
Package ‘powergrid’
September 30, 2025

Title Power Analysis Across a Grid of Assumptions

Version 0.5.0

Description Evaluate a function across a grid of parameters. The function may be evalu-
ated once, or many times for simulation. Parallel computing is facilitated. Utilities aim at per-
forming analyses of power and sample size, allowing for easy search of mini-
mum n (or min/max of any other parameter) to achieve a desired mini-
mal level of power (or maximum of any other objective). Plotting functions are in-
cluded that present the dependency of n and power in relation to further assumptions.

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.3

Suggests future.apply (>= 1.11.2), future (>= 1.33.2), knitr,
rmarkdown, testthat (>= 3.0.0)

Imports stats, methods

VignetteBuilder knitr

Config/testthat/edition 3

URL https://github.com/SwissClinicalTrialOrganisation/powergrid

BugReports https://github.com/SwissClinicalTrialOrganisation/powergrid/issues

NeedsCompilation no

Author Gilles Dutilh [aut, cre] (ORCID:
<https://orcid.org/0000-0002-6719-2508>),

Richard Charles Allen [aut] (ORCID:
<https://orcid.org/0000-0001-6012-7888>)

Maintainer Gilles Dutilh <info@gillesdutilh.com>

Repository CRAN

Date/Publication 2025-09-30 08:20:02 UTC

1

https://github.com/SwissClinicalTrialOrganisation/powergrid
https://github.com/SwissClinicalTrialOrganisation/powergrid/issues
https://orcid.org/0000-0002-6719-2508
https://orcid.org/0000-0001-6012-7888

2 AddExample

Contents
AddExample . 2
ArraySlicer . 5
Example . 6
FindTarget . 10
GridPlot . 13
PowerDF . 16
PowerGrid . 17
PowerPlot . 22
print.power_array . 26
print.power_example . 27
Refine . 28
SummarizeIterations . 30
summary.power_array . 31
summary.power_example . 32
[.power_array . 33

Index 35

AddExample Add an example to an existing PowerPlot or GridPlot

Description

Add example arrow(s) to an existing figure created by PowerPlot or GridPlot.

AddExample is a higher level plotting function, so it does not know anything about the figure it
draws on top off. Therefore, take care your figure makes sense, by supplying the same arguments
x and slicer that you supplied to the PowerPlot or link{GridPlot} you are drawing on top off:
With slicer you define the plotted plain, with example the value on the x-axis where the arrow
starts. To be sure of a sensible result, use the argument example inside Powerplot or GridPlot.

Usage

AddExample(
x,
slicer = NULL,
example = NULL,
find_lowest = TRUE,
target_value = NULL,
target_at_least = TRUE,
method = "step",
summary_function = mean,
col = grDevices::grey.colors(1, 0.2, 0.2),
example_text = TRUE,
...

)

AddExample 3

Arguments

x, target_value, target_at_least, find_lowest, method, example_text,
summary_function

See help for PowerPlot.
slicer A list, internally passed on to ArraySlicer to cut out a (multidimensional)

slice from x. You can achieve the same by appending "slicing" inside argument
example. However, to assure that the result of AddExample is consistent with
the figure it draws on top of (PowerPlot or GridPlot), copy the arguments x and
slicer given to PowerPlot or GridPlot to AddTarget.

example A list, defining at which value (list element value) of which parameter(s) (list
element name(s)) the example is drawn for a power of target_value. You may
supply par vector(s) longer than 1 for multiple examples. If example contains
multiple parameters to define the example, all must contain a vector of the same
length. Be aware that the first element of example defines the parameter x-axis,
so this function is not fool proof. See argument slicer above. If x has only one
dimention, the example needs not be defined.

col Color of arrow and text drawn.
... Further arguments are passed to the two calls of function graphics::arrows

drawing the nicked arrow.

Details

arguments slicer and example:
slicer takes the slice of x that is in the figure, example defines at which value of which parameter,
the example is drawn. These arguments’ use is the same as in PowerPlot and GridPlot. If you
want to make sure that the result of AddExample is consistent with a figure previously created
using PowerPlot or GridPlot, copy the argument slicer to such function to AddExample, and
define your example in example.
Note however, that:
slicer = list(a = c(1, 2)) and example = list(b = c(3, 4))
has the same result as:
example = list(b = c(3, 4) and a = c(1, 2)) (not defining slicer)
Importantly, the the order of example matters here, where the first element defines the x-axis.

multiple examples:
Argument example may contain vectors with length longer than one to draw multiple examples.

Value

invisibly NULL

Author(s)

Gilles Dutilh

See Also

PowerPlot, GridPlot

4 AddExample

Examples

For more examples, see ?PowerPlot

Set up a grid of n, delta and sd:
sse_pars = list(

n = seq(from = 10, to = 60, by = 4),
delta = seq(from = 0.5, to = 1.5, by = 0.1), # effect size
sd = seq(.1, 1.1, .2)) # Standard deviation

Define a power function using these parameters:
PowFun <- function(n, delta, sd){ # power for a t-test at alpha = .05

ptt = power.t.test(n = n/2, delta = delta, sd = sd,
sig.level = 0.05)

return(ptt$power)
}
Evaluate PowFun across the grid defined by sse_pars:
power_array = PowerGrid(pars = sse_pars, fun = PowFun, n_iter = NA)

======================
PowerPlot
======================
PowerPlot(power_array,

slicer = list(sd = .7),
)

AddExample(power_array,
slicer = list(sd = .7), # be sure to cut out the same plain as above
example = list(delta = .9),
target_value = .9,
col = 'blue')

AddExample(power_array,
slicer = list(sd = .7),
example = list(delta = c(.7, 1)), # multiple examples
target_value = .9,
col = 'yellow')

Careful, you can move the slicer argument to example:
AddExample(power_array,

example = list(delta = 1.2, sd = .7), # delta (x-axis) first
target_value = .9,
col = 'green')

Careful, because you can put the wrong value on x-axis!
AddExample(power_array,

example = list(sd = .7, delta = 1.2), # sd first?!
target_value = .9,
col = 'red')

======================
GridPlot
======================
GridPlot(power_array, target_value = .9)
AddExample(power_array,

example = list(delta = 1, sd = .7),
target_value = .9
)

ArraySlicer 5

two examples
AddExample(power_array,

example = list(delta = c(.9, 1.2), sd = c(.5, 1.1)),
target_value = .9, col = 3
)

ArraySlicer Cut slice from array (typically of class power_array)

Description

Cut out a slice from an array. The resulting slice may be single- or multidimensional. The function
is intended for arrays of class "power_array", and makes sure that the resulting array is of class
power_array and keeps and, where needed, updates the object’s attributes. These attributes are
needed for various functions in the powergrid package to work well.

