Package ‘PupillometryR’

December 19, 2025

Type Package

Title A Unified Pipeline for Pupillometry Data

Version 0.0.7

Description Provides a unified pipeline to clean, prepare, plot,
and run basic analyses on pupillometry experiments.

BugReports https://github.com/samhforbes/PupillometryR/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>=3.5.0), dplyr, ggplot2, rlang

Imports fda, mgcv, signal, stats, stringr, tidyr, utils, zoo

RoxygenNote 7.3.3

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Samuel Forbes [aut, cre],
David Robinson [ctb]

Maintainer Samuel Forbes <samuel.h.forbes@gmail.com>
Repository CRAN
Date/Publication 2025-12-19 10:20:45 UTC

Contents

baseline_data
calculate_mean_pupil_size
calculate_missing_data
clean_missing_data e
create_difference_data
create_functional_data L
create_time_windoOwso e

https://github.com/samhforbes/PupillometryR/issues

2 baseline_data
create_window_data L e e e e 8
detect_blinks_by_column L 9
detect_blinks_by_size 10
detect_blinks_by_velocity 11
downsample_time_data 12
filter_data e 13
GeomFlatViolin 14
geom_flat_violin L. 14
gfv_helperl e 15
interpolate_data L. 15
make_pupillometryr_data oL 16
MEANZ . . . o o e e e e e e e e e e 17
plot.PupillometryR 17
plot.Pupil_difference_data L 18
plotPupil_test_data 19
plot.Pupil_window_data 20
pupil_data e e e 21
regress_data L. e e e e e 22
replace_missing_data L. oL L e 22
run_functional_t_test 23
subset_data e 24

Index 25

baseline_data Baseline pupil data to the average pupil size within a window

Description

This function is for use with the PupillometryR package to baseline each participant’s pupil size to
the mean pupil size within a window. This may not be necessary if you are doing purely within-
subject analyses, but it is convenient for comparison across subjects, and makes results more uni-
form.

Usage

baseline_data(data, pupil, start, stop)
Arguments

data a PupillometryR dataframe

pupil a column name denoting pupil data

start start time of baseline window

stop stop time of baseline window
Value

A PupillometryR dataframe, with baselined pupil

calculate_mean_pupil_size 3

Examples

Sdata <- make_pupillometryr_data(data = pupil_data,
subject = ID,
trial = Trial,
time = Time,
condition = Type)
regressed_data <- regress_data(data = Sdata, pupill = RPupil, pupil2 = LPupil)
mean_data <- calculate_mean_pupil_size(data = regressed_data,
pupill = RPupil, pupil2 = LPupil)
base_data <- baseline_data(data = mean_data, pupil = mean_pupil, start = @, stop = 100)

calculate_mean_pupil_size
Calculate a mean size across two pupils over time

Description
This function is useful when you have left and right eye eyetracking data, and a mean of the two
would be useful.

Usage

calculate_mean_pupil_size(data, pupill, pupil2)

Arguments
data a PupillometryR dataframe
pupili column name indicating pupil size
pupil2 column name indicating pupil size
Value

A PupillometryR dataframe with a mean pupil column

Examples

Sdata <- make_pupillometryr_data(data = pupil_data,
subject = ID,
trial = Trial,
time = Time,
condition = Type)
regressed_data <- regress_data(data = Sdata, pupill = RPupil, pupil2 = LPupil)
mean_data <- calculate_mean_pupil_size(data = regressed_data, pupill = RPupil, pupil2 = LPupil)

4 clean_missing_data

calculate_missing_data
Calculate the missing data amount

Description
This function can be used to assess the amount of samples that have problematic data from each
trial, which helps assess cleaning parameters

Usage

calculate_missing_data(data, pupil)

Arguments
data your data of class PupillometryR
pupil a column name denoting pupil size
Value

A summary table with number of missing samples in each trial

Examples

data(pupil_data)

Sdata <- make_pupillometryr_data(data
subject = ID,

trial = Trial,

time = Time,

condition = Type)

new_data <- downsample_time_data(data = Sdata,

pupil = LPupil,

timebin_size = 50,

option = 'mean')

calculate_missing_data(data = new_data, pupil = LPupil)

pupil_data,

clean_missing_data Clean missing data above an acceptable threshold

Description

This function removes trials and participants who exceed specified thresholds for missing data.
There are two main parameters for cleaning: one to remove trials with excessive missing data, and
another to remove participants who drop more than a specified proportion of trials. An optional
parameter allows you to specify the total number of trials expected for each participant, which is
used to calculate the proportion of missing trials.

