
Package ‘dbnR’
January 13, 2026

Type Package

Title Dynamic Bayesian Network Learning and Inference

Version 0.8.0

Description Learning and inference over dynamic Bayesian networks of arbitrary
Markovian order. Extends some of the functionality offered by the 'bnlearn'
package to learn the networks from data and perform exact inference.
It offers three structure learning algorithms for dynamic Bayesian networks:
Trabelsi G. (2013) <doi:10.1007/978-3-642-41398-8_34>, Santos F.P. and Maciel C.D. (2014)
<doi:10.1109/BRC.2014.6880957>, Quesada D., Bielza C. and Larrañaga P. (2021)
<doi:10.1007/978-3-030-86271-8_14>. It also offers the possibility to perform
forecasts of arbitrary length. A tool for visualizing the structure of the
net is also provided via the 'visNetwork' package. Further detailed information
and examples can be found in our Journal of Statistical Software paper
Quesada D., Larrañaga P. and Bielza C. (2025) <doi:10.18637/jss.v115.i06>.

Depends R (>= 3.5.0), bnlearn (>= 4.5)

Imports data.table (>= 1.12.4), Rcpp (>= 1.0.2), magrittr (>= 1.5), R6
(>= 2.4.1), stats (>= 3.6.0), MASS (>= 7.3-55)

Suggests visNetwork (>= 2.0.8), grDevices (>= 3.6.0), utils (>=
3.6.0), graphics (>= 3.6.0), testthat (>= 2.1.0)

LinkingTo Rcpp

URL https://github.com/dkesada/dbnR

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

NeedsCompilation yes

Author David Quesada [aut, cre],
Gabriel Valverde [ctb]

Maintainer David Quesada <dkesada@gmail.com>

Repository CRAN

Date/Publication 2026-01-13 14:40:02 UTC

1

https://doi.org/10.1007/978-3-642-41398-8_34
https://doi.org/10.1109/BRC.2014.6880957
https://doi.org/10.1007/978-3-030-86271-8_14
https://doi.org/10.18637/jss.v115.i06
https://github.com/dkesada/dbnR

2 Contents

Contents
AIC.dbn . 3
AIC.dbn.fit . 3
all.equal.dbn . 4
all.equal.dbn.fit . 4
as.character.dbn . 5
BIC.dbn . 5
BIC.dbn.fit . 6
calc_mu . 6
calc_sigma . 7
coef.dbn.fit . 8
degree . 8
filtered_fold_dt . 9
filter_same_cycle . 9
fitted.dbn.fit . 10
fit_dbn_params . 11
fold_dt . 11
forecast_ts . 12
generate_random_network_exp . 13
learn_dbn_struc . 14
logLik.dbn . 15
logLik.dbn.fit . 15
mean.dbn.fit . 16
motor . 16
mvn_inference . 17
nodes . 18
nodes<- . 18
plot.dbn . 19
plot.dbn.fit . 19
plot_dynamic_network . 20
plot_static_network . 21
predict.dbn.fit . 21
predict_bn . 22
predict_dt . 22
print.dbn . 23
print.dbn.fit . 24
rbn.dbn.fit . 24
reduce_freq . 25
residuals.dbn.fit . 25
score . 26
shift_values . 26
sigma.dbn.fit . 27
smooth_ts . 28
time_rename . 29
[[<-.dbn.fit . 30
$<-.dbn.fit . 30

Index 31

AIC.dbn 3

AIC.dbn Calculate the AIC of a dynamic Bayesian network

Description

Generic method for calculating the Akaike information criterion (AIC) of a "dbn" S3 object given
some data. Calls bnlearn’s AIC underneath.

Usage

S3 method for class 'dbn'
AIC(object, ..., k)

Arguments

object the structure of the network

... additional parameters for the network scoring

k the penalty parameter

Value

the AIC score of the network

AIC.dbn.fit Calculate the AIC of a dynamic Bayesian network

Description

Generic method for calculating the Akaike information criterion (AIC) of a "dbn.fit" S3 object given
some data. Calls bnlearn’s AIC underneath.

