Package 'minter'

October 6, 2025

```
Title Effect Sizes for Meta-Analysis of Interactions from Factorial Experiments

Version 0.1.0
```

Version 0.1.0

```
Description Compute effect sizes and their sampling variances from factorial experimental designs. The package supports calculation of simple effects, overall effects, and interaction effects for use in factorial meta-analyses. See Gurevitch et al. (2000) <doi:10.1086/303337>, Morris et al. (2007) <doi:10.1890/06-0442>, Lajeunesse (2011) <doi:10.1890/11-0423.1> and Macartney et al. (2022) <doi:10.1016/j.neubiorev.2022.104554>.
```

License MIT + file LICENSE

Encoding UTF-8 **RoxygenNote** 7.3.2

URL https://fdecunta.github.io/minter/

BugReports https://github.com/fdecunta/minter/issues

Imports checkmate **Depends** R (>= 3.5)

LazyData true

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Author Facundo Decunta [aut, cre] (ORCID:

https://orcid.org/0009-0004-5774-1085), Shinichi Nakagawa [ctb],

Daniel Noble [ctb]

Maintainer Facundo Decunta <fdecunta@agro.uba.ar>

Repository CRAN

Date/Publication 2025-10-06 06:00:02 UTC

2 lnCVR_ind

Contents

	lnCVR_ind	2
	lnCVR_inter	4
	lnCVR_main	6
	lnRR_ind	7
	lnRR_inter	9
	lnRR_main	11
	lnVR_ind	13
	lnVR_inter	15
	lnVR_main	16
	SMD_ind	18
	SMD_inter	20
	SMD_main	22
	time_lnCVR	24
	time_lnRR	26
	time_lnVR	28
	time_SMD	29
Index		32

lnCVR_ind

Individual Effect: Log Coefficient Of Variation Ratio

Description

Computes the Log of the Coefficient of Variation Ratio between Factor A and the Control treatment.

Usage

```
lnCVR_ind(
  data,
  col_names = c("yi", "vi"),
  append = TRUE,
  Ctrl_mean,
  Ctrl_sd,
  Ctrl_n,
  A_mean,
  A_sd,
  A_n
)
```

data	Data frame containing the variables used.
col_names	Vector of two strings to name the output columns for the effect size and its sampling variance. Default is 'yi' and 'vi'.
append	Logical. Append the results to data. Default is TRUE

InCVR_ind 3

Ctrl_mean	Mean outcome from the Control treatment
Ctrl_sd	Standard deviation from the control treatment
Ctrl_n	Sample size from the control treatment
A_mean	Mean outcome from the treatment
A_sd	Standard deviation from the treatment
A_n	Sample size from the treatment

Details

See the package vignette for a detailed description of the formula.

Value

A data frame containing the effect sizes and their sampling variance. By default, the columns are named yi (effect size) and vi (sampling variance). If append = TRUE, the results are appended to the input data; otherwise, only the computed effect size columns are returned.

Author(s)

Facundo Decunta - fdecunta@agro.uba.ar

References

Nakagawa, S., Poulin, R., Mengersen, K., Reinhold, K., Engqvist, L., Lagisz, M., & Senior, A. M. (2015). Meta-analysis of variation: ecological and evolutionary applications and beyond. Methods in Ecology and Evolution, 6(2), 143-152.

```
data <- data.frame(
    study_id = 1:3,
    control_mean = c(8.5, 12.3, 6.8),
    control_sd = c(1.8, 2.9, 1.4),
    control_n = c(18, 24, 16),
    nutrient_mean = c(11.2, 16.7, 9.3),
    nutrient_sd = c(3.1, 4.8, 2.7),
    nutrient_n = c(19, 22, 17)
)

result <- lnCVR_ind(
    data = data,
    Ctrl_mean = "control_mean", Ctrl_sd = "control_sd", Ctrl_n = "control_n",
    A_mean = "nutrient_mean", A_sd = "nutrient_sd", A_n = "nutrient_n"
)</pre>
```

InCVR_inter

lnCVR_inter

Interaction Effect: Log Coefficient of Variation Ratio

Description

Computes the interaction effect between Factors A and B in factorial experiments on the coefficient of variation ratio.

Usage

```
lnCVR_inter(
 data,
 col_names = c("yi", "vi"),
  append = TRUE,
 Ctrl_mean,
 Ctrl_sd,
 Ctrl_n,
 A_mean,
 A_sd,
 A_n,
 B_mean,
 B_sd,
 B_n,
 AB_mean,
 AB_sd,
 AB_n
)
```

data	Data frame containing the variables used.
col_names	Vector of two strings to name the output columns for the effect size and its sampling variance. Default is 'yi' and 'vi'.
append	Logical. Append the results to data. Default is TRUE
Ctrl_mean	Mean outcome from the Control treatment
Ctrl_sd	Standard deviation from the control treatment
Ctrl_n	Sample size from the control treatment
A_mean	Mean outcome from the treatment
A_sd	Standard deviation from the treatment
A_n	Sample size from the treatment
B_mean	Mean outcome from the B treatment
B_sd	Standard deviation from the B treatment
B_n	Sample size from the B treatment

InCVR_inter 5

AB_mean	Mean outcome from the interaction AxB treatment
AB_sd	Standard deviation from the interaction AxB treatment
AB_n	Sample size from the interaction AxB treatment

Details

See the package vignette for a detailed description of the formula.

Value

A data frame containing the effect sizes and their sampling variance. By default, the columns are named yi (effect size) and vi (sampling variance). If append = TRUE, the results are appended to the input data; otherwise, only the computed effect size columns are returned.

