--- title: "Getting started with LBBNN" output: rmarkdown::html_vignette: df_print: paged params: eval: false vignette: > %\VignetteIndexEntry{Getting started with LBBNN} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include=FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = params$eval ) ``` ## Introduction LBBNN implements Latent Bayesian Binary Neural Networks in R using the torch framework. This vignette walks through basic usage: data preparation, model definition, training, validation, and visualization. ## Setup ```{r} library(LBBNN) library(ggplot2) library(torch) ``` ## Data loaders ```{r} loaders <- get_dataloaders(Raisin_Dataset, train_proportion = 0.8, train_batch_size = 720, test_batch_size = 180) train_loader <- loaders$train_loader test_loader <- loaders$test_loader ``` ## Define the model ```{r} problem <- "binary classification" sizes <- c(7, 5, 5, 1) inclusion_priors <- c(0.5, 0.5, 0.5) stds <- c(1, 1, 1) inclusion_inits <- matrix(rep(c(-10, 15), 3), nrow = 2, ncol = 3) device <- "cpu" torch_manual_seed(0) model_input_skip <- lbbnn_net(problem_type = problem, sizes = sizes, prior = inclusion_priors, inclusion_inits = inclusion_inits, input_skip = TRUE, std = stds, flow = FALSE, device = device) ``` ## Train ```{r} results_input_skip <- train_lbbnn(epochs = 50, LBBNN = model_input_skip, lr = 0.005, train_dl = train_loader, device = device) ``` ## Validate ```{r} validate_lbbnn(LBBNN = model_input_skip, num_samples = 100, test_dl = test_loader, device = device) ```