## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = Sys.getenv("IN_PKGDOWN") == "true" ) ## ----setup, message = FALSE--------------------------------------------------- # library(gtexr) # library(dplyr) # library(purrr) ## ----------------------------------------------------------------------------- # get_eqtl_genes("Whole_Blood") ## ----------------------------------------------------------------------------- # # to retrieve the first 3 pages, with default setting of 250 items per page # 1:3 |> # map(\(page) get_eqtl_genes("Whole_Blood", page = page, .verbose = FALSE) |> # suppressWarnings()) |> # bind_rows() ## ----------------------------------------------------------------------------- # get_variant(snpId = "rs1410858") |> # tidyr::separate( # col = b37VariantId, # into = c( # "chromosome", # "position", # "reference_allele", # "alternative_allele", # "genome_build" # ), # sep = "_", # remove = FALSE # ) |> # select(snpId:genome_build) ## ----get-genes---------------------------------------------------------------- # get_genes("CRP") |> # select(geneSymbol, gencodeId) ## ----get-variant-------------------------------------------------------------- # get_variant(snpId = "rs1410858") |> # select(snpId, variantId) ## ----get-significant-single-tissue-eqtls-------------------------------------- # gene_symbol_of_interest <- "CRP" # # gene_gencodeId_of_interest <- get_genes(gene_symbol_of_interest) |> # pull(gencodeId) |> # suppressMessages() # # gene_gencodeId_of_interest |> # get_significant_single_tissue_eqtls() |> # distinct(geneSymbol, gencodeId, tissueSiteDetailId) ## ----calculate-eqtls---------------------------------------------------------- # variants_of_interest <- c("rs12119111", "rs6605071", "rs1053870") # # variants_of_interest |> # set_names() |> # map( # \(x) calculate_expression_quantitative_trait_loci( # tissueSiteDetailId = "Liver", # gencodeId = "ENSG00000237973.1", # variantId = x # ) # ) |> # bind_rows(.id = "rsid") |> # # optionally, reformat output - first extract genomic coordinates and alleles # tidyr::separate( # col = "variantId", # into = c( # "chromosome", # "position", # "reference_allele", # "alternative_allele", # "genome_build" # ), # sep = "_" # ) |> # # ...then ascertain alternative_allele frequency # mutate( # alt_allele_count = (2 * homoAltCount) + hetCount, # total_allele_count = 2 * (homoAltCount + hetCount + homoRefCount), # alternative_allele_frequency = alt_allele_count / total_allele_count # ) |> # select( # rsid, # beta = nes, # se = error, # pValue, # minor_allele_frequency = maf, # alternative_allele_frequency, # chromosome:genome_build, # tissueSiteDetailId # )