params <- list(eval = FALSE) ## ----include=FALSE------------------------------------------------------------ knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = params$eval ) ## ----------------------------------------------------------------------------- # library(LBBNN) # library(ggplot2) # library(torch) ## ----------------------------------------------------------------------------- # loaders <- get_dataloaders(Raisin_Dataset, train_proportion = 0.8, # train_batch_size = 720, test_batch_size = 180) # train_loader <- loaders$train_loader # test_loader <- loaders$test_loader ## ----------------------------------------------------------------------------- # problem <- "binary classification" # sizes <- c(7, 5, 5, 1) # inclusion_priors <- c(0.5, 0.5, 0.5) # stds <- c(1, 1, 1) # inclusion_inits <- matrix(rep(c(-10, 15), 3), nrow = 2, ncol = 3) # device <- "cpu" # torch_manual_seed(0) # model_input_skip <- lbbnn_net(problem_type = problem, sizes = sizes, # prior = inclusion_priors, # inclusion_inits = inclusion_inits, # input_skip = TRUE, std = stds, # flow = FALSE, device = device) ## ----------------------------------------------------------------------------- # results_input_skip <- train_lbbnn(epochs = 50, LBBNN = model_input_skip, # lr = 0.005, train_dl = train_loader, # device = device) ## ----------------------------------------------------------------------------- # validate_lbbnn(LBBNN = model_input_skip, num_samples = 100, # test_dl = test_loader, device = device)