Usage

S3 method for class 'dbn.fit'
AIC(object, ..., k)

Arguments

object the fitted network

... additional parameters for the network scoring

k the penalty parameter

Value

the AIC score of the network

4 all.equal.dbn.fit

all.equal.dbn Check if two network structures are equal to each other

Description

Generic method for checking the equality of two "dbn" S3 objects. Calls bnlearn’s all.equal
underneath.

Usage

S3 method for class 'equal.dbn'
all(target, current, ...)

Arguments

target "dbn" object

current the other "dbn" object

... additional parameters

Value

boolean result of the comparison

all.equal.dbn.fit Check if two fitted networks are equal to each other

Description

Generic method for checking the equality of two "dbn.fit" S3 objects. Calls bnlearn’s all.equal
underneath.

Usage

S3 method for class 'equal.dbn.fit'
all(target, current, ...)

Arguments

target "dbn.fit" object

current the other "dbn.fit" object

... additional parameters

Value

boolean result of the comparison

as.character.dbn 5

as.character.dbn Convert a network structure into a model string

Description

Generic method for converting a "dbn" S3 object into a string. Calls bnlearn’s as.character
underneath.

Usage

S3 method for class 'dbn'
as.character(x, ...)

Arguments

x a "dbn" object

... additional parameters

Value

string representing the DBN model

BIC.dbn Calculate the BIC of a dynamic Bayesian network

Description

Generic method for calculating the Bayesian information criterion (BIC) of a "dbn" S3 object given
some data. Calls bnlearn’s BIC underneath.

Usage

S3 method for class 'dbn'
BIC(object, ...)

Arguments

object the structure of the network

... additional parameters for the network scoring

Value

the BIC score of the network

6 calc_mu

BIC.dbn.fit Calculate the BIC of a dynamic Bayesian network

Description

Generic method for calculating the Bayesian information criterion (BIC) of a "dbn.fit" S3 object
given some data. Calls bnlearn’s BIC underneath.

Usage

S3 method for class 'dbn.fit'
BIC(object, ...)

Arguments

object the fitted network

... additional parameters for the network scoring

Value

the BIC score of the network

calc_mu Calculate the mu vector from a fitted BN or DBN

Description

Given a "bn.fit" or a "dbn.fit" object, calculate the mu vector of the equivalent multivariate Gaussian
distribution. Front end of a C++ function.

Usage

calc_mu(fit)

Arguments

fit a bn.fit or dbn.fit object

Value

a named numeric vector of the means of each variable

calc_sigma 7

Examples

dt_train <- dbnR::motor[200:2500]
net <- bnlearn::mmhc(dt_train)
fit <- bnlearn::bn.fit(net, dt_train, method = "mle-g")
mu <- dbnR::calc_mu(fit)

f_dt_train <- dbnR::fold_dt(dt_train, size = 2)
net <- dbnR::learn_dbn_struc(dt_train, size = 2)
fit <- dbnR::fit_dbn_params(net, f_dt_train)
mu <- dbnR::calc_mu(fit)

calc_sigma Calculate the sigma covariance matrix from a fitted BN or DBN

Description

Given a "bn.fit" or a "dbn.fit" object, calculate the sigma covariance matrix of the equivalent multi-
variate Gaussian distribution. Front end of a C++ function.

Usage

calc_sigma(fit)

Arguments

fit a bn.fit or dbn.fit object

Value

a named numeric covariance matrix of the nodes

Examples

dt_train <- dbnR::motor[200:2500]
net <- bnlearn::mmhc(dt_train)
fit <- bnlearn::bn.fit(net, dt_train, method = "mle-g")
sigma <- dbnR::calc_sigma(fit)

f_dt_train <- dbnR::fold_dt(dt_train, size = 2)
net <- dbnR::learn_dbn_struc(dt_train, size = 2)
fit <- dbnR::fit_dbn_params(net, f_dt_train)
sigma <- dbnR::calc_sigma(fit)

8 degree

coef.dbn.fit Extracts the coefficients of a DBN

Description

Generic method for "dbn.fit" S3 objects. Calls bnlearn underneath.

Usage

S3 method for class 'dbn.fit'
coef(object, ...)

Arguments

object the fitted network

... additional parameters

Value

the coefficients of the network

degree Calculates the degree of a list of nodes

Description

#’ Generic method for calculating the degree of a list of nodes in a BN or a DBN. Calls bnlearn’s
degree underneath. I have to redefine the generic and mask the original for it to work on both bn
and dbn objects without the user having to import bnlearn.