Author(s)

Facundo Decunta - fdecunta@agro.uba.ar

```
# Interaction effect logCVR (Light x Nutrients)
data <- data.frame(</pre>
 study_id = 1:2,
 control_mean = c(7.3, 8.9),
 control_sd = c(1.4, 1.7),
 control_n = c(20, 18),
 light_mean = c(12.8, 14.2),
 light_sd = c(3.1, 3.5),
 light_n = c(19, 20),
 nutrients_mean = c(9.6, 11.1),
 nutrients_sd = c(1.9, 2.2),
 nutrients_n = c(21, 17),
 light_nutrients_mean = c(18.4, 20.7),
 light_nutrients_sd = c(4.8, 5.3),
 light_nutrients_n = c(18, 19)
)
result <- lnCVR_inter(</pre>
 data = data,
 Ctrl_mean = "control_mean",
 Ctrl_sd = "control_sd",
 Ctrl_n = "control_n",
 A_mean = "light_mean",
 A_sd = "light_sd",
 A_n = "light_n",
 B_mean = "nutrients_mean",
 B_sd = "nutrients_sd",
 B_n = "nutrients_n",
 AB_mean = "light_nutrients_mean",
 AB_sd = "light_nutrients_sd",
 AB_n = "light_nutrients_n"
```

6 InCVR_main

)

 ${\tt lnCVR_main}$

Main Effect: Log Coefficient Of Variation Ration

Description

Computes the main effect of Factor A across levels of Factor B in factorial experiments on the coefficient of variation.

Usage

```
lnCVR_main(
  data,
  col_names = c("yi", "vi"),
  append = TRUE,
 Ctrl_mean,
 Ctrl_sd,
 Ctrl_n,
 A_mean,
 A_sd,
 A_n,
 B_mean,
 B_sd,
 B_n,
 AB_mean,
 AB_sd,
 AB_n
)
```

data	Data frame containing the variables used.
col_names	Vector of two strings to name the output columns for the effect size and its sampling variance. Default is 'yi' and 'vi'.
append	Logical. Append the results to data. Default is TRUE
Ctrl_mean	Mean outcome from the Control treatment
Ctrl_sd	Standard deviation from the control treatment
Ctrl_n	Sample size from the control treatment
A_mean	Mean outcome from the treatment
A_sd	Standard deviation from the treatment
A_n	Sample size from the treatment
B_mean	Mean outcome from the B treatment

InRR_ind 7

B_sd	Standard deviation from the B treatment
B_n	Sample size from the B treatment
AB_mean	Mean outcome from the interaction AxB treatment
AB_sd	Standard deviation from the interaction AxB treatment
AB_n	Sample size from the interaction AxB treatment

Details

See the package vignette for a detailed description of the formula.

Value

A data frame containing the effect sizes and their sampling variance. By default, the columns are named yi (effect size) and vi (sampling variance). If append = TRUE, the results are appended to the input data; otherwise, only the computed effect size columns are returned.

Author(s)

Facundo Decunta - fdecunta@agro.uba.ar

Examples

```
data <- data.frame(
    study_id = 1:2,
    control_mean = c(14.2, 16.8), control_sd = c(2.8, 3.1), control_n = c(16, 14),
    irrigation_mean = c(19.5, 22.1), irrigation_sd = c(5.2, 5.8), irrigation_n = c(15, 16),
    co2_mean = c(16.8, 19.4), co2_sd = c(3.1, 3.6), co2_n = c(17, 13),
    irrigation_co2_mean = c(24.3, 27.9), irrigation_co2_sd = c(6.8, 7.4), irrigation_co2_n = c(14, 15)
)

result <- lnCVR_main(
    data = data,
    Ctrl_mean = "control_mean", Ctrl_sd = "control_sd", Ctrl_n = "control_n",
    A_mean = "irrigation_mean", A_sd = "irrigation_sd", A_n = "irrigation_n",
    B_mean = "co2_mean", B_sd = "co2_sd", B_n = "co2_n",
    AB_mean = "irrigation_co2_mean", AB_sd = "irrigation_co2_sd", AB_n = "irrigation_co2_n"
)</pre>
```

lnRR_ind

Simple effect: Log Response Ratio

Description

Computes the individual or simple effect of Factor A over the Control.

8 InRR_ind

Usage

```
lnRR_ind(
  data,
  col_names = c("yi", "vi"),
  append = TRUE,
  Ctrl_mean,
  Ctrl_sd,
  Ctrl_n,
  A_mean,
  A_sd,
  A_n
)
```

Arguments

data	Data frame containing the variables used.

col_names Vector of two strings to name the output columns for the effect size and its

sampling variance. Default is 'yi' and 'vi'.

append Logical. Append the results to data. Default is TRUE

Ctrl_mean Mean outcome from the Control treatment
Ctrl_sd Standard deviation from the control treatment

Ctrl_n Sample size from the control treatment

A_mean Mean outcome from the experimental treatment

A_sd Standard deviation from the experimental treatment

A_n Sample size from the experimental treatment

Details

It is the classic Log Response Ratio (lnRR), which can also be computed with metafor's escalc() function using measure = "ROM".

See the package vignette for a detailed description of the formula.

Value

A data frame containing the effect sizes and their sampling variance. By default, the columns are named yi (effect size) and vi (sampling variance). If append = TRUE, the results are appended to the input data; otherwise, only the computed effect size columns are returned.

Author(s)

Facundo Decunta - fdecunta@agro.uba.ar

lnRR_inter 9

References

Morris, W. F., Hufbauer, R. A., Agrawal, A. A., Bever, J. D., Borowicz, V. A., Gilbert, G. S., ... & Vázquez, D. P. (2007). Direct and interactive effects of enemies and mutualists on plant performance: a meta-analysis. Ecology, 88(4), 1021-1029. https://doi.org/10.1890/06-0442

Lajeunesse, M. J. (2011). On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology, 92(11), 2049-2055. https://doi.org/10.1890/11-0423.1

Examples

```
data <- data.frame(</pre>
 study_id = 1:3,
 control_mean = c(10, 15, 12),
 control_sd = c(2.1, 3.2, 2.8),
 control_n = c(20, 25, 18),
 drought_mean = c(12, 18, 14),
 drought_sd = c(2.3, 3.5, 3.1),
 drought_n = c(22, 24, 20)
# Compute individual effect of drought vs control
result <- lnRR_ind(
 data = data,
 Ctrl_mean = "control_mean",
 Ctrl_sd = "control_sd",
 Ctrl_n = "control_n",
 A_mean = "drought_mean",
 A_sd = "drought_sd",
 A_n = "drought_n"
)
```

lnRR_inter

Interaction effect: Log Response Ratio

Description

Computes the interaction effect between factors A and B in factorial data.

