

Package ‘gratia’

February 7, 2026

Version 0.11.2

Title Graceful 'ggplot'-Based Graphics and Other Functions for GAMs Fitted Using 'mgcv'

Maintainer Gavin L. Simpson <ucfagls@gmail.com>

Depends R (>= 4.1.0)

Imports mgcv (>= 1.9-0), ggplot2 (>= 3.5.0), tibble (>= 3.0.0), dplyr (>= 1.2.0), tidyr, rlang, patchwork (>= 1.2.0), vctrs, grid, mvnfast, purrr (>= 1.1.0), stats, tools, grDevices, stringr, tidyselect (>= 1.2.0), lifecycle, pillar, cli, nlme, ggokabeito, withr, scales, mirai, tweedie (>= 2.3.5)

Suggests gamm4, lme4, testthat, vdiffr, MASS, scam (>= 1.2-21), datasets, knitr, rmarkdown, forcats, GJRM, readr, glmmTMB, ggdist, distributional, hexbin, gamair, sf (>= 0.7-3), svglite (>= 2.0.0), curl, marginaleffects, carrier

Description Graceful 'ggplot'-based graphics and utility functions for working with generalized additive models (GAMs) fitted using the 'mgcv' package. Provides a reimplementation of the plot() method for GAMs that 'mgcv' provides, as well as 'tidyverse' compatible representations of estimated smooths.

License MIT + file LICENSE

LazyData true

URL <https://gavinsimpson.github.io/gratia/>

BugReports <https://github.com/gavinsimpson/gratia/issues>

RoxygenNote 7.3.3

Encoding UTF-8

VignetteBuilder knitr

Config/testthat.edition 3

Config/Needs/website rmarkdown, ggdist

Language en-GB

NeedsCompilation no

Author Gavin L. Simpson [aut, cre, cph] (ORCID: <<https://orcid.org/0000-0002-9084-8413>>),
Henrik Singmann [ctb] (ORCID: <<https://orcid.org/0000-0002-4842-3657>>)

Repository CRAN

Date/Publication 2026-02-07 06:10:36 UTC

Contents

add_confint	5
add_constant	5
add_fitted	6
add_fitted.gam	7
add_fitted_samples	8
add_partial_residuals	9
add_residuals	10
add_residuals.gam	10
add_sizer	11
appraise	12
assemble	14
assemble.gam	15
basis	19
basis_size	22
bird_move	23
boundary	23
check_user_select_smooths	24
coef.scam	25
compare_smooths	25
conditional_values	26
confint.fderiv	29
confint.gam	31
data_combos	33
data_sim	34
data_slice	36
derivatives	38
derivative_samples	40
difference_smooths	43
dispersion	45
draw	45
draw.basis	46
draw.compare_smooths	47
draw.conditional_values	48
draw.derivatives	49
draw.difference_smooth	51
draw.evaluated_parametric_term	52
draw.gam	54
draw.gamlss	58
draw.mgcv_smooth	59

draw.pairwise_concurvity	61
draw.parametric_effects	62
draw.penalty_df	63
draw.rootogram	65
draw.smooth_estimates	66
draw.smooth_samples	69
edf	71
evaluate_parametric_term	73
evaluate_smooth	74
eval_smooth	74
evenly	78
factor_combos	79
family.gam	79
family_name	80
family_type	80
fitted_samples	81
fitted_values	84
fixef	85
fixef.gam	86
fix_offset	87
gaussian_draws	87
get_by_smooth	89
get_smooth	89
get_smooths_by_id	90
gss_vocab	90
gw_f0	91
has_theta	92
is_by_smooth	92
is_factor_term	93
is_mgcv_family	94
is_mgcv_smooth	95
is_multivariate_y	95
is_offset	96
link	96
load_mgcv	99
lp_matrix	99
mh_draws	100
model_concurvity	101
model_constant	102
model_terms	103
model_vars	105
nb_theta	106
null_deviance	107
n_eta	107
n_smooths	108
observed_fitted_plot	108
overview	109
parametric_effects	110

parametric_terms	111
partial_derivatives	112
partial_residuals	115
penalty	116
posterior_samples	118
post_draws	121
predicted_samples	123
qq_plot	125
quantile_residuals	128
ref_level	129
ref_sims	129
rep_first_factor_value	130
residuals_hist_plot	130
residuals_linpred_plot	131
response_derivatives	132
rootogram	135
rtw	137
scale_fill_partial_effect	137
seq_min_max_eps	138
shift_values	138
simulate.gam	139
smallAges	141
smooths	141
smooth_coefs	142
smooth_coef_indices	143
smooth_data	144
smooth_dim	145
smooth_estimates	146
smooth_label	148
smooth_samples	149
smooth_terms	152
smooth_type	152
spline_values	154
term_names	155
term_variables	156
theta	157
tidy_basis	157
too_far	159
too_far_to_na	159
to_na	160
transform_fun	160
typical_values	161
user_draws	162
variance_comp	163
vars_from_label	163
which_smooths	164
worm_plot	165
zooplankton	167

add_confint	<i>Add a confidence interval to an existing object</i>
-------------	--

Description

Add a confidence interval to an existing object

Usage

```
add_confint(object, coverage = 0.95, ...)

## S3 method for class 'smooth_estimates'
add_confint(object, coverage = 0.95, ...)

## S3 method for class 'parametric_effects'
add_confint(object, coverage = 0.95, ...)

## Default S3 method:
add_confint(object, coverage = 0.95, ...)
```

Arguments

object	a R object.
coverage	numeric; the coverage for the interval. Must be in the range $0 < \text{coverage} < 1$.
...	arguments passed to other methods.

add_constant	<i>Add a constant to estimated values</i>
--------------	---

Description

Add a constant to estimated values

Usage

```
add_constant(object, constant = NULL, ...)

## S3 method for class 'smooth_estimates'
add_constant(object, constant = NULL, ...)

## S3 method for class 'smooth_samples'
add_constant(object, constant = NULL, ...)

## S3 method for class 'mgcv_smooth'
```

```

add_constant(object, constant = NULL, ...)

## S3 method for class 'parametric_effects'
add_constant(object, constant = NULL, ...)

## S3 method for class 'tbl_df'
add_constant(object, constant = NULL, column = NULL, ...)

## S3 method for class 'evaluated_parametric_term'
add_constant(object, constant = NULL, ...)

```

Arguments

- object a object to add a constant to.
- constant the constant to add.
- ... additional arguments passed to methods.
- column character; for the "tbl_df" method, which column to add the constant too.

Value

Returns object but with the estimate shifted by the addition of the supplied constant.

Author(s)

Gavin L. Simpson

<i>add_fitted</i>	<i>Add fitted values from a model to a data frame</i>
-------------------	---

Description

Add fitted values from a model to a data frame

Usage

```
add_fitted(data, model, value = ".value", ...)
```

Arguments

- data a data frame containing values for the variables used to fit the model. Passed to `stats::predict()` as newdata.
- model a fitted model for which a `stats::predict()` method is available. S3 method dispatch is performed on the `model` argument.
- value character; the name of the variable in which model predictions will be stored.
- ... additional arguments passed to methods.

Value

A data frame (tibble) formed from data and fitted values from model.

add_fitted.gam	<i>Add fitted values from a GAM to a data frame</i>
----------------	---

Description

Add fitted values from a GAM to a data frame

Usage

```
## S3 method for class 'gam'
add_fitted(data, model, value = ".fitted", type = "response", ...)
```

Arguments

data	a data frame containing values for the variables used to fit the model. Passed to <code>stats::predict()</code> as newdata.
model	a fitted model for which a <code>stats::predict()</code> method is available. S3 method dispatch is performed on the <code>model</code> argument.
value	character; the name of the variable in which model predictions will be stored.
type	character; the type of predictions to return. See <code>mgcv::predict.gam()</code> for options.
...	additional arguments passed to <code>mgcv::predict.gam()</code> .

Value

A data frame (tibble) formed from data and predictions from model.

Examples

```
load_mgcv()
df <- data_sim("eg1", seed = 1)
df <- df[, c("y", "x0", "x1", "x2", "x3")]
m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = "REML")

# add fitted values to our data
add_fitted(df, m)

# with type = "terms" or "iterms"
add_fitted(df, m, type = "terms")
```

add_fitted_samples	<i>Add posterior draws from a model to a data object</i>
--------------------	--

Description

Adds draws from the posterior distribution of `model` to the data object using one of `fitted_samples()`, `predicted_samples()`, or `posterior_samples()`.

