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Abstract

This vignette is a slightly modified version of Koenker (2008a). It was written in plain
latex not Sweave, but all data and code for the examples described in the text are available
from either the JSS website or from my webpages. Quantile regression for censored survival
(duration) data offers a more flexible alternative to the Cox proportional hazard model for
some applications. We describe three estimation methods for such applications that have
been recently incorporated into the R package quantreg: the Powell (1986) estimator for
fixed censoring, and two methods for random censoring, one introduced by Portnoy (2003),
and the other by Peng and Huang (2008). The Portnoy and Peng-Huang estimators can
be viewed, respectively, as generalizations to regression of the Kaplan-Meier and Nelson-
Aalen estimators of univariate quantiles for censored observations. Some asymptotic and
simulation comparisons are made to highlight advantages and disadvantages of the three
methods.

Keywords: quantile regression, censored data.

1. Introduction

Powell (1984, 1986) initiated an “era of econometric perestroika” for the censored regression
model, liberating it from the oppressive Gaussian specification that had prevailed since its
introduction by Tobin (1958) in the midst of the cold war. Given the linear latent variable
model,

Ti = x>i β + ui

with ui assumed to be iid with distribution function F , Powell noted that if censoring values,
Ci, are observed for all i = 1, · · · , n and we observe Yi = max{Ci, Ti} then the conditional
quantile functions,

QYi|xi
(τ |xi) = F−1(τ) + x>i β

can be consistently estimated, setting ρτ (u) = u(τ − I(u < 0), by,

β̂ = argminb∈Rp

n∑
i=1

ρτ (Yi −max{Ci, x>i b}),

provided that the design matrix, X = (xi), contains an intercept to absorb the τ dependent
contribution F−1(τ). This observation follows immediately from the monotonicity of the
mapping Ti → Yi, and the fact that for any monotonically increasing function, h, and scalar
random variable Z, P (Z ≤ z) = P (h(Z) ≤ h(z)). The result generalizes nicely to a variety
of non-iid latent variable settings; in particular to other linear conditional quantile latent
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variable models, permitting linear scale shift and other more general forms of heterogeneity
in the covariate effects. Right censoring, as is more typical of duration modeling applications,
is easily accommodated by replacing max by min above. Often, in econometric applications
the Ci’s take a constant value as in the original tobit model where Ci = 0, or in wage
equation top-coding, but this is not essential. What is necessary – and we shall see that this
is not without its unfortunate consequences – is that the Ci’s are known for all observations.
Following Powell, we will refer to this situation as fixed censoring.

Random censoring, in contrast, refers to situations in which censoring values, Ci, are only
observed for the censored observations. In effect, we observe only the event times, Yi and a
censoring indicator, δi, taking the value one if the observation is uncensored and zero if the
observation is censored. Random censoring has received much less attention in the economet-
ric literature, and it is not difficult to conjecture why. Analysis of randomly censored data
requires that censoring times are independent of event times, or, in regression settings, that
they are independent conditional on covariates. This assumption is frequently implausible in
econometric applications where censoring is due to endogenous influences. In biostatistics,
where random censoring is more often considered, the dominant empirical strategy has been
the Cox proportional hazard model. However, there has also been a recognition that the pro-
portionality assumption underlying the Cox model is sometimes inappropriate, necessitating
stratification of the baseline hazard or some other weakening of the proportional hazards con-
dition. Much more flexible models can be constructed by modeling conditional quantiles of
the event time distribution. For uncensored survival data this approach has been explored by
Koenker and Geling (2001), but censoring poses some new challenges. Fitzenberger and Wilke
(2006) provide a valuable survey of applications of censored quantile regression methods in
econometric duration modeling.

An early alternative approach to Powell, suggested by Lindgren (1997), simply bins the data
in covariate space and computes local Kaplin Meier estimates in each bin. The obvious
difficulty with this approach is that the binning quickly becomes impractical as the number
of covariates grows.

Portnoy (2003) proposed an ingenious method of recursively estimating linear conditional
quantile functions from censored survival data and established consistency and

√
n-convergence

of the proposed estimators. Portnoy’s method can be regarded as a generalization to regres-
sion of the Kaplan Meier estimator. Recently, Peng and Huang (2008) have proposed a closely
related method. Rather than building on the linkage to Kaplan-Meier, they instead develop
an approach linked to the Nelson-Aalen estimator of the cumulative hazard function. The
main advantage of the latter approach is that it enables them to employ counting process
methods to establish a martingale property for their estimating equation from which a more
complete asymptotic theory for the estimator flows.

The main objective of this paper is to describe an implementation of all the foregoing methods
appearing in recent versions of my quantreg package for R. This package seeks to provide a
comprehensive implementation of quantile regression methods for the R (R Development Core
Team 2008) language. The package is available from the Comprehensive R Archive Network at
http://CRAN.R-project.org/package=quantreg. It incorporates both linear and nonlinear
in parameters methods as well as non-parametric additive model fitting techniques. The
new censored quantile regression methods are accessible through the new fitting function
crq, which extends the functionality of the existing functions rq, nlrq and rqss that are
used/rearrage/ for fitting linear, nonlinear, and nonparametric models respectively. After a

http://CRAN.R-project.org/package=quantreg
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brief overview of the implementation, we will consider the three new methods in turn and
provide some comparisons and offer some advice on their strengths and weaknesses.

2. Overview

Model fitting in R typically proceeds by specifying a formula describing the model, a data
frame containing the data, and possibly some some further fitting options. For censored
quantile regression these arguments are passed to the function crq. Formulae are specified
for the two random censoring methods using the function Surv from the package survival, see
Therneau and Lumley (2008)

The accelerated failure time model,

log(Yi) = x>i β + ui,

with ui iid with distribution function F is a common model for survival data. When the data
are uncensored the model can be simply estimated by least squares, or using quantile regres-
sion as in Koenker and Geling (2001). The latter approach offers some distinct advantages
since it permits the researcher to focus attention on narrow slices of the conditional survival
distribution. In Koenker and Geling (2001) where the interest is in mortality of medflies
it was particularly valuable to focus attention on the upper tail of the lifetime distribution
where it was found that there was a crossover in gender survival prospects at advanced ages.
It is difficult, even impossible, to see such effects in some classical survival models where
attention typically focuses on covariate effects on mean survival prospects. For further details
on quantile regression methods and their implementation in R, see Koenker (2005) and the
vignette available with the package quantreg, Koenker (2008b). For censored data, and para-
metric choice of F , the model can be easily estimated by maximum likelihood. Relaxing the
parametric restriction and the iid error assumption leads naturally to the censored quantile
regression model,

Qlog(Yi)|xi
(τ |xi) = x>i β(τ).