Usage

ArraySlicer(x, slicer = NULL)

Arguments

x An array, in most common use cases an array of class power_array, but may be
any array with named dimensions.

slicer A list whose named elements define at which dimension (the list element names),
at which values (the list element values) a slice is taken from power_array. De-
fault NULL returns the unchanged array.

Details

Internally, indexing ([) is used, but the implementation in ArraySlicer is very flexible allowing for
any number of dimensions in any order in the slicer argument. The resulting slice is always an
array, also if only one dimension is left. dimnames are kept intact.

Value

An array with reduced dimensions as given by slicer. Note that, relative to a standard array, some
additional attributes are passed to be used in the functions in package powergrid

Author(s)

Gilles Dutilh

See Also

PowerGrid, [.power_array for reducing the dimensions of an array of class power_array using
[-indexing.

6 Example

Examples

sse_pars = list(
n = seq(from = 20, to = 60, by = 5),
delta = seq(from = 0.5, to = 1.5, by = 0.2),
sd = seq(.1, .9, .2),
alpha = c(.05, .025, .1)) # a 4-dimensional grid

PowFun <- function(n, delta, sd, alpha){
ptt = power.t.test(n = n/2, delta = delta, sd = sd,

sig.level = alpha)
return(ptt$power)

}
power_array = PowerGrid(pars = sse_pars, fun = PowFun, n_iter = NA)
cut out a 2-dimensional plane:
ArraySlicer(power_array,

slicer = list(alpha = .1, sd = .9))
Note that above, the dimension levels are called as numeric values, so the
following works as well:
ArraySlicer(power_array,

slicer = list(alpha = 0.1, sd = 0.9))
They can be called by their actual character values as well:
ArraySlicer(power_array,

slicer = list(alpha = '0.1', sd = '0.9'))
(compare with dimnames(power_array))
the following does not work:
Not run:
ArraySlicer(power_array,

slicer = list(alpha = '.1', sd = '.9'))

End(Not run)
##
Cut out multiple levels from one dimension
ArraySlicer(power_array,

slicer = list(alpha = .1, sd = c(.9, .7)))

Example Find combination of parameters required for achieving a desired
power (or other objective).

Description

Find combination of parameters yielding desired power (or any other target value) in an object of
class "power_array".

Usage

Example(
x,
example = NULL,
target_value = NULL,

Example 7

target_at_least = TRUE,
find_lowest = TRUE,
method = "step",
summary_function = mean

)

Arguments

x Object of class power_array

example List with named elements representing the constellation of parameter values for
which the example should be found. The names of this list should match the
dimension names of x, their values should be exact values available at these
dimensions. See example for an illustration.

target_value Which value (of typically power) should be achieved at the example.
target_at_least

Logical. Set to TRUE if you aim to achieve a minimum value (e.g., a power
must be at least 90%), or FALSE if you want to allow a maximum value (e.g.,
the width of the expected CI may be at most a certain value).

find_lowest Logical, indicating whether the example should be found that minimizes a pa-
rameter (typically: minimal required n) to achieve the target_value or maxi-
mizes this assumption (e.g., maximal allowed SD).

method Character string, indicating how the location of the example is found, passed on
internally to FindTarget. Either "step": walking in steps along the parameter of
interest or "lm": Interpolating assuming a linear relation between the parameter
of interest and (qnorm(x) + qnorm(1

• 0.05)) ^ 2. This method "lm" is inspired on the implementation in the sse
package by Thomas Fabbro.

summary_function

When x’ attribute summarized is FALSE, x is summarized across iterations us-
ing this function before searching the example.

Details

In the most typical use case, and this is also the default, Example searches the minimal n where the
power is at least equal to the value given by argument target. The function is, however, designed
much more generically. The explanation below may be less helpful than trying the examples, but
for completeness:

Argument example slices out a vector from object x, representing the values at the parameter com-
bination given in example, thus, along the remaining parameter. Then, Example searches along this
vector for the minimal parameter value where the value of the vector is at least equal to target.
Thus, if the sliced out vector contains values of "power" along the parameter "effect size", it searches
the minimal effect size at which the target power is achieved.

Two complications are made to allow for complete flexibility:

1. In the above description, minimal can be changed to maximal by setting argument find_lowest
to FALSE. This is useful in the situation where one, e.g., searches for the highest standard de-
viation at which it is still possible to find a desirable power.

8 Example

2. In the above description, at least can be changed to at most by setting target_at_least to
FALSE. This allows to search, for example, for the minimal sample size where the expected
confidence interval is smaller than a certain desired width.

Example searches for the minimum or maximum on one parameters (say, the minimum n) given one
single constellation of further parameters. However, you may want to study how, say, the required
n (or any other value) depends on the value of further parameters. The functions PowerPlot and
GridPlot offer plotting functionalities to graphically illustrate such dependencies. If you want to
find "Examples" as a function of parameter settings and work with these, you can use the workhorse
behind ’Example’, PowerPlot and Gridplot, FindTarget

Value

Example returns a list containing:

• "requested_example": the parameter combination at which the power (or whatever the values
represent) was searched to achieve level target_value (typically the minimal power, e.g.,
.9), searching along parameter required name (typically n).

• "objective": was required_name searched to find the "min" or "max" of x?

• "target_value": which value should the power (or any other value) have?

• "required_name": the parameter searched along to find the minimum (or maximized if slot
searched = ’max’) to achieve objective. (typically n)

• "required_value": the minimum (or maximum if searched = "max") for parameter required_name
(which is typically n)

• "searched": was the "min" or "max" for required_name searched?

• "target_at_least": Is the target_value a minimum (TRUE, as typical for power) or a maximum
(FALSE, e.g., an expected uncertainty level)?

Author(s)

Gilles Dutilh

See Also

PowerGrid, FindTarget, PowerPlot, GridPlot

Examples

==
Typical use case: find lowest n for a certain target power
==
sse_pars = list(

n = seq(from = 10, to = 60, by = 2),
delta = seq(from = 0.5, to = 1.5, by = 0.1), ## effect size
sd = seq(.1, .9, .2)) ## Standard deviation

PowFun <- function(n, delta, sd){
ptt = power.t.test(n = n/2, delta = delta, sd = sd,

sig.level = 0.05)
return(ptt$power)

Example 9

}
power_array = PowerGrid(pars = sse_pars, fun = PowFun, n_iter = NA)
##'
ex_out = Example(power_array,

example = list(delta = .7, sd = .7),
target_value = .9)

ex_out #

==
Illustration argument `find_lowest`
==
##
In this example, we search for the *highest sd* for which the power is at
least .9.
ex_out = Example(power_array,

example = list(n = 40, delta = .7),
target_value = .9, find_lowest = FALSE)

ex_out # note how the printed result indicates it searched for a maximal
permissible sd.