Usage

```
add_fitted_samples(object, model, n = 1, seed = NULL, ...)
add_predicted_samples(object, model, n = 1, seed = NULL, ...)
add_posterior_samples(object, model, n = 1, seed = NULL, ...)
add_smooth_samples(object, model, n = 1, seed = NULL, select = NULL, ...)
```

Arguments

<code>object</code>	a data frame or tibble to which the posterior draws will be added.
<code>model</code>	a fitted GAM (or GAM-like) object for which a posterior draw method exists.
<code>n</code>	integer; the number of posterior draws to add.
<code>seed</code>	numeric; a value to seed the random number generator.
<code>...</code>	arguments are passed to the posterior draw function, currently one of <code>fitted_samples()</code> , <code>predicted_samples()</code> , or <code>posterior_samples()</code> . <code>n</code> and <code>seed</code> are already specified here as arguments and are also passed on to the posterior sampling function.
<code>select</code>	character; select which smooth's posterior to draw from. The default, <code>NULL</code> , means the posteriors of all smooths in <code>model</code> will be sampled from individually. If supplied, a character vector of requested smooth terms.

Examples

```
load_mgcv()

df <- data_sim("eg1", n = 400, seed = 42)

m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = "REML")

# add fitted samples (posterior draws of the expected value of the response)
# note that there are 800 rows in the output: 400 data by `n = 2` samples.
df |>
  add_fitted_samples(m, n = 2, seed = 84)

# add posterior draws from smooth s(x2)
df |>
```

```
add_smooth_samples(m, n = 2, seed = 2, select= "s(x2)")
```

add_partial_residuals *Add partial residuals*

Description

Add partial residuals

Usage

```
add_partial_residuals(data, model, ...)

## S3 method for class 'gam'
add_partial_residuals(data, model, select = NULL, partial_match = FALSE, ...)
```

Arguments

data	a data frame containing values for the variables used to fit the model. Passed to <code>stats::residuals()</code> as newdata.
model	a fitted model for which a <code>stats::residuals()</code> method is available. S3 method dispatch is performed on the <code>model</code> argument.
...	arguments passed to other methods.
select	character, logical, or numeric; which smooths to plot. If <code>NULL</code> , the default, then all model smooths are drawn. Numeric <code>select</code> indexes the smooths in the order they are specified in the formula and stored in <code>object</code> . Character <code>select</code> matches the labels for smooths as shown for example in the output from <code>summary(object)</code> . Logical <code>select</code> operates as per numeric <code>select</code> in the order that smooths are stored.
partial_match	logical; should smooths be selected by partial matches with <code>select</code> ? If <code>TRUE</code> , <code>select</code> can only be a single string to match against.

Examples

```
load_mgcv()

df <- data_sim("eg1", seed = 1)
df <- df[, c("y", "x0", "x1", "x2", "x3")]
m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = "REML")

## add partial residuals
add_partial_residuals(df, m)

## add partial residuals for selected smooths
add_partial_residuals(df, m, select = "s(x0)")
```

add_residuals	<i>Add residuals from a model to a data frame</i>
---------------	---

Description

Add residuals from a model to a data frame

Usage

```
add_residuals(data, model, value = ".residual", ...)
```

Arguments

data	a data frame containing values for the variables used to fit the model. Passed to <code>stats::residuals()</code> as newdata.
model	a fitted model for which a <code>stats::residuals()</code> method is available. S3 method dispatch is performed on the <code>model</code> argument.
value	character; the name of the variable in which model residuals will be stored.
...	additional arguments passed to methods.

Value

A data frame (tibble) formed from `data` and residuals from `model`.

add_residuals.gam	<i>Add residuals from a GAM to a data frame</i>
-------------------	---

Description

Add residuals from a GAM to a data frame

Usage

```
## S3 method for class 'gam'
add_residuals(data, model, value = ".residual", type = "deviance", ...)
```

Arguments

data	a data frame containing values for the variables used to fit the model. Passed to <code>stats::predict()</code> as newdata.
model	a fitted model for which a <code>stats::predict()</code> method is available. S3 method dispatch is performed on the <code>model</code> argument.
value	character; the name of the variable in which model predictions will be stored.
type	character; the type of residuals to return. See <code>mgcv::residuals.gam()</code> for options.
...	additional arguments passed to <code>mgcv::residuals.gam()</code> .

Value

A data frame (tibble) formed from data and residuals from `model`.

Examples

```
load_mgcv()

df <- data_sim("eg1", seed = 1)
df <- df[, c("y", "x0", "x1", "x2", "x3")]
m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = "REML")

## add_residuals(df, m)
```

add_sizer

Add indicators of significant change after SiZeR

Description

Add indicators of significant change after SiZeR

Usage

```
add_sizer(object, type = c("change", "sizer"), ...)
## S3 method for class 'derivatives'
add_sizer(object, type = c("change", "sizer"), ...)
## S3 method for class 'smooth_estimates'
add_sizer(object, type = c("change", "sizer"), derivatives = NULL, ...)
```

Arguments

- `object` an R object. Currently supported methods are for classes "derivatives".
- `type` character; "change" adds a single variable to `object` indicating where the credible interval on the derivative excludes 0. "sizer" adds two variables indicating whether the derivative is positive or negative.
- `...` arguments passed to other methods
- `derivatives` an object of class "derivatives", resulting from a call to `derivatives()`.

Examples

```
load_mgcv()

df <- data_sim("eg1", n = 400, dist = "normal", scale = 2, seed = 42)
m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = "REML")

## first derivatives of all smooths using central finite differences
d <- derivatives(m, type = "central") |>
  add_sizer()

# default adds a .change column
names(d)
```

appraise

Model diagnostic plots

Description

Model diagnostic plots

Usage

```
appraise(model, ...)

## S3 method for class 'gam'
appraise(
  model,
  method = c("uniform", "simulate", "normal", "direct"),
  use_worm = FALSE,
  n_uniform = 10,
  n_simulate = 50,
  seed = NULL,
  type = c("deviance", "pearson", "response"),
  n_bins = c("sturges", "scott", "fd"),
  ncol = NULL,
  nrow = NULL,
  guides = "keep",
  level = 0.9,
  ci_col = "black",
  ci_alpha = 0.2,
  point_col = "grey20",
  point_alpha = 1,
  line_col = "red",
  ...
)

## S3 method for class 'lm'
appraise(model, ...)
```

Arguments

model	a fitted model. Currently models inheriting from class "gam", as well as classes "glm" and "lm" from calls to <code>stats::glm</code> or <code>stats::lm</code> are supported.
...	arguments passed to <code>patchwork::wrap_plots()</code> .
method	character; method used to generate theoretical quantiles. The default is "uniform", which generates reference quantiles using random draws from a uniform distribution and the inverse cumulative distribution function (CDF) of the fitted values. The reference quantiles are averaged over <code>n_uniform</code> draws. "simulate" generates reference quantiles by simulating new response data from the model at the observed values of the covariates, which are then residualised to generate reference quantiles, using <code>n_simulate</code> simulated data sets. "normal" generates reference quantiles using the standard normal distribution. "uniform" is more computationally efficient, but "simulate" allows reference bands to be drawn on the QQ-plot. "normal" should be avoided but is used as a fall back if a random number generator ("simulate") or the inverse of the CDF ("uniform"``) are not available from the family` used during model fitting. Note that <code>method = "direct"</code> is deprecated in favour of <code>method = "uniform"</code> .
use_worm	logical; should a worm plot be drawn in place of the QQ plot?
<code>n_uniform</code>	numeric; number of times to randomize uniform quantiles in the direct computation method (<code>method = "direct"</code>) for QQ plots.
<code>n_simulate</code>	numeric; number of data sets to simulate from the estimated model when using the simulation method (<code>method = "simulate"</code>) for QQ plots.
seed	numeric; the random number seed to use for <code>method = "simulate"</code> and <code>method = "uniform"</code> .
type	character; type of residuals to use. Only "deviance", "response", and "pearson" residuals are allowed.
<code>n_bins</code>	character or numeric; either the number of bins or a string indicating how to calculate the number of bins.
<code>ncol, nrow</code>	numeric; the numbers of rows and columns over which to spread the plots.
guides	character; one of "keep" (the default), "collect", or "auto". Passed to <code>patchwork::plot_layout()</code>
level	numeric; the coverage level for QQ plot reference intervals. Must be strictly $0 < \text{level} < 1$. Only used with <code>method = "simulate"</code> .
<code>ci_alpha, ci_col</code>	colour and transparency used to draw the QQ plot reference interval when <code>method = "simulate"</code> .
<code>point_col, point_alpha</code>	colour and transparency used to draw points in the plots. See <code>graphics::par()</code> section Color Specification . This is passed to the individual plotting functions, and therefore affects the points of all plots.
<code>line_col</code>	colour specification for the 1:1 line in the QQ plot and the reference line in the residuals vs linear predictor plot.

Note

The wording used in `mgcv::qq.gam()` uses *direct* in reference to the simulated residuals method (`method = "simulated"`). To avoid confusion, `method = "direct"` is deprecated in favour of `method = "uniform"`.