The choice of the log transformation, although traditional, is entirely arbitrary and may
be replaced by any monotone transformation. In applications with random censoring such
models can be estimated in R using crq using the formula,

Surv(log(y), delta) ~ x

where delta denotes the vector of censoring indicators. For fixed censoring of the type
considered by Powell, formulae take the form,

Curv(log(y), c, type= "left") ~ x

Here, Curv is a slightly modified version of Surv designed to accommodate the provision
of the censoring times instead of the censoring indicators to the fitting routine. The type
argument indicates whether the censoring is from the left, as in the classical Tobit model,
or from the right as in the case of top coding. Other arguments can be supplied to fitting
function including: taus a list of quantiles to be estimated, data a data frame where the
formula variables reside, etc. The argument method is used to specify one of three currently
available methods: "Powell" for the Powell estimator, "Portnoy" for Portnoy’ censored
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quantile regression estimator, and "PengHuang" for Peng and Huang’s version of the censored
quantile regression estimator. Partial argument matching in R permits these strings to be
abbreviated to the shortest distinguishable substrings: "Pow", "Por" and "Pen". Further
arguments can be specified to the specific fitting routines, notably start to specify a initial
value for the coefficients for the Powell method, and grid to specify the evaluation grid for
the random censoring methods.

Given fixed censoring data it is always possible to fit random censoring models, and we
will argue that this may often be advantageous, but since the Powell estimator requires
censoring times for all observations, it can generally not be applied to randomly censored
data. We will focus in the remainder of the paper on the case of right censoring but it should
be understood that all of the methods discussed can be adapted to left censoring as well.
Applications involving interval censoring are the subject of active current research and we
hope to incorporate new methods when they become available.

3. The Powell Estimator

Given censoring times Ci and event times Yi ≤ Ci with associated covariate vectors xi ∈ Rp,
the Powell estimator minimizes,

Rτ (b) =
∑

ρτ (Yi −min{Ci, x>i b}).

The piecewise linear form of the response function poses some real computational challenges.
Unlike the uncensored quantile regression problem, the objective function, Rτ (b) is no longer
convex, so local optimization methods like steepest descent may terminate at a local minimum
that is not the global minimum. Fitzenberger (1996) describes an algorithm that adapts the
classical Barrodale and Roberts (1974) simplex algorithm for `1 regression to this end. In
effect, Fitzenberger’s algorithm is steepest descent: due to the piecewise linear form of the
objective function solutions can be characterized by an exact fit to p observations, so careful
computation of the directional derivatives at successive “basic” solutions in the directions
obtained by deleting one of the p points from the “basis” ensures convergence to a local
optimum.

Fitzenberger and Winker (2007) investigate a modified version of this BRCENS algorithm
that employs a threshold accepting outer loop somewhat like simulated annealing to improve
the chances of converging to the global optimum. Ironically, it is far from obvious that this
more diligent search for the global Powell solution is justified. Simulations by Fitzenberger
and Winker, and supported by my own simulations, suggest that in many censored regres-
sion problems the global optimizer performs much worse than its more myopic counterparts.
Starting the BRCENS iterations at β = 0 or some other plausible value and taking steepest
descent steps acts as a shrinkage technique, thereby avoiding embarrassing globally optimal
points further away. In the quantreg implementation the default starting value is the naive
rq estimate ignoring the censoring; this has the dubious advantage that it retains the usual
equivariance properties of the conventional quantile regression estimators.

In simulations, where exhaustive search for the Rτ minimizer is feasible, the global optimizer
is prone to find, at least occasionally, solutions that are absurdly far from the parameters used
to generate the data, and at least from a mean squared error perspective these realizations
wreck havoc with performance. Asymptotic theory assures us that this is only an evanescent
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“finite sample problem,” but such assurances may not offer much consolation to the applied
researcher who generally lacks the patience to let data accumulate in asymptopia. Fortunately,
other methods may offer some rather unexpected advantages.

The function crq implements a new fortran version of the algorithm described in Fitzenberger
(1996) for the method "Powell". This version is considerably simpler than the original
BRCENS version and more modular. I have also included an implementation of an exhaustive
global search algorithm that pivots through all

(
n
p

)
basic solutions and chooses the one that

minimizes the Powell objective function. This option is selected by specifying the option
start = "global", but it should be recognized that for problem with even a moderately
large sample size the resulting search becomes impractical. It would be quite easy to embed
the current implementation into a global optimization method such as the anneal function of
the R package subselect, see Cerdeira, Silva, Cadima, and Minhoto (2007), but we have not
(yet) done this.

4. Random Censoring

In one-sample settings with random censoring the Kaplan-Meier product-limit estimator is
known to be an efficient estimation technique and can be interpreted as a nonparametric
maximum likelihood estimator, see e.g. Andersen, Borgan, Gill, and Keiding (1991). In the
simplest case, without tied event times, the Kaplan-Meier estimator of the survival function,
S(t) can be written as,

Ŝ(t) =
∏

i:y(i)≤t
(1− 1/(n− i+ 1))δ(i) ,

where y(i)’s denote the ordered event times, and the δ(i)’s denote the associated censoring
indicators. Efron (1967) interpreted Ŝ as shifting mass of the censored observations to the
right, distributing it in accordance with the subsequent uncensored event times.

4.1. Kaplan-Meier Quantiles as Argmins

Portnoy (2003) observed that quantiles of the Kaplan-Meier distribution function, F̂ (t) =
1− Ŝ(t) could be expressed as solutions to a weighted quantile optimization problem in which
weight associated with censored observations was split into two pieces. A part of the mass
associated with each censored observation is left in its initial position at the censoring time,
and the remainder is shifted to right, in effect to +∞.

To see this, recall that in one-sample settings without censoring the ordinary sample quantiles
can be expressed as,

ξ̂(τ) = argminξ
n∑
i=1

ρτ (Yi − ξ)

to obtain the step function,

ξ̂(τ) = y(i) for τ ∈ ((i− 1)/n, i/n].