Usage

```
lnRR_inter(
  data,
  col_names = c("yi", "vi"),
  append = TRUE,
  Ctrl_mean,
  Ctrl_sd,
  Ctrl_n,
  A_mean,
```

10 InRR_inter

```
A_sd,
A_n,
B_mean,
B_sd,
B_n,
AB_mean,
AB_sd,
AB_n
```

Arguments

data Data frame containing the variables used.

sampling variance. Default is 'yi' and 'vi'.

append Logical. Append the results to data. Default is TRUE

Ctrl_mean Mean outcome from the Control treatment
Ctrl_sd Standard deviation from the control treatment

Ctrl_n Sample size from the control treatment

A_mean Mean outcome from the treatment
A_sd Standard deviation from the treatment

A_n Sample size from the treatment

B_mean Mean outcome from the B treatment
B_sd Standard deviation from the B treatment

B_n Sample size from the B treatment

AB_mean Mean outcome from the interaction AxB treatment
AB_sd Standard deviation from the interaction AxB treatment

AB_n Sample size from the interaction AxB treatment

Details

See the package vignette for a detailed description of the formula.

Value

A data frame containing the effect sizes and their sampling variance. By default, the columns are named yi (effect size) and vi (sampling variance). If append = TRUE, the results are appended to the input data; otherwise, only the computed effect size columns are returned.

Author(s)

Facundo Decunta - fdecunta@agro.uba.ar

InRR_main

References

Morris, W. F., Hufbauer, R. A., Agrawal, A. A., Bever, J. D., Borowicz, V. A., Gilbert, G. S., ... & Vázquez, D. P. (2007). Direct and interactive effects of enemies and mutualists on plant performance: a meta-analysis. Ecology, 88(4), 1021-1029. https://doi.org/10.1890/06-0442

Examples

```
data <- data.frame(
    study_id = 1:2,
    control_mean = c(25, 28), control_sd = c(3.2, 3.8), control_n = c(15, 17),
    predation_mean = c(18, 20), predation_sd = c(2.9, 3.1), predation_n = c(16, 18),
    competition_mean = c(22, 24), competition_sd = c(3.0, 3.5), competition_n = c(14, 16),
    pred_comp_mean = c(12, 15), pred_comp_sd = c(2.1, 2.6), pred_comp_n = c(15, 17)
)

# Compute interaction effect between predation and competition
result <- lnRR_inter(
    data = data,
    Ctrl_mean = "control_mean", Ctrl_sd = "control_sd", Ctrl_n = "control_n",
    A_mean = "predation_mean", A_sd = "predation_sd", A_n = "predation_n",
    B_mean = "competition_mean", B_sd = "competition_sd", B_n = "competition_n",
    AB_mean = "pred_comp_mean", AB_sd = "pred_comp_sd", AB_n = "pred_comp_n"
)</pre>
```

lnRR_main

Main effect: Log Response Ratio

Description

Computes the main effect of Factor A across levels of Factor B, analogous to the main effect in a factorial ANOVA.

Usage

```
lnRR_main(
  data,
  col_names = c("yi", "vi"),
  append = TRUE,
  method = "nakagawa",
  Ctrl_mean,
  Ctrl_sd,
  Ctrl_n,
  A_mean,
  A_sd,
  A_n,
  B_mean,
  B_sd,
```

12 InRR_main

```
B_n,
AB_mean,
AB_sd,
AB_n
```

Arguments

data Data frame containing the variables used.

col_names Vector of two strings to name the output columns for the effect size and its

sampling variance. Default is 'yi' and 'vi'.

append Logical. Append the results to data. Default is TRUE

method Method to compute lnRR. Can be either "nakagawa" or "morris". Default is

"nakagawa".

Ctrl_mean Mean outcome from the Control treatment
Ctrl_sd Standard deviation from the control treatment

Ctrl_n Sample size from the control treatment

A_mean Mean outcome from the A treatment

A_sd Standard deviation from the A treatment

A_n Sample size from the A treatment

B_mean Mean outcome from the B treatment

B_sd Standard deviation from the B treatment

B_n Sample size from the B treatment

AB_mean Mean outcome from the interaction AxB treatment
AB_sd Standard deviation from the interaction AxB treatment

AB_n Sample size from the interaction AxB treatment

Details

See the package vignette for a detailed description of the formula.

Value

A data frame containing the effect sizes and their sampling variance. By default, the columns are named yi (effect size) and vi (sampling variance). If append = TRUE, the results are appended to the input data; otherwise, only the computed effect size columns are returned.

Author(s)

Facundo Decunta - fdecunta@agro.uba.ar

lnVR_ind

References

Morris, W. F., Hufbauer, R. A., Agrawal, A. A., Bever, J. D., Borowicz, V. A., Gilbert, G. S., ... & Vázquez, D. P. (2007). Direct and interactive effects of enemies and mutualists on plant performance: a meta-analysis. Ecology, 88(4), 1021-1029. https://doi.org/10.1890/06-0442

Lajeunesse, M. J. (2011). On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology, 92(11), 2049-2055. https://doi.org/10.1890/11-0423.1

Macartney, E. L., Lagisz, M., & Nakagawa, S. (2022). The relative benefits of environmental enrichment on learning and memory are greater when stressed: A meta-analysis of interactions in rodents. Neuroscience & Biobehavioral Reviews, 135, 104554. https://doi.org/10.1016/j.neubiorev.2022.104554

Examples

```
# Example data for 2x2 factorial design (Fertilization x Warming)
data <- data.frame(</pre>
 study_id = 1:2,
 control_mean = c(10, 12), control_sd = c(2.0, 2.5), control_n = c(20, 18),
 fertilization_mean = c(15, 16), fertilization_sd = c(2.2, 2.8), fertilization_n = c(20, 19),
 warming_mean = c(11, 13), warming_sd = c(2.1, 2.6), warming_n = c(21, 17),
 fert_{warm_mean} = c(17, 19), fert_{warm_sd} = c(2.4, 3.0), fert_{warm_n} = c(19, 20)
)
# Compute main effect of fertilization
result <- lnRR_main(</pre>
 data = data,
 Ctrl_mean = "control_mean", Ctrl_sd = "control_sd", Ctrl_n = "control_n",
 A_mean = "fertilization_mean", A_sd = "fertilization_sd", A_n = "fertilization_n",
 B_mean = "warming_mean", B_sd = "warming_sd", B_n = "warming_n",
 AB_mean = "fert_warm_mean", AB_sd = "fert_warm_sd", AB_n = "fert_warm_n"
)
```

lnVR_ind

Individual effect: Log of Variability Ratio

Description

Computes the Log of the Variability Ratio between a Factor A and the Control treatment in factorial experiments.

