## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(mets) ## ----------------------------------------------------------------------------- ###install.packages("mets") library(mets) set.seed(100) ### n <- 400 kumar <- kumarsim(n,depcens=1) kumar$cause <- kumar$status kumar$ttt24 <- kumar[,6] dtable(kumar,~cause) dfactor(kumar) <- gp.f~gp kumar$id <- 1:400 kumar$idc <- sample(100,400,TRUE) kumar$ids <- sample(400,400) kumar$id2 <- sample(400,400) kumar2 <- kumar[order(kumar$id2),] kumar$int <- interaction(kumar$gp,kumar$dnr) kumar2$int <- interaction(kumar2$gp,kumar2$dnr) clust <- 0 b2 <- binregATE(Event(time,cause)~gp.f+dnr+preauto+ttt24,kumar2,cause=2, treat.model=gp.f~dnr+preauto+ttt24,time=40,cens.model=~strata(gp,dnr)) summary(b2) b5 <- binregATE(Event(time,cause)~int+preauto+ttt24,kumar,cause=2, treat.model=int~preauto+ttt24,cens.code=0,time=60) summary(b5) ## ----------------------------------------------------------------------------- kumar$cause2 <- 1*(kumar$cause==2) b3 <- logitATE(cause2~gp.f+dnr+preauto+ttt24,kumar,treat.model=gp.f~dnr+preauto+ttt24) summary(b3) ###library(targeted) ###b3a <- ate(cause2~gp.f|dnr+preauto+ttt24| dnr+preauto+ttt24,kumar,family=binomial) ###summary(b3a) ## calculate also relative risk estimate(coef=b3$riskDR,vcov=b3$var.riskDR,f=function(p) p[1]/p[2]) ## ----------------------------------------------------------------------------- b3 <- normalATE(time~gp.f+dnr+preauto+ttt24,kumar,treat.model=gp.f~dnr+preauto+ttt24) summary(b3) ## ----------------------------------------------------------------------------- sessionInfo()