See Also

The plots are produced by functions `qq_plot()`, `residuals_linpred_plot()`, `residuals_hist_plot()`, and `observed_fitted_plot()`.

Examples

```
load_mgcv()
## simulate some data...
dat <- data_sim("eg1", n = 400, dist = "normal", scale = 2, seed = 2)
mod <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat)
## run some basic model checks
appraise(mod, point_col = "steelblue", point_alpha = 0.4)

## To change the theme for all panels use the & operator, for example to
## change the ggplot theme for all panels
library("ggplot2")
if (packageVersion("ggplot2") <= "3.5.2") {
  # Throws warning with ggplot rc 4.0.0 and patchwork 1.3.1 - will be fixed
  # in patchwork 1.3.2 - so temporarily skipping during ggplot release
  # process
  appraise(mod, seed = 42,
    point_col = "steelblue", point_alpha = 0.4,
    line_col = "black"
  ) & theme_minimal()
}
```

assemble

Prepare plots via ggplot2 and assembles them as a list

Description

Generic function for assembling plot objects created from R objects, using the `ggplot2` package.

Usage

```
assemble(object, ...)
```

Arguments

object	and R object to plot.
...	arguments passed to other methods.

Value

A list of [ggplot2::ggplot\(\)](#) objects.

Author(s)

Gavin L. Simpson

assemble.gam

Plot estimated smooths from a fitted GAM

Description

Plots estimated smooths from a fitted GAM model in a similar way to [mgcv:::plot.gam\(\)](#) but instead of using base graphics, [ggplot2:::ggplot\(\)](#) is used instead.

Usage

```
## S3 method for class 'gam'  
assemble(  
  object,  
  data = NULL,  
  select = NULL,  
  parametric = FALSE,  
  terms = NULL,  
  residuals = FALSE,  
  scales = c("free", "fixed"),  
  ci_level = 0.95,  
  n = 100,  
  n_3d = 16,  
  n_4d = 4,  
  unconditional = FALSE,  
  overall_uncertainty = TRUE,  
  constant = NULL,  
  fun = NULL,  
  dist = 0.1,  
  rug = TRUE,  
  distinct_rug = TRUE,  
  contour = TRUE,  
  grouped_by = FALSE,  
  ci_alpha = 0.2,  
  ci_col = "black",  
  smooth_col = "black",  
  resid_col = "steelblue3",  
  contour_col = "black",  
  n_contour = NULL,  
  partial_match = FALSE,  
  discrete_colour = NULL,
```

```

discrete_fill = NULL,
continuous_colour = NULL,
continuous_fill = NULL,
position = "identity",
angle = NULL,
ncol = NULL,
nrow = NULL,
guides = "keep",
widths = NULL,
heights = NULL,
crs = NULL,
default_crs = NULL,
lims_method = "cross",
wrap = TRUE,
caption = TRUE,
envir = environment(formula(object)),
...
)

```

Arguments

object	a fitted GAM, the result of a call to mgcv:::gam() .
data	an optional data frame that is used to supply the data at which the smooths will be evaluated and plotted. This is usually not needed, but is an option if you need fine control over exactly what data are used for plotting.
select	character, logical, or numeric; which smooths to plot. If NULL, the default, then all model smooths are drawn. Numeric select indexes the smooths in the order they are specified in the formula and stored in object. Character select matches the labels for smooths as shown for example in the output from <code>summary(object)</code> . Logical select operates as per numeric select in the order that smooths are stored.
parametric	logical; plot parametric terms also? Note that <code>select</code> is used for selecting which smooths to plot. The <code>terms</code> argument is used to select which parametric effects are plotted. The default, as with mgcv:::plot.gam() , is to not draw parametric effects.
terms	character; which model parametric terms should be drawn? The Default of NULL will plot all parametric terms that can be drawn.
residuals	logical; should partial residuals for a smooth be drawn? Ignored for anything but a simple univariate smooth.
scales	character; should all univariate smooths be plotted with the same y-axis scale? If <code>scales = "free"</code> , the default, each univariate smooth has its own y-axis scale. If <code>scales = "fixed"</code> , a common y axis scale is used for all univariate smooths. Currently does not affect the y-axis scale of plots of the parametric terms.
ci_level	numeric between 0 and 1; the coverage of credible interval.
n	numeric; the number of points over the range of the covariate at which to evaluate the smooth.

<code>n_3d</code>	numeric; the number of new observations to generate for the third dimension of a 3D smooth.
<code>n_4d</code>	numeric; the number of new observations to generate for the dimensions higher than 2 (!) of a k D smooth ($k \geq 4$). For example, if the smooth is a 4D smooth, each of dimensions 3 and 4 will get <code>n_4d</code> new observations.
<code>unconditional</code>	logical; should confidence intervals include the uncertainty due to smoothness selection? If <code>TRUE</code> , the corrected Bayesian covariance matrix will be used.
<code>overall_uncertainty</code>	logical; should the uncertainty in the model constant term be included in the standard error of the evaluate values of the smooth?
<code>constant</code>	numeric; a constant to add to the estimated values of the smooth. <code>constant</code> , if supplied, will be added to the estimated value before the confidence band is computed.
<code>fun</code>	function; a function that will be applied to the estimated values and confidence interval before plotting. Can be a function or the name of a function. Function <code>fun</code> will be applied after adding any <code>constant</code> , if provided.
<code>dist</code>	numeric; if greater than 0, this is used to determine when a location is too far from data to be plotted when plotting 2-D smooths. The data are scaled into the unit square before deciding what to exclude, and <code>dist</code> is a distance within the unit square. See <code>mgcv:::exclude.too.far()</code> for further details.
<code>rug</code>	logical; draw a rug plot at the bottom of each plot for 1-D smooths or plot locations of data for higher dimensions.
<code>distinct_rug</code>	logical; should the data for the rug plots be reduced to the distinct values?
<code>contour</code>	logical; should contours be draw on the plot using <code>ggplot2::geom_contour()</code> .
<code>grouped_by</code>	logical; should factor by smooths be drawn as one panel per level of the factor (<code>FALSE</code> , the default), or should the individual smooths be combined into a single panel containing all levels (<code>TRUE</code>)?
<code>ci_alpha</code>	numeric; alpha transparency for confidence or simultaneous interval.
<code>ci_col</code>	colour specification for the confidence/credible intervals band. Affects the fill of the interval.
<code>smooth_col</code>	colour specification for the smooth line.
<code>resid_col</code>	colour specification for the partial residuals.
<code>contour_col</code>	colour specification for contour lines.
<code>n_contour</code>	numeric; the number of contour bins. Will result in <code>n_contour</code> - 1 contour lines being drawn. See <code>ggplot2::geom_contour()</code> .
<code>partial_match</code>	logical; should smooths be selected by partial matches with <code>select</code> ? If <code>TRUE</code> , <code>select</code> can only be a single string to match against.
<code>discrete_colour</code>	a suitable colour scale to be used when plotting discrete variables.
<code>discrete_fill</code>	a suitable fill scale to be used when plotting discrete variables.
<code>continuous_colour</code>	a suitable colour scale to be used when plotting continuous variables.

continuous_fill	a suitable fill scale to be used when plotting continuous variables.
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
angle	numeric; the angle at which the x axis tick labels are to be drawn passed to the angle argument of ggplot2::guide_axis() .
ncol, nrow	numeric; the numbers of rows and columns over which to spread the plots
guides	character; one of "keep" (the default), "collect", or "auto". Passed to patchwork::plot_layout()
widths, heights	The relative widths and heights of each column and row in the grid. Will get repeated to match the dimensions of the grid. If there is more than 1 plot and widths = NULL, the value of widths will be set internally to widths = 1 to accommodate plots of smooths that use a fixed aspect ratio.
crs	the coordinate reference system (CRS) to use for the plot. All data will be projected into this CRS. See ggplot2::coord_sf() for details.
default_crs	the coordinate reference system (CRS) to use for the non-sf layers in the plot. If left at the default NULL, the CRS used is 4326 (WGS84), which is appropriate for spline-on-the-sphere smooths, which are parameterized in terms of latitude and longitude as coordinates. See ggplot2::coord_sf() for more details.
lims_method	character; affects how the axis limits are determined. See ggplot2::coord_sf() . Be careful; in testing of some examples, changing this to "orthogonal" for example with the chlorophyll-a example from Simon Wood's GAM book quickly used up all the RAM in my test system and the OS killed R. This could be incorrect usage on my part; right now the grid of points at which SOS smooths are evaluated (if not supplied by the user) can produce invalid coordinates for the corners of tiles as the grid is generated for tile centres without respect to the spacing of those tiles.
wrap	logical; wrap plots as a patchwork? If FALSE, a list of ggplot objects is returned, 1 per term plotted.
caption	logical; show the smooth type in the caption of each plot?
envir	an environment to look up the data within.
...	Arguments to other methods; not used.

