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, # colors_per_levels = colors_per_states, # plot_CI = TRUE, display_plot = FALSE) # # Adjust title size # ggplot_RTT <- ggplot_RTT_list$rates_TT_ggplot + # ggplot2::theme(plot.title = ggplot2::element_text(size = 18), # axis.title = ggplot2::element_text(size = 16)) # # Print plot # print(ggplot_RTT) # ## ----plot_rates_through_time_cat_3lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"---- # Plot pre-rendered graph knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.3_plot_rates_through_time.PNG") ## ----plot_rates_vs_traits_cat_3lvl-------------------------------------------- # ### 4.4/ Plot rates vs. states across branches for a given focal time #### # # # ?deepSTRAPP::plot_rates_vs_trait_data_for_focal_time() # # ?deepSTRAPP::plot_rates_vs_trait_data_over_time() # # # This plot help to visualize differences in rates vs. states across all branches # # found at specific time-steps (i.e., 'focal_time'). # # # Generate ggplot for time = 10 My # plot_rates_vs_trait_data_for_focal_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, # focal_time = 10, # colors_per_levels = colors_per_states) # # # Here we focus on T = 10 My to highlight the differences detected in the previous steps. # # You can see that "terricolous" ants tend to have higher rates than "subterranean" ants, # # who tends to have higher rates than "arboreal" ants, at this time-step. # # This plot, alongside other results of deepSTRAPP, supports the Diversification Rate Hypothesis in showing # # how "terricolous" ant lineages may have accumulated faster, especially between 5 to 15 My. # # Additionally, the plot displays summary statistics for the STRAPP test associated with the data shown: # # * An observed statistic computed across the mean rates and trait states (i.e., habitats) shown on the plot. # # Here, H-stat obs = 374.82. Please note that this is not the statistic of the STRAPP test itself, # # which is conducted across all BAMM posterior samples. # # * The quantile of null statistic distribution at the significant threshold used to define test significance. # # The test will be considered significant (i.e., the null hypothesis is rejected) # # if this value is higher than zero, as shown on the histogram in Section 4.2. # # Here, Q10% = 6.942, so the test is significant (according to this significance threshold). # # * The p-value of the associated STRAPP test. Here, p = 0.071. # # # Plot rates vs. trait data for all time-steps # plot_rates_vs_trait_data_over_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, # colors_per_levels = colors_per_states) # ## ----plot_rates_vs_traits_cat_3lvl_eval_dev, fig.height = 7, fig.width = 8.5, out.width = "100%", eval = is_dev_version(), echo = FALSE---- # # Generate ggplot for time = 10 My # plot_rates_vs_trait_data_for_focal_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, # focal_time = 10, # colors_per_levels = colors_per_states) ## ----plot_rates_vs_traits_cat_3lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"---- # Plot pre-rendered graph knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.4_plot_rates_vs_traits.PNG") ## ----plot_updated_densityMaps_cat_3lvl---------------------------------------- # ### 4.5/ Plot updated densityMaps mapping trait evolution for a given 'focal_time' #### # # # ?deepSTRAPP::plot_densityMaps_overlay() # # ## These plots help to visualize the evolution of states across the phylogeny, # ## and to focus on tip values at specific time-steps. # # # Display the time-steps # Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$time_steps # # ## The next plot shows the evolution of states across the whole phylogeny (100-0 My). # # # Plot initial densityMaps (t = 0) # densityMaps_0My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_trait_data_with_Map_over_time[[1]] # plot_densityMaps_overlay(densityMaps_0My$densityMaps, # colors_per_levels = colors_per_states, # fsize = 0.1) # Reduce tip label size # title(main = "Trait evolution for 100-0 My") # # # It highlights the relatively recent emergence of "terricolous" ants (in this fake illustrative dataset), # # where no lineages exhibit this state in deep times. # # ## The next plot shows the evolution of states from root to 10 Mya (100-10 My). # # # Plot updated densityMaps for time-step n°3 = 10 My # densityMaps_10My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_trait_data_with_Map_over_time[[3]] # plot_densityMaps_overlay(densityMaps_10My$densityMaps, # colors_per_levels = colors_per_states, # fsize = 0.1) # Reduce tip label size # title(main = "Trait evolution for 100-10 My") # # ## The next plot shows the evolution of states from root to 40 Mya (100-40 My). # # # Plot updated densityMaps for time-step n°9 = 40 My # densityMaps_40My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_trait_data_with_Map_over_time[[9]] # plot_densityMaps_overlay(densityMaps = densityMaps_40My$densityMaps, # colors_per_levels = colors_per_states, # fsize = 0.2) # Reduce tip label size # title(main = "Trait evolution for 100-40 My") # # # In this simulated illustrative dataset, no ant lineages are inferred in "terricolous" habitats 40 Mya. # ## ----plot_updated_densityMaps_cat_3lvl_eval_dev, fig.height = 7, eval = is_dev_version(), echo = FALSE---- # # Plot initial densityMaps (t = 0) # densityMaps_0My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_trait_data_with_Map_over_time[[1]] # plot_densityMaps_overlay(densityMaps_0My$densityMaps, # colors_per_levels = colors_per_states, # cex_pies = 0.3, # fsize = 0.1) # Reduce tip label size # title(main = "Trait evolution for 100-0 My") # # # Plot updated densityMaps for time-step n°9 = 40 My # densityMaps_40My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_trait_data_with_Map_over_time[[9]] # plot_densityMaps_overlay(densityMaps_40My$densityMaps, # colors_per_levels = colors_per_states, # cex_pies = 0.4, # fsize = 0.2) # Reduce tip label size # title(main = "Trait evolution for 100-40 My") ## ----plot_updated_densityMaps_cat_3lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"---- # Plot pre-rendered graph knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.5_plot_updated_densityMaps_1.PNG") knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.5_plot_updated_densityMaps_2.PNG") ## ----plot_BAMM_rates_cat_3lvl------------------------------------------------- # ### 4.6/ Plot updated diversification rates and regimes for a given 'focal_time' #### # # # ?deepSTRAPP::plot_BAMM_rates() # # ## These plots help to visualize the evolution of diversification rates across the phylogeny, # ## and to focus on tip values at specific time-steps. # # # Display the time-steps # Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$time_steps # # # Extract root age # root_age <- max(phytools::nodeHeights(Ponerinae_tree_old_calib)[,2]) # # ## The next plot shows the evolution of diversification rates across the whole phylogeny (100-0 My). # # # Plot diversification rates on initial phylogeny (t = 0) # BAMM_map_0My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_BAMM_objects_over_time[[1]] # plot_BAMM_rates(BAMM_map_0My, labels = FALSE, par.reset = FALSE) # abline(v = root_age - 10, col = "red", lty = 2) # Show where the phylogeny will be cut at 10 Mya # abline(v = root_age - 40, col = "red", lty = 2) # Show where the phylogeny will be cut at 40 Mya # title(main = "BAMM rates for 100-0 My") # # ## The next plot shows the evolution of diversification rates from root to 10 Mya (100-10 My). # # # Plot diversification rates on updated phylogeny for time-step n°3 = 10 My # BAMM_map_10My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_BAMM_objects_over_time[[3]] # plot_BAMM_rates(BAMM_map_10My, labels = FALSE, # colorbreaks = BAMM_map_10My$initial_colorbreaks$net_diversification) # title(main = "BAMM rates for 100-10 My") # # ## The next plot shows the evolution of diversification rates from root to 40 Mya (100-40 My). # # # Plot diversification rates on updated phylogeny for time-step n°9 = 40 My # BAMM_map_40My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_BAMM_objects_over_time[[9]] # plot_BAMM_rates(BAMM_map_40My, labels = FALSE, # colorbreaks = BAMM_map_40My$initial_colorbreaks$net_diversification) # title(main = "BAMM rates for 100-40 My") # ## ----plot_BAMM_rates_cat_3lvl_eval_dev, eval = is_dev_version(), echo = FALSE---- # old_par <- par(no.readonly = TRUE) # par(mfrow = c(1, 2)) # # # Plot diversification rates on initial phylogeny (t = 0) # BAMM_map_0My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_BAMM_objects_over_time[[1]] # plot_BAMM_rates(BAMM_map_0My, labels = FALSE, legend = TRUE, par.reset = FALSE) # abline(v = max(phytools::nodeHeights(Ponerinae_tree_old_calib)[,2]) - 10, col = "red", lty = 2) # Show where the phylogeny will be cut at 10 Mya # title(main = "BAMM rates for 100-0 My") # # # Plot diversification rates on updated phylogeny for time-step n°3 = 10 My # BAMM_map_10My <- Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$updated_BAMM_objects_over_time[[3]] # plot_BAMM_rates(BAMM_map_10My, labels = FALSE, legend = TRUE, # colorbreaks = BAMM_map_10My$initial_colorbreaks$net_diversification) # title(main = "BAMM rates for 100-10 My") # # par(old_par) ## ----plot_BAMM_rates_cat_3lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"---- # Plot pre-rendered graph knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.6_plot_BAMM_rates.PNG") ## ----plot_traits_vs_rates_on_phylogeny_cat_3lvl------------------------------- # ### 4.7/ Plot both trait evolution and diversification rates and regimes updated for a given 'focal_time' #### # # # ?deepSTRAPP::plot_traits_vs_rates_on_phylogeny_for_focal_time() # # ## These plots help to visualize simultaneously the evolution of trait and diversification rates # ## across the phylogeny, and to focus on tip values at specific time-steps. # # # Display the time-steps # Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40$time_steps # # ## The next plot shows the evolution of states and rates across the whole phylogeny (100-0 My). # # # Plot both mapped phylogenies in the present (t = 0) # plot_traits_vs_rates_on_phylogeny_for_focal_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, # focal_time = 0, # ftype = "off", lwd = 0.7, # colors_per_levels = colors_per_states, # labels = FALSE, legend = FALSE, # par.reset = FALSE) # # ## The next plot shows the evolution of states and rates from root to 10 Mya (100-10 My). # # # Plot both mapped phylogenies for time-step n°3 = 10 My # plot_traits_vs_rates_on_phylogeny_for_focal_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, # focal_time = 10, # ftype = "off", lwd = 1.2, # colors_per_levels = colors_per_states, # labels = FALSE, legend = FALSE, # par.reset = FALSE) # # ## The next plot shows the evolution of states and rates from root to 40 Mya (100-40 My). # # # Plot both mapped phylogenies for time-step n°9 = 40 My # plot_traits_vs_rates_on_phylogeny_for_focal_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, # focal_time = 40, # ftype = "off", lwd = 1.2, # colors_per_levels = colors_per_states, # labels = FALSE, legend = FALSE, # par.reset = FALSE) # ## ----plot_traits_vs_rates_on_phylogeny_cat_3lvl_eval_dev, fig.height = 7, eval = is_dev_version(), echo = FALSE---- # # # Plot both mapped phylogenies in the present (t = 0) # plot_traits_vs_rates_on_phylogeny_for_focal_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, # focal_time = 0, # ftype = "off", lwd = 0.7, # colors_per_levels = colors_per_states, # labels = FALSE, legend = FALSE, # par.reset = FALSE) # # # Plot both mapped phylogenies for time-step n°9 = 40 My # plot_traits_vs_rates_on_phylogeny_for_focal_time( # deepSTRAPP_outputs = Ponerinae_deepSTRAPP_cat_3lvl_old_calib_0_40, # focal_time = 40, # ftype = "off", lwd = 1.2, # colors_per_levels = colors_per_states, # labels = FALSE, legend = FALSE, # par.reset = FALSE) # ## ----plot_traits_vs_rates_on_phylogeny_cat_3lvl_eval_CRAN, eval = !is_dev_version(), echo = FALSE, out.width = "100%"---- # Plot pre-rendered graph knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.7_plot_traits_vs_rate_maps_1.PNG") knitr::include_graphics("figures/1.2_deepSTRAPP_categorical_3lvl_data_4.7_plot_traits_vs_rate_maps_2.PNG")