==
Illustration argument `target_at_least`
==
##
In the example below, we search for the lowest n where the expected CI-width
is not larger than .88.
PowFun <- function(n, delta, sd){

x1 = rnorm(n = n/2, sd = sd)
x2 = rnorm(n = n/2, mean = delta, sd = sd)
CI_width = diff(t.test(x1, x2)$conf.int) # CI95 is saved

}
sse_pars = list(

n = seq(from = 10, to = 60, by = 5),
delta = seq(from = 0.5, to = 1.5, by = 0.2),
sd = seq(.5, 1.5, .2))

we iterate, and take the average across iterations to get expected CI-width:
n_iter = 20
set.seed(1)
power_array = PowerGrid(pars = sse_pars, fun = PowFun, n_iter = n_iter)
summary(power_array)
Now, find lowest n for which the average CI width is *smaller than .88*.
ex_out = Example(power_array,

example = list(delta = .7, sd = .7),
target_value = .88,
find_lowest = TRUE, # we search the *lowest* n
target_at_least = FALSE # for a *maximal* mean CI width
)

ex_out # note how the printed result indicates the target CI is a maximum.

==
When both `find_lowest` and `target_at_least` are FALSE
==
##

10 FindTarget

In this example, we search for the *highest sd* for which the average CI
width is still *smaller than or equal to .88*.
ex_out = Example(power_array,

example = list(delta = .7, n = 60),
target_value = .88,
find_lowest = FALSE, # we search the *highest* sd
target_at_least = FALSE # for a *maximal* mean CI width
)

ex_out # note how the printed result indicates that the *maximal permissible SD*
was found for a CI of *at most .88*.

FindTarget Find requirements for target power (or other objective)

Description

For most use cases of powergrid, you will not need this function, but rather use more convenient
functions, most notable Example. Example shows you the smallest sample size to still find enough
power, or the largest standard deviation at which your CI95 does not get too large. More insight
about the relation between parameters and the resulting power may be gained with PowerPlot or
GridPlot.

Only if you need to work with, say, the required n for a range of assumptions over and above
PowerPlot and GridPlot, you will need to use FindTarget.

FindTarget takes as input an array (typically of class power_array). FindTarget then searches (up
or down) along one chosen dimension for a value that meets a set target value (at least or at most).
It does so for each combination of the remaining dimensions. Concretely, this may mean: The
array contains the calculated power for each combination of dimensions n, effect size, and SD. The
function may then find, for each combination of effect size and SD, the lowest n for which power
of at least, say, .8 is achieved. The result would be an array of effect size by SD, containing the n’s
yielding acceptable power.

Usage

FindTarget(
x,
par_to_search = "n",
find_lowest = TRUE,
target_value = 0.9,
target_at_least = TRUE,
method = "step"

)

FindTarget 11

Arguments

x An array, most commonly of class power_array, possibly the result of taking a
slice of an object of class power_array using ArraySlicer or the power_array
[]-indexing method.

par_to_search Which parameter should be searched to achieve the required target value. In the
typical power analysis case, this is n.

find_lowest If TRUE, the lowest value of par_to_search is found that yields a value that
meets the target. This is typical for n in a sample size estimation, where one
searches the lowest n to achieve a certain power. For, e.g. the variance, one
would however search for the maximum where the target power can still be
achieved.

target_value The required value in x (e.g., .9, if the values represent power)
target_at_least

Is the target_value a minimum (e.g., the power) or a maximum (e.g., the size
of a confidence interval)

method How is the required par_to_search to achieve target_value found. Either
'step': walking in steps along par_to_search or 'lm': Interpolating as-
suming a linear relation between par_to_search and (qnorm(x) + qnorm(1 -
0.05)) ^ 2. Setting ’lm’ is inspired on the implementation in the sse package
by Thomas Fabbro.

Details

By default FindTarget searches along the dimension called n (par_to_search), searching for the
lowest value (find_lowest = TRUE) where the array contains a value of at least (target_at_least
= TRUE) .9 (the target_value), thus finding the minimal sample size required to achieve a power
of 90%. These arguments may seem a bit confusing at first, but they allow for three additional
purposes:

First, the implementation also allows to search for a value that is at most the target_value, by
setting target_at_least to FALSE. This may be used, for example, when the aim is to find a
sample size yielding a confidence interval that is not bigger than some maximum width.

Second, the implementation allows to search along another named dimension of x than n.

Third, the implementation allows to search for a certain target value to be achieved by maximizing
(find_lowest = FALSE) the parameter on the searched dimension. This may be used, for example,
when the aim is to find the maximum standard deviation at which a study’s power is still acceptable.

FindTarget is most often called as the workhorse of Example, PowerPlot or GridPlot.

Value

Returns an array or vector: containing the value that is found for the par_to_search (say, n) meeting
the target following above criteria (say, the lowest n for which the power is larger than .9), for each
crossing of the levels of the other dimensions (say, delta, SD).

Author(s)

Gilles Dutilh

12 FindTarget

See Also

PowerGrid, Example, PowerPlot

Examples

==
A basic power analysis example:
==
sse_pars = list(

n = seq(from = 10, to = 60, by = 2),
sig_level = seq(.01, .1, .01),
delta = seq(from = 0.5, to = 1.5, by = 0.2), ## effect size
sd = seq(.1, .9, .2)) ## Standard deviation

PowFun <- function(n, sig_level, delta, sd){
ptt = power.t.test(n = n/2, delta = delta, sd = sd,

sig.level = sig_level)
return(ptt$power)

}
power_array = PowerGrid(pars = sse_pars, fun = PowFun, n_iter = NA)
summary(power_array) # four dimensions

We can use Example so find the required sample size, but only for one example:
Example(power_array,

example = list(delta = .7, sd = .7, sig_level = .05),
target_value = .9)

If we want to see the required sample size for all delta's, we can use
FindTarget. Get the minimal n needed for achieving a value of 0.9, at sd =
.3:
n_by_delta_sd_03 = FindTarget(power_array[, sig_level = '0.05', , sd = '0.3'],

par_to_search = 'n',
target_value = .9)

n_by_delta_sd_03
just as an illustration, a figure (that can be much more aestetically made
using PowerPlot)
plot(as.numeric(names(n_by_delta_sd_03)),

n_by_delta_sd_03, type = 'l')

=================================
Higher dimensionality
=================================

The function works also for higher dimensionality:
n_by_delta_sd = FindTarget(power_array,

par_to_search = 'n',
target_value = .85)

what is the minimum n to achieve .85 for different values of delta, sd,
when sig_level = 0.05:
n_by_delta_sd[5, ,] # note that for some combinations of delta and sd, there is

no n yielding the required power at this significance
level (NAs).