Value

A list of [ggplot2::ggplot\(\)](#) objects.

Note

Internally, plots of each smooth are created using [ggplot2::ggplot\(\)](#) and composed into a single plot using [patchwork::wrap_plots\(\)](#). As a result, it is not possible to use + to add to the plots in the way one might typically work with ggplot() plots. Instead, use the & operator; see the examples.

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()

# simulate some data
df1 <- data_sim("eg1", n = 400, dist = "normal", scale = 2, seed = 2)
# fit GAM
m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df1, method = "REML")

# assemble plots of all smooths
assemble(m1)

# can be passed to patchwork::wrap_plots()
suppressPackageStartupMessages(library("patchwork"))
assemble(m1) |> wrap_plots(ncol = 2, nrow = 2)
```

basis	<i>Basis expansions for smooths</i>
-------	-------------------------------------

Description

Basis expansions from a definition of a smoother using the syntax of *mgcv*'s smooths via `mgcv:::s()`, `mgcv:::te()`, `mgcv:::ti()`, and `mgcv:::t2()`, or directly from a fitted GAM(M).

Usage

```
basis(object, ...)

## S3 method for class 'gam'
basis(
  object,
  select = NULL,
  term = deprecated(),
  data = NULL,
  n = 100,
  n_2d = 50,
  n_3d = 16,
  n_4d = 4,
  partial_match = FALSE,
  ...
)

## S3 method for class 'scam'
basis(
  object,
  select = NULL,
  term = deprecated(),
  data = NULL,
```

```
n = 100,
n_2d = 50,
n_3d = 16,
n_4d = 4,
partial_match = FALSE,
...
)

## S3 method for class 'gamm'
basis(
  object,
  select = NULL,
  term = deprecated(),
  data = NULL,
  n = 100,
  n_2d = 50,
  n_3d = 16,
  n_4d = 4,
  partial_match = FALSE,
  ...
)

## S3 method for class 'gamm4'
basis(
  object,
  select = NULL,
  term = deprecated(),
  data = NULL,
  n = 100,
  n_2d = 50,
  n_3d = 16,
  n_4d = 4,
  partial_match = FALSE,
  ...
)

## Default S3 method:
basis(
  object,
  data,
  knots = NULL,
  constraints = FALSE,
  at = NULL,
  diagonalize = FALSE,
  coefficients = NULL,
  ...
)
```

Arguments

object	a smooth specification, the result of a call to one of <code>mgcv::s()</code> , <code>mgcv::te()</code> , <code>mgcv::ti()</code> , or <code>mgcv::t2()</code> , or a fitted GAM(M) model.
...	other arguments passed to <code>mgcv::smoothCon()</code> .
select	character; select smooths in a fitted model
term	[Deprecated] This argument has been renamed <code>select</code>
data	a data frame containing the variables used in <code>smooth</code> .
n	numeric; the number of points over the range of the covariate at which to evaluate the smooth.
n_2d	numeric; the number of new observations for each dimension of a bivariate smooth. Not currently used; <code>n</code> is used for both dimensions.
n_3d	numeric; the number of new observations to generate for the third dimension of a 3D smooth.
n_4d	numeric; the number of new observations to generate for the dimensions higher than 2 (!) of a k D smooth ($k \geq 4$). For example, if the smooth is a 4D smooth, each of dimensions 3 and 4 will get <code>n_4d</code> new observations.
partial_match	logical; in the case of character <code>select</code> , should <code>select</code> match partially against smooths? If <code>partial_match = TRUE</code> , <code>select</code> must only be a single string, a character vector of length 1.
knots	a list or data frame with named components containing knots locations. Names must match the covariates for which the basis is required. See <code>mgcv::smoothCon()</code> .
constraints	logical; should identifiability constraints be applied to the smooth basis. See argument <code>absorb.cons</code> in <code>mgcv::smoothCon()</code> .
at	a data frame containing values of the smooth covariate(s) at which the basis should be evaluated.
diagonalize	logical; if <code>TRUE</code> , reparameterises the smooth such that the associated penalty is an identity matrix. This has the effect of turning the last diagonal elements of the penalty to zero, which highlights the penalty null space.
coefficients	numeric; vector of values for the coefficients of the basis functions.

Value

A tibble.

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()

df <- data_sim("eg4", n = 400, seed = 42)

bf <- basis(s(x0), data = df)
```

```
bf <- basis(s(x2, by = fac, bs = "bs"), data = df, constraints = TRUE)
```

basis_size

Extract basis dimension of a smooth

Description

Extract basis dimension of a smooth

Usage

```
basis_size(object, ...)

## S3 method for class 'mgcv.smooth'
basis_size(object, ...)

## S3 method for class 'gam'
basis_size(object, ...)

## S3 method for class 'gamm'
basis_size(object, ...)
```

Arguments

object	A fitted GAM(M). Currently mgcv::gam() (and anything that inherits from the "gam" class, e.g. mgcv::bam()) and mgcv::gamm() are supported.
...	Arguments passed to other methods.

Examples

```
load_mgcv()

df <- data_sim("eg1", n = 200, seed = 1)
m <- bam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df)

basis_size(m)
```

bird_move	<i>Simulated bird migration data</i>
-----------	--------------------------------------

Description

Data generated from a hypothetical study of bird movement along a migration corridor, sampled throughout the year. This dataset consists of simulated sample records of numbers of observed locations of 100 tagged individuals each from six species of bird, at ten locations along a latitudinal gradient, with one observation taken every four weeks. Counts were simulated randomly for each species in each location and week by creating a species-specific migration curve that gave the probability of finding an individual of a given species in a given location, then simulated the distribution of individuals across sites using a multinomial distribution, and subsampling that using a binomial distribution to simulate observation error (i.e. not every bird present at a location would be detected). The data set (bird_move) consists of the variables count, latitude, week and species.

Format

A data frame

Source

Pedersen EJ, Miller DL, Simpson GL, Ross N. 2018. Hierarchical generalized additive models: an introduction with mgcv. *PeerJ Preprints* 6:e27320v1 doi:10.7287/peerj.preprints.27320v1.

boundary	<i>Extract the boundary of a soap film smooth</i>
----------	---

Description

[Experimental]

Usage

```
boundary(x, ...)

## S3 method for class 'soap.film'
boundary(x, ...)

## S3 method for class 'gam'
boundary(x, select, ...)
```

Arguments

- x an R object. Currently only objects that inherit from classes "soap.film" and "gam".
- ... arguments passed to other methods.
- select character; the label of the soap film smooth from which to extract the boundary.

Value

A list of lists or data frames specifying the loops that define the boundary of the soap film smooth.

See Also

[mgcv::soap](#)

check_user_select_smooths

Select smooths based on user's choices

Description

Given a vector indexing the smooths of a GAM, returns a logical vector selecting the requested smooths.

Usage

```
check_user_select_smooths(
  smooths,
  select = NULL,
  partial_match = FALSE,
  model_name = NULL
)
```

Arguments

- smooths character; a vector of smooth labels.
- select numeric, logical, or character vector of selected smooths.
- partial_match logical; in the case of character select, should select match partially against smooths? If partial_match = TRUE, select must only be a single string, a character vector of length 1.
- model_name character; a model name that will be used in error messages.

Value

A logical vector the same length as `length(smooths)` indicating which smooths have been selected.

Author(s)

Gavin L. Simpson

`coef.scam`

Extract coefficients from a fitted scam model.

Description

Extract coefficients from a fitted `scam` model.

Usage

```
## S3 method for class 'scam'  
coef(object, parametrized = TRUE, ...)
```

Arguments

<code>object</code>	a model object fitted by <code>scam()</code>
<code>parametrized</code>	logical; extract parametrized coefficients, which respect the linear inequality constraints of the model.
<code>...</code>	other arguments.

`compare_smooths`

Compare smooths across models

Description

Compare smooths across models

Usage

```
compare_smooths(  
  model,  
  ...,  
  select = NULL,  
  smooths = deprecated(),  
  n = 100,  
  data = NULL,  
  unconditional = FALSE,  
  overall_uncertainty = TRUE,  
  partial_match = FALSE  
)
```

Arguments

model	Primary model for comparison.
...	Additional models to compare smooths against those of <code>model</code> .
select	character; select which smooths to compare. The default (NULL) means all smooths in <code>model</code> will be compared. Numeric <code>select</code> indexes the smooths in the order they are specified in the formula and stored in <code>model</code> . Character <code>select</code> matches the labels for smooths as shown for example in the output from <code>summary(object)</code> . Logical <code>select</code> operates as per numeric <code>select</code> in the order that smooths are stored.
smooths	[Deprecated] Use <code>select</code> instead.
n	numeric; the number of points over the range of the covariate at which to evaluate the smooth.
data	a data frame of covariate values at which to evaluate the smooth.
unconditional	logical; should confidence intervals include the uncertainty due to smoothness selection? If TRUE, the corrected Bayesian covariance matrix will be used.
overall_uncertainty	logical; should the uncertainty in the model constant term be included in the standard error of the evaluate values of the smooth?
partial_match	logical; should smooths be selected by partial matches with <code>select</code> ? If TRUE, <code>select</code> can only be a single string to match against.