create_difference_data 5

Usage

clean_missing_data(
data,
pupil,
trial_threshold = 1,
subject_trial_threshold = 1,
total_trials_expected = NULL

)

Arguments
data Your data of class PupillometryR.
pupil A column name denoting pupil size.

trial_threshold

A proportion of missing data over which a trial is considered lost.
subject_trial_threshold

A proportion of missing trials over which a participant is considered lost.
total_trials_expected

(Optional) The total number of trials expected for each participant. If specified,
it will be used to calculate the proportion of missing trials. If not specified, the
proportion is calculated based on the total number of trials in the data.

Value

A cleaned PupillometryR dataframe with trials and participants exceeding the thresholds removed.

Examples

data(pupil_data)

Sdata <- make_pupillometryr_data(data = pupil_data,
subject = ID,
trial = Trial,
time = Time,
condition = Type)

new_data <- downsample_time_data(data = Sdata,
pupil = LPupil,
timebin_size = 50,
option = 'mean')

calculate_missing_data(data = new_data, pupil = LPupil)

create_difference_data

Create a difference data frame when dealing with a condition column
with 2 levels

6 create_functional data

Description

The difference data frame is used when creating a dataframe to do the functional t-test analysis.
This function would be the first step in that analysis, after doing the pre-processing. It creates a
frame where it treats the condition data as level2 - levell. It will throw an error if there are more
than two conditions.

Usage

create_difference_data(data, pupil)

Arguments
data a PupillometryR dataframe
pupil column name for pupil data
Value

A Pupil_difference_data data frame

Examples

Sdata <- make_pupillometryr_data(data = pupil_data,

subject = ID,

trial = Trial,

time = Time,

condition = Type)
mean_data <- calculate_mean_pupil_size(data = Sdata,
pupill = RPupil, pupil2 = LPupil)
base_data <- baseline_data(data = mean_data, pupil = mean_pupil, start = @, stop = 100)
differences <- create_difference_data(data = base_data, pupil = mean_pupil)
plot(differences, pupil = mean_pupil, geom = 'line')

create_functional_data

Makes a functional data with splines from a Pupil_difference_data
dataframe.

Description

This function turns difference data into fitted splines in order to carry out functional data analysis.
Under the hood this passes basis and order to fda::Data2fd, and fda::create.bspline.basis, and is
mandatory before running run_functional_t_test. It is recommended to read the documentation for
package fda for further information.

Usage

create_functional_data(data, pupil, basis, order)

create_time_windows 7

Arguments
data a Pupil_difference_data dataframe
pupil Column name indicating pupil data to fit
basis Integer specifying number of basis functions to create a b-spline basis
order Integer specifying order of b-splines (one higher than the degree)
Value

A Pupil_difference_data dataframe fitted with b-splines.

See Also

fda package

Examples

Sdata <- make_pupillometryr_data(data = pupil_data,

subject = ID,

trial = Trial,

time = Time,

condition = Type)
regressed_data <- regress_data(data = Sdata, pupill = RPupil, pupil2 = LPupil)
mean_data <- calculate_mean_pupil_size(data = regressed_data, pupill = RPupil, pupil2 = LPupil)
base_data <- baseline_data(data = mean_data, pupil = mean_pupil, start = @, stop = 100)
differences <- create_difference_data(data = base_data, pupil = mean_pupil)

spline_data <- create_functional_data(data = differences, pupil = mean_pupil, basis = 10, order = 4)

create_time_windows Make PupillometryR dataframe into multiple time windows for easy
analysis

Description
This function creates a single collapsed data frame for easy analysis with an anova or model, per
condition. By comparison create_window_data allows collapsing all into a single time window.
Usage

create_time_windows(data, pupil, breaks)

Arguments
data a PupillometryR dataframe
pupil column name denoting pupil data to be used

breaks a vector or numbers indicating start times for each window

Value

a Pupil_window_data dataframe

Examples

Sdata <- make_pupillometryr_data(data = pupil_data,
subject = ID,
trial = Trial,
time = Time,
condition = Type)
regressed_data <- regress_data(data = Sdata, pupill = RPupil, pupil2
mean_data <- calculate_mean_pupil_size(data = regressed_data,
pupill = RPupil, pupil2 = LPupil)

create_window_data

= LPupil)

base_data <- baseline_data(data = mean_data, pupil = mean_pupil, start = @, stop = 100)
time_window <- create_time_windows(data = base_data, pupil = mean_pupil,

breaks = c(1000, 2000))

create_window_data Make PupillometryR dataframe into a single collapsed window for

easy analysis

Description

This function creates a single collapsed data frame for easy analysis with a t-test or anova, per
condition. By comparison create_time_windows allows dividing it into multiple windows per time.