Usage

```
lnVR_ind(
  data,
  col_names = c("yi", "vi"),
  append = TRUE,
  Ctrl_sd,
  Ctrl_n,
```

14 InVR_ind

```
A_sd,
A_n
)
```

Arguments

data	Data frame containing the variables used.
col_names	Vector of two strings to name the output columns for the effect size and its sampling variance. Default is 'yi' and 'vi'.
append	Logical. Append the results to data. Default is TRUE
Ctrl_sd	Standard deviation from the control treatment
Ctrl_n	Sample size from the control treatment
A_sd	Standard deviation from the treatment
A_n	Sample size from the treatment

Details

See the package vignette for a detailed description of the formula.

Value

A data frame containing the effect sizes and their sampling variance. By default, the columns are named yi (effect size) and vi (sampling variance). If append = TRUE, the results are appended to the input data; otherwise, only the computed effect size columns are returned.

Author(s)

Facundo Decunta - fdecunta@agro.uba.ar

References

Nakagawa, S., Poulin, R., Mengersen, K., Reinhold, K., Engqvist, L., Lagisz, M., & Senior, A. M. (2015). Meta-analysis of variation: ecological and evolutionary applications and beyond. Methods in Ecology and Evolution, 6(2), 143-152.

```
# Example focusing on variability differences (Herbivory effect)
data <- data.frame(
   study_id = 1:3,
   control_sd = c(2.1, 1.8, 2.5),
   control_n = c(20, 22, 18),
   herbivory_sd = c(3.2, 2.9, 3.8),
   herbivory_n = c(21, 20, 19)
)

result <- lnVR_ind(
   data = data,
   Ctrl_sd = "control_sd",</pre>
```

InVR_inter 15

```
Ctrl_n = "control_n",
A_sd = "herbivory_sd",
A_n = "herbivory_n"
)
```

 $lnVR_inter$

Interaction effect: Log Variability Ratio

Description

Computes the interaction of Factors A and B measured as the log of the variability ratio.

Usage

```
lnVR_inter(
  data,
  col_names = c("yi", "vi"),
  append = TRUE,
  Ctrl_sd,
  Ctrl_n,
  A_sd,
  A_n,
  B_sd,
  B_n,
  AB_sd,
  AB_n
)
```

data	Data frame containing the variables used.
col_names	Vector of two strings to name the output columns for the effect size and its sampling variance. Default is 'yi' and 'vi'.
append	Logical. Append the results to data. Default is TRUE
Ctrl_sd	Standard deviation from the control treatment
Ctrl_n	Sample size from the control treatment
A_sd	Standard deviation from the A treatment
A_n	Sample size from the A treatment
B_sd	Standard deviation from the B treatment
B_n	Sample size from the B treatment
AB_sd	Standard deviation from the interaction AxB treatment
AB_n	Sample size from the interaction AxB treatment

16 InVR_main

Details

See the package vignette for a detailed description of the formula.

Value

A data frame containing the effect sizes and their sampling variance. By default, the columns are named yi (effect size) and vi (sampling variance). If append = TRUE, the results are appended to the input data; otherwise, only the computed effect size columns are returned.

Author(s)

Facundo Decunta - fdecunta@agro.uba.ar

Examples

```
# Example for interaction effect in 2x2 factorial focusing on variability (Drought x Temperature)
data <- data.frame(
    study_id = 1:2,
    control_sd = c(1.8, 2.1), control_n = c(22, 19),
    drought_sd = c(2.6, 2.9), drought_n = c(20, 21),
    temperature_sd = c(2.0, 2.3), temperature_n = c(21, 18),
    drought_temp_sd = c(3.2, 3.6), drought_temp_n = c(19, 20)
)

result <- lnVR_inter(
    data = data,
    Ctrl_sd = "control_sd", Ctrl_n = "control_n",
    A_sd = "drought_sd", A_n = "drought_n",
    B_sd = "temperature_sd", B_n = "temperature_n",
    AB_sd = "drought_temp_sd", AB_n = "drought_temp_n"
)</pre>
```

lnVR_main

Main Effect: Log of the Variability Ratio

Description

Computes the overral log of the variability ratio for Factor A across levels of Factor B.

Usage

```
lnVR_main(
  data,
  col_names = c("yi", "vi"),
  append = TRUE,
  Ctrl_sd,
  Ctrl_n,
```

lnVR_main 17

```
A_sd,
A_n,
B_sd,
B_n,
AB_sd,
AB_n
```

Arguments

data	Data frame containing the variables used.
col_names	Vector of two strings to name the output columns for the effect size and its sampling variance. Default is 'yi' and 'vi'.
append	Logical. Append the results to data. Default is TRUE
Ctrl_sd	Standard deviation from the control treatment
Ctrl_n	Sample size from the control treatment
A_sd	Standard deviation from the A treatment
A_n	Sample size from the A treatment
B_sd	Standard deviation from the B treatment
B_n	Sample size from the B treatment
AB_sd	Standard deviation from the interaction AxB treatment
AB_n	Sample size from the interaction AxB treatment

Details

See the package vignette for a detailed description of the formula.

Value

A data frame containing the effect sizes and their sampling variance. By default, the columns are named yi (effect size) and vi (sampling variance). If append = TRUE, the results are appended to the input data; otherwise, only the computed effect size columns are returned.

Author(s)

Facundo Decunta - fdecunta@agro.uba.ar

```
# Example for main effect in 2x2 factorial focusing on variability (Fire x Grazing)
data <- data.frame(
   study_id = 1:2,
   control_sd = c(2.0, 2.3), control_n = c(20, 18),
   fire_sd = c(2.8, 3.1), fire_n = c(19, 20),
   grazing_sd = c(2.2, 2.5), grazing_n = c(21, 17),
   fire_grazing_sd = c(3.5, 3.8), fire_grazing_n = c(18, 19)
)</pre>
```

18 SMD_ind

```
result <- lnVR_main(</pre>
  data = data,
 Ctrl_sd = "control_sd", Ctrl_n = "control_n",
 A_sd = "fire_sd", A_n = "fire_n",
 B_sd = "grazing_sd", B_n = "grazing_n",
  AB_sd = "fire_grazing_sd", AB_n = "fire_grazing_n"
```

 ${\tt SMD_ind}$

Simple effect: Standardized Mean Difference

Description

Computes the individual or simple effect of Factor A over the Control.