Examples

```
load_mgcv()
dat <- data_sim("eg1", seed = 2)

## models to compare smooths across - artificially create differences
m1 <- gam(y ~ s(x0, k = 5) + s(x1, k = 5) + s(x2, k = 5) + s(x3, k = 5),
            data = dat, method = "REML")
)
m2 <- gam(y ~ s(x0, bs = "ts") + s(x1, bs = "ts") + s(x2, bs = "ts") +
            s(x3, bs = "ts"), data = dat, method = "REML")

## build comparisons
comp <- compare_smooths(m1, m2)
comp
## notice that the result is a nested tibble

draw(comp)
```

Description

Generate predicted values from a GAM, conditional upon supplied values of covariates. `conditional_values()` is modelled after `marginaleffects::plot_predictions()`, but with an intentionally simpler, more restrictive functionality. The intended use case is for quickly visualizing predicted values from a fitted GAM on the response scale. For more complex model predictions, you are strongly encouraged to use `marginaleffects::plot_predictions()`.

Usage

```
conditional_values(
  model,
  condition = NULL,
  data = NULL,
  scale = c("response", "link", "linear_predictor"),
  ...
)

## S3 method for class 'gam'
conditional_values(
  model,
  condition = NULL,
  data = NULL,
  scale = c("response", "link", "linear_predictor"),
  n_vals = 100,
  ci_level = 0.95,
  ...
)
```

Arguments

<code>model</code>	a fitted GAM object.
<code>condition</code>	either a character vector or a list supplying the names of covariates, and possibly their values, to condition up. The order of the values determines how these are plotted via the <code>draw.conditional_values()</code> method; the first element is mapped to the <code>x</code> channel, the second element to the <code>colour</code> channel, the third to <code>ggplot2::facet_wrap()</code> if no fourth element is present, if present, the fourth element is mapped to the rows and the third element is mapped to the columns of <code>ggplot2::facet_grid()</code> .
<code>data</code>	data frame of values at which to predict. If supplied overrides values supplied through <code>condition</code> .
<code>scale</code>	character; which scale should predictions be returned on?
<code>...</code>	arguments passed to <code>fitted_values()</code> .
<code>n_vals</code>	numeric; number of values to generate for numeric variables named in <code>condition</code> .
<code>ci_level</code>	numeric; a number on interval (0,1) giving the coverage for credible intervals.

Value

A data frame (tibble) of class "conditional_values".

Author(s)

Gavin L. Simpson

Examples

```

load_mgcv()
df <- data_sim("eg1", seed = 2)
m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = "REML")

# predictions conditional on values evenly spaced over x2, all other
# variables in model are held at representative values
cv <- conditional_values(
  m1,
  condition = "x2"
)
# plot
cv |> draw()

# as above but condition on `x1` also. When plotted, `x1` is mapped to the
# colour channel, noting that it has been summarised using fivenum()
cv <- conditional_values(
  m1,
  condition = c("x2", "x1")
)
# plot
cv |> draw()

# can pass `condition` a list, allowing for greater flexibility
# For example, here we condition on all four variables in the model,
# summarising:
#   * `x1` at its five number summary,
#   * `x0` at its quartiles
#   * `x3` at its mean and mean +/- sd
cv <- conditional_values(
  m1,
  condition = list("x2", x1 = "fivenum", x0 = "quartile", x3 = "threenum")
)
# plot
cv |> draw()

# some model terms can be excluded from the conditional predictions using the
# `exclude` mechanism of `predict.gam`. Here we exclude the effects of
# `s(x0)` and `s(x3)` from the conditional predictions. This, in effect,
# treats these smooths as having **0** effect on the conditional predictions
# of the response, even though the two smooths conditioned on (`s(x2)` and
# `s(x1)` were estimated given the two excluded smooths were in the model
cv <- conditional_values(
  m1,
  condition = list("x2", x1 = "minmax"),
  exclude = c("s(x0)", "s(x3)")
)
# plot

```

```

cv |> draw()

# categorical conditions are also handled
df <- data_sim("eg4", seed = 2)
m2 <- gam(y ~ fac + s(x2, by = fac) + s(x0), data = df, method = "REML")
cv <- conditional_values(
  m2,
  condition = list("fac", x2 = "fivenum")
)
# plot - we see a discrete x axis
cv |> draw()

# in this example we condition on `x2` and `fac %in% c(2,3)`
cv <- conditional_values(
  m2,
  condition = list("x2", fac = 2:3)
)
# plot - smooths of `x2` for `fac == 2` and `fac == 3`
cv |> draw()

```

confint.fderiv*Point-wise and simultaneous confidence intervals for derivatives of smooths*

Description

Calculates point-wise confidence or simultaneous intervals for the first derivatives of smooth terms in a fitted GAM.

Usage

```

## S3 method for class 'fderiv'
confint(
  object,
  parm,
  level = 0.95,
  type = c("confidence", "simultaneous"),
  nsim = 10000,
  ncores = 1L,
  ...
)

```

Arguments

- | | |
|--------|--|
| object | an object of class "fderiv" containing the estimated derivatives. |
| parm | which parameters (smooth terms) are to be given intervals as a vector of terms. If missing, all parameters are considered. |
| level | numeric, $0 < \text{level} < 1$; the confidence level of the point-wise or simultaneous interval. The default is 0.95 for a 95% interval. |

type	character; the type of interval to compute. One of "confidence" for point-wise intervals, or "simultaneous" for simultaneous intervals.
nsim	integer; the number of simulations used in computing the simultaneous intervals.
ncores	number of cores for generating random variables from a multivariate normal distribution. Passed to <code>mvnfast::rmvn()</code> . Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).
...	additional arguments for methods

Value

a data frame with components:

1. `term`; factor indicating to which term each row relates,
2. `lower`; lower limit of the confidence or simultaneous interval,
3. `est`; estimated derivative
4. `upper`; upper limit of the confidence or simultaneous interval.

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()

dat <- data_sim("eg1", n = 1000, dist = "normal", scale = 2, seed = 2)
mod <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

# new data to evaluate the derivatives at, say over the middle 50% of range
# of each covariate
middle <- function(x, n = 25, coverage = 0.5) {
  v <- (1 - coverage) / 2
  q <- quantile(x, prob = c(0 + v, 1 - v), type = 8)
  seq(q[1], q[2], length = n)
}
new_data <- sapply(dat[c("x0", "x1", "x2", "x3")], middle)
new_data <- data.frame(new_data)
## first derivatives of all smooths...
fd <- fderiv(mod, newdata = new_data)

## point-wise interval
ci <- confint(fd, type = "confidence")
ci

## simultaneous interval for smooth term of x2

x2_sint <- confint(fd,
  parm = "x2", type = "simultaneous",
  nsim = 10000, ncores = 2
)
```

```
x2_sint
```

confint.gam*Point-wise and simultaneous confidence intervals for smooths*

Description

Calculates point-wise confidence or simultaneous intervals for the smooth terms of a fitted GAM.

Usage

```
## S3 method for class 'gam'  
confint(  
  object,  
  parm,  
  level = 0.95,  
  data = newdata,  
  n = 100,  
  type = c("confidence", "simultaneous"),  
  nsim = 10000,  
  shift = FALSE,  
  transform = FALSE,  
  unconditional = FALSE,  
  ncores = 1,  
  partial_match = FALSE,  
  ...,  
  newdata = NULL  
)  
  