Usage

degree(object, Nodes, ...)

Arguments

object a "bn", "dbn", "bn.fit" or "dbn.fit" object

Nodes which nodes to check

... additional parameters

Value

the degree of the nodes

filtered_fold_dt 9

filtered_fold_dt Fold a dataset avoiding overlapping of different time series

Description

If the dataset that is going to be folded contains several different time series instances of the same
process, folding it could introduce false rows with data from different time series. Given an id
variable that labels the different instances of a time series inside a dataset and a desired size, this
function folds the dataset and avoids mixing data from different origins in the same instance.

Usage

filtered_fold_dt(dt, size, id_var, clear_id_var = TRUE)

Arguments

dt data.table to be folded

size the size of the data.table

id_var the variable that labels each individual instance of the time series

clear_id_var boolean that decides whether or not the id_var column is deleted

Value

the filtered data.table

Examples

dt <- dbnR::motor[201:2500]
dt[, n_sec := rep(seq(46), each = 50)] # I'll create secuences of 50 instances each
f_dt <- dbnR::fold_dt(dt, size = 2)
dim(f_dt)
f_dt <- dbnR::filtered_fold_dt(dt, size = 2, id_var = "n_sec")
dim(f_dt) # The filtered folded dt has a row less for each independent secuence

filter_same_cycle Filter the instances in a data.table with different ids in each row

Description

Given an id variable that labels the different instances of a time series inside a dataset, discard the
rows that have values from more than 1 id.

Usage

filter_same_cycle(f_dt, size, id_var)

10 fitted.dbn.fit

Arguments

f_dt folded data.table

size the size of the data.table

id_var the variable that labels each individual instance of the time series

Value

the filtered data.table

Examples

dt <- dbnR::motor[201:2500]
dt[, n_sec := rep(seq(46), each = 50)] # I'll create secuences of 50 instances each
f_dt <- dbnR::fold_dt(dt, size = 2)
f_dt[50, .SD, .SDcols = c("n_sec_t_0", "n_sec_t_1")]
f_dt <- dbnR::filter_same_cycle(f_dt, size = 2, id_var = "n_sec")
f_dt[50, .SD, .SDcols = c("n_sec_t_0", "n_sec_t_1")]

fitted.dbn.fit Extracts the fitted values of a DBN

Description

Generic method for "dbn.fit" S3 objects. Calls bnlearn underneath.

Usage

S3 method for class 'dbn.fit'
fitted(object, ...)

Arguments

object the fitted network

... additional parameters

Value

the fitted values of the network

fit_dbn_params 11

fit_dbn_params Fits a markovian n DBN model

Description

Fits the parameters of the DBN via MLE. The "mu" vector of means and the "sigma" covariance
matrix are set as attributes of the dbn.fit object for future exact inference.

Usage

fit_dbn_params(net, f_dt, ...)

Arguments

net the structure of the DBN

f_dt a folded data.table

... additional parameters for the bn.fit function

Value

a "dbn.fit" S3 object with the fitted net

Examples

size = 3
dt_train <- dbnR::motor[200:2500]
net <- learn_dbn_struc(dt_train, size)
f_dt_train <- fold_dt(dt_train, size)
fit <- fit_dbn_params(net, f_dt_train, method = "mle-g")

fold_dt Widens the dataset to take into account the t previous time slices

Description

This function will widen the dataset to put the t previous time slices in each row, so that it can be
used to learn temporal arcs in the second phase of the dmmhc.

Usage

fold_dt(dt, size)

Arguments

dt the data.table to be treated

size number of time slices to unroll. Markovian 1 would be size 2

12 forecast_ts

Value

the extended data.table

Examples

data(motor)
size <- 3
f_dt <- fold_dt(motor, size)

forecast_ts Performs forecasting with the GDBN over a dataset

Description

Given a dbn.fit object, the size of the net and a folded dataset, performs a forecast over the initial
evidence taken from the dataset.