It is helpful to view this as parametric in τ : as τ increases from 0, y(1) is the solution until
we reach, τ = 1/n, at which point y(2) is also a minimizer, and so on.
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When there are censored observations we can proceed in a similar fashion, except that when
we encounter a τi such that ξ̂(τi) = y(i) and δ(i) = 0, we split the censored observation into
two pieces: one piece remains at its original position, y(i), and receives weight

wi(τ) =
τ − τi
1− τi

at all subsequent τ , and the other piece is shifted to y∞ = +∞ and gets weight 1 − wi(τ).
This reweighting assures that ξ̂(t) is constant in an open neighborhood of any such τi, and the
remaining mass, the 1−wi part of each censored observation, gets distributed appropriately.
The crucial insight is simply that the quantiles only depend on how much mass is below and
how much is above – shifting part of the censored mass to +∞ ensures that all the subsequent
uncensored observations receive their fair share of the “credit” for each of the censored points.

Thus, denoting the index set of the censored observations encountered up to τ by K(τ), the
quantiles of the Kaplan-Meier distribution, F̂ can be expressed as a solution to the problem:

min
∑

i/∈K(τ)

ρτ (Yi − ξ) +
∑

i∈K(τ)

[wi(τ)ρτ (Yi − ξ) + (1− wi(τ))ρτ (y∞ − ξ)].

The advantage of this formulation is that it generalizes nicely to the regression setting where
the scalar ξ is replaced by the inner product x>i β.

4.2. Portnoy’s Censored Quantile Regression Estimator

Portnoy (2003) describes in detail an algorithm for the regression analogue of this problem.
There are several complications in the regression setting that do not arise in the one-sample
context; the most important of these is the possibility that censored observations that are
“crossed” by estimated quantile regression process and thus have negative residuals, may
return to the optimal basis and have zero residuals for some subsequent τ . This cannot
happen in the one-sample setting by the monotonicity of the Kaplan-Meier estimator, but
may occur using the reweighting due to the weaker nature of the monotonicity condition
in the p-dimensional regression setting. Portnoy describes an effective way to deal with
these pivoting anomalies as well as discussing complications due to an excess of censored
observations in the upper tail that limit range τ ∈ [0, 1] for which the model is inestimable.
The latter is a familiar problem even in the one-sample setting where censored observations
above the largest uncensored observation imply a “defective” Kaplan-Meier survival function.

Portnoy provided a Fortran implementation of his estimator based on a “pivoting” method
that is similar to that described in Koenker and D’Orey (1987), but adapted to the“recrossing”
problems alluded to above. Starting τ near zero, at each step it is possible to evaluate the
length of the interval of τ ’s for which the current solution to the weighted quantile regression
problem:

min
∑

i/∈K(τ)

ρτ (Yi − x>i β) +
∑

i∈K(τ)

[wi(τ)ρτ (Yi − x>i β) + (1− wi(τ))ρτ (y∞ − x>i β)].

remains optimal, the problem is then updated and resolved at the upper bound of the interval,
and iteration proceeds until τ = 1 is reached or the process is halted because there are only
non-reweighted censored observations with positive residuals remaining. Portnoy has also
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suggested an alternative approach in which the process is evaluated on a grid of τ ∈ [0, 1].
In large samples the latter approach is generally preferred since the inherent accuracy of
the estimated β̂(τ) process is Op(1/

√
n) making the evaluation of the process at Op(n log n)

points using the pivoting method rather excessive. The algorithm written by Steve Portnoy
was originally made available in the R package crq, prepared in collaboration with Tereza
Neocleous and myself. The functionality of this package has now been folded into the quantreg
package.
To illustrate this technique we estimate the model appearing in (Portnoy 2003, Section 6.3),
adapted from Hosmer and Lemeshow (1999), using the R code fragment:

R> require("quantreg")
R> data("uis")
R> fit <- crq(Surv(log(TIME), CENSOR) ~ ND1 + ND2 + IV3 +

TREAT + FRAC + RACE + AGE * SITE, data = uis, method = "Por")
R> Sfit <- summary(fit, 1:19/20)
R> PHit <- coxph(Surv(TIME, CENSOR) ~ ND1 + ND2 + IV3 +

TREAT + FRAC + RACE + AGE * SITE, data = uis)
R> plot(Sfit, CoxPHit = PHit)

We begin by loading the quantreg package, if it is not already loaded, and then loading the
Hosmer and Lemeshow data. The model formula in the call to crq specifies that the logarithm
of the “time to relapse” of subjects in a drug treatment program depends on the number of
prior treatments, ND1 and ND2; the treatment indicator, TREAT taking the value 1 for subjects
taking the “long” course, and 0 for subjects taking the “short” course; an indicator for prior
intravenous drug use, IV3; a compliance variable, FRAC; subject’s race; and the main and
interaction effects of subjects age and site of treatment. The object fit produced by the call
to crq evaluates, by default, the Portnoy estimator on an equally spaced grid with increments
of about 0.006, for this sample of size 575. The function summary computes bootstrapped
standard errors for the quantile regression estimates. In this example this step generates
several warning messages indicating that estimation of the bootstrapped samples result in a
“premature stop.“ This is quite common and occurs whenever excessive censoring prevents
estimation of the upper conditional quantiles. In the usual terminology of survival analysis
this results in a ”defective“ estimate of the survival distribution. To compare with the Cox
proportional hazard model, we estimate the same model with the survival package’s function
coxph. This enables us to compare the fitted models in the coefficient plots appearing in
Figure 1.
The solid blue line in these plots is the point estimate of the respective quantile regression fits,
and the lighter blue region indicates a 95% confidence region. The solid (horizontal) black
line in some of the plots indicates a null effect. The red line in each of the plots indicates the
estimated conditional quantile “effects” implied by the estimated Cox model, see Koenker and
Geling (2001) and Portnoy (2003) for further details on how this is done. A feature of the
Cox model is that all of the red lines are proportional to one another; they are forced to all
have the same shape determined by the estimate of the baseline hazard function. This shape
is quite consistent with the quantile regression estimates for some of the covariate effects, but
for the treatment and compliance effects the estimates are quite disparate.
Because the baseline hazard function is non-negative, another feature of the Cox estimates
is that they must lie entirely above the horizontal “effect equals zero” axis, or entirely below
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Figure 1: Censored Quantile Regression Coefficients Plots for the Hosmer-Lemeshow Data:
The solid blue line indicates the quantile regression point estimates, the lighter blue region
is a pointwise 95% confidence band, and the red curve in each plot illustrates the estimated
conditional quantile “effect” estimated for the Cox proportional hazard model.
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Figure 2: Predicted Conditional Quantile Function Plots for the Hosmer-Lemeshow Data:
The solid black line indicates the predicted quantile function based on the censored quantile
regression estimator of Portnoy, evaluated at median values of the each of the covariates. The
monotonized red line is the “rearranged” version of the black line.