## S3 method for class 'gamm'  
confint(object, ...)  
  
## S3 method for class 'list'  
confint(object, ...)
```

Arguments

- object** an object of class "gam" or "gamm".
- parm** which parameters (smooth terms) are to be given intervals as a vector of terms. If missing, all parameters are considered, although this is not currently implemented.
- level** numeric, $0 < \text{level} < 1$; the confidence level of the point-wise or simultaneous interval. The default is 0.95 for a 95% interval.

data	data frame; new values of the covariates used in the model fit. The selected smooth(s) will be evaluated at the supplied values.
n	numeric; the number of points to evaluate smooths at.
type	character; the type of interval to compute. One of "confidence" for point-wise intervals, or "simultaneous" for simultaneous intervals.
nsim	integer; the number of simulations used in computing the simultaneous intervals.
shift	logical; should the constant term be add to the smooth?
transform	logical; should the smooth be evaluated on a transformed scale? For generalised models, this involves applying the inverse of the link function used to fit the model. Alternatively, the name of, or an actual, function can be supplied to transform the smooth and it's confidence interval.
unconditional	logical; if TRUE (and freq == FALSE) then the Bayesian smoothing parameter uncertainty corrected covariance matrix is returned, if available.
ncores	number of cores for generating random variables from a multivariate normal distribution. Passed to <code>mvnfast::rmvn()</code> . Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).
partial_match	logical; should matching <code>parm</code> use a partial match or an exact match? Can only be used if <code>length(parm)</code> is 1.
...	additional arguments for methods
newdata	DEPRECATED! data frame; containing new values of the covariates used in the model fit. The selected smooth(s) will be evaluated at the supplied values.

Value

a tibble with components:

1. `.smooth`; character indicating to which term each row relates,
2. `.type`; the type of smooth,
3. `.by` the name of the `by` variable if a `by` smooth, NA otherwise,
4. one or more vectors of values at which the smooth was evaluated, named as per the variables in the smooth,
5. zero or more variables containing values of the `by` variable,
6. `.estimate`; estimated value of the smooth,
7. `.se`; standard error of the estimated value of the smooth,
8. `.crit`; critical value for the $100 * \text{level}\%$ confidence interval.
9. `.lower_ci`; lower limit of the confidence or simultaneous interval,
10. `.upper_ci`; upper limit of the confidence or simultaneous interval,

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()

dat <- data_sim("eg1", n = 1000, dist = "normal", scale = 2, seed = 2)
mod <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

# new data to evaluate the smooths at, say over the middle 50% of range
# of each covariate
middle <- function(x, n = 50, coverage = 0.5) {
  v <- (1 - coverage) / 2
  q <- quantile(x, prob = c(0 + v, 1 - v), type = 8)
  seq(q[1], q[2], length = n)
}
new_data <- sapply(dat[c("x0", "x1", "x2", "x3")], middle)
new_data <- data.frame(new_data)

## point-wise interval for smooth of x2
ci <- confint(mod, parm = "s(x2)", type = "confidence", data = new_data)
ci
```

data_combos

All combinations of factor levels plus typical values of continuous variables

Description

All combinations of factor levels plus typical values of continuous variables

Usage

```
data_combos(object, ...)

## S3 method for class 'gam'
data_combos(
  object,
  vars = everything(),
  complete = TRUE,
  envir = environment(formula(object)),
  data = NULL,
  ...
)
```

Arguments

object	a fitted model object.
...	arguments passed to methods.
vars	terms to include or exclude from the returned object. Uses tidyselect principles.

complete	logical; should all combinations of factor levels be returned? If FALSE, only those combinations of levels observed in the model are retained.
envir	the environment within which to recreate the data used to fit object.
data	an optional data frame of data used to fit the model if reconstruction of the data from the model doesn't work.

data_sim*Simulate example data for fitting GAMs*

Description

A tidy reimplementation of the functions implemented in [mgcv:::gamSim\(\)](#) that can be used to fit GAMs. A new feature is that the sampling distribution can be applied to all the example types.

Usage

```
data_sim(
  model = "eg1",
  n = 400,
  scale = NULL,
  theta = 3,
  power = 1.5,
  dist = c("normal", "poisson", "binary", "negbin", "tweedie", "gamma", "ocat",
          "ordered categorical"),
  n_cat = 4,
  cuts = c(-1, 0, 5),
  seed = NULL,
  gfam_families = c("binary", "tweedie", "normal")
)
```

Arguments

model	character; either "egX" where X is an integer 1:7, or the name of a model. See Details for possible options.
n	numeric; the number of observations to simulate.
scale	numeric; the level of noise to use.
theta	numeric; the dispersion parameter θ to use. The default is entirely arbitrary, chosen only to provide simulated data that exhibits extra dispersion beyond that assumed by under a Poisson.
power	numeric; the Tweedie power parameter.
dist	character; a sampling distribution for the response variable. "ordered categorical" is a synonym of "ocat".
n_cat	integer; the number of categories for categorical response. Currently only used for <code>distr %in% c("ocat", "ordered categorical")</code> .

cuts	numeric; vector of cut points on the latent variable, excluding the end points -Inf and Inf. Must be one fewer than the number of categories: length(cuts) == n_cat - 1.
seed	numeric; the seed for the random number generator. Passed to <code>base::set.seed()</code> .
gfam_families	character; a vector of distributions to use in generating data with grouped families for use with <code>family = gfam()</code> . The allowed distributions as per <code>dist</code> .

Details

`data_sim()` can simulate data from several underlying models of known true functions. The available options currently are:

- "eg1": a four term additive true model. This is the classic Gu & Wahba four univariate term test model. See [gw_functions](#) for more details of the underlying four functions.
- "eg2": a bivariate smooth true model.
- "eg3": an example containing a continuous by smooth (varying coefficient) true model. The model is $\hat{y}_i = f_2(x_{1i})x_{2i}$ where the function $f_2()$ is $f_2(x) = 0.2 * x^{11} * (10 * (1 - x))^6 + 10 * (10 * x)^3 * (1 - x)^{10}$.
- "eg4": a factor by smooth true model. The true model contains a factor with 3 levels, where the response for the n th level follows the n th Gu & Wahba function (for $n \in 1, 2, 3$).
- "eg5": an additive plus factor true model. The response is a linear combination of the Gu & Wahba functions 2, 3, 4 (the latter is a null function) plus a factor term with four levels.
- "eg6": an additive plus random effect term true model.
- "eg7": a version of the model in "eg1", but where the covariates are correlated.
- "gwf2": a model where the response is Gu & Wahba's $f_2(x_i)$ plus noise.
- "lwf6": a model where the response is Luo & Wahba's "example 6" function $\sin(2(4x - 2)) + 2\exp(-256(x - 0.5)^2)$ plus noise.
- "gfam": simulates data for use with GAMs with `family = gfam(families)`. See example in [mgcv:::gfam\(\)](#). If this model is specified then `dist` is ignored and `gfam_families` is used to specify which distributions are included in the simulated data. Can be a vector of any of the families allowed by `dist`. For "ocat" %in% `gfam_families` (or "ordered categorical"), 4 classes are assumed, which can't be changed. Link functions used are "identity" for "normal", "logit" for "binary", "ocat", and "ordered categorical", and "exp" elsewhere.

The random component providing noise or sampling variation can follow one of the distributions, specified via argument `dist`

- "normal": Gaussian,
- "poisson": Poisson,
- "binary": Bernoulli,
- "negbin": Negative binomial,
- "tweedie": Tweedie,
- "gamma": gamma , and
- "ordered categorical": ordered categorical

Other arguments provide the parameters for the distribution.

References

- Gu, C., Wahba, G., (1993). Smoothing Spline ANOVA with Component-Wise Bayesian "Confidence Intervals." *J. Comput. Graph. Stat.* **2**, 97–117.
- Luo, Z., Wahba, G., (1997). Hybrid adaptive splines. *J. Am. Stat. Assoc.* **92**, 107–116.

Examples

```
data_sim("eg1", n = 100, seed = 1)

# an ordered categorical response
data_sim("eg1", n = 100, dist = "ocat", n_cat = 4, cuts = c(-1, 0, 5))
```

data_slice

Prepare a data slice through model covariates

Description

Prepare a data slice through model covariates

Usage

```
data_slice(object, ...)

## Default S3 method:
data_slice(object, ...)

## S3 method for class 'data.frame'
data_slice(object, ..., .observed_only = FALSE)

## S3 method for class 'gam'
data_slice(object, ..., data = NULL, envir = NULL, .observed_only = FALSE)

## S3 method for class 'gamm'
data_slice(object, ...)

## S3 method for class 'list'
data_slice(object, ...)

## S3 method for class 'scam'
data_slice(object, ...)
```

Arguments

- object** an R model object.
- ...** `<dynamic-dots>` User supplied variables defining the data slice. Arguments passed via `...` need to be *named*.

.observed_only	logical or character; should the data slice be trimmed to those combinations of the variables specified that are observed in object. If TRUE, the observed combinations of variables mentioned in ... are matched against those in object and filtered to return only those combinations. If FALSE, no filtering is done. If .observed_only is a character vector, on those variables named in the vector are used to in the comparison with the combinations in object.
data	an alternative data frame of values containing all the variables needed to fit the model. If NULL, the default, the data used to fit the model will be recovered using model.frame. User-supplied expressions passed in ... will be evaluated in data.
envir	the environment within which to recreate the data used to fit object.

Details

A data slice is the data set that results where one (or more covariates) is varied systematically over some or all of its (their) range or at a specified subset of values of interest, while any remaining covariates in the model are held at fixed, representative values. This is known as a *reference grid* in package **emmeans** and a *data grid* in the **marginaleffects** package.