GridPlot 13

GridPlot Plot requirements for achieving a target power as a function of as-
sumptions about two parameters

Description

Plots how the required sample size (or any other parameter) to achieve a certain power (or other
objective) depends on two furhter parameters.

Usage

GridPlot(
x,
slicer = NULL,
y_par = NULL,
x_par = NULL,
l_par = NULL,
example = NULL,
find_lowest = TRUE,
target_value = 0.9,
target_at_least = TRUE,
method = "step",
summary_function = mean,
col = NULL,
example_text = TRUE,
title = NULL,
par_labels = NULL,
xlim = NULL,
ylim = NULL,
smooth = FALSE

)

Arguments

x An object of class "power_array" (from powergrid).
slicer If the parameter grid of x has more than 3 dimensions, a 3-dimensional slice

must be cut out using slicer, a list whose elements define at which values (the
list element value) of which parameter (the list element name) the slice should
be cut.

y_par Which parameter is searched for the minimum (or maximum if find_lowest ==
FALSE) yielding the target value; and shown on the y-axis. If NULL, y_par is
set to the first, x_par to the second, and l_par to the third dimension name of
3-dimensional array x. If you want another than the first dimension as y_par,
you need to see y_par, x_par, and l_par explicitly.

x_par, l_par Which parameter is varied on the x-axis, and between lines, respectively. If none
of y_par, x_par and l_par are given, the first, second, and third dimension of
x are mapped to y_par, x_par, and l_par, respectively.

14 GridPlot

example A list defining for which combination of levels of l_par and x_par an example
arrow should be drawn. List element names indicate the parameter, element
value indicate the values at which the example is drawn.

find_lowest Logical, indicating whether the example should be found that minimizes an as-
sumption (e.g., minimal required n) to achieve the target_value or an example
that maximizes this assumption (e.g., maximally allowed SD).

target_value The target power (or any other value stored in x) that should be matched.
target_at_least

Logical. Should target_value be minimally achieved (e.g., power), or max-
imially allowed (e.g., estimation uncertainty).

method The method to find the required parameter values, see Example and FindTarget.
summary_function

If x is an object of class power_array where attribute summarized is FALSE
(indicating individual iterations are stored in dimension iter, the iterations di-
mension is aggregated by summary_fun. Otherwise ignored.

col A vector with the length of l_par defining the color(s) of the lines.

example_text When an example is drawn, should the the required par value, and the line pa-
rameter value be printed alongside the arrow(s)

title Character string, if not NULL, replaces default figure title.

par_labels Named vector where elements names represent the parameters that are plotted,
and the values set the desired labels.

xlim, ylim See ?graphics::plot.

smooth Logical. If TRUE, a 5th order polynomial is fitted though the points constituting
each line for smoothing.

Details

In the most typical use case, the y-axis shows the minimal sample size required to achieve a power
of at least target_value, assuming the value of a parameter on the x-axis, and the value of another
parameter represented by each line.

The use of this function is, however, not limited to finding a minimum n to achieve at least a certain
power. See help of Example to understand the use of target_at_least and fin_min.

If the input to argument x (class power_array) contains iterations that are not summarized, it will
be summarized by summary_function with default mean.

Note that a line may stop in a corner of the plotting region, not reaching the margin. This is
often correct behavior, when the target_value level is not reached anywhere in that corner of the
parameter range. In case n is on the y-axis, this may easily be solved by adding larger sample sizes
to the grid (consider Update), and then adjusting the y-limit to only include the values of interest.

Value

A list with graphical information to use in further plotting.

Author(s)

Gilles Dutilh

GridPlot 15

See Also

PowerGrid, AddExample, Example, PowerPlot for similar plotting of just 2 parameters, at multiple
power (target value) levels.

Examples

sse_pars = list(
n = seq(from = 2, to = 100, by = 2),
delta = seq(from = 0.1, to = 1.5, by = 0.05), ## effect size
sd = seq(.1, .9, .1)) ## Standard deviation

PowFun <- function(n, delta, sd){
ptt = power.t.test(n = n/2, delta = delta, sd = sd,

sig.level = 0.05)
return(ptt$power)

}
power_array = PowerGrid(pars = sse_pars, fun = PowFun, n_iter = NA)
GridPlot(power_array, target_value = .8)
If that's too many lines, cut out a desired number of slices
GridPlot(power_array,

slicer = list(sd = seq(.1, .9, .2)),
target_value = .8)

adjust labels, add example
GridPlot(power_array, target_value = .9,

slicer = list(sd = seq(.1, .9, .2)),
y_par = 'n',
x_par = 'delta',
l_par = 'sd',
par_labels = c('n' = 'Sample Size',

'delta' = 'Arm Difference',
'sd' = 'Standard Deviation'),

example = list(sd = .7, delta = .6))
add additional examples useing AddExample. Note that these do not contain
info about the line they refer to.
AddExample(power_array,

target_value = .9,
example = list(delta = c(.5, .8), sd = c(.3, .7)),
col = 3
)

Above, GridPlot used the default: The first dimension is what you search
(often n), the 2nd and 3rd define the grid of parameters at which the
#search # is done. Setting this explicitly, with x, y, and l-par, it looks
#like:
GridPlot(power_array, target_value = .8,

slicer = list(sd = seq(.1, .9, .2)),
y_par = 'n', # search the smallest n where target value is achieved
x_par = 'delta',
l_par = 'sd')

You may also want to have different parameters on lines and axes:

16 PowerDF

GridPlot(power_array, target_value = .8,
y_par = 'delta', # search the smallest delta where target value is achieved
x_par = 'sd',
l_par = 'n')

Too many lines! Take some slices again:
GridPlot(power_array, target_value = .9,

slicer = list(n = c(seq(10, 70, 10))),
y_par = 'delta',
x_par = 'sd',
l_par = 'n', method = 'step')

PowerDF Transform power_array into power_df

Description

Transforms an object of class power_array to a data.frame, where values are stored in column x,
and all other dimensions are columns. Some may find this "more tidy" to work with.

The class of the data.frame becomes ‘c("power_df", "data.frame"), enabling generics for data.frame.
Note that the class "power_df" has currently no use but is included for future compatibility.

Usage

PowerDF(x)

Arguments

x Object of class power_array

Value

An object of with classes c("power_df", "data.frame"), with the same attributes as x, aside from
array-native attributes (dimnames, dim), plus the data.frame attributes names and row_names.