it. Thus, covariates must either increase hazard over the whole time scale, or decrease it;
the model forbids the possibility that treatments may increase hazard for a time and then
decrease them. Such crossovers are, however, sometimes quite plausible, and an advantage
of the quantile regression approach is that they are more easily revealed. An interesting
example of this phenomenon is the cross-over in gender mortality rates discussed in Koenker
and Geling (2001).
Given the fitted crq object the conditional quantile function can be estimated at any setting
of the covariates and plotted using something similar to the following code:

R> formula <- ~ ND1 + ND2 + IV3 + TREAT + FRAC + RACE + AGE * SITE - 1
R> X <- data.frame(model.matrix(formula, data=uis))
R> newd <- as.list(apply(X, 2, median))
R> pred <- predict(fit, newdata=newd, type = "stepfun")
R> plot(pred, xlab = expression(tau), ylab = expression(Q(tau)),

do.points = FALSE, main = "Quantiles at Median Covariate Values")
R> plot(rearrange(pred), add=TRUE, do.points=FALSE,

col.vert ="red", col.hor="red")
R> legend(.15, 7, c("Raw","Rearranged"), lty = 1:2,

col=c("black","red"))

We first construct a data frame representing the variables of the model formula and then
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compute medians of these variables to represent the setting of the covariates at which we
wish to predict. The function predict takes the fitted object and the new data newd and
returns a step function representing the predicted quantile function. If the covariate setting is
chosen to be the means of the covariates, x̄, then the predicted quantile function is guaranteed
to be monotone increasing, (Koenker 2005, Theorem 2.5) but at other settings there can be
violations of monotonicity. This eventuality appears in the present example in the extremes
of the plotted function in Figure 1 where the estimated function is least precisely estimated,
and in some nearly invisible smaller violations occurring in the central region of the plot.
A simple and theoretically attractive way of dealing with these violations has been recently
introduced by Chernozhukov, Fernández-Val, and Galichon (2006). Their procedure has been
embodied in the quantreg function rearrange as used in the plotting command above.

4.3. Nelson-Aalen Quantiles as Argmins

Peng and Huang (2008) have recently suggested an alternative approach to censored quantile
regression for censored survival data based on the well-known Nelson-Aalen estimator of
the cumulative hazard function. To motivate the Peng and Huang estimator it is useful to
briefly review the standard counting process development of the Nelson-Aalen estimator. As
above, let Yi = min{Ti, Ci} denote observed event times, and δi = I(Ti < Ci) the censoring
indicators. The random variables Ti and Ci are assumed to be independent with distribution
functions F and G, respectively. The distribution function, F , is assumed to be absolutely
continuous with density f with respect to Lebesgue measure. Define the counting processes

Ni(t) = I({Ti ≤ t} and {δi = 1})
Ri(t) = I({Ti ≥ t})

and the corresponding aggregated processes R(t) =
∑
Ri(t) and N(t) =

∑
Ni(t). The

cumulative hazard function,

Λ(t) ≡
∫ t

0
λ(s)ds ≡

∫ t

0

f(s)
1− F (s)

ds = − log(1− F (s))

has increments Λ(s + h) = Λ(s) ≈ λ(s)h, so it is natural to estimate this quantity by the
number of uncensored events occurring in the interval [s, s + h] divided by the number of
subjects at risk at time s, that is by (N(s+ h)−N(s))/R(s). Summing over all of [0, t], we
then have,

Λ̂(t) =
∫ t

0

dN(s)
R(s)

.

In principle, dN(s) could accommodate both discrete and continuous components, but here
we need only concern ourselves with the discrete component, ∆N(s) = N(s)−N(s−), which
denotes the number of uncensored events occurring precisely at time s. Thus, we can express
the Nelson-Aalen estimator in somewhat more concrete notation as

Λ̂(t) =
∑
{i:yi≤t}

∆N(yi)
R(yi)

.

Given the estimator, Λ̂(t), a natural estimator of the survival function would seem to be
exp(−Λ̂(t)), but further reflection suggests that this is only really appropriate if Λ̂ were
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absolutely continuous. Alternatively, noting that

dΛ(s) =
dF (s)

1− F (s−)

we can write,

F (t) =
∫ t

0
dF (s) =

∫ t

0
(1− F (s−))dΛ(s).

Then following Fleming and Harrington (1991), we can define recursively the estimator,

Ŝ(t) = 1−
∫ t

0
S(s−)dΛ̂(s).

But since Ŝ(t−)− Ŝ(t) = −∆Ŝ(t) = Ŝ(t−)∆N(t)
R(t) , we have

Ŝ(t) = Ŝ(t−)
[
1− ∆N(t)

R(t)

]
=

∏
s≤t

[
1− ∆N(s)

R(s)

]
,

which is recognizable as the Kaplan-Meier estimator.

The close relationship between the Nelson-Aalen and Kaplan-Meier estimators is not sur-
prising; indeed both have some claim to the status of nonparametric maximum likelihood
estimators, see e.g. (Andersen et al. 1991, Section IV.1.5). The martingale structure of
the Nelson-Aalen estimator motivates the Peng and Huang approach to censored quantile
regression, which we now briefly sketch.

4.4. Peng and Huang’s Censored Quantile Regression Estimator

As above, let Yi = Ti ∧ Ci be a random event time and δi = I(Ti < Ci) be the associated
censoring indicator. Denote, Fi(t|x) = P(Ti ≤ t|xi), Λi(t|x) = − log(1 − Fi(t|xi)), and
Ni(t) = I({Ti ≤ t}, {δi = 1}), then denoting min{a, b} = a ∧ b,

Mi(t) = Ni(t)− Λi(t ∧ Yi|xi),

is a martingale process for t ≥ 0. Adopting the accelerated failure time version of the quantile
regression model,

P(log Ti ≤ x>i β(τ)) = τ,

the martingale property, EMi(t) = 0 implies that,

E[n−1/2
∑

xi[Ni(exp(x>i β(τ)))− Λi(exp(x>i β(τ)) ∧ Yi|xi))] = 0.

Rewriting the Λi term as,

Λi(exp(x>i β(τ)) ∧ Yi|xi) = H(τ) ∧H(Fi(Yi|xi)) =
∫ τ

0
I(Yi ≥ exp(x>i β(u)))dH(u),
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where H(u) = − log(1− u) for u ∈ [0, 1), yields the estimating equation,

E[n−1/2
∑

xi[Ni(exp(x>i β(τ)))−
∫ τ

0
I(Yi ≥ exp(x>i β(u)))dH(u)] = 0.

The integral can now be approximated on a grid, 0 = τ0 < τ1 < · · · < τJ < 1, as,

αi(τj) =
j−1∑
k=0

I(Yi ≥ exp(x>i β̂(τk)))(H(τk+1)−H(τk)),

yielding Peng and Huang’s final estimating equation,

n−1/2
∑

xi[Ni(exp(x>i β(τ)))− αi(τ)] = 0.