For GAMs, any covariates not specified via ... will take representative values determined from the data used to fit the model as follows:

- for numeric covariates, the value in the fitting data that is closest to the median value is used,
- for factor covariates, the modal (most frequently observed) level is used, or the first level (sorted as per the vector returned by `base::levels()`) if several levels are observed the same number of times.

These values are already computed when calling `gam()` or `bam()` for example and can be found in the `var.summary` component of the fitted model. Function `typical_values()` will extract these values for you if you are interested.

Convenience functions `evenly()`, `ref_level()`, and `level()` are provided to help users specify data slices. `ref_level()`, and `level()` also ensure that factor covariates have the correct levels, as needed by `mgcv::predict.gam()` for example.

For an extended discussion of `data_slice()` and further examples, see `vignette("data-slices", package = "gratia")`.

See Also

The convenience functions `evenly()`, `ref_level()`, and `level()`. `typical_values()` for extracting the representative values used for covariates in the model but not named in the slice.

Examples

```
load_mgcv()

# simulate some Gaussian data
df <- data_sim("eg1", n = 50, seed = 2)

# fit a GAM with 1 smooth and 1 linear term
m <- gam(y ~ s(x2, k = 7) + x1, data = df, method = "REML")
```

```

# Want to predict over f(x2) while holding `x1` at some value.
# Default will use the observation closest to the median for unspecified
# variables.
ds <- data_slice(m, x2 = evenly(x2, n = 50))
ds

# for full control, specify the values you want
ds <- data_slice(m, x2 = evenly(x2, n = 50), x1 = 0.3)

# or provide an expression (function call) which will be evaluated in the
# data frame passed to `data` or `model.frame(object)`
ds <- data_slice(m, x2 = evenly(x2, n = 50), x1 = mean(x1))

```

Description

Derivatives of estimated smooths via finite differences

Usage

```

derivatives(object, ...)

## Default S3 method:
derivatives(object, ...)

## S3 method for class 'gamm'
derivatives(object, ...)

## S3 method for class 'gam'
derivatives(
  object,
  select = NULL,
  term = deprecated(),
  data = newdata,
  order = 1L,
  type = c("forward", "backward", "central"),
  n = 100,
  eps = 1e-07,
  interval = c("confidence", "simultaneous"),
  n_sim = 10000,
  level = 0.95,
  unconditional = FALSE,
  frequentist = FALSE,
  offset = NULL,
  ncores = 1,

```

```

partial_match = FALSE,
...
newdata = NULL
)

```

Arguments

object	an R object to compute derivatives for.
...	arguments passed to other methods.
select	character; select which smooth's posterior to draw from. The default (NULL) means the posteriors of all smooths in <code>model</code> will be sampled from. If supplied, a character vector of requested terms. Can be a partial match to a smooth term; see argument <code>partial_match</code> below.
term	[Deprecated] Use <code>select</code> instead.
data	a data frame containing the values of the model covariates at which to evaluate the first derivatives of the smooths.
order	numeric; the order of derivative.
type	character; the type of finite difference used. One of "forward", "backward", or "central".
n	numeric; the number of points to evaluate the derivative at.
eps	numeric; the finite difference.
interval	character; the type of interval to compute. One of "confidence" for point-wise intervals, or "simultaneous" for simultaneous intervals.
n_sim	integer; the number of simulations used in computing the simultaneous intervals.
level	numeric; $0 < \text{level} < 1$; the confidence level of the point-wise or simultaneous interval. The default is 0.95 for a 95% interval.
unconditional	logical; use smoothness selection-corrected Bayesian covariance matrix?
frequentist	logical; use the frequentist covariance matrix?
offset	numeric; a value to use for any offset term
ncores	number of cores for generating random variables from a multivariate normal distribution. Passed to <code>mvnfast::rmvn()</code> . Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).
partial_match	logical; should smooths be selected by partial matches with <code>term</code> ? If TRUE, <code>term</code> can only be a single string to match against.
newdata	Deprecated: use <code>data</code> instead.

Value

A tibble, currently with the following variables:

- `.smooth`: the smooth each row refers to,
- `.by`: the name of any factor by variable involved in the smooth,
- `.fs`: the name of any random factor variable involved in the smooth,

- `.derivative`: the estimated derivative,
- `.se`: the standard error of the estimated derivative,
- `.crit`: the critical value such that `derivative ± (crit * se)` gives the upper and lower bounds of the requested confidence or simultaneous interval (given `level`),
- `.lower_ci`: the lower bound of the confidence or simultaneous interval,
- `.upper_ci`: the upper bound of the confidence or simultaneous interval.
- plus one or more columns of data containing the values of covariates at which the derivative was evaluated.

Note

`derivatives()` will ignore any random effect smooths it encounters in `object`.

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()

dat <- data_sim("eg1", n = 400, dist = "normal", scale = 2, seed = 42)
mod <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

## first derivatives of all smooths using central finite differences
derivatives(mod, type = "central")

## derivatives for a selected smooth
derivatives(mod, type = "central", select = "s(x1)")
## or via a partial match
derivatives(mod, type = "central", select = "x1", partial_match = TRUE)
```

derivative_samples *Posterior expectations of derivatives from an estimated model*

Description

Posterior expectations of derivatives from an estimated model

Usage

```
derivative_samples(object, ...)

## Default S3 method:
derivative_samples(object, ...)
```

```
## S3 method for class 'gamm'
derivative_samples(object, ...)

## S3 method for class 'gam'
derivative_samples(
  object,
  focal = NULL,
  data = NULL,
  order = 1L,
  type = c("forward", "backward", "central"),
  scale = c("response", "linear_predictor"),
  method = c("gaussian", "mh", "inla", "user"),
  n = 100,
  eps = 1e-07,
  n_sim = 10000,
  level = lifecycle::deprecated(),
  seed = NULL,
  envir = environment(formula(object)),
  draws = NULL,
  mvn_method = c("mvnfast", "mgcv"),
  ...
)

## S3 method for class 'scam'
derivative_samples(
  object,
  focal = NULL,
  data = NULL,
  order = 1L,
  type = c("forward", "backward", "central"),
  scale = c("response", "linear_predictor"),
  method = c("gaussian", "mh", "inla", "user"),
  n = 100,
  eps = 1e-07,
  n_sim = 10000,
  seed = NULL,
  envir = environment(formula(object)),
  draws = NULL,
  mvn_method = c("mvnfast", "mgcv"),
  ...
)
```

Arguments

object	an R object to compute derivatives for
...	arguments passed to other methods and on to <code>fitted_samples()</code>
focal	character; name of the focal variable. The response derivative of the response with respect to this variable will be returned. All other variables involved in the

model will be held at constant values. This can be missing if supplying data, in which case, the focal variable will be identified as the one variable that is not constant.

data	a data frame containing the values of the model covariates at which to evaluate the first derivatives of the smooths. If supplied, all but one variable must be held at a constant value.
order	numeric; the order of derivative.
type	character; the type of finite difference used. One of "forward", "backward", or "central".
scale	character; should the derivative be estimated on the response or the linear predictor (link) scale? One of "response" (the default), or "linear predictor".
method	character; which method should be used to draw samples from the posterior distribution. "gaussian" uses a Gaussian (Laplace) approximation to the posterior. "mh" uses a Metropolis Hastings sample that alternates t proposals with proposals based on a shrunken version of the posterior covariance matrix. "inla" uses a variant of Integrated Nested Laplace Approximation due to Wood (2019), (currently not implemented). "user" allows for user-supplied posterior draws (currently not implemented).
n	numeric; the number of points to evaluate the derivative at (if data is not supplied).
eps	numeric; the finite difference.
n_sim	integer; the number of simulations used in computing the simultaneous intervals.
level	[Deprecated]
seed	numeric; a random seed for the simulations.
envir	the environment within which to recreate the data used to fit object.
draws	matrix; user supplied posterior draws to be used when method = "user".
mvn_method	character; one of "mvnfast" or "mgcv". The default is uses mvnfast::rmvn(), which can be considerably faster at generate large numbers of MVN random values than mgcv::rmvn(), but which might not work for some marginal fits, such as those where the covariance matrix is close to singular.

Value

A tibble, currently with the following variables:

- `.derivative`: the estimated partial derivative,
- additional columns containing the covariate values at which the derivative was evaluated.

Author(s)

Gavin L. Simpson

Examples

```

load_mgcv()
df <- data_sim("eg1", dist = "negbin", scale = 0.25, seed = 42)

# fit the GAM (note: for execution time reasons using bam())
m <- bam(y ~ s(x0) + s(x1) + s(x2) + s(x3),
           data = df, family = nb(), method = "fREML")

# data slice through data along x2 - all other covariates will be set to
# typical values (value closest to median)
ds <- data_slice(m, x2 = evenly(x2, n = 200))

# samples from posterior of derivatives
fd_samp <- derivative_samples(m,
                                data = ds, type = "central",
                                focal = "x2", eps = 0.01, seed = 21, n_sim = 100
)

# plot the first 20 posterior draws
if (requireNamespace("ggplot2") && requireNamespace("dplyr")) {
  library("ggplot2")
  fd_samp |>
    dplyr::filter(.draw <= 20) |>
    ggplot(aes(x = x2, y = .derivative, group = .draw)) +
    geom_line(alpha = 0.5)
}

```

`difference_smooths` *Differences of factor smooth interactions*

Description

Estimates pairwise differences (comparisons) between factor smooth interactions (smooths with a factor by argument) for pairs of groups defined by the factor. The group means can be optionally included in the difference.

Usage

```

difference_smooths(model, ...)