Author(s)

Gilles Dutilh

See Also

PowerGrid

PowerGrid 17

Examples

Define grid of assumptions to study:
sse_pars = list(

n = seq(from = 10, to = 50, by = 20), # sample size
delta = seq(from = 0.5, to = 1.5, by = 0.5), # effect size
sd = seq(.1, 1, .3)) # standard deviation

Define function that calculates power based on these assumptions:
PowFun <- function(n, delta, sd){

ptt = power.t.test(n = n/2, delta = delta, sd = sd,
sig.level = 0.05)

return(ptt$power)
}

Evaluate at each combination of assumptions:
powarr = PowerGrid(pars = sse_pars, fun = PowFun, n_iter = NA)
print(PowerDF(powarr))

PowerGrid Evaluate function (iteratively) at a grid of input arguments

Description

PowerGrid is an apply-like function, allowing to evaluate a function at the crossings of a set of
parameters. The result is saved in an array with attributes that optimize further usage by functions
in package powergrid. In particular, performing a function iteratively (using parallel computing if
required) is implemented conveniently. The typical use is for evaluating statistical power at a grid
of assumed parameters.

Usage

PowerGrid(
pars,
fun,
more_args = NULL,
n_iter = NA,
summarize = TRUE,
summary_function = mean,
parallel = FALSE,
n_cores = future::availableCores() - 1

)

Arguments

pars A list where each element is a numeric vector of values named as one of the
arguments of fun. fun is applied to the full grid crossing the values of each of
these parameters. If you aim to study other than numeric parameters, see details.

18 PowerGrid

fun A function to be applied at each combination of pars. Arguments may contain
all element names of pars and more_args. Output should always be a numeric
vector, typically of length one. However, a if you want to work with multiple
outpus, each can be an element of the returned numeric vector.

more_args Fixed arguments to fun that are not in pars. (internally used in .mapply for
supplying argument MoreArgs)

n_iter If not NA, function fun is applied n_iter times at each point in the grid defined
by pars.

summarize Logical indicating whether iterations (if n_iter is given) are to be summarized
by summary_function.

summary_function

A function to be applied to aggregate across iterations. Defaults to mean, ignored
when keep_iters == TRUE or when is.na(n_iter).

parallel Logical indicating whether parallel computing should be applied. If TRUE,
future::future_replicate is used internally.

n_cores Passed on to future_replicate

Details

Function fun is evaluated at each combination of the argument values listed in pars and its results
are stored in an array of class power_array, whose dimensions (and dimnames()) are defined by
pars. For this to work, the element names of pars must match the argument names of fun.

Further arguments to fun:
If input parameters to fun are not to be part of the grid, but rather further settings, these can be
passed on to fun through the argument more_args as a list with names reflecting the arguments
of fun to be set.

Storing multiple outputs from fun:
You may have a function fun that returns a vector with length larger than one, as long as it is a
single vector. When fun returns a vector with length larger than one, the power_array will have
an additional dimension fun_out, with levels named after the names of fun’s return vector (if
given).

Non-numeric parameters:
You may want to study the effect of non-numeric parameters. This option is not supported for the
argument pars, since the essential powergrid functions link{Example}, link{PowerPlot}, and
link{GridPlot} need a direction to search. Nonetheless, you can study non-numeric parameters
by having function fun returning multiple values, as described above.

Evaluating a function over iterations:
If n_iter is not NA (the default) but an integer, function fun is evaluated n_iter times. This will
add an additional dimension ’iter’ to the resulting array of class power_array. If your simula-
tion is heavy, you may wanna set parallel = TRUE and choose the n_cores, invoking parallel
computing using tfuture::future_replicate.
You may summarize the object with individual iterations across these iterations using function
SummarizeIterations. Note that both summarized and non-summarized output of PowerGrid

PowerGrid 19

have class power_array. The summary status is saved in the attributes. This allows the powergrid
utilities Example, PowerPlot, and GridPlot to do something sensible also with non-summarized
objects.

Reproducibility:
The current status of .Random.seed is stored in the attribute random_seed (which is a list).
To reproduce a call of PowerGrid involving randomness, precede new call to PowerGrid by
.Random.seed = attr(<your_power_array>,which = 'random.seed')[[1]]. Note that if you
Refine() your power_array, the .Random.seed at the moment of updating is appended to the ran-
dom.seed attribute. So, to reconstruct a refined power_array, run the original call to PowerGrid af-
ter .Random.seed = attr(<your_power_array>, which = 'random.seed')[[1]], and the the
call to Refine after .Random.seed = attr(<your_power_array>, which = 'random.seed')[[2]],
etc.

Value

An array of class "power_array", with attributes containing informations about input arguments,
summary status, the presence of multiple function outputs and more. This object class is handled
sensibly by functions in package powergrid, including Example, PowerPlot, and GridPlot.

Author(s)

Gilles Dutilh

See Also

Refine() for adding iterations or parameter combinations to exsiting power_array object, SummarizeIterations()
for summarizing a power_array object containing individual iterations, ArraySlicer() and [.power_array
for reducing the dimenstiona of a power_array object, correctly updating its attributes.

Examples

===
most basic use case, calculating power when
power function is available:
===

Define grid of assumptions to study:
sse_pars = list(

n = seq(from = 10, to = 60, by = 2), # sample size
delta = seq(from = 0.5, to = 1.5, by = 0.2), # effect size
sd = seq(.1, .9, .2)) # standard deviation

Define function that calculates power based on these assumptions:
PowFun <- function(n, delta, sd){

ptt = power.t.test(n = n/2, delta = delta, sd = sd,
sig.level = 0.05)

return(ptt$power)
}

Evaluate at each combination of assumptions:

20 PowerGrid

powarr = PowerGrid(pars = sse_pars, fun = PowFun, n_iter = NA)
summary(powarr)

=================================
Use powergrid utilities on result
=================================

get required sample size n, when delta is .7, sd = .5, for achieving a
power of 90%:
Example(powarr, example = list(delta = .7, sd = .5), target_value = .9)

Draw a figure illustrating how the required n depends on delta (given an
sd of .7):
PowerPlot(powarr,

slicer = list(sd = .7), # slice out the plane with sd = .7
target_value = .9, # set target power to 90%, defining the thick line
example = list(delta = .7) # Highlight the example with arrow
)

Slice out a sub-array (making sure attributes stay intact for further use in
powergrid):

only_n20_delta1.1 =
ArraySlicer(powarr, slicer = list(

n = 20,
delta = 1.1))

summary(only_n20_delta1.1)

Indexing may also be used, but note that the name of the remaining dimension
is lost. Therefore, use ArraySlicer when you want to keep working with the
object in powergrid.
only_n20_delta1.1 = powarr[n = 20, delta = 1.1,]
summary(only_n20_delta1.1)

