## ----setup, include=FALSE--------------------------------- set.seed(0) library("hyper2") options(rmarkdown.html_vignette.check_title = FALSE) knitr::opts_chunk$set(echo = TRUE) knitr::opts_chunk$set(fig.width=6, fig.height=6) knit_print.function <- function(x, ...){dput(x)} registerS3method( "knit_print", "function", knit_print.function, envir = asNamespace("knitr") ) ## ----out.width='20%', out.extra='style="float:right; padding:10px"',echo=FALSE---- knitr::include_graphics(system.file("help/figures/hyper2.png", package = "hyper2")) ## ----label=showordertrans--------------------------------- ordertrans ## ----label=simpexample------------------------------------ x <- c(d=2,a=3,b=1,c=4) x ## --------------------------------------------------------- sort(x) ## ----label=useordertrans---------------------------------- o <- ordertrans(x) # by default, sorts names() into alphabetical order o ## ----label=equalrearrangement----------------------------- identical(x, o[c(4,1,2,3)]) identical(o, x[c(2,3,4,1)]) ## ----showordervec----------------------------------------- (Sx <- ordervec2supp(x)) (So <- ordervec2supp(o)) ## --------------------------------------------------------- Sx==So ## --------------------------------------------------------- (x <- c(d=2, a=3, c=4, b=3, e=6)) (y <- c(e=3, c=2, a=4, b=5, d=1)) x+y ## --------------------------------------------------------- ordertrans(x) + ordertrans(y) ## --------------------------------------------------------- (z <- c(f=3, g=2, h=4, a=5, b=1)) # names NOT letters[1:5] ordertrans(x) + ordertrans(z) # arguably not well-defined ## ----label=lookatskating---------------------------------- skating_table ## ----makej1j2--------------------------------------------- j1 <- unclass(skating_table)[,1] # column 1 is judge number 1 names(j1) <- rownames(skating_table) j2 <- unclass(skating_table)[,2] # column 2 is judge number 2 names(j2) <- rownames(skating_table) j1 j2 cbind(j1,j2) ## ----j1vsj2,fig.cap="Judge 1 vs judge 2"------------------ par(pty='s') # forces plot to be square plot(j1,j2,asp=1,pty='s',xlim=c(0,25),ylim=c(0,25),pch=16,xlab='judge 1',ylab='judge 2') abline(0,1) # diagonal line for(i in seq_along(j1)){text(j1[i],j2[i],names(j1)[i],pos=4,col='gray',cex=0.7)} ## ----label=maxlikeskating,cache=TRUE---------------------- mL <- skating_maxp # predefined; use maxp(skating) to calculate ab initio mL ## ----label=strengthstoranks------------------------------- mL[] <- rank(-mL) # minus because ranks orders from weak to strong mL ## ----label=pointsskating,cache=TRUE----------------------- mP <- rowSums(skating_table) # 'P' for Points mP[] <- rank(mP,ties='first') # positive sign here mP ## ----label=ordertransexample------------------------------ ordertrans(mP,names(mL)) ## ----label=crapplot,fig.cap="points-based ranks vs likelihood ranks"---- plot(mL,ordertrans(mP,names(mL))) ## ----label=showoffordertransplot,fig.cap="points=based rank vs likelihood rank using `ordertransplot()`"---- ordertransplot(mL,mP,xlab="likelihood rank",ylab="Borda rank") ## ----transplotjudge1,fig.cap="Likelihood rank vs rank according to Judge 1"---- ordertransplot(mL,j1,xlab="likelihood rank",ylab="Judge 1 rank")