Usage

create_window_data(data, pupil)

Arguments

data a PupillometryR dataframe

pupil column name denoting pupil data to be used

Value

a Pupil_window_data dataframe

Examples

Sdata <- make_pupillometryr_data(data = pupil_data,

subject = ID,

trial = Trial,

time = Time,

condition = Type)
regressed_data <- regress_data(data = Sdata, pupill = RPupil, pupil2
mean_data <- calculate_mean_pupil_size(data = regressed_data,

= LPupil)

detect_blinks_by_column

pupill = RPupil, pupil2 = LPupil)

base_data <- baseline_data(data = mean_data, pupil = mean_pupil, start = @, stop =
window <- create_window_data(data = base_data, pupil = mean_pupil)

p <- plot(window, pupil = mean_pupil, windows = FALSE, geom = 'boxplot')

p

detect_blinks_by_column

detect blinks by a pre-existing labelled blink column that comes from

the eyetracker

Description

This allows the user to remove anything classed as a blink as a result of eyetracker output.

Usage

detect_blinks_by_column(
data,
pupil,
column,
extend_forward = 0,
extend_back = 0,

.tag = 1
)
Arguments
data dataset of class PupillometryR
pupil column name for pupil data
column column that refers to blinks

extend_forward number of observations to remove forward of blink
extend_back number of obervations to remove behind blink

.tag the variable in the blink column that represents a blink

Value

returns dataframe with blinks removed including forward and back, and data in blink column.

Examples
Not run:
Sdata <- make_pupillometryr_data(data = pupil_data,
subject = ID,

trial = Trial,
time = Time,
condition = Type)

10 detect_blinks_by_size

Sdata2 <- detect_blinks_by_column(data = Sdata,
pupil = LPupil,

column = data_in_blink,

extend_forward = 0,

extend_back = 0)

End(Not run)

detect_blinks_by_size detect blinks by a change in pupil size

Description

This allows the user to set a threshold for pupil size and remove anything classed as a blink as a
result

Usage

detect_blinks_by_size(
data,
pupil,
threshold = 2.5,
extend_forward = 0,
extend_back = @

)
Arguments
data dataset of class PupillometryR
pupil column name for pupil data
threshold velocity threshold for blink detection
extend_forward number of observations to remove forward of blink
extend_back number of obervations to remove behind blink
Value

returns dataframe with blinks removed including forward and back, and data in blink column.

Examples

Sdata <- make_pupillometryr_data(data = pupil_data,
subject = ID,

trial = Trial,

time = Time,

condition = Type)

detect_blinks_by_velocity 11

Sdata2 <- detect_blinks_by_size(data = Sdata,
pupil = LPupil,

threshold = 2.5,

extend_forward = 0,

extend_back = 0)

detect_blinks_by_velocity
detect blinks by a change in velocity

Description

This allows the user to set a threshold for velocity and remove anything classed as a blink as a result

Usage

detect_blinks_by_velocity(
data,
pupil,
threshold = 0.1,
extend_forward = 0,
extend_back = @

)

Arguments
data dataset of class PupillometryR
pupil column name for pupil data
threshold velocity threshold for blink detection

extend_forward number of observations to remove forward of blink

extend_back number of obervations to remove behind blink

Value

returns dataframe with blinks removed including forward and back, and data in blink column.

Examples

Sdata <- make_pupillometryr_data(data = pupil_data,
subject = ID,

trial = Trial,

time = Time,

condition = Type)

Sdata2 <- detect_blinks_by_velocity(data = Sdata,

12 downsample_time_data

pupil = LPupil,
threshold = 0.1,
extend_forward = 0,
extend_back = 0)

downsample_time_data Downsample frequency to reduce number of samples and data size

Description

This function is useful if you were sampling at a very high frequency (eg 500Hz) causing the data
size to be hard to manage, and high autocorrelation. Careful decisions should be made about the
time bin size and appropriateness of this function, with respect to the data type.