===
Simulation over iterations when no power
function is available
===

Using the same assumptions as above
sse_pars = list(

n = seq(from = 10, to = 60, by = 5),
delta = seq(from = 0.5, to = 1.5, by = 0.2),
sd = seq(.5, 1.5, .2))

Define a function that results in TRUE or FALSE for a successful or
non-successful (5% significant) simulated trial:
PowFun <- function(n, delta, sd){

x1 = rnorm(n = n/2, sd = sd)
x2 = rnorm(n = n/2, mean = delta, sd = sd)
t.test(x1, x2)$p.value < .05

}

In call to PowerGrid, setting n_iter prompts PowerGrid to evaluate

PowerGrid 21

the function iteratively at each combination of assumptions:
n_iter = 20
powarr = PowerGrid(pars = sse_pars, fun = PowFun,

n_iter = n_iter)

By default, the iterations are summarized (by their mean), so:
dimnames(powarr)
summary(powarr) # indicates that iterations were summarized (not stored)

=================================
keeping individual iterations
=================================

To keep individual iterations, set summarize to FALSE:

powarr_no_summary = PowerGrid(pars = sse_pars, fun = PowFun,
n_iter = n_iter , summarize = FALSE)

dimnames(powarr_no_summary) # additional dimension "iter"
summary(powarr_no_summary)

To summarize this object containing iterations, use the SummarizeIterations
function. Among other things, this assures that attributes relevant for
further use in powergrid's functionality are kept intact.

powarr_summarized =
SummarizeIterations(powarr_no_summary, summary_function = mean)

dimnames(powarr_summarized)
summary(powarr_summarized)

This summarized `power_array` is no different from a version that was
directly summarized.

Note that Example and Powerplot detect when a `power_array` object is not
#summarized, and behave sensibly with a warning:
Example(powarr_no_summary, example = list(delta = .7, sd = .5), target_value = .9)

PowerPlot(powarr_no_summary,
slicer = list(sd = .7), # slice out the plane with sd = .7
target_value = .9, # set target power to 90%, defining the thick line
example = list(delta = .7) # Highlight the example with arrow
)

#===
Multiple outputs are automatically handled
#===

Parameter assumptions
sse_pars = list(

n = seq(from = 10, to = 60, by = 2),
delta = seq(from = 0.5, to = 1.5, by = 0.2),
sd = seq(.5, 1.5, .2))

A function with two outputs (the power at two significance levels)

22 PowerPlot

TwoValuesFun <- function(n, delta, sd){
p5 = power.t.test(n = n, delta = delta, sd = sd, sig.level = .05)$power
p1 = power.t.test(n = n, delta = delta, sd = sd, sig.level = .01)$power
return(c('p5' = p5, 'p1' = p1))

}

powarr_two_returns = PowerGrid(sse_pars, TwoValuesFun)

multiple outputs result in an additional dimension:
dimnames(powarr_two_returns)
summary(powarr_two_returns)

note that you need to tell Example and other powergrid functions, which
of the outputs you are interested in:
Example(powarr_two_returns, example = list(delta = .7, sd = .5, fun_out = 'p1'),

target_value = .9)

PowerPlot(powarr_two_returns,
slicer = list(sd = .7, fun_out = 'p1'), # slice out the plane with the

output of interest
target_value = .9, # set target power to 90%, defining the thick line
example = list(delta = .7) # Highlight the example with arrow
)

PowerPlot Plot the relation between assumed parameters and requirements for
achieving a target power (or other objective)

Description

Plot (a slice of) an object of class power_array. Main purpose is to illustrate the relation between
two parameters (e.g., effect size on the x-axis and n on the y-axis) for a given target power. An
example may be highlighted by drawing an arrow at the combination of parameters deemed most
likely.

Usage

PowerPlot(
x,
slicer = NULL,
par_to_search = "n",
example = NULL,
find_lowest = TRUE,
target_value = 0.9,
target_at_least = TRUE,
method = "step",
summary_function = mean,
target_levels = c(0.8, 0.9, 0.95),
col = grDevices::grey.colors(1, 0.2, 0.2),

PowerPlot 23

shades_of_grey = TRUE,
example_text = TRUE,
title = NULL,
par_labels = NULL,
smooth = NA,
...

)

Arguments

x An object of class power_array (from powergrid).

slicer If the parameter grid for which ‘x’ was constructed has more than 2 dimensions,
a 2-dimensional slice may be cut out using slicer, which is a list whose ele-
ments define at which values (the list element value) of which parameter (the
list element name) the slice should be cut out.

par_to_search The variable whose minimum (or maximum, when find_lowest == FALSE) is
searched for achieving the target_levels.

example If not NULL, a list of length one, defining at which value (list element value)
of which parameter (list element name) the example is drawn for a power of
target_value. You may supply a vector longer than 1 for multiple examples.

find_lowest Logical, indicating whether the example should be found that minimizes an as-
sumption (e.g., minimal required n) to achieve the target_value or an example
that maximizes this assumption (e.g., maximally allowed SD).

target_value The power (or whatever the target is) for which the example, if requested, is
drawn. Also defines which of the power lines is drawn with a thicker line width,
among or in addition to the power lines defined by target_levels.

target_at_least

Logical. Should the target value be minimally achieved (e.g., power), or max-
imially allowed (e.g., estimation uncertainty).

method Method used for finding the required par_to_search needed to achieve target_value.
Either step: walking in steps along par_to_search or lm: Interpolating as-
suming a linear relation between par_to_search and (qnorm(x) + qnorm(1 -
0.05)) ^ 2. The setting lm is inspired on the implementation in the sse package
by Thomas Fabbro.

summary_function

If x is an object of class power_array where attribute summarized is FALSE
(and individual iterations are stored in dimension iter, the iterations dimension
is aggregated by summary_fun. Otherwise ignored.

target_levels For which levels of power (or whichever variable is contained in x) lines are
drawn.

col Color for the contour lines. Does not effect eventual example arrows. Therefore,
use AddExample.

shades_of_grey Logical indicating whether greylevels are painted in addition to isolines to show
power levels.

example_text When an example is drawn, should the the required par value be printed along-
side the arrow(s)

24 PowerPlot

title Character string, if not NULL, replaces default figure title.

par_labels Named vector with elements named as the parameters plotted, with as values the
desired labels.

smooth Numeric, defaults to NA, meaning no smoothing. Non NA value is used as ar-
gument span for smoothing with stats::loess, regressing the contour values
on the x and y-axis. Suggested value is .35. Functionality implemented for con-
sistency with sse package, but use is discouraged, since regressing the contour
values flattens the contour plot, thereby biasing the contour lines.

... Further arguments are passed on to function image internally. Most useful for
zooming with xlim and ylim.

Details

The most common use case may be plotting the required n (on the y-axis) as a function of some
other parameter (e.g., effect size, on the x-axis) for achieving a certain level of statistical power.
The default argument settings reflect this use case.