Since the left hand side is not continuous an exact root may not exist. Peng and Huang
consider “generalized solutions” citing Fygenson and Ritov (1994), who define a generalized
estimating equation, W (β), as a monotone nondecreasing field, if for any β and ξ in Rp,
ξ>W (β + xξ) is monotone nondecreasing in the scalar x. But this is precisely the condition
that W be the subgradient of a convex function. Setting ri(b) = log(Yi) − x>i b, this convex
function for the Peng and Huang problem takes the form

(Q) R(b, τj) =
n∑
i=1

ri(b)(αi(τj)− I(ri(b) < 0)δi) = min!

Theorem 1. Fix τ , and define the n-vectors α = (αi(τ)), δ = (δi) and z = (log(Yi)). The
problem (Q) is equivalent to the linear programming problem:

(P ) min{α>u+ (δ − α)>v|z = Xb+ u− v, u ≥ 0, v ≥ 0}.

and its dual,

(D) max{z>1 a1|X>1 a1 = X>(δ − α), a1 ∈ [0, 1]m}

where X1 denotes the submatrix of X with m rows corresponding to uncensored observations,
and z1 denotes the associated subvector of z.

Proof: Note that Ni(exp(x>i b)) = I(ri(b) ≤ 0)δi, and consequently splitting ri(b) into
positive, ui, and negative, vi, parts yields (P). The formal dual is then,

max
d∈Rn
{z>d|X>d = 0, α− d ≥ 0, δ − α+ d ≥ 0}

or equivalently, setting a = α− d,

max
a∈Rn
{z>a|X>a = X>(δ − α), a ∈ Πn

i=1[0, δi]}

But the latter formulation implies that ai = 0 for all i such that δi = 0, so the dual problem can
be reduced to focus only on the dual variables associated with the uncensored observations,
which yields (D), after partitioning.

Remark: The dual formulation shows that solutions to the Peng and Huang problem must
interpolate p uncensored observations. See the discussion in (Koenker 2005, Section 6.2). This

roger
Sticky Note
This should have read:

a = d - (\alpha - \delta)
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contrasts with both the Powell and Portnoy methods for which solutions also correspond to
p-element subset solutions, but solutions may include censored as well as uncensored obser-
vations.

Implementation of the Peng and Huang estimator in the quantreg package requires that
the process be evaluated on a prespecified grid. (There is no known “pivoting” form of the
algorithm.) At each τ of the grid, the problem (D) is solved using a Fortran implementation
of the Frisch-Newton algorithm described in Portnoy and Koenker (1997). This requires only
a rather minor modification of the standard quantile regression procedure, replacing the usual
right hand side of the dual equality constraints by the expression X>(δ−α). In the case that
δi ≡ 1 so there is no censoring, this new right hand side reduces to approximately its original
form (1 − τ)X>1n. This reduction is exact in the one-sample setting. Repeating the model
fitting and prediction exercises described above using method = "PengHuang" rather than
method = "Portnoy" yields very similar results, a finding that is perhaps not very surprising
in view of the similarity of the underlying Kaplan-Meier and Nelson-Aalen foundations of the
two methods.

To see in a little more detail how the two methods compare we consider a small simulation
experiment. Survival times are generated by the AFT model,

log Ti = x1β1 + x2β2 + u

with the u = log(e) iid and e standard exponential; x1 ∼ U [0, 1] and x2 is independent,
Bernoulli with probability one-half. Censoring times are generated as U [0, 3.8] if x2 = 0 and
U [0.1, 3.8] otherwise. This configuration yields roughly 25% censoring. We consider 3 sample
sizes n = 100, 400, 1600, and 8 distinct grid spacings, parameterized by γ = .2, .3, · · · , .9 with
grid spacing h = 1/(nγ + 6). Figure 3 presents scatterplots of the Portnoy and Peng-Huang
estimates β̂2(0.6)−β2(0.6) for this experiment. The estimators behave very similarly, but for
finer grids (larger values of γ) the correlation is clearly stronger.

5. Some One-sample Asymptotics

It is instructive to compare the performance of various quantile estimators in the simplest
censored one-sample problem as a prelude to some simulation comparisons of estimator per-
formance for the general regression setting.

Suppose that we have a random sample of pairs, {(Ti, Ci) : i = 1, · · · , n} with Ti ∼ F , Ci ∼ G,
and Ti and Ci independent. Let Yi = min{Ti, Ci}, as usual, and δi = I(Ti < Ci). In this
setting the Powell estimator of θ = F−1(τ),

θ̂P = argminθ
n∑
i=1

ρτ (Yi −min{θ, Ci}).

is asymptotically normal,
√
n(θ̂P − θ) ; N (0, τ(1− τ)/(f2(θ)(1−G(θ)))).

In contrast, the asymptotic theory of the quantiles of the Kaplan-Meier estimator is slightly
more complicated. Using the δ-method one can show,

√
n(θ̂KM − θ) ; N (0,Avar(Ŝ(θ))/f2(θ))
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Figure 3: Scatterplots of the Portnoy vs. Peng-Huang estimators in a simple AFT censored
survival model: For given sample size, finer grid spacing tends to strengthen the linear corre-
lation between the two estimators.
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where, see e.g. Andersen et al. (1991),

Avar(Ŝ(t)) = S2(t)
∫ t

0
(1−H(u))−2dF̃ (u)

and 1−H(u) = (1− F (u))(1−G(u)) and F̃ (u) =
∫ t

0 (1−G(u))dF (u).

Since the Powell estimator makes use of more sample information than does the Kaplan Meier
estimator it might be thought that it would be more efficient. This isn’t true.

Proposition 1. Avar(θ̂KM ) ≤ Avar(θ̂P ).

Proof: Consider

f2(θ)Avar(θ̂KM) = S(θ)2

∫ θ

0
(1−H(s))−2dF̃ (s)

= S(θ)2

∫ θ

0
(1−G(s))−1(1− F (s))−2dF (s)

≤ S(θ)2

1−G(θ)

∫ θ

0
(1− F (s))−2dF (s)

=
S(θ)2

1−G(θ)
· 1

1− F (s)

∣∣∣∣θ
0

=
S(θ)2

1−G(θ)
· F (θ)

1− F (θ)

=
F (θ)(1− F (θ))

(1−G(θ))

=
τ(1− τ)

(1−G(θ))
.