Usage

```
SMD_ind(
  data,
  col_names = c("yi", "vi"),
 append = TRUE,
 hedges_correction = TRUE,
 Ctrl_mean,
 Ctrl_sd,
 Ctrl_n,
 A_mean,
 A_sd,
 A_n
)
```

Arguments

data	Data frame containing the variables used.
col_names	Vector of two strings to name the output columns for the effect size and its sampling variance. Default is 'yi' and 'vi'.
append	Logical. Append the results to data. Default is TRUE
hedges_correction	
	Boolean. If TRUE correct for small-sample bias. Default is TRUE.
Ctrl_mean	Mean outcome from the Control treatment
Ctrl_sd	Standard deviation from the control treatment
Ctrl_n	Sample size from the control treatment
A_mean	Mean outcome from the experimental treatment
A_sd	Standard deviation from the experimental treatment
A_n	Sample size from the experimental treatment

SMD_ind

Details

It is the classic Standardized Mean Difference (SMD), which can also be computed with metafor's escalc() function using measure = "SMD".

See the package vignette for a detailed description of the formula.

Value

A data frame containing the effect sizes and their sampling variance. By default, the columns are named yi (effect size) and vi (sampling variance). If append = TRUE, the results are appended to the input data; otherwise, only the computed effect size columns are returned.

Author(s)

Facundo Decunta - fdecunta@agro.uba.ar

References

Gurevitch, J., Morrison, J. A., & Hedges, L. V. (2000). The interaction between competition and predation: a meta-analysis of field experiments. The American Naturalist, 155(4), 435-453.

Morris, W. F., Hufbauer, R. A., Agrawal, A. A., Bever, J. D., Borowicz, V. A., Gilbert, G. S., ... & Vázquez, D. P. (2007). Direct and interactive effects of enemies and mutualists on plant performance: a meta-analysis. Ecology, 88(4), 1021-1029. https://doi.org/10.1890/06-0442

```
data <- data.frame(</pre>
 study_id = 1:3,
 control_mean = c(45.2, 52.8, 38.9),
 control_sd = c(8.1, 11.2, 7.3),
 control_n = c(18, 23, 16),
 pollinator_exclusion_mean = c(28.7, 35.4, 22.1),
 pollinator_exclusion_sd = c(6.8, 9.1, 5.9),
 pollinator_exclusion_n = c(20, 22, 18)
# With Hedges' correction (default)
result <- SMD_ind(</pre>
 data = data,
 Ctrl_mean = "control_mean",
 Ctrl_sd = "control_sd",
 Ctrl_n = "control_n",
 A_mean = "pollinator_exclusion_mean",
 A_sd = "pollinator_exclusion_sd",
 A_n = "pollinator_exclusion_n",
 hedges_correction = TRUE
)
# Without Hedges' correction
result_no_hedges <- SMD_ind(</pre>
 data = data,
```

SMD_inter

```
Ctrl_mean = "control_mean",
Ctrl_sd = "control_sd",
Ctrl_n = "control_n",
A_mean = "pollinator_exclusion_mean",
A_sd = "pollinator_exclusion_sd",
A_n = "pollinator_exclusion_n",
hedges_correction = FALSE
)
```

SMD_inter

Interaction effect: Standardized mean difference

Description

Computes the interaction effect between factors A and B in factorial data.

Usage

```
SMD_inter(
  data,
  col_names = c("yi", "vi"),
  append = TRUE,
 hedges_correction = TRUE,
 Ctrl_mean,
 Ctrl_sd,
 Ctrl_n,
 A_mean,
 A_sd,
 A_n,
 B_mean,
 B_sd,
 B_n,
 AB_mean,
 AB_sd,
  AB_n
)
```

Arguments

data Data frame containing the variables used.

sampling variance. Default is 'yi' and 'vi'.

append Logical. Append the results to data. Default is TRUE

hedges_correction

Logical. Apply or not Hedges' correction for small-sample bias. Default is TRUE

SMD_inter 21

Ctrl_mean	Mean outcome from the Control treatment
Ctrl_sd	Standard deviation from the control treatment
Ctrl_n	Sample size from the control treatment
A_mean	Mean outcome from the treatment
A_sd	Standard deviation from the treatment
A_n	Sample size from the treatment
B_mean	Mean outcome from the B treatment
B_sd	Standard deviation from the B treatment
B_n	Sample size from the B treatment
AB_mean	Mean outcome from the interaction AxB treatment
AB_sd	Standard deviation from the interaction AxB treatment
AB_n	Sample size from the interaction AxB treatment

Details

See the package vignette for a detailed description of the formula.

Value

A data frame containing the effect sizes and their sampling variance. By default, the columns are named yi (effect size) and vi (sampling variance). If append = TRUE, the results are appended to the input data; otherwise, only the computed effect size columns are returned.

Author(s)

Facundo Decunta - fdecunta@agro.uba.ar

References

Gurevitch, J., Morrison, J. A., & Hedges, L. V. (2000). The interaction between competition and predation: a meta-analysis of field experiments. The American Naturalist, 155(4), 435-453.

Morris, W. F., Hufbauer, R. A., Agrawal, A. A., Bever, J. D., Borowicz, V. A., Gilbert, G. S., ... & Vázquez, D. P. (2007). Direct and interactive effects of enemies and mutualists on plant performance: a meta-analysis. Ecology, 88(4), 1021-1029. https://doi.org/10.1890/06-0442

```
data <- data.frame(
    study_id = 1:2,
    control_mean = c(24.8, 27.2), control_sd = c(4.1, 4.6), control_n = c(18, 16),
    salinity_mean = c(19.3, 21.7), salinity_sd = c(3.8, 4.2), salinity_n = c(17, 18),
    temperature_mean = c(28.9, 31.4), temperature_sd = c(4.7, 5.1), temperature_n = c(19, 15),
    salt_temp_mean = c(15.2, 17.8), salt_temp_sd = c(3.1, 3.5), salt_temp_n = c(16, 17)
)

result <- SMD_inter(
    data = data,</pre>
```

SMD_main

```
Ctrl_mean = "control_mean", Ctrl_sd = "control_sd", Ctrl_n = "control_n",
    A_mean = "salinity_mean", A_sd = "salinity_sd", A_n = "salinity_n",
    B_mean = "temperature_mean", B_sd = "temperature_sd", B_n = "temperature_n",
    AB_mean = "salt_temp_mean", AB_sd = "salt_temp_sd", AB_n = "salt_temp_n"
)
```

SMD_main

Main effect: Standardized Mean Difference

Description

Computes the main effect of Factor A across levels of Factor B, analogous to the main effect in a factorial ANOVA.