Usage

downsample_time_data(data, pupil, timebin_size, option = c("mean”, "median"))
Arguments

data your data of class PupillometryR

pupil a column name denoting pupil size

timebin_size the size of the new timebin you wish to use

option what should be calculated in each timebin - mean or median. Defaults to mean.

Value

A downsampled dataframe of class PupillometryR

Examples

data(pupil_data)

Sdata <- make_pupillometryr_data(data
subject = ID,

trial = Trial,

time = Time,

condition = Type)

new_data <- downsample_time_data(data
pupil = LPupil,

timebin_size = 50,

option = 'mean')

pupil_data,

Sdata,

filter_data 13

filter_data Run a filter on the data to smooth it out.

Description

filter_data allows three different options for filtering, a butterworth lowpass filter, a hanning filter, or
a median filter. You can also set the degree of this filter; we recommend a default of 11. This filters
on one pupil, it can be re-run on a second pupil if needed. Lowpass makes use of the butterworth
filter and filtfilt from package signal, median makes use of runmed.

Usage

filter_data(
data,
pupil,
filter
degree

)

c("median”, "hanning"”, "lowpass"”),
11

Arguments

data a PupillometryR dataframe
pupil column name for pupil data
filter option for filtering the data

degree filter degree

Value

filtered pupil data

Examples

Sdata <- make_pupillometryr_data(data = pupil_data,
subject = ID,

trial = Trial,

time = Time,

condition = Type)

mean_data <- calculate_mean_pupil_size(data = Sdata,
pupill = RPupil, pupil2 = LPupil)

filtered_data <- filter_data(data = mean_data,
pupil = mean_pupil,

filter = 'hanning',

degree = 11)

14 geom_flat_violin

GeomFlatViolin geom_flat_violin_HELPER?2

Description

Borrowed from Ben Marwick. Original author David Robinson.

geom_flat_violin ggplot Flat Violin

Description

ggplot Flat Violin

Usage

geom_flat_violin(
mapping = NULL,

data = NULL,

stat = "ydensity”,
position = "dodge",
trim = TRUE,

scale = "area",

show.legend = NA,
inherit.aes = TRUE,

)
Arguments

mapping A value
data A value
stat A value
position A value
trim A value
scale A value
show. legend A value
inherit.aes A value

A value

https://gist.githubusercontent.com/benmarwick/2a1bb0133ff568cbe28d/raw/fb53bd97121f7f9ce947837ef1a4c65a73bffb3f/geom_flat_violin.R

gfv_helperl 15

Details

Copy-pasted from https://gist.githubusercontent.com/benmarwick/2a1bb0133ff568cbe28d/raw/fb53bd97121f7{9ce947837et
somewhat hackish solution to: https://twitter.com/EamonCaddigan/status/646759751242620928 based

mostly on copy/pasting from ggplot2 geom_violin source: https://github.com/hadley/ggplot2/blob/master/R/geom-

violin.r The original seems to be: sourced from: https://gist.github.com/dgrtwo/eb7750e74997891d7¢20,

Author is David Robinson. A key internal function for the raincloud plots used as a plotting op-

tion in this package. For information on raincloud plots see: Allen, M., Poggiali, D., Whitaker,

K., Marshall, T. R., & Kievit, R. A. (2019). Raincloud plots: a multi-platform tool for robust data

visualization. Wellcome open research, 4, 63. doi:10.12688/wellcomeopenres.15191.1

Examples

ggplot(diamonds, aes(cut, carat)) +
geom_flat_violin() +
coord_flip()

gfv_helperi geom_flat_violin_HELPERI

Description

Borrowed from https://gist.githubusercontent.com/benmarwick/2albb0133ff568cbe28d/raw/fb53bd97121f7f9ce947837ef1a
Original author David Robinson, from https://gist.github.com/dgrtwo/eb7750e74997891d7¢c20

interpolate_data Interpolate across the gaps in data

Description

Once data is smoothed, it is important to deal with missing observations, such as blinks. This allows
simple interpolation over missing values, either linear, or cubic. Depending on the analysis planed,
this may not be a necessary option, but it is strongly recommended for the functional analyses
planned in this package.

Usage

interpolate_data(data, pupil, type = c("linear”, "cubic"”), maxgap = Inf)

Arguments
data a PupillometryR dataframe
pupil Column name for pupil data to be interpolated
type string indicating linear or cubic interpolation to be performed.
maxgap numeric value specifying the maximum gap size (number of consecutive NAs)

to interpolate. Default is Inf (interpolates gaps of any length).