Flexible plotting:
The plotting is, however, more flexible.

Any variable on the axes:
You can flip the axes by setting a different par_to_search (which defines the y-axis). The other
parameter is automatically chosen to be drawn on the x-axis.

Maximizing a parameter:
One may also search not the minimum, as in the case of sample size, but the maximum, e.g., the
highest sd at which a certain power may still be achieved. In this case, the par_to_search is
sd, and find_lowest = FALSE.

When smaller is better:
In the standard case of power, higher is better, so you search for a minimal level of power.
One may however also aim at, e.g., a maximal width of a confidence interval. For this pur-
pose, set target_at_least to FALSE. See Example for more details about find_lowest and
target_at_least.

Value

A list containing the coordinate arguments x, y, and z, as passed to image() internally.

Author(s)

Gilles Dutilh

See Also

PowerGrid, AddExample, Example, GridPlot for plotting interdependencies of 3 parameters.

PowerPlot 25

Examples

==
Typical use case: minimal n for power
==
What's the minimal sample size n, given the combination of sd and delta.

Set up a grid of n, delta and sd:
sse_pars = list(

n = seq(from = 10, to = 60, by = 4),
delta = seq(from = 0.5, to = 1.5, by = 0.1), # effect size
sd = seq(.1, 1.1, .2)) # Standard deviation

Define a power function using these parameters:
PowFun <- function(n, delta, sd){ # power for a t-test at alpha = .05

ptt = power.t.test(n = n/2, delta = delta, sd = sd,
sig.level = 0.05)

return(ptt$power)
}

Evaluate PowFun across the grid defined by sse_pars:
power_array = PowerGrid(pars = sse_pars, fun = PowFun, n_iter = NA)

explore power graphically in the situation where sd = .7, including an
example situation where delta is .9:
PowerPlot(power_array,

slicer = list(sd = .7),
example = list(delta = c(.7, .9)), # two examples
target_value = .9 # 90% power
)

Some graphical adjustments. Note that example is drawn on top of
PowerPlot now.
PowerPlot(power_array,

slicer = list(sd = .7),
par_labels = c(n = 'Total Sample Size',

delta = 'Effect Size',
sd = 'Standard Deviation'),

target_levels = c(.8, .9), # draw fewer power isolines
target_value = NA # no specific power target (no line thicker)
)

AddExample(power_array,
slicer = list(sd = .7),
example = list(delta = .9),
target_value = .9,
col = 'Orange', lwd = 3)

==
Less typical use case:
minimal delta for power, given sd, as a function of n
==
You can easily change what you search for. For example: At each sample size n,
what would be the minimal effect size delta there must be for the target

26 print.power_array

power to be achieved?

PowerPlot(power_array,
par_to_search = 'delta',
slicer = list(sd = .7))

==
Less typical use case:
maximum sd for power, given n, as a function of delta
==
You're not limited to study n at all, nor to searching a minimum: When
your n is given to be 30, what is the largest sd at which we still find
enough power? (as a function of delta on the x-axis)

PowerPlot(power_array,
par_to_search = 'sd',
find_lowest = FALSE,
slicer = list(n = 30))

Adding an example works the same: If we expect a delta of 1, and the n =
30, what is the maximal SD we can have still yielding 90% power?

AddExample(power_array,
find_lowest = FALSE,
slicer = list(n = 30),
example = list(delta = 1),
target_value = .9)

print.power_array print

Description

Method for printing objects of class power_array. ##’ Prints a power_array as a default array with
a short summary about its contents.

Usage

S3 method for class 'power_array'
print(x, ...)

Arguments

x object of class power_array

... passed on to cat

Value

Nothing

print.power_example 27

Author(s)

Gilles Dutilh

See Also

PowerGrid

Examples

Define grid of assumptions to study:
sse_pars = list(

n = seq(from = 10, to = 50, by = 20), # sample size
delta = seq(from = 0.5, to = 1.5, by = 0.5), # effect size
sd = seq(.1, 1, .3)) # standard deviation

Define function that calculates power based on these assumptions:
PowFun <- function(n, delta, sd){

ptt = power.t.test(n = n/2, delta = delta, sd = sd,
sig.level = 0.05)

return(ptt$power)
}

Evaluate at each combination of assumptions:
powarr = PowerGrid(pars = sse_pars, fun = PowFun, n_iter = NA)
print(powarr)

print.power_example Print example

Description

Print method for class power_example.

Usage

S3 method for class 'power_example'
print(x, ...)

Arguments

x object of class power_example

... passed on to cat

Details

Print short informative output for object of class power_example.

28 Refine

Value

nothing

Author(s)

Gilles Dutilh

Refine Refine or extend the result of PowerGrid

Description

Add further results to an existing power_array (created by PowerGrid or by another call of Refine),
adding further values in pars and/or larger n_iter.

Usage

Refine(old, n_iter_add = 1, pars = NULL, ...)

Arguments

old the object of class power_array to extend

n_iter_add the number of iterations to add to old

pars the new parameter grid to evaluate across

... further arguments passed on to PowerGrid internally.

Details

If pars == NULL, update extends old by adding iterations n_iter_add to the existing power_array.
If pars is given, the function that was evaluated in old (attribute sim_function) is evaluated at the
crossings of pars. If argument pars is different from attr(old, which = 'pars'), this means that
the function is evaluated additional crossings of parameters.

Note that certain combinations of pars and n_iter_add result in arrays where some crossings of
parameters include more iterations than others. This is a feature, not a bug. May result in less
aesthetic plotting, however.

For details about handling the random seed, see PowerGrid.

Value

object of class power_array, containing old, extended by pars and/or n_iter_add.