Usage

```
SMD_main(
  data,
  col_names = c("yi", "vi"),
  append = TRUE,
 hedges_correction = TRUE,
 Ctrl_mean,
 Ctrl_sd,
 Ctrl_n,
 A_mean,
 A_sd,
 A_n,
 B_mean,
 B_sd,
 B_n,
 AB_mean,
 AB_sd,
  AB_n
)
```

Arguments

Ctrl_sd

data Data frame containing the variables used.

col_names Vector of two strings to name the output columns for the effect size and its sampling variance. Default is 'yi' and 'vi'.

append Logical. Append the results to data. Default is TRUE hedges_correction

Boolean. If TRUE correct for small-sample bias. Default is TRUE.

Ctrl_mean Mean outcome from the Control treatment

Standard deviation from the control treatment

SMD_main 23

Ctrl_n	Sample size from the control treatment
A_mean	Mean outcome from the A treatment
A_sd	Standard deviation from the A treatment
A_n	Sample size from the A treatment
B_mean	Mean outcome from the B treatment
B_sd	Standard deviation from the B treatment
B_n	Sample size from the B treatment
AB_mean	Mean outcome from the interaction AxB treatment
AB_sd	Standard deviation from the interaction AxB treatment
AB_n	Sample size from the interaction AxB treatment

Details

See the package vignette for a detailed description of the formula.

Value

A data frame containing the effect sizes and their sampling variance. By default, the columns are named yi (effect size) and vi (sampling variance). If append = TRUE, the results are appended to the input data; otherwise, only the computed effect size columns are returned.

Author(s)

Facundo Decunta - fdecunta@agro.uba.ar

References

Gurevitch, J., Morrison, J. A., & Hedges, L. V. (2000). The interaction between competition and predation: a meta-analysis of field experiments. The American Naturalist, 155(4), 435-453.

Morris, W. F., Hufbauer, R. A., Agrawal, A. A., Bever, J. D., Borowicz, V. A., Gilbert, G. S., ... & Vázquez, D. P. (2007). Direct and interactive effects of enemies and mutualists on plant performance: a meta-analysis. Ecology, 88(4), 1021-1029. https://doi.org/10.1890/06-0442

```
# Main effect of Mycorrhiza in 2x2 factorial design (AMF x Phosphorus)
data <- data.frame(
   study_id = 1:2,
   control_mean = c(12.4, 15.1), control_sd = c(2.8, 3.2), control_n = c(16, 14),
   mycorrhizae_mean = c(18.7, 21.3), mycorrhizae_sd = c(3.4, 3.9), mycorrhizae_n = c(15, 16),
   phosphorus_mean = c(14.9, 17.8), phosphorus_sd = c(3.1, 3.6), phosphorus_n = c(17, 13),
   myco_phos_mean = c(22.1, 25.4), myco_phos_sd = c(4.2, 4.8), myco_phos_n = c(14, 15)
)

result <- SMD_main(
   data = data,
   Ctrl_mean = "control_mean", Ctrl_sd = "control_sd", Ctrl_n = "control_n",
   A_mean = "mycorrhizae_mean", A_sd = "mycorrhizae_sd", A_n = "mycorrhizae_n",</pre>
```

24 time_lnCVR

```
B_mean = "phosphorus_mean", B_sd = "phosphorus_sd", B_n = "phosphorus_n",
AB_mean = "myco_phos_mean", AB_sd = "myco_phos_sd", AB_n = "myco_phos_n"
)
```

 $time_lnCVR$

Log Coefficient of Variation Ratio: Interaction Between Treatment and Time

Description

Log Coefficient of Variation Ratio: Interaction Between Treatment and Time

Usage

```
time_lnCVR(
 data,
  col_names = c("yi", "vi"),
 append = TRUE,
  t0_Ctrl_mean,
  t0_Ctrl_sd,
  t1_Ctrl_mean,
  t1_Ctrl_sd,
 Ctrl_n,
 Ctrl_cor,
  t0_Exp_mean,
  t0_Exp_sd,
  t1_Exp_mean,
  t1_Exp_sd,
 Exp_n,
 Exp_cor
)
```

data	Data frame containing the variables used.
col_names	Vector of two strings to name the output columns for the effect size and its sampling variance. Default is 'yi' and 'vi'.
append	Logical. Append the results to data. Default is TRUE
t0_Ctrl_mean	Sample mean from the control group at time 0
t0_Ctrl_sd	Standard deviation from the control group at time 0
t1_Ctrl_mean	Sample mean from the control group at time 1
t1_Ctrl_sd	Standard deviation from the control group at time 1
Ctrl_n	Sample size of the control group

time_lnCVR 25

Ctrl_cor	Number or numeric vector. Correlation between the means of the control group at t0 and t1
t0_Exp_mean	Sample mean from the experimental group at time 0
t0_Exp_sd	Standard deviation from the experimental group at time 0
t1_Exp_mean	Sample mean from the experimental group at time 1
t1_Exp_sd	Standard deviation from the experimental group at time 1
Exp_n	Sample size of the experimental group
Exp_cor	Number or numeric vector. Correlation between the means of the experimental group at t0 and t1

Value

A data frame containing the effect sizes and their sampling variance. By default, the columns are named yi (effect size) and vi (sampling variance). If append = TRUE, the results are appended to the input data; otherwise, only the computed effect size columns are returned.