16

Value

make_pupillometryr_data

interpolated pupillometry data

Examples

Sdata <- make_pupillometryr_data(data = pupil_data,

subject = ID,
trial = Trial,
time = Time,
condition = Type)

mean_data <- calculate_mean_pupil_size(data = Sdata,

pupill = RPupil,
filtered_data <-

pupil2 = LPupil)
filter_data(data = mean_data,
17

pupil = mean_pupi
filter = 'hanning',
degree = 11)

int_data <- interpolate_data(data = filtered_data,

pupil = mean_pupi
type = 'linear')

1:

make_pupillometryr_data

Prepare data for pre-processing in PupillometryR

Description

This should be the

first function you run as part of using PupillometryR. This will make sure your

data is in the right format for processing. This package is designed to deal with data at it comes out
of the eyetracker in a long-form csv style format. Thus data input here would be a long dataframe,
wherein each row is a single frame collected by the eyetracker.

Usage

make_pupillometryr_data(data, subject, trial, time, condition, other)

Arguments

data

subject
trial
time
condition

other

a raw, long form dataframe organised by subject, trial, and time. if your data is
not long form, look at tidyr for examples of conversion.

column name indicating subject ID

column name indicating trial ID. This should be unique for participants
column name indicating time column (should be numeric)

column name indicating experimental condition

any other column you may wish to keep in the data frame for processing

mean2

Value

A dataframe ready to use in PupillometryR

Examples

Sdata <- make_pupillometryr_data(data = pupil_data,
subject = ID,

trial = Trial,

time = Time,

condition = Type)

17

mean?2 Helper function mean2

Description

Somewhat useful function for ignoring NAs

Usage

mean2(x)

Arguments

X the object

plot.PupillometryR Pre-prepared plots of PupillometryR data

Description

The plot functions are designed to run with just data and pupil selections, with some additional
options for fun with plotting. This allows to see raw data as points, grouped by either subject or

condition.
Usage

S3 method for class 'PupillometryR'

plot(
X7
pupil,
group = c("none"”, "condition”, "subject"),
geom = c("point”, "line"”, "pointrange"),
model = NULL,

18 plot.Pupil_difference_data

Arguments
X A PupillometryR dataframe
pupil Column name of pupil data to be plotted
group What to group the data by (none, condition, or subject)
geom Geom to pass to ggplot. Either point, line, or pointrange.
model Optional argument to plot agains a fitted model
Ignored
Value
A ggplot object
Examples

Sdata <- make_pupillometryr_data(data = pupil_data,
subject = ID,

trial = Trial,

time = Time,

condition = Type)

Sdata2 <- downsample_time_data(data = Sdata,

pupil = LPupil,

timebin_size = 100,

option = 'median')
p <- plot(Sdata2, pupil = LPupil, group = 'subject')
p

plot.Pupil_difference_data
Pre-prepared plots of PupillometryR data

Description

The plot functions are designed to run with just data and pupil selections, with some additional
options for fun with plotting. To see these plots, you must first use create_difference_data.

Usage

S3 method for class 'Pupil_difference_data'

plot(x, pupil, geom = c("point”, "line"), colour = "black”, ...)
Arguments

X A Pupil_difference_data dataframe

pupil Column name of pupil data to be plotted

geom string indicating whether made of connected points or a line

colour string indicating colour of geom, passed to ggplot2

Ignored

plot.Pupil_test_data 19

Value

A ggplot object

Examples

Sdata <- make_pupillometryr_data(data = pupil_data,
subject = ID,
trial = Trial,
time = Time,
condition = Type)
regressed_data <- regress_data(data = Sdata, pupill = RPupil, pupil2 = LPupil)
mean_data <- calculate_mean_pupil_size(data = regressed_data,
pupill = RPupil, pupil2 = LPupil)
base_data <- baseline_data(data = mean_data, pupil = mean_pupil, start = @, stop = 100)
differences <- create_difference_data(data = base_data,
pupil = mean_pupil)
p <- plot(differences, pupil = mean_pupil, geom = 'line')
p

plot.Pupil_test_data Pre-prepared plots of PupillometryR data

Description

The plot functions are designed to run with just data and pupil selections, with some additional
options for fun with plotting. To see these plots, you must first use one of the run_functional tests.