Usage

forecast_ts(
dt,
fit,
size = NULL,
obj_vars,
ini = 1,
len = dim(dt)[1] - ini,
rep = 1,
num_p = 50,
print_res = TRUE,
plot_res = TRUE,
mode = "exact",
prov_ev = NULL

)

Arguments

dt data.table object with the TS data

fit dbn.fit object

size number of time slices of the net. Deprecated, will be removed in the future

obj_vars variables to be predicted

ini starting point in the dataset to forecast.

len length of the forecast

rep number of times to repeat the approximate forecasting

num_p number of particles in the approximate forecasting

print_res if TRUE prints the mae and sd metrics of the forecast

generate_random_network_exp 13

plot_res if TRUE plots the results of the forecast

mode "exact" for exact inference, "approx" for approximate

prov_ev variables to be provided as evidence in each forecasting step

Value

a list with the original time series values and the results of the forecast

Examples

size = 3
data(motor)
dt_train <- motor[200:900]
dt_val <- motor[901:1000]
obj <- c("pm_t_0")
net <- learn_dbn_struc(dt_train, size)
f_dt_train <- fold_dt(dt_train, size)
f_dt_val <- fold_dt(dt_val, size)
fit <- fit_dbn_params(net, f_dt_train, method = "mle-g")
res <- suppressWarnings(forecast_ts(f_dt_val, fit,

obj_vars = obj, len = 10, print_res = FALSE, plot_res = FALSE))

generate_random_network_exp

Generate a random DBN and a sampled dataset

Description

This function generates both a random DBN and a dataset that can be used to learn its structure
from data. It’s intended for experimental use.

Usage

generate_random_network_exp(
n_vars,
size,
min_mu,
max_mu,
min_sd,
max_sd,
min_coef,
max_coef,
seed = NULL

)

14 learn_dbn_struc

Arguments

n_vars number of desired variables per time-slice

size desired size of the networks

min_mu minimum mean allowed for the variables

max_mu maximum mean allowed for the variables

min_sd minimum standard deviation allowed for the variables

max_sd maximum standard deviation allowed for the variables

min_coef minimum coefficient allowed for the parent nodes

max_coef maximum coefficient allowed for the parent nodes

seed the seed of the experiment

Value

a list with the original network structure and the sampled dataset

learn_dbn_struc Learns the structure of a markovian n DBN model from data

Description

Learns a gaussian dynamic Bayesian network from a dataset. It allows the creation of markovian n
nets rather than only markov 1.

Usage

learn_dbn_struc(dt, size = 2, method = "dmmhc", f_dt = NULL, ...)

Arguments

dt the data.frame or data.table to be used

size number of time slices of the net. Markovian 1 would be size 2

method the structure learning method of choice to use

f_dt previously folded dataset, in case some specific rows have to be removed after
the folding

... additional parameters for rsmax2 function

Value

a "dbn" S3 object with the structure of the network

Examples

data("motor")
net <- learn_dbn_struc(motor, size = 3)

logLik.dbn 15

logLik.dbn Calculate the log-likelihood of a dynamic Bayesian network

Description

Generic method for calculating the log-likelihood of a "dbn" S3 object given some data. Calls
bnlearn’s logLik underneath.

Usage

S3 method for class 'dbn'
logLik(object, dt, ...)

Arguments

object the structure of the network

dt the dataset to calculate the score of the network

... additional parameters for the network scoring

Value

the log-likelihood score of the network

logLik.dbn.fit Calculate the log-likelihood of a dynamic Bayesian network

Description

Generic method for calculating the log-likelihood of a "dbn.fit" S3 object given some data. Calls
bnlearn’s logLik underneath.

Usage

S3 method for class 'dbn.fit'
logLik(object, dt, ...)

Arguments

object the fitted network

dt the dataset to calculate the score of the network

... additional parameters for the network scoring

Value

the log-likelihood score of the network

16 motor

mean.dbn.fit Average the parameters of multiple dbn.fit objects with identical struc-
tures

Description

Generic method for "dbn.fit" S3 objects. Calls bnlearn underneath.

Usage

S3 method for class 'dbn.fit'
mean(x, ...)

Arguments

x the fitted network

... additional parameters

Value

the averaged parameters

motor Multivariate time series dataset on the temperature of an electric mo-
tor

Description

Data from several sensors on an electric motor that records different benchmark sessions of mea-
surements at 2 Hz. The dataset is reduced to 3000 instances from the 60th session in order to include
it in the package for testing purposes. For the complete dataset, refer to the source.