Author(s)

Facundo Decunta - fdecunta@agro.uba.ar

References

Shinichi Nakagawa and Daniel Noble, personal communication.

```
# Pre-post design for coefficient of variation changes over time (Disturbance experiment)
data <- data.frame(</pre>
 study_id = 1:2,
 pre\_control\_mean = c(12.8, 15.4), pre\_control\_sd = c(2.6, 3.1),
 post\_control\_mean = c(13.2, 15.9), post\_control\_sd = c(2.7, 3.2),
 control_n = c(20, 18),
 pre_disturbed_mean = c(12.9, 15.2), pre_disturbed_sd = c(2.5, 3.0),
 post_disturbed_mean = c(8.7, 10.1), post_disturbed_sd = c(3.8, 4.3),
 disturbed_n = c(19, 21)
)
result <- time_lnCVR(</pre>
 data = data,
 t0_Ctrl_mean = "pre_control_mean", t0_Ctrl_sd = "pre_control_sd",
 t1_Ctrl_mean = "post_control_mean", t1_Ctrl_sd = "post_control_sd",
 Ctrl_n = "control_n", Ctrl_cor = 0.8,
 t0_Exp_mean = "pre_disturbed_mean", t0_Exp_sd = "pre_disturbed_sd",
 t1_Exp_mean = "post_disturbed_mean", t1_Exp_sd = "post_disturbed_sd",
 Exp_n = "disturbed_n", Exp_cor = 0.5
)
```

26 time_lnRR

 $time_lnRR$

Log Response Ratio: Interaction Between Treatment and Time

Description

Log Response Ratio: Interaction Between Treatment and Time

Usage

```
time_lnRR(
  data,
  col_names = c("yi", "vi"),
  append = TRUE,
  t0_Ctrl_mean,
  t0_Ctrl_sd,
  t1_Ctrl_mean,
  t1_Ctrl_sd,
 Ctrl_n,
 Ctrl_cor,
  t0_Exp_mean,
  t0_Exp_sd,
  t1_Exp_mean,
  t1\_Exp\_sd,
 Exp_n,
 Exp_cor
)
```

data	Data frame containing the variables used.
col_names	Vector of two strings to name the output columns for the effect size and its sampling variance. Default is 'yi' and 'vi'.
append	Logical. Append the results to data. Default is TRUE
t0_Ctrl_mean	Sample mean from the control group at time 0
t0_Ctrl_sd	Standard deviation from the control group at time 0
t1_Ctrl_mean	Sample mean from the control group at time 1
t1_Ctrl_sd	Standard deviation from the control group at time 1
Ctrl_n	Sample size of the control group
Ctrl_cor	Number or numeric vector. Correlation between the means of the control group at $t0$ and $t1$
t0_Exp_mean	Sample mean from the experimental group at time 0
t0_Exp_sd	Standard deviation from the experimental group at time 0
t1_Exp_mean	Sample mean from the experimental group at time 1

time_lnRR 27

t1_Exp_sd	Standard deviation from the experimental group at time 1
Exp_n	Sample size of the experimental group
Exp_cor	Number or numeric vector. Correlation between the means of the experimental group at t0 and t1

Value

A data frame containing the effect sizes and their sampling variance. By default, the columns are named yi (effect size) and vi (sampling variance). If append = TRUE, the results are appended to the input data; otherwise, only the computed effect size columns are returned.

Author(s)

Facundo Decunta - fdecunta@agro.uba.ar

References

Shinichi Nakagawa and Daniel Noble, personal communication.

```
data <- data.frame(</pre>
  study_id = 1:2,
  pre\_control\_mean = c(8.4, 10.2),
                                       # Control before restoration
  pre\_control\_sd = c(1.8, 2.1),
  post\_control\_mean = c(8.9, 10.7),
                                        # Control after restoration period
  post\_control\_sd = c(1.9, 2.2),
  control_n = c(22, 18),
  pre_restoration_mean = c(8.6, 10.1), # Restoration sites before
  pre_restoration_sd = c(1.9, 2.0),
  post_restoration_mean = c(15.3, 17.8), # Restoration sites after
  post_restoration_sd = c(3.2, 3.7),
  restoration_n = c(20, 19)
)
result <- time_lnRR(</pre>
  data = data,
  t0_Ctrl_mean = "pre_control_mean", t0_Ctrl_sd = "pre_control_sd",
  t1_Ctrl_mean = "post_control_mean", t1_Ctrl_sd = "post_control_sd",
  Ctrl_n = "control_n", Ctrl_cor = 0.7, # Correlation within control sites
  t0_Exp_mean = "pre_restoration_mean", t0_Exp_sd = "pre_restoration_sd",
  t1_Exp_mean = "post_restoration_mean", t1_Exp_sd = "post_restoration_sd",
  Exp_n = "restoration_n", Exp_cor = 0.6 # Correlation within restoration sites
)
# Using different correlations for each study
result2 <- time_lnRR(</pre>
  data = data,
  t0_Ctrl_mean = "pre_control_mean", t0_Ctrl_sd = "pre_control_sd",
  t1_Ctrl_mean = "post_control_mean", t1_Ctrl_sd = "post_control_sd",
  Ctrl_n = "control_n", Ctrl_cor = c(0.6, 0.8),
```

28 time_lnVR

```
t0_Exp_mean = "pre_restoration_mean", t0_Exp_sd = "pre_restoration_sd",
t1_Exp_mean = "post_restoration_mean", t1_Exp_sd = "post_restoration_sd",
Exp_n = "restoration_n", Exp_cor = c(0.5, 0.7)
)
```

 $time_lnVR$

Log of Variability Ratio: Interaction Between Treatment and Time

Description

Log of Variability Ratio: Interaction Between Treatment and Time

Usage

```
time_lnVR(
  data,
  col_names = c("yi", "vi"),
  append = TRUE,
  t0_Ctrl_sd,
  t1_Ctrl_sd,
  Ctrl_n,
  Ctrl_cor,
  t0_Exp_sd,
  t1_Exp_sd,
  Exp_n,
  Exp_cor
)
```

data	Data frame containing the variables used.
col_names	Vector of two strings to name the output columns for the effect size and its sampling variance. Default is 'yi' and 'vi'.
append	Logical. Append the results to data. Default is TRUE
t0_Ctrl_sd	Standard deviation from the control group at time 0
t1_Ctrl_sd	Standard deviation from the control group at time 1
Ctrl_n	Sample size of the control group
Ctrl_cor	Number or numeric vector. Correlation between the means of the control group at t0 and t1
t0_Exp_sd	Standard deviation from the experimental group at time 0
t1_Exp_sd	Standard deviation from the experimental group at time 1
Exp_n	Sample size of the experimental group
Exp_cor	Number or numeric vector. Correlation between the means of the experimental group at t0 and t1

time_SMD 29

Value

A data frame containing the effect sizes and their sampling variance. By default, the columns are named yi (effect size) and vi (sampling variance). If append = TRUE, the results are appended to the input data; otherwise, only the computed effect size columns are returned.