Usage

S3 method for class 'Pupil_test_data’

plot(x, show_divergence = TRUE, colour = "black”, fill = "grey”, ...)
Arguments

X A Pupil_test_data dataframe

show_divergence
logical indicating whether divergences are to be highlighted

colour string indicating colour of geom_line, passed to ggplot2
fill string indicating fill hue of divergence highlights, passed to ggplot2
Ignored
Value

A ggplot object

20 plot.Pupil_window_data

Examples

Sdata <- make_pupillometryr_data(data = pupil_data,
subject = 1D,
trial = Trial,
time = Time,
condition = Type)
regressed_data <- regress_data(data = Sdata, pupill = RPupil, pupil2 = LPupil)
mean_data <- calculate_mean_pupil_size(data = regressed_data,
pupill = RPupil, pupil2 = LPupil)
base_data <- baseline_data(data = mean_data, pupil = mean_pupil, start = @, stop
differences <- create_difference_data(data = base_data,
pupil = mean_pupil)
spline_data <- create_functional_data(data = differences, pupil = mean_pupil, basis = 10, order = 4)
ft_data <- run_functional_t_test(data = spline_data,
pupil = mean_pupil)
p <- plot(ft_data, show_divergence = TRUE, colour = 'red', fill = 'orange')
p

100)

plot.Pupil_window_data
Pre-prepared plots of PupillometryR data

Description

The plot functions are designed to run with just data and pupil selections, with some additional
options for fun with plotting. To see these plots, you must first use create_window_data.

Usage
S3 method for class 'Pupil_window_data'
plot(
X ’
pupil,
windows = c(FALSE, TRUE),
geom = c("raincloud”, "violin", "boxplot"),
)
Arguments
X A Pupil_window_data dataframe
pupil Column name of pupil data to be plotted
windows Whether you want to include time windows in the plot - logical
geom violin plots or boxplots. The newest version adds raincloud plots using Ben

Marwick’s flat violin plot.

Ignored

pupil_data 21

Value

A ggplot object

Examples

Sdata <- make_pupillometryr_data(data = pupil_data,
subject = ID,
trial = Trial,
time = Time,
condition = Type)
regressed_data <- regress_data(data = Sdata, pupill = RPupil, pupil2 = LPupil)
mean_data <- calculate_mean_pupil_size(data = regressed_data,
pupill = RPupil, pupil2 = LPupil)
base_data <- baseline_data(data = mean_data, pupil = mean_pupil, start = @, stop = 100)
window <- create_window_data(data = base_data,pupil = mean_pupil)
p <-plot(window, pupil = mean_pupil, windows = FALSE, geom = 'boxplot')
p

pupil_data Data collected in a pupillometry study by Sylvain Sirois

Description

Data from a simple study measuring pupil dilation as participants answer hard or easy maths prob-
lems. Original data sourced and reformatted from Sylvain Sirois’ Pupillometry tutorial available at
https://oraprdnt.uqtr.uquebec.ca/pls/public/gscw031?0owa_no_site=314&owa_no_fiche=3&owa_bottin=)

Usage
pupil_data

Format
A data frame with 28800 rows and 7 variables:

ID Uniaue participant ID

Trial Unique trial code (also unique for each participant)
RPupil Right pupil size

LPupil Left Pupil Size

Timebin Ordered timebin within each trial

Time Elapsed time within trial

Type Hard or easy trial?...

Source

(https://oraprdnt.uqtr.uquebec.ca/pls/public/gscw031?owa_no_site=314&owa_no_fiche=3&owa_bottin=)

22 replace_missing_data

regress_data Regress one pupil against another for extra smoothing

Description

regress_data runs a simple linear regression of pupill against pupil2 and the reverse. This can help
to account for small amount of bumpiness in the data. The regression runs over each participant and
each trial, per time.