## S3 method for class 'gam'
difference_smooths(
  model,
  select = NULL,
  smooth = deprecated(),
  n = 100,
  ci_level = 0.95,
  data = NULL,

```

```

group_means = FALSE,
partial_match = TRUE,
unconditional = FALSE,
frequentist = FALSE,
...
)

```

Arguments

model	A fitted model.
...	arguments passed to other methods. Not currently used.
select	character, logical, or numeric; which smooths to compare. If NULL, the default, then all model smooths are factor-smooth interactions are compared. Numeric select indexes the smooths in the order they are specified in the formula and stored in object. Character select matches the labels for smooths as shown for example in the output from <code>summary(object)</code> . Logical select operates as per numeric select in the order that smooths are stored. Careful selection is needed because it is not allowed to compare smooths of different covariates or of different factor-by variables.
	For character select, specific named smooths can be provided, in which case, the exact names of the smooths (as given by <code>smooths()</code> , for example, can be specified, and <code>partial_match</code> must be set to FALSE.
smooth	[Deprecated] Use <code>select</code> instead.
n	numeric; the number of points at which to evaluate the difference between pairs of smooths.
ci_level	numeric between 0 and 1; the coverage of credible interval.
data	data frame of locations at which to evaluate the difference between smooths.
group_means	logical; should the group means be included in the difference?
partial_match	logical; should smooth match partially against smooths? If <code>partial_match</code> = TRUE, smooth must only be a single string, a character vector of length 1. Unlike similar functions, the default here is TRUE because the intention is that users will be matching against factor-by smooth labels.
unconditional	logical; account for smoothness selection in the model?
frequentist	logical; use the frequentist covariance matrix?

Examples

```

load_mgcv()

df <- data_sim("eg4", seed = 42)
m <- gam(y ~ fac + s(x2, by = fac) + s(x0), data = df, method = "REML")

sm_dif <- difference_smooths(m, select = "s(x2)")
sm_dif

draw(sm_dif)

```

```

# include the groups means for `fac` in the difference
sm_dif2 <- difference_smooths(m, select = "s(x2)", group_means = TRUE)
draw(sm_dif2)

# compare specific smooths
sm_dif3 <- difference_smooths(m,
  select = c("s(x2):fac1", "s(x2):fac2"), partial_match = FALSE
)

```

dispersion	<i>Dispersion parameter for fitted model</i>
------------	--

Description

[Experimental]

Usage

```

dispersion(model, ...)

## S3 method for class 'gam'
dispersion(model, ...)

## S3 method for class 'glm'
dispersion(model, ...)

```

Arguments

model	a fitted model.
...	arguments passed to other methods.

draw	<i>Generic plotting via ggplot2</i>
------	-------------------------------------

Description

Generic plotting via ggplot2

Usage

```
draw(object, ...)
```

Arguments

object	and R object to plot.
...	arguments passed to other methods.

Details

Generic function for plotting of R objects that uses the `ggplot2` package.

Value

A `ggplot2::ggplot()` object.

Author(s)

Gavin L. Simpson

draw.basis

Plot basis functions

Description

Plots basis functions using `ggplot2`

Usage

```
## S3 method for class 'basis'
draw(
  object,
  legend = FALSE,
  labeller = NULL,
  ylab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  ncol = NULL,
  nrow = NULL,
  angle = NULL,
  guides = "keep",
  contour = FALSE,
  n_contour = 10,
  contour_col = "black",
  ...
)
```

Arguments

<code>object</code>	an object, the result of a call to <code>basis()</code> .
<code>legend</code>	logical; should a legend be drawn to indicate basis functions?
<code>labeller</code>	a labeller function with which to label facets. The default is to use <code>ggplot2::label_both()</code> .
<code>ylab</code>	character or expression; the label for the y axis. If not supplied, a suitable label will be generated from object.

title	character or expression; the title for the plot. See <code>ggplot2::labs()</code> .
subtitle	character or expression; the subtitle for the plot. See <code>ggplot2::labs()</code> .
caption	character or expression; the plot caption. See <code>ggplot2::labs()</code> .
ncol, nrow	numeric; the numbers of rows and columns over which to spread the plots
angle	numeric; the angle at which the x axis tick labels are to be drawn passed to the <code>angle</code> argument of <code>ggplot2::guide_axis()</code> .
guides	character; one of "keep" (the default), "collect", or "auto". Passed to <code>patchwork::plot_layout()</code> .
contour	logical; should contours be drawn on the plot using <code>ggplot2::geom_contour()</code> .
n_contour	numeric; the number of contour bins. Will result in <code>n_contour - 1</code> contour lines being drawn. See <code>ggplot2::geom_contour()</code> .
contour_col	colour specification for contour lines.
...	arguments passed to other methods. Not used by this method.

Value

A `patchwork` object.

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()
df <- data_sim("eg1", n = 400, seed = 42)
m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = "REML")

bf <- basis(m)
draw(bf)

bf <- basis(m, "s(x2)")
draw(bf)
```

draw.compare_smooths *Plot comparisons of smooths*

Description

Plot comparisons of smooths

Usage

```
## S3 method for class 'compare_smooths'
draw(object, ncol = NULL, nrow = NULL, guides = "collect", ...)
```

Arguments

object	of class "compare_smooths", the result of a call to compare_smooths() .
ncol, nrow	numeric; the numbers of rows and columns over which to spread the plots
guides	character; one of "keep" (the default), "collect", or "auto". Passed to patchwork::plot_layout()
...	additional arguments passed to patchwork::wrap_plots() .

draw.conditional_values*Plot conditional predictions*

Description

Plot conditional predictions

Usage

```
## S3 method for class 'conditional_values'
draw(
  object,
  facet_scales = "fixed",
  discrete_colour = NULL,
  discrete_fill = NULL,
  xlab = NULL,
  ylab = NULL,
  ...
)
```

Arguments

object	an object of class "conditional_values", the result of a call to conditional_values() .
facet_scales	character; should facets have the same axis scales across facets? See ggplot2::facet_wrap() for details. Options are: "fixed" (default), "free_x", "free_y", and "free".
discrete_colour	a suitable colour scale to be used when plotting discrete variables.
discrete_fill	a suitable fill scale to be used when plotting discrete variables.
xlab	character; label for the x axis of the plot.
ylab	character; label for the y axis of the plot.
...	additional arguments passed to patchwork::wrap_plots() .

draw.derivatives *Plot derivatives of smooths*

Description

Plot derivatives of smooths

Usage

```
## S3 method for class 'derivatives'
draw(
  object,
  select = NULL,
  scales = c("free", "fixed"),
  add_change = FALSE,
  change_type = c("change", "sizer"),
  alpha = 0.2,
  change_col = "black",
  decrease_col = "#56B4E9",
  increase_col = "#E69F00",
  lwd_change = 1.5,
  ncol = NULL,
  nrow = NULL,
  guides = "keep",
  angle = NULL,
  differentiate_factor_smooths = TRUE,
  ...
)

## S3 method for class 'partial_derivatives'
draw(
  object,
  select = NULL,
  scales = c("free", "fixed"),
  alpha = 0.2,
  ncol = NULL,
  nrow = NULL,
  guides = "keep",
  angle = NULL,
  ...
)
```

Arguments

- | | |
|--------|--|
| object | a fitted GAM, the result of a call to mgcv:::gam() . |
| select | character, logical, or numeric; which smooths to plot. If NULL, the default, then all model smooths are drawn. Numeric select indexes the smooths in |

the order they are specified in the formula and stored in `object`. Character `select` matches the labels for smooths as shown for example in the output from `summary(object)`. Logical `select` operates as per numeric `select` in the order that smooths are stored.

<code>scales</code>	character; should all univariate smooths be plotted with the same y-axis scale? If <code>scales = "free"</code> , the default, each univariate smooth has its own y-axis scale. If <code>scales = "fixed"</code> , a common y axis scale is used for all univariate smooths. Currently does not affect the y-axis scale of plots of the parametric terms.
<code>add_change</code>	logical; should the periods of significant change be highlighted on the plot?
<code>change_type