Author(s)

Facundo Decunta - fdecunta@agro.uba.ar

References

Shinichi Nakagawa and Daniel Noble, personal communication.

Examples

```
data <- data.frame(</pre>
 study_id = 1:2,
 pre\_control\_sd = c(2.1, 2.4),
 post\_control\_sd = c(2.2, 2.5),
 control_n = c(24, 19),
 pre_invaded_sd = c(2.0, 2.3),
 post_invaded_sd = c(4.1, 4.6),
 invaded_n = c(21, 22)
)
result <- time_lnVR(</pre>
 data = data,
 t0_Ctrl_sd = "pre_control_sd", t1_Ctrl_sd = "post_control_sd",
 Ctrl_n = "control_n", Ctrl_cor = 0.6,
 t0_Exp_sd = "pre_invaded_sd", t1_Exp_sd = "post_invaded_sd",
 Exp_n = "invaded_n", Exp_cor = 0.4
)
```

time_SMD

Standardized Mean Difference: Interaction Between Treatment and Time

Description

Standardized Mean Difference: Interaction Between Treatment and Time

Usage

```
time_SMD(
  data,
  col_names = c("yi", "vi"),
  append = TRUE,
  hedges_correction = TRUE,
```

30 time_SMD

```
t0_Ctrl_mean,
t0_Ctrl_sd,
t1_Ctrl_mean,
t1_Ctrl_sd,
Ctrl_n,
Ctrl_cor,
t0_Exp_mean,
t0_Exp_sd,
t1_Exp_mean,
t1_Exp_sd,
Exp_n,
Exp_cor
```

Arguments

data	Data frame containing the variables used.
col_names	Vector of two strings to name the output columns for the effect size and its sampling variance. Default is 'yi' and 'vi'.
append	Logical. Append the results to data. Default is TRUE
hedges_correct	ion
	Logical. Apply or not Hedges' correction for small-sample bias. Default is TRUE.
t0_Ctrl_mean	Sample mean from the control group at time 0
t0_Ctrl_sd	Standard deviation from the control group at time 0
t1_Ctrl_mean	Sample mean from the control group at time 1
t1_Ctrl_sd	Standard deviation from the control group at time 1
Ctrl_n	Sample size of the control group
Ctrl_cor	Number or numeric vector. Correlation between the means of the control group at $t0$ and $t1$
t0_Exp_mean	Sample mean from the experimental group at time 0
t0_Exp_sd	Standard deviation from the experimental group at time 0
t1_Exp_mean	Sample mean from the experimental group at time 1
t1_Exp_sd	Standard deviation from the experimental group at time 1
Exp_n	Sample size of the experimental group
Exp_cor	Number or numeric vector. Correlation between the means of the experimental group at $t0$ and $t1$

Value

A data frame containing the effect sizes and their sampling variance. By default, the columns are named yi (effect size) and vi (sampling variance). If append = TRUE, the results are appended to the input data; otherwise, only the computed effect size columns are returned.

time_SMD 31

Author(s)

Facundo Decunta - fdecunta@agro.uba.ar

References

Shinichi Nakagawa and Daniel Noble, personal communication.

```
# Pre-post design for standardized mean difference with time interaction (Conservation experiment)
data <- data.frame(</pre>
 study_id = 1:2,
 pre\_control\_mean = c(18.3, 21.7), pre\_control\_sd = c(4.1, 4.8),
 post\_control\_mean = c(18.8, 22.1), post\_control\_sd = c(4.2, 4.9),
 control_n = c(16, 14),
 pre\_conservation\_mean = c(18.1, 21.4), pre\_conservation\_sd = c(4.0, 4.7),
 post_conservation_mean = c(26.7, 31.2), post_conservation_sd = c(5.8, 6.4),
 conservation_n = c(15, 16)
result <- time_SMD(</pre>
 data = data,
 t0_Ctrl_mean = "pre_control_mean", t0_Ctrl_sd = "pre_control_sd",
 t1_Ctrl_mean = "post_control_mean", t1_Ctrl_sd = "post_control_sd",
 Ctrl_n = "control_n", Ctrl_cor = 0.9,
 t0_Exp_mean = "pre_conservation_mean", t0_Exp_sd = "pre_conservation_sd",
 t1_Exp_mean = "post_conservation_mean", t1_Exp_sd = "post_conservation_sd",
 Exp_n = "conservation_n", Exp_cor = 0.7,
 hedges_correction = TRUE
# Without Hedges' correction
result_no_hedges <- time_SMD(</pre>
 data = data,
 t0_Ctrl_mean = "pre_control_mean", t0_Ctrl_sd = "pre_control_sd",
 t1_Ctrl_mean = "post_control_mean", t1_Ctrl_sd = "post_control_sd",
 Ctrl_n = "control_n", Ctrl_cor = 0.9,
 t0_Exp_mean = "pre_conservation_mean", t0_Exp_sd = "pre_conservation_sd",
 t1_Exp_mean = "post_conservation_mean", t1_Exp_sd = "post_conservation_sd",
 Exp_n = "conservation_n", Exp_cor = 0.7,
 hedges_correction = FALSE
)
```

Index

```
lnCVR_ind, 2
lnCVR_inter, 4
lnCVR_main, 6
lnRR\_ind, 7
lnRR_inter, 9
lnRR_main, 11
lnVR_ind, 13
lnVR\_inter, 15
{\tt lnVR\_main}, {\color{red} 16}
\mathsf{SMD\_ind}, \textcolor{red}{18}
SMD_inter, 20
SMD_main, 22
{\tt time\_lnCVR}, \textcolor{red}{24}
time_lnRR, 26
{\tt time\_lnVR}, \textcolor{red}{28}
{\tt time\_SMD}, \textcolor{red}{29}
```