Usage

regress_data(data, pupill, pupil2)

Arguments
data a PupillometryR dataframe
pupill Column name for first pupil data
pupil2 Column name for second pupil data
Value

a PupillometryR dataframe with smoothed pupil values

Examples

Sdata <- make_pupillometryr_data(data = pupil_data,

subject = ID,

trial = Trial,

time = Time,

condition = Type)

regressed_data <- regress_data(data = Sdata,

pupill = RPupil,

pupil2 = LPupil)

mean_data <- calculate_mean_pupil_size(data = regressed_data,
pupill = RPupil, pupil2 = LPupil)

replace_missing_data replaces missing observations if you have some degree of incomplete
observations

Description

This is a useful function if you have a dataset where certain timepoints have been removed for
whatever reason, but you want continuous time data. This will make assumptions about trials being
the same length though, so may not be appropriate for all data types. This should only be run after
running make_pupillometry_data.

run_functional _t_test

Usage

replace_missing

Arguments

data

Value

23

_data(data)

your data of class pupillometryR

A time-stepped data frame

Examples

data(pupil_data)

Sdata <- make_pupillometryr_data(data = pupil_data,

subject = ID,
trial = Trial,
time = Time,
condition = Type)
new_data <- repla

ce_missing_data(data = Sdata)

run_functional_t_test Run a functional t-test on a dataframe previously fitted with b-splines.

Description

This allows running of a functional t-test for a given alpha on pupil data that has been fitted with
b-splines. This is only appropriate for functional difference data, as it assumes we are dealing with
condition A - condition B.

Usage

run_functional_t_test(data, pupil, alpha = 0.05)

Arguments

data
pupil
alpha

Value

a Pupil_difference_data fitted with b-splines
column name indicating pupil data to test

an alpha level to be set for the t-test

A Pupil_test_data dataframe

24 subset_data

Examples

Sdata <- make_pupillometryr_data(data = pupil_data,

subject = ID,

trial = Trial,

time = Time,

condition = Type)
regressed_data <- regress_data(data = Sdata, pupill = RPupil, pupil2 = LPupil)
mean_data <- calculate_mean_pupil_size(data = regressed_data, pupill = RPupil, pupil2 = LPupil)
base_data <- baseline_data(data = mean_data, pupil = mean_pupil, start = @, stop = 100)
differences <- create_difference_data(data = base_data, pupil = mean_pupil)
spline_data <- create_functional_data(data = differences, pupil = mean_pupil, basis = 10, order = 4)
ft_data <- run_functional_t_test(data = spline_data, pupil = mean_pupil, alpha = 0.05)

subset_data Subset data to provide start and finish time windows

Description

subset_data can be used on a PupillometryR dataframe to subset the time into relevant chunks. This,
ideally should be one of the first runctions run, before anything analytical. Use this to indicate a
start and stop time to create a new resized dataframe.

Usage

subset_data(data, start = NULL, stop = NULL, rezero = T, remove = T)

Arguments
data a PupillometryR dataframe
start a single number indicating start time of new dataframe
stop a single number indicating end time of new dataframe
rezero logical, whether time should start from zero
remove logical, remove observations outside of start and stop
Value

a subsetted PupillometryR dataframe

Examples

Sdata <- make_pupillometryr_data(data = pupil_data,
subject = ID,
trial = Trial,
time = Time,
condition = Type)
subset_data(Sdata, start = 100, stop = 10000, rezero = TRUE, remove = TRUE)

Index

+ datasets
GeomFlatViolin, 14
pupil_data, 21

baseline_data, 2

calculate_mean_pupil_size, 3
calculate_missing_data, 4
clean_missing_data, 4
create_difference_data, 5
create_functional_data, 6
create_time_windows, 7
create_window_data, 8

detect_blinks_by_column, 9
detect_blinks_by_size, 10
detect_blinks_by_velocity, 11
downsample_time_data, 12

filter_data, 13

geom_flat_violin, 14
GeomFlatViolin, 14
gfv_helperi, 15

interpolate_data, 15

make_pupillometryr_data, 16
mean2, 17

plot.Pupil_difference_data, 18
plot.Pupil_test_data, 19
plot.Pupil_window_data, 20
plot.PupillometryR, 17
pupil_data, 21

regress_data, 22
replace_missing_data, 22
run_functional_t_test, 23

subset_data, 24

25

	baseline_data
	calculate_mean_pupil_size
	calculate_missing_data
	clean_missing_data
	create_difference_data
	create_functional_data
	create_time_windows
	create_window_data
	detect_blinks_by_column
	detect_blinks_by_size
	detect_blinks_by_velocity
	downsample_time_data
	filter_data
	GeomFlatViolin
	geom_flat_violin
	gfv_helper1
	interpolate_data
	make_pupillometryr_data
	mean2
	plot.PupillometryR
	plot.Pupil_difference_data
	plot.Pupil_test_data
	plot.Pupil_window_data
	pupil_data
	regress_data
	replace_missing_data
	run_functional_t_test
	subset_data
	Index