Author(s)

Gilles Dutilh

Refine 29

See Also

PowerGrid

Examples

==
very simple example with one parameter
==
pars = list(x = 1:2)
fun = function(x){round(x+runif(1, 0, .2), 3)} # nonsense function
set.seed(1)
original = PowerGrid(pars = pars,

fun = fun,
n_iter = 3,
summarize = FALSE)

refined = Refine(original, n_iter_add = 2, pars = list(x = 2:3))
note that refined does not have each parameter sampled in each iteration

==
a realistic example, simply increasing n_iter
==
PowFun <- function(n, delta){

x1 = rnorm(n = n/2, sd = 1)
x2 = rnorm(n = n/2, mean = delta, sd = 1)
t.test(x1, x2)$p.value < .05

}
sse_pars = list(

n = seq(10, 100, 5),
delta = seq(.5, 1.5, .1))

##
n_iter = 20
set.seed(1)
power_array = PowerGrid(pars = sse_pars,

fun = PowFun,
n_iter = n_iter,
summarize = FALSE)

summary(power_array)
add iterations
power_array_up = Refine(power_array, n_iter_add = 30)
summary(power_array_up)

==
Starting coarsely, then zooming in
==
sse_pars = list(

n = c(10, 50, 100, 200), # finding n "ballpark"
delta = c(.5, 1, 1.5)) # finding delta "ballpark"

n_iter = 60
power_array = PowerGrid(pars = sse_pars,

fun = PowFun,
n_iter = n_iter,
summarize = FALSE)

30 SummarizeIterations

summary(power_array)
PowerPlot(power_array)
Based on figure above, let's look at n between 50 and 100, delta around .9

sse_pars = list(
n = seq(50, 100, 5),
delta = seq(.7, 1.1, .05))

set.seed(1)
power_array_up = Refine(power_array, n_iter_add = 555, pars = sse_pars)
summary(power_array_up)
PowerPlot(power_array_up) # that looks funny! It's because the default summary

mean does not deal with the empty value in the
grid. Solution is in illustration below.

A visual illustration of this zooming in, in three figures
layout(t(1:3))
PowerPlot(power_array, title = 'Course grid to start with')
PowerPlot(power_array_up, summary_function = function(x)mean(x, na.rm = TRUE),

title = 'Extra samples at finer parameter grid (does not look good)')
PowerPlot(power_array_up,

slicer = list(n = seq(50, 100, 5),
delta = seq(.7, 1.1, .05)),

summary_function = function(x)mean(x, na.rm = TRUE),
title = 'Zoomed in')

layout(1)

SummarizeIterations Summary of object that has individual iterations saved.

Description

Summarizes objects of class power_array that have individual iterations saved.

Usage

SummarizeIterations(x, summary_function, ...)

Arguments

x Object of class power_array
summary_function

function to apply across iterations

... Further arguments passed to ’summary_function’

Value

An object of class power_array, with attributes summarized = TRUE.

summary.power_array 31

Author(s)

Gilles Dutilh

See Also

PowerGrid

Examples

iterative sse example
sse_pars = list(

n = seq(from = 10, to = 60, by = 5),
delta = seq(from = 0.5, to = 1.5, by = 0.2),
sd = seq(.5, 1.5, .2))

Define a function that results in TRUE or FALSE for a successful or
non-successful (5% significant) simulated trial:
PowFun <- function(n, delta, sd){

x1 = rnorm(n = n/2, sd = sd)
x2 = rnorm(n = n/2, mean = delta, sd = sd)
t.test(x1, x2)$p.value < .05

}

n_iter = 20
powarr = PowerGrid(pars = sse_pars, fun = PowFun,

n_iter = n_iter, summarize = FALSE)

dimnames(powarr)
summary(powarr) # indicates that iterations were not
now summarize
powarr_summarized = SummarizeIterations(powarr, summary_function = mean)
dimnames(powarr_summarized)
summary(powarr_summarized) # indicates that iterations are now summarized

summary.power_array Summary of power_grid object.

Description

Offers a short summary of the power_array object, summarizing the range of observed values and
the grid evaluated across. ##’ See PowerGrid for details

Usage

S3 method for class 'power_array'
summary(object, ...)

32 summary.power_example

Arguments

object array of class power_grid

... passed on to cat

Value

nothing

Author(s)

Gilles Dutilh

See Also

PowerGrid

Examples

Define grid of assumptions to study:
sse_pars = list(

n = seq(from = 10, to = 50, by = 20), # sample size
delta = seq(from = 0.5, to = 1.5, by = 0.5), # effect size
sd = seq(.1, 1, .3)) # standard deviation

Define function that calculates power based on these assumptions:
PowFun <- function(n, delta, sd){

ptt = power.t.test(n = n/2, delta = delta, sd = sd,
sig.level = 0.05)

return(ptt$power)
}

Evaluate at each combination of assumptions:
powarr = PowerGrid(pars = sse_pars, fun = PowFun, n_iter = NA)
summary(powarr)

summary.power_example Print contents of an example

Description

Summary method for class power_example.

Usage

S3 method for class 'power_example'
summary(object, ...)

[.power_array 33

Arguments

object object of class power_example

... passed on to data.frame (which is the thing that is printed)

Details

Print longer informative output for object of class power_example.

Value

nothing

Author(s)

Gilles Dutilh

[.power_array indexing with [] for class power_array []: R:%20

Description

Method for indexing [] of objects of class power_array. The method makes sure that the resulting
array is of class power_array and keeps and updates the object’s attributes. These attributes are
needed for various functions in the powergrid package to work well. ##’ The indexing functions as
normal indexing, but note that drop is FALSE by default, so that the resulting array has the same
dimensions as the original array. The number of levels at each dimension may be reduced, however.
##’

Usage

S3 method for class 'power_array'
x[..., drop = TRUE]

Arguments

x object

... index

drop drop

Value

An array of class power_grid

Author(s)

Gilles Dutilh

34 [.power_array

See Also

PowerGrid ArraySlicer for a different method of reducing the dimensions of an array of class
power_array.

Examples

Define grid of assumptions to study:
sse_pars = list(

n = seq(from = 10, to = 50, by = 20), # sample size
delta = seq(from = 0.5, to = 1.5, by = 0.5), # effect size
sd = seq(.1, 1, .3)) # standard deviation

Define function that calculates power based on these assumptions:
PowFun <- function(n, delta, sd){

ptt = power.t.test(n = n/2, delta = delta, sd = sd,
sig.level = 0.05)

return(ptt$power)
}

Evaluate at each combination of assumptions:
powarr = PowerGrid(pars = sse_pars, fun = PowFun, n_iter = NA)
powarr[2, 1,] # gives the same as
powarr['30', '0.5',]

Index

[.power_array, 33

AddExample, 2, 15, 24
ArraySlicer, 3, 5, 11, 34
ArraySlicer(), 19

Example, 6, 10–12, 15, 19, 24

FindTarget, 8, 10

GridPlot, 3, 8, 10, 11, 13, 19, 24

PowerDF, 16
PowerGrid, 5, 8, 12, 15, 16, 17, 24, 27–29, 31,

32, 34
PowerPlot, 2, 3, 8, 10–12, 15, 19, 22
print.power_array, 26
print.power_example, 27

Refine, 28
Refine(), 19

SummarizeIterations, 18, 30
SummarizeIterations(), 19
summary.power_array, 31
summary.power_example, 32

35

	AddExample
	ArraySlicer
	Example
	FindTarget
	GridPlot
	PowerDF
	PowerGrid
	PowerPlot
	print.power_array
	print.power_example
	Refine
	SummarizeIterations
	summary.power_array
	summary.power_example
	[.power_array
	Index