Thus, not only is the use of the uncensored Ci’s unable to improve upon the Kaplan-Meier
estimator, it actually results in a deterioration in performance. Further reflection suggests
why our initial expectation of an improvement was misguided: in parametric likelihood based
settings a sufficiency argument shows that the Ci for the uncensored observations are ancillary.
From a Bayesian perspective, the likelihood principle implies that they cannot be informative,
see e.g. Berger and Wolpert (1984).

Having come this far it is worthwhile to consider a few other suggestions that have appeared in
the literature regarding the use the uncensored Ci’s. Leurgans (1987) considered the weighted
estimator of the censored survival function,

ŜL(t) =
∑
I(Yi > t)I(Ci > t)∑

I(Ci > t)
,

that uses all the Ci’s. Conditioning on the Ci’s, it can be shown that E(ŜL(t)|C) = S(t), and
that the conditional variance is

Var(ŜL(t)|C) =
F (t)(1− F (t))

1− Ĝ(t)
.
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Averaging this expression gives the unconditional variance which converges to

Avar(ŜL(t)|C) =
F (t)(1− F (t))

1−G(t)
,

and consequently quantiles based on this estimator behave (asymptotically) just like those
produced by the Powell estimator. A remarkable feature of this development is that it reveals
that replacing the empirical weighting by 1 − Ĝ(t) by the true value 1 − G(t), yields even
worse asymptotic performance, since in that event the limiting variance is

H(t)(1−H(t))
(1−G(t))2

=
H(t)(1− F (t))

(1−G(t))
≥ F (t)(1− F (t))

(1−G(t))
.

It gets even curioser: if instead of replacing 1 − Ĝ by the true 1 − G, we instead replace it
by an even worse estimator, the Kaplan-Meier estimator of the survival distribution of the
Ci’s, Wang and Li (2005) show that the resulting weighted estimator is even better. Indeed,
the resulting weighted estimator achieves the same asymptotic variance as the Kaplan-Meier
estimator given above, so the performance of the three versions of the weighted estimator
becomes successively better as the estimator of the weights becomes worse!

To evaluate the reliability of these rather perverse asymptotic conclusions we conclude this
section by reporting the results of a small scale simulation experiment comparing the finite
sample performance of several estimates of the median in a censored one-sample setting. For
this exercise we take T as standard lognormal, and C as exponential with rate parameter 0.25.
We consider 6 estimators of the median of the lognormal: the (infeasible) sample median, the
Kaplan-Meier median, the Nelson-Aalen (Fleming-Harrington) median, the Powell median,
the Leurgans median, and finally the Leurgans median modified to employ the true rather
than the estimated weights.

median Kaplan-Meier Nelson-Aalen Powell Leurgans Ĝ Leurgans G

n = 50 1.602 1.972 2.040 2.037 2.234 2.945
n = 200 1.581 1.924 1.930 2.110 2.136 2.507
n = 500 1.666 2.016 2.023 2.187 2.215 2.742
n = 1000 1.556 1.813 1.816 2.001 2.018 2.569

n =∞ 1.571 1.839 1.839 2.017 2.017 2.463

Table 1: Scaled MSE for Several Estimators of the Median: Mean squared error estimates
are scaled by sample size to conform to asymptotic variance computations.

The simulation results conform quite closely to the predictions of the theory. The Kaplan-
Meier and Nelson-Aalen estimators perform essentially the same, sacrificing about 15% effi-
ciency relative to the (unattainable) sample median. This is about half the proportion (30%)
of censored observations in the simulation model. The Powell and Leurgans estimators also
perform very similarly as predicted by the theory, sacrificing about 10% efficiency compared
to the Kaplan-Meier-Nelson-Aalen. The worst of the lot is the omniscient weighted estimator
that sacrifices another 20% efficiency. Beware of oracles bearing nuisance parameters!
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Figure 4: Two Censored Regression Models: The two panels illustrate configurations used
in the simulation experiment. Both models have iid Gaussian error models conditional event
times. On the left there is constant censoring of all responses above Y = 6.5, on the right there
is random censoring according to the model given in the text. Censored points are shown
as open circles, uncensored points as filled circles. The conditional median line is shown in
black, the other conditional decile curves are shown in grey.

6. A Censored Quantile Regression Simulation Experiment

In this final section we report on a small simulation experiment intended to compare the
performance of the Powell, Portnoy and Peng-Huang estimators of the censored quantile re-
gression model. We consider four generating mechanisms for the data: two for generating
event times and two for generating censoring times. Typical scatter plots of the four mecha-
nisms with n = 100 observations are illustrated in Figures 4 and 5, censored points are plotted
as open circles and uncensored points as filled circles.

Event times are generated either from the iid error linear model,

Ti = β0 + β1xi + σ0ui,

or from the heteroscedastic model

Ti = β0 + β1xi + (σ1 + σ2x
2
i )ui.

Censoring times are either constant,
Ci = κ,

or generated from the linear model,

Ci = γ0 + γ1xi + σ2vi.
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Figure 5: Two More Censored Regression Models: The two panels illustrate the other two
configurations used in the simulation experiment. In both cases event times are generated
according to the quadratically heteroscedastic model described in the text. On the left there
is constant censoring of all responses above Y = 6.5, on the right there is random censor-
ing according to the model given in the text. Censored points are shown as open circles,
uncensored points as filled circles. The conditional median line is shown in black, the other
conditional decile curves are shown in grey.
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In each case the xi’s are iid U [0, 2], and ui and vi’s are iid N (0, 1). Parameters were selected
so that the proportion of censored observations was roughly 30% in all cases: β> = (5, 1),
σ> = c(0.39, 0.09, 0.3), κ = 6.5, and γ> = (5.5, .75).

We compare four estimators of the parameters of the conditional median function

QT (0.5|x) = β0 + β1x,

for the two iid error models: the Portnoy and Peng-Huang estimators, the Powell estimator
as implemented by the Fitzenberger algorithm, and finally the Gaussian maximum likelihood
estimator for the conditional mean function, which in these cases happens to be identical to
the conditional median function.

Intercept Slope
Bias MAE RMSE Bias MAE RMSE

Portnoy
n = 100 -0.0032 0.0638 0.0988 0.0025 0.0702 0.1063
n = 400 -0.0066 0.0406 0.0578 0.0036 0.0391 0.0588
n = 1000 -0.0022 0.0219 0.0321 0.0006 0.0228 0.0344

Peng-Huang
n = 100 0.0005 0.0631 0.0986 0.0092 0.0727 0.1073
n = 400 -0.0007 0.0393 0.0575 0.0074 0.0389 0.0598
n = 1000 0.0014 0.0215 0.0324 0.0019 0.0226 0.0347

Powell
n = 100 -0.0014 0.0694 0.1039 0.0068 0.0827 0.1252
n = 400 -0.0066 0.0429 0.0622 0.0098 0.0475 0.0734
n = 1000 -0.0008 0.0224 0.0339 0.0013 0.0264 0.0396

GMLE
n = 100 0.0013 0.0528 0.0784 -0.0001 0.0517 0.0780
n = 400 -0.0039 0.0307 0.0442 0.0031 0.0264 0.0417
n = 1000 0.0003 0.0172 0.0248 -0.0001 0.0165 0.0242

Table 2: Comparison of Performance for the iid Error, Constant Censoring Configuration

Tables 2 and 3 report mean bias, median absolute error and root mean squared error measures
of performance for both the intercept and slope parameters for each of these estimators for
three sample sizes. The Gaussian MLE is obviously most advantageous in these settings, but
it is also noteworthy that the Portnoy and Peng-Huang estimators outperform the Powell
estimator by a modest margin. Bias is generally negligible for all of the estimators in these iid
Gaussian settings, so the MAE and RMSE entries can be interpreted essentially as measures
of the dispersion of the respective estimators. The relative efficiencies of the estimators are
quite consistent with the evidence from the one sample results reported in the previous section
showing that the Portnoy and Peng-Huang estimators perform very similarly and exhibit a
modest advantage over Powell. This advantage is somewhat smaller for the variable censoring
model than for constant censoring, a finding that seems somewhat counter-intuitive. If one
maintains the iid error assumption, but alters the form of the Gaussian error distribution
then the superiority of the Gaussian MLE evaporates. For example, in simulations of a
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Intercept Slope
Bias MAE RMSE Bias MAE RMSE

Portnoy
n = 100 -0.0042 0.0646 0.0942 0.0024 0.0586 0.0874
n = 400 -0.0025 0.0373 0.0542 -0.0009 0.0322 0.0471
n = 1000 -0.0025 0.0208 0.0311 0.0006 0.0191 0.0283

Peng-Huang
n = 100 0.0026 0.0639 0.0944 0.0045 0.0607 0.0888
n = 400 0.0056 0.0389 0.0547 -0.0002 0.0320 0.0476
n = 1000 0.0019 0.0212 0.0311 0.0009 0.0187 0.0283

Powell
n = 100 -0.0025 0.0669 0.1017 0.0083 0.0656 0.1012
n = 400 0.0014 0.0398 0.0581 -0.0006 0.0364 0.0531
n = 1000 -0.0013 0.0210 0.0319 0.0016 0.0203 0.0304

GMLE
n = 100 0.0007 0.0540 0.0781 0.0009 0.0470 0.0721
n = 400 0.0008 0.0285 0.0444 -0.0008 0.0253 0.0383
n = 1000 -0.0004 0.0169 0.0248 0.0002 0.0150 0.0224

Table 3: Comparison of Performance for the iid Error, Variable Censoring Configuration

variant of the foregoing models in which Student t3 errors were used, the Gaussian MLE
exhibits considerable larger variability than the other estimators as expected from regression
robustness considerations, but also exhibits substantial bias as well. See Tables 6 and 7 for
details.

Tables 4 and 5 report bias, MAE and RMSE for the quadratic specifications. Here, two
versions of the Portnoy estimator are compared, one using a linear specification of all the
conditional quantile functions, the other using a quadratic specification. Similarly, linear
and quadratic specifications are compared for the Peng-Huang estimator. Note that while
the conditional median function for our simulation model is linear, all the other conditional
quantile functions are quadratic in the covariate x, so we might expect the misspecification
of those functions by the linear model to cause difficulties for the Portnoy and Peng-Huang
estimators. Consequently, for these models we must make some choice about how to evaluate
and compare quadratic and linear specifications. For this purpose we have adopted the
conventional strategy of evaluating the quadratic at the mean of the covariate, x.

The Gaussian MLE is severely biased in the quadratic settings since it assumes homoscedastic
Gaussian error and the model is decidedly heteroscedastic. The Powell estimator performs
quite well under both configurations. The differences between the Portnoy and Peng-Huang
estimators are, as expected, almost negligible. However, the comparison of their linear and
quadratic specfications is quite revealing. For both estimators bias is reduced by employing
the (correct) quadratic specification, but this improvement is small and comes at a rather
more substantial cost of variance inflation. Thus, from both MAE and RMSE perspectives
the linear specification is preferable even though it suffers from a somewhat larger bias effect.
Finally, comparing performance of the Powell estimator with those of Portnoy and Peng-
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Intercept Slope
Bias MAE RMSE Bias MAE RMSE

Portnoy L
n = 100 0.0084 0.0316 0.0396 -0.0251 0.0763 0.0964
n = 400 0.0076 0.0194 0.0243 -0.0247 0.0429 0.0533
n = 1000 0.0081 0.0121 0.0149 -0.0241 0.0309 0.0376

Portnoy Q
n = 100 0.0018 0.0418 0.0527 0.0144 0.1576 0.2093
n = 400 -0.0010 0.0228 0.0290 0.0047 0.0708 0.0909
n = 1000 -0.0006 0.0122 0.0154 -0.0027 0.0463 0.0587

Peng-Huang L
n = 100 0.0077 0.0313 0.0392 -0.0145 0.0749 0.0949
n = 400 0.0064 0.0193 0.0240 -0.0125 0.0392 0.0493
n = 1000 0.0077 0.0120 0.0147 -0.0181 0.0279 0.0342

Peng-Huang Q
n = 100 0.0078 0.0425 0.0538 0.0483 0.1707 0.2328
n = 400 0.0035 0.0228 0.0291 0.0302 0.0775 0.1008
n = 1000 0.0015 0.0123 0.0155 0.0101 0.0483 0.0611

Powell
n = 100 0.0021 0.0304 0.0385 -0.0034 0.0790 0.0993
n = 400 -0.0017 0.0191 0.0239 0.0028 0.0431 0.0544
n = 1000 -0.0001 0.0099 0.0125 0.0003 0.0257 0.0316

GMLE
n = 100 0.1080 0.1082 0.1201 -0.2040 0.2042 0.2210
n = 400 0.1209 0.1209 0.1241 -0.2134 0.2134 0.2173
n = 1000 0.1118 0.1118 0.1130 -0.2075 0.2075 0.2091

