Package 'predtools'

June 6, 2023

Title Prediction Model Tools
Version 0.0.3
Description Provides additional functions for evaluating predictive models, including plotting calibration curves and model-based Receiver Operating Characteristic (mROC) based on Sadatsafavi et al (2021) arXiv:2003.00316.

License GPL
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
URL https://github.com/resplab/predtools
BugReports https://github.com/resplab/predtools/issues
Depends R (>=3.6)
Imports Rcpp, pROC, stats, graphics, RConics, ggplot2, dplyr, magrittr, mvtnorm

LinkingTo Rcpp
Suggests rmarkdown, knitr, spelling
VignetteBuilder knitr
Language en-US
NeedsCompilation yes
Author Mohsen Sadatsafavi [aut, cph] (https://orcid.org/0000-0002-0419-7862),
Amin Adibi [cre] (https://orcid.org/0000-0003-2748-4781),
Abdollah Safari [aut], Tae Yoon Lee [aut]

Maintainer Amin Adibi adibi@alumni.ubc.ca
Repository CRAN
Date/Publication 2023-06-05 23:10:03 UTC

R topics documented:

calc_mROC_stats 2
calc_NB_moments 3
calibration_plot 3
dev_data 5
evpi_val 5
gusto 6
mAUC 7
mROC 7
mROC_analysis 8
mROC_inference 8
mu_max_trunc_bvn 9
odds_adjust 10
pred_summary_stat 10
val_data 11
Index 12
calc_mROC_stats Calculates the absolute surface between the empirical and expected
ROCs

Description

Calculates the absolute surface between the empirical and expected ROCs

Usage

calc_mROC_stats(y, p, ordered $=$ FALSE, fast $=$ TRUE $)$

Arguments

y	y vector of binary responses
p	p vector of predicted probabilities (same length as y)
ordered	defaults to false
fast	defaults to true

Value

Returns a list with the A (mean calibration statistic) and B (mROC/ROC equality statistic) as well as the direction of potential miscalibration (sign of the difference between the actual and predicted mean risk)

```
calc_NB_moments Calculates the first two moments of the bivariate distribution of
    NB_model and NB_all
```


Description

Calculates the first two moments of the bivariate distribution of NB_model and NB_all

Usage

calc_NB_moments(Y, pi, z, weights = NULL)

Arguments

Y Vector of the binary response variable
pi Vector of predicted risks
z Decision threshold at which the NBs are calculated
weights Optinal - observation weights

Value

Two means, two SDs, and one correlation coefficient. First element is for the model and second is for treating all

$$
\begin{array}{ll}
\text { calibration_plot } & \begin{array}{l}
\text { Title Create calibration plot based on observed and predicted out- } \\
\text { comes. }
\end{array}
\end{array}
$$

Description

Title Create calibration plot based on observed and predicted outcomes.

Usage

```
calibration_plot(
    data,
    obs,
    follow_up = NULL,
    pred,
    group = NULL,
    nTiles = 10,
    legendPosition = "right",
    title = NULL,
    x_lim = NULL,
    y_lim = NULL,
```

```
        xlab = "Prediction",
        ylab = "Observation",
        points_col_list = NULL,
        data_summary = FALSE
)
```


Arguments

data	Data include observed and predicted outcomes.
obs	Name of observed outcome in the input data.
follow_up	Name of follow-up time (if applicable) in the input data.
pred	Name of first predicted outcome in the input data.
group	Name of grouping column (if applicable) in the input data.
nTiles	Number of tiles (e.g., 10 for deciles) in the calibration plot.
legendPosition Legend position on the calibration plot.	
title Title on the calibration plot. x_lim Limits of x-axis on the calibration plot. y_lim Label of x-axis on the calibration plot. xlab Label of y-axis on the calibration plot. ylab Points' color on the calibration plot.	
points_col_list	

Value

Returns calibration plot (a ggplot object) and a dataset including summary statistics of the predicted and observed outcomes (if data_summary set to be TRUE).

Examples

```
library(predtools)
library(dplyr)
x <- rnorm(100, 10, 2)
y <- x + rnorm(100,0, 1)
data <- data.frame(x, y)
calibration_plot(data, obs = "x", pred = "y")
```


Description

A dataset containing sample model development data

Format

A data frame with 500 rows and 5 variables:

- ageage
- severitywhether or not the disease was severe
- sexbinary sex variable, 1 for female and 0 for male
- comorbiditywhether or not comorbidities are present
- yresponse variable

Source

Simulated
evpi_val EVPI (Expected Value of Perfect Information) for validation Takes a vector of mean and a $2 X 2$ covariance matrix

Description

EVPI (Expected Value of Perfect Information) for validation Takes a vector of mean and a 2X2 covariance matrix

Usage

```
    evpi_val(
        Y,
        pi,
        method = c("bootstrap", "bayesian_bootstrap", "asymptotic"),
        n_sim = 1000,
        zs = (0:99)/100,
        weights = NULL
    )
```


Arguments

Y
pi Mean of the second distribution
method EVPI calculation method
n_sim Number of Monte Carlo simulations (for bootstrap-based methods)
zs vector of risk thresholds at which EVPI is to be calculated
weights (optional) observation weights

Value

Returns a data frame containing thresholds, EVPIs, and some auxilary output.

gusto Anonymized data from the gusto trial

Description

A dataset containing anonymized data from the gusto trial

Format

A data frame with 40830 rows and 29 variables:

- day 30 whether death happened by day 30 after intervention
- showhether cardiac shock was present
- higwhether the patient hat high blood pressure
- diawhether the patient had diabetes
- hrtwhether the patient was on hormone replacement therapies

Source

Internet
mAUC
Takes in a mROC object and calculates the area under the curve

Description

Takes in a mROC object and calculates the area under the curve

Usage

mAUC(mROC_obj)

Arguments

mROC_obj An object of class mROC

Value

Returns the area under the mROC curve

mROC	Calculates $m R O C$ from the vector of predicted risks Takes in a vec-
tor of probabilities and returns $m R O C$ values (True positives, False	
Positives in an object of class $m R O C$)	

Description

Calculates mROC from the vector of predicted risks Takes in a vector of probabilities and returns mROC values (True positives, False Positives in an object of class mROC)

Usage

mROC $(\mathrm{p}$, ordered $=$ FALSE $)$

Arguments

$\begin{array}{ll}\mathrm{p} & \text { A numeric vector of probabilities. } \\ \text { ordered } & \begin{array}{l}\text { Optional, if the vector } \mathrm{p} \text { is ordered from small to large (if not the function will } \\ \text { do it; TRUE is to facilitate fast computations). }\end{array}\end{array}$

Value

This function returns an object of class mROC. It has three vectors: thresholds on predicted risks (which is the ordered vector of input probabilities), false positive rates (FPs), and true positive rates (TPs). You can directly call the plot function on this object to draw the mROC
mROC_analysis Main eROC analysis that plots ROC and eROC

Description

Main eROC analysis that plots ROC and eROC

Usage

mROC_analysis(y, p, inference $=0, n_{1}$ sim, fast $=$ TRUE)

Arguments

y	y vector of observed responses.
p	p vector of predicted probabilities (the same length as observed responses)
inference	0 for no inference, 1 for p-value only, and 2 for p-value and 95 percent CI.
n_sim	number of simulations
fast	defaults to true

Value

returns a list containing the results of mROC analysis.

```
mROC_inference Statistical inference for comparing empirical and expected ROCs. If
    CI=TRUE then also returns pointwise CIs
```


Description

Statistical inference for comparing empirical and expected ROCs. If CI=TRUE then also returns pointwise CIs

Usage

mROC_inference(y, p, n_sim = 1e+05, CI = FALSE, aux = FALSE, fast = TRUE)

Arguments

$y \quad$ vector of binary response values
$p \quad$ vector of probabilities
n_sim number of Monte Carlo simulations to calculate p-value
CI optional. Whether confidence interval should be calculated for each point of mROC. Default is FALSE.
aux aux optional. whether additional results (component-wise p-values etc) should be written in the package's aux variable. Default is FALSE.
fast fast optional. Whether the fast code ($\mathrm{C}++$) or slow code (R) should be called. Default is TRUE (R code will be slow unless the dataset is small)

Value

Returns an object of type mROC_inference containing the results of statistical inference for the mROC curve

```
mu_max_trunc_bvn
Calculates the expected value of the maximum of two random variables with zero-truncated bivariate normal distribution Takes a vector of mean and a \(2 X 2\) covariance matrix
```


Description

Calculates the expected value of the maximum of two random variables with zero-truncated bivariate normal distribution Takes a vector of mean and a 2X2 covariance matrix

Usage

```
mu_max_trunc_bvn(
        mu1,
        mu2,
        sigma1,
        sigma2,
        rho,
        precision = .Machine$double.eps
    )
```


Arguments

mu1	Mean of the first distribution
mu2	Mean of the second distribution
sigma1	SD of the first distribution
sigma2	SD of the second distribution
rho	Correlation coefficient of the two random variables
precision	Numerical precision value

Value

A scalar value for the expected value

```
    odds_adjust
```

Title Update a prediction model for a binary outcome by multiplying a fixed odd-ratio to the predicted odds.

Description

Title Update a prediction model for a binary outcome by multiplying a fixed odd-ratio to the predicted odds.

Usage

odds_adjust(p0, p1, v)

Arguments

p0 Mean of observed risk or predicted risk in development sample.
p1 Mean of observed risk in target population.
$\checkmark \quad$ Variance of predicted risk in development sample.

Value

Returns a correction factor that can be applied to the predicted odds in order to update the predictions for a new target population.

```
pred_summary_stat Title Estimate mean and variance of prediction based on model cali-
``` bration output.

\section*{Description}

Title Estimate mean and variance of prediction based on model calibration output.

\section*{Usage}
pred_summary_stat(calibVector)

\section*{Arguments}
calibVector Vector of predicted probability of risk per decile or percentile (e.g., from a calibration plot).

\section*{Value}

Returns mean and variance of predictions based on the predicted probabilities.
val_data model validation data

\section*{Description}

A dataset containing sample model validation data

\section*{Format}

A data frame with 400 rows and 5 variables:
- ageage of the patient
- severitywhether or not the disease was severe
- sexbinary sex variable, 1 for female and 0 for male
- comorbiditywhether or not comorbidities are present
- yresponse variable

\section*{Source}

Simulated

\section*{Index}
```

* datasets
dev_data, 5
gusto,6
val_data, 11
calc_mROC_stats, 2
calc_NB_moments, 3
calibration_plot,3
dev_data,5
evpi_val,5
gusto, 6
mAUC, }
mROC,7
mROC_analysis,8
mROC_inference,8
mu_max_trunc_bvn, 9
odds_adjust,10
pred_summary_stat,10
val_data,11

```
```