Usage

data(motor)

Format

An object of class data.table (inherits from data.frame) with 3000 rows and 11 columns.

Source

Kaggle, <https://www.kaggle.com/wkirgsn/electric-motor-temperature>

mvn_inference 17

mvn_inference Performs inference over a multivariate normal distribution

Description

Given some evidence, this function performs inference over a multivariate normal distribution. Af-
ter converting a Gaussian linear network to its MVN form, this kind of inference can be performed.
It’s recommended to use predict_dt functions instead unless you need a more flexible inference
method.

Usage

mvn_inference(mu, sigma, evidence)

Arguments

mu the mean vector

sigma the covariance matrix

evidence a single row data.table or a named vector with the values and names of the
variables given as evidence

Value

a list with the posterior mean and covariance matrix

Examples

size = 3
data(motor)
dt_train <- motor[200:2500]
dt_val <- motor[2501:3000]
obj <- c("pm_t_0")

net <- learn_dbn_struc(dt_train, size)
f_dt_train <- fold_dt(dt_train, size)
f_dt_val <- fold_dt(dt_val, size)
ev <- f_dt_val[1, .SD, .SDcols = obj]
fit <- fit_dbn_params(net, f_dt_train, method = "mle-g")

pred <- mvn_inference(calc_mu(fit), calc_sigma(fit), ev)

18 nodes<-

nodes Returns a list with the names of the nodes of a BN or a DBN

Description

Generic method for obtaining the names of the nodes in a BN or a DBN. Calls bnlearn’s nodes
underneath. I have to redefine the generic and mask the original for it to work on both bn and dbn
objects without the user having to import bnlearn.

Usage

nodes(object, ...)

Arguments

object a "bn", "dbn", "bn.fit" or "dbn.fit" object

... additional parameters

Value

the names of the nodes

nodes<- Relabel the names of the nodes of a BN or a DBN

Description

Generic method for renaming the nodes in a BN or a DBN. Calls bnlearn’s nodes<- underneath. I
have to redefine the generic and mask the original for it to work on both bn and dbn objects without
the user having to import bnlearn.

Usage

nodes(object) <- value

Arguments

object a "bn", "dbn", "bn.fit" or "dbn.fit" object

value a list with the new names

Value

the modified object

plot.dbn 19

plot.dbn Plots a dynamic Bayesian network

Description

Generic method for plotting the "dbn" S3 objects. Calls plot_dynamic_network underneath.

Usage

S3 method for class 'dbn'
plot(x, ...)

Arguments

x the structure of the network.

... additional parameters for the visualization of a DBN

plot.dbn.fit Plots a fitted dynamic Bayesian network

Description

Generic method for plotting the "dbn.fit" S3 objects. Calls plot_dynamic_network underneath.

Usage

S3 method for class 'dbn.fit'
plot(x, ...)

Arguments

x the structure of the network.

... additional parameters for the visualization of a DBN

20 plot_dynamic_network

plot_dynamic_network Plots a dynamic Bayesian network in a hierarchical way

Description

To plot the DBN, this method first computes a hierarchical structure for a time slice and replicates
it for each slice. Then, it calculates the relative position of each node with respect to his equivalent
in the first slice. The result is a net where each time slice is ordered and separated from one another,
where the leftmost slice is the oldest and the rightmost represents the present time. This function is
also called by the generic plot function of "dbn" and "dbn.fit" S3 objects.

Usage

plot_dynamic_network(
structure,
offset = 200,
subset_nodes = NULL,
reverse = FALSE

)

Arguments

structure the structure or fit of the network.

offset the blank space between time slices

subset_nodes a vector containing the names of the subset of nodes to plot

reverse reverse to the classic naming convention of the nodes. The oldest time-slice will
now be t_0 and the most recent one t_n. Only for visualization purposes, the
network is unmodified underneath. If using subset_nodes, remember that t_0 is
now the oldest time-slice.