Table 4: Comparison of Performance for the Constant Censoring, Heteroscedastic Configura-
tion
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Intercept Slope
Bias MAE RMSE Bias MAE RMSE

Portnoy L
n = 100 0.0024 0.0278 0.0417 -0.0067 0.0690 0.1007
n = 400 0.0019 0.0145 0.0213 -0.0080 0.0333 0.0493
n = 1000 0.0016 0.0097 0.0139 -0.0062 0.0210 0.0312

Portnoy Q
n = 100 0.0011 0.0352 0.0540 0.0094 0.1121 0.1902
n = 400 0.0002 0.0185 0.0270 -0.0012 0.0510 0.0774
n = 1000 -0.0005 0.0116 0.0169 -0.0011 0.0337 0.0511

Peng-Huang L
n = 100 0.0018 0.0281 0.0417 0.0041 0.0694 0.1017
n = 400 0.0013 0.0142 0.0212 0.0035 0.0333 0.0490
n = 1000 0.0012 0.0096 0.0139 0.0002 0.0208 0.0310

Peng-Huang Q
n = 100 0.0044 0.0364 0.0550 0.0322 0.1183 0.2105
n = 400 0.0026 0.0188 0.0275 0.0154 0.0504 0.0813
n = 1000 0.0007 0.0113 0.0169 0.0077 0.0333 0.0520

Powell
n = 100 -0.0001 0.0288 0.0430 0.0055 0.0733 0.1105
n = 400 0.0000 0.0147 0.0226 0.0001 0.0379 0.0561
n = 1000 -0.0008 0.0095 0.0146 0.0013 0.0237 0.0350

GMLE
n = 100 0.1078 0.1038 0.1272 -0.1576 0.1582 0.1862
n = 400 0.1123 0.1116 0.1168 -0.1581 0.1578 0.1647
n = 1000 0.1153 0.1138 0.1174 -0.1609 0.1601 0.1639

Table 5: Comparison of Performance for the Variable Censoring, Heteroscedastic Configura-
tion
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Intercept Slope
Bias MAE RMSE Bias MAE RMSE

Portnoy
n = 100 -0.0020 0.0744 0.1122 -0.0002 0.0782 0.1167
n = 400 -0.0026 0.0371 0.0555 -0.0003 0.0377 0.0576
n = 1000 -0.0021 0.0226 0.0346 0.0006 0.0246 0.0356

Peng-Huang
n = 100 0.0030 0.0750 0.1122 0.0074 0.0806 0.1193
n = 400 0.0042 0.0373 0.0563 0.0033 0.0377 0.0592
n = 1000 0.0015 0.0219 0.0345 0.0027 0.0244 0.0360

Powell
n = 100 -0.0013 0.0806 0.1198 0.0083 0.0914 0.1427
n = 400 -0.0005 0.0390 0.0596 0.0035 0.0441 0.0700
n = 1000 -0.0006 0.0244 0.0375 0.0017 0.0292 0.0451

GMLE
n = 100 -0.0420 0.0842 0.1437 0.0549 0.0848 0.1562
n = 400 -0.0401 0.0505 0.0816 0.0550 0.0538 0.1013
n = 1000 -0.0415 0.0407 0.0609 0.0560 0.0511 0.0765

Table 6: Comparison of Performance for the iid t3 Error, Constant Censoring Configuration

Intercept Slope
Bias MAE RMSE Bias MAE RMSE

Portnoy
n = 100 -0.0026 0.0733 0.1071 -0.0020 0.0637 0.0986
n = 400 -0.0027 0.0364 0.0536 0.0003 0.0334 0.0496
n = 1000 -0.0013 0.0234 0.0353 -0.0008 0.0201 0.0312

Peng-Huang
n = 100 0.0054 0.0729 0.1084 0.0001 0.0676 0.1002
n = 400 0.0061 0.0365 0.0545 0.0014 0.0335 0.0502
n = 1000 0.0033 0.0238 0.0356 -0.0001 0.0209 0.0314

Powell
n = 100 0.0034 0.0763 0.1169 -0.0006 0.0740 0.1149
n = 400 0.0000 0.0364 0.0569 0.0025 0.0373 0.0557
n = 1000 0.0007 0.0247 0.0363 -0.0007 0.0221 0.0342

GMLE
n = 100 -0.0107 0.0760 0.1204 0.0182 0.0726 0.1189
n = 400 -0.0119 0.0430 0.0668 0.0229 0.0410 0.0652
n = 1000 -0.0100 0.0265 0.0419 0.0217 0.0276 0.0443

Table 7: Comparison of Performance for the iid t3 Error, Variable Censoring Configuration
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Huang we see that for constant censoring the Powell estimator maintains a slight edge, while
for the variable censoring model Powell performs slightly worse. In view of the one-sample
results reported in Table 1 this is somewhat surprising, one might have expected to see more
of an advantage for the Portnoy and Peng-Huang methods. This merits further theoretical
investigation that lies beyond the scope of the present paper.

7. Conclusion

Censored data poses a diverse set of challenges in a wide range of applications. As was
immediately apparent from the work of Powell (1984, 1986) quantile regression offers some
distinct advantages over mean regression methods when there is censoring; departures from
Gaussian conditions, or any deviation from identically distributed error, induce bias for least-
squares based estimators. In contrast quantile regression estimation is easily adapted to
fixed censoring of the type considered by Powell due to the “equivariance of quantiles to
monotone transformations.” Non-convexity of the Powell objective function can create some
computational difficulties, however. Local optima abound and global optimization is far from
being a panacea. In our experience, local optimization of the Powell objective via steepest
descent, starting at the naive quantile regression estimator performs quite well.

Recently, Portnoy (2003) and Peng and Huang (2008) have introduced new approaches to
quantile regression for randomly censored observations. These approaches may be inter-
preted as regression generalizations of the Kaplan-Meier and Nelson-Aalen survival function
estimators, respectively. Although it is difficult to compute asymptotic relative efficiencies
for the three estimators we have considered in general regression settings, asymptotics for
the simplest one-sample instance suggests that there is a modest efficiency advantage of the
new methods over the Powell estimator. This conclusion is supported (weakly) by simulation
evidence. The martingale representation of the Peng-Huang estimating equation provides a
more direct approach to the asymptotic theory for their estimator, but the simulation evidence
suggests that performance of Portnoy’s estimator is quite similar.

Software implementations of all three censored quantile regression estimators for the R lan-
guage are available in the quantreg package of Koenker (2008b) using the function crq.
Extensions to other forms of censoring and more general models remains an active topic of
research and will be incorporated into subsequent releases of the package.
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