Derives prediction rule ensembles (PREs). Largely follows the
    procedure for deriving PREs as described in Friedman & Popescu (2008; 
    <doi:10.1214/07-AOAS148>), with adjustments and improvements described in 
    Fokkema (2020; <doi:10.18637/jss.v092.i12>) and Fokkema & Strobl 
    (2020; <doi:10.1037/met0000256>). The main function pre() derives 
    prediction rule ensembles consisting of rules and/or linear terms for 
    continuous, binary, count, multinomial, survival and multivariate 
    continuous responses. Function gpe() derives generalized prediction 
    ensembles, consisting of rules, hinge and linear functions of the 
    predictor variables.
| Version: | 
1.0.8 | 
| Depends: | 
R (≥ 4.1.0) | 
| Imports: | 
earth, Formula, glmnet, graphics, methods, partykit (≥
1.2-0), rpart, stringr, survival, Matrix, MatrixModels | 
| Suggests: | 
interp, datasets, doParallel, foreach, glmertree, grid, mlbench, testthat, mboost, ggplot2, caret, pROC, knitr, rmarkdown, mice, shape, randomForest | 
| Published: | 
2025-09-06 | 
| DOI: | 
10.32614/CRAN.package.pre | 
| Author: | 
Marjolein Fokkema [aut, cre],
  Benjamin Christoffersen [aut] | 
| Maintainer: | 
Marjolein Fokkema  <m.fokkema at fsw.leidenuniv.nl> | 
| BugReports: | 
https://github.com/marjoleinF/pre/issues | 
| License: | 
GPL-2 | GPL-3 | 
| URL: | 
https://github.com/marjoleinF/pre | 
| NeedsCompilation: | 
no | 
| Citation: | 
pre citation info  | 
| Materials: | 
README, NEWS  | 
| In views: | 
MachineLearning | 
| CRAN checks: | 
pre results |