Value

the visualization of the DBN

Examples

size = 3
dt_train <- dbnR::motor[200:2500]
net <- learn_dbn_struc(dt_train, size)
plot_dynamic_network(net)

plot_static_network 21

plot_static_network Plots a Bayesian network in a hierarchical way

Description

This function calculates the levels of each node and then plots them in a hierarchical layout in
visNetwork. Can be used in place of the generic plot function offered by bnlearn for "bn" and
"bn.fit" S3 objects.

Usage

plot_static_network(structure)

Arguments

structure the structure or fit of the network.

Examples

dt_train <- dbnR::motor[200:2500]
net <- bnlearn::mmhc(dt_train)
plot_static_network(net)
fit <- bnlearn::bn.fit(net, dt_train, method = "mle-g")
plot_static_network(fit) # Works for both the structure and the fitted net

predict.dbn.fit Performs inference in every row of a dataset with a DBN

Description

Generic method for predicting a dataset with a "dbn.fit" S3 objects. Calls predict_dt underneath.

Usage

S3 method for class 'dbn.fit'
predict(object, ...)

Arguments

object a "dbn.fit" object

... additional parameters for the inference process

Value

a data.table with the prediction results

22 predict_dt

predict_bn Performs inference over a fitted GBN

Description

Performs inference over a Gaussian BN. It’s thought to be used in a map for a data.table, to use
as evidence each separate row. If not specifically needed, it’s recommended to use the function
predict_dt instead. This function is deprecated and will be removed in a future version.

Usage

predict_bn(fit, evidence)

Arguments

fit the fitted bn

evidence values of the variables used as evidence for the net

Value

a data.table with the predictions

Examples

size = 3
data(motor)
dt_train <- motor[200:2500]
dt_val <- motor[2501:3000]
net <- learn_dbn_struc(dt_train, size)
f_dt_train <- fold_dt(dt_train, size)
f_dt_val <- fold_dt(dt_val, size)
fit <- fit_dbn_params(net, f_dt_train, method = "mle-g")
res <- f_dt_val[, predict_bn(fit, .SD), .SDcols = c("pm_t_0", "coolant_t_0"), by = 1:nrow(f_dt_val)]

predict_dt Performs inference over a test dataset with a GBN

Description

This function performs inference over each row of a folded data.table, plots the results and gives
metrics of the accuracy of the predictions. Given that only a single row is predicted, the horizon of
the prediction is at most 1. This function is also called by the generic predict method for "dbn.fit"
objects. For long term forecasting, please refer to the forecast_ts function.

Usage

predict_dt(fit, dt, obj_nodes, verbose = T, look_ahead = F)

print.dbn 23

Arguments

fit the fitted bn

dt the test dataset

obj_nodes the nodes that are going to be predicted. They are all predicted at the same time

verbose if TRUE, displays the metrics and plots the real values against the predictions

look_ahead boolean that defines whether or not the values of the variables in t_0 should be
used when predicting, even if they are not present in obj_nodes. This decides if
look-ahead bias is introduced or not.

Value

a data.table with the prediction results for each row

Examples

size = 3
data(motor)
dt_train <- motor[200:900]
dt_val <- motor[901:1000]

With a DBN
obj <- c("pm_t_0")
net <- learn_dbn_struc(dt_train, size)
f_dt_train <- fold_dt(dt_train, size)
f_dt_val <- fold_dt(dt_val, size)
fit <- fit_dbn_params(net, f_dt_train, method = "mle-g")
res <- suppressWarnings(predict_dt(fit, f_dt_val, obj_nodes = obj, verbose = FALSE))

With a Gaussian BN directly from bnlearn
obj <- c("pm")
net <- bnlearn::mmhc(dt_train)
fit <- bnlearn::bn.fit(net, dt_train, method = "mle-g")
res <- suppressWarnings(predict_dt(fit, dt_val, obj_nodes = obj, verbose = FALSE))

print.dbn Print method for "dbn" objects

Description

Generic print method for "dbn" S3 objects. Calls bnlearn’s print underneath

Usage

S3 method for class 'dbn'
print(x, ...)

24 rbn.dbn.fit

Arguments

x the "dbn" object

... additional parameters

print.dbn.fit Print method for "dbn.fit" objects

Description

Generic print method for "dbn.fit" S3 objects. Calls bnlearn’s print underneath

Usage

S3 method for class 'dbn.fit'
print(x, ...)

Arguments

x the "dbn.fit" object

... additional parameters

rbn.dbn.fit Simulates random samples from a fitted DBN

Description

Generic method for "dbn.fit" S3 objects. Calls bnlearn’s rbn underneath.

Usage

rbn.dbn.fit(x, n, ...)

Arguments

x the fitted network

n number of samples

... additional parameters

Value

the sampled dataset

reduce_freq 25

reduce_freq Reduce the frequency of the time series data in a data.table

Description

In a time series dataset, there is a time difference between one row and the next one. This function
reduces the number of rows from its current frequency to the desired one by averaging batches of
rows. Instead of the frequency in Hz, the number of seconds between rows is asked (Hz = 1/s).

Usage

reduce_freq(dt, obj_freq, curr_freq, id_var = NULL)

Arguments

dt the original data.table

obj_freq the desired number of seconds between rows

curr_freq the number of seconds between rows in the original dataset

id_var optional variable that labels different time series in a dataset, to avoid averaging
values from different processes

Value

the data.table with the desired frequency

Examples

Let's assume that the dataset has a frequency of 4Hz, 0.25 seconds between rows
dt <- dbnR::motor
dim(dt)
Let's change the frequency to 2Hz, 0.5 seconds between rows
dt <- reduce_freq(dt, obj_freq = 0.5, curr_freq = 0.2)
dim(dt)

residuals.dbn.fit Returns the residuals from fitting a DBN

Description

Generic method for "dbn.fit" S3 objects. Calls bnlearn underneath.

Usage

S3 method for class 'dbn.fit'
residuals(object, ...)

26 shift_values

Arguments

object the fitted network

... additional parameters

Value

the residuals of fitting the network

score Computes the score of a BN or a DBN

Description

Generic method for computing the score of a BN or a DBN. Calls bnlearn’s nodes underneath. I
have to redefine the generic and mask the original for it to work on both bn and dbn objects without
the user having to import bnlearn.

Usage

score(object, ...)

Arguments

object a "bn" or "dbn" object

... additional parameters

Value

the score of the network

shift_values Move the window of values backwards in a folded dataset row

Description

This function moves the values in t_0, t_1, ..., t_n-1 in a folded dataset row to t_1, t_2, ..., t_n. All
the variables in t_0 will be inputed with NAs and the obtained row can be used to forecast up to any
desired point.

Usage

shift_values(f_dt, row)

sigma.dbn.fit 27

Arguments

f_dt a folded dataset

row the index of the row that is going to be processed

Value

a one row data.table the shifted values

Examples

dt <- dbnR::motor
f_dt <- dbnR::fold_dt(dt, size = 2)
s_row <- dbnR::shift_values(f_dt, row = 500)

sigma.dbn.fit Returns the standard deviation of the residuals from fitting a DBN

Description

Generic method for "dbn.fit" S3 objects. Calls bnlearn underneath.

Usage

S3 method for class 'dbn.fit'
sigma(object, ...)

Arguments

object the fitted network

... additional parameters

Value

the standard deviation residuals of fitting the network

28 smooth_ts

smooth_ts Performs smoothing with the GDBN over a dataset

Description

Given a dbn.fit object, the size of the net and a folded dataset, performs a smoothing of a trajectory.
Smoothing is the opposite of forecasting: given a starting point, predict backwards in time to obtain
the time series that generated that point.

Usage

smooth_ts(
dt,
fit,
size = NULL,
obj_vars,
ini = dim(dt)[1],
len = ini - 1,
print_res = TRUE,
plot_res = TRUE,
prov_ev = NULL

)

Arguments

dt data.table object with the TS data

fit dbn.fit object

size number of time slices of the net. Deprecated, will be removed in the future

obj_vars variables to be predicted. Should be in the oldest time step

ini starting point in the dataset to smooth

len length of the smoothing

print_res if TRUE prints the mae and sd metrics of the smoothing

plot_res if TRUE plots the results of the smoothing

prov_ev variables to be provided as evidence in each smoothing step. Should be in the
oldest time step

Value

a list with the original values and the results of the smoothing

time_rename 29

Examples

size = 3
data(motor)
dt_train <- motor[200:900]
dt_val <- motor[901:1000]
obj <- c("pm_t_2")
net <- learn_dbn_struc(dt_train, size)
f_dt_train <- fold_dt(dt_train, size)
f_dt_val <- fold_dt(dt_val, size)
fit <- fit_dbn_params(net, f_dt_train, method = "mle-g")
res <- suppressWarnings(smooth_ts(f_dt_val, fit,

obj_vars = obj, len = 10, print_res = FALSE, plot_res = FALSE))

time_rename Renames the columns in a data.table so that they end in ’_t_0’

Description

This will rename the columns in a data.table so that they end in ’_t_0’, which will be needed when
folding the data.table. If any of the columns already ends in ’_t_0’, a warning will be issued and no
further operation will be done. There is no need to use this function to learn a DBN unless some
operation with the variable names wants to be done prior to folding a dataset.

Usage

time_rename(dt)

Arguments

dt the data.table to be treated

Value

the renamed data.table

Examples

data("motor")
dt <- time_rename(motor)

30 $<-.dbn.fit

[[<-.dbn.fit Replacement function for parameters inside DBNs

Description

Generic parameter replacement method for "dbn.fit" S3 objects. Calls bnlearn underneath.

Usage

S3 replacement method for class 'dbn.fit'
x[[name]] <- value

Arguments

x the fitted network

name name of the node to replace its parameters

value the new parameters

Value

the modified network

$<-.dbn.fit Replacement function for parameters inside DBNs

Description

Generic parameter replacement method for "dbn.fit" S3 objects. Calls bnlearn underneath.

Usage

S3 replacement method for class 'dbn.fit'
x$name <- value

Arguments

x the fitted network

name name of the node to replace its parameters

value the new parameters

Value

the modified network

Index

∗ datasets
motor, 16

[[<-.dbn.fit, 30
$<-.dbn.fit, 30

AIC, 3
AIC.dbn, 3
AIC.dbn.fit, 3
all.equal, 4
all.equal.dbn, 4
all.equal.dbn.fit, 4
as.character, 5
as.character.dbn, 5

BIC, 5, 6
BIC.dbn, 5
BIC.dbn.fit, 6
bn.fit, 11

calc_mu, 6
calc_sigma, 7
coef.dbn.fit, 8

degree, 8, 8

filter_same_cycle, 9
filtered_fold_dt, 9
fit_dbn_params, 11
fitted.dbn.fit, 10
fold_dt, 11
forecast_ts, 12, 22

generate_random_network_exp, 13

learn_dbn_struc, 14
logLik, 15
logLik.dbn, 15
logLik.dbn.fit, 15

mean.dbn.fit, 16
motor, 16

mvn_inference, 17

nodes, 18, 18, 26
nodes<-, 18

plot.dbn, 19
plot.dbn.fit, 19
plot_dynamic_network, 19, 20
plot_static_network, 21
predict.dbn.fit, 21
predict_bn, 22
predict_dt, 17, 21, 22, 22
print.dbn, 23
print.dbn.fit, 24

rbn, 24
rbn.dbn.fit, 24
reduce_freq, 25
residuals.dbn.fit, 25
rsmax2, 14

score, 26
shift_values, 26
sigma.dbn.fit, 27
smooth_ts, 28

time_rename, 29

31

	AIC.dbn
	AIC.dbn.fit
	all.equal.dbn
	all.equal.dbn.fit
	as.character.dbn
	BIC.dbn
	BIC.dbn.fit
	calc_mu
	calc_sigma
	coef.dbn.fit
	degree
	filtered_fold_dt
	filter_same_cycle
	fitted.dbn.fit
	fit_dbn_params
	fold_dt
	forecast_ts
	generate_random_network_exp
	learn_dbn_struc
	logLik.dbn
	logLik.dbn.fit
	mean.dbn.fit
	motor
	mvn_inference
	nodes
	nodes<-
	plot.dbn
	plot.dbn.fit
	plot_dynamic_network
	plot_static_network
	predict.dbn.fit
	predict_bn
	predict_dt
	print.dbn
	print.dbn.fit
	rbn.dbn.fit
	reduce_freq
	residuals.dbn.fit
	score
	shift_values
	sigma.dbn.fit
	smooth_ts
	time_rename
	[[<-.dbn.fit
	$<-.dbn.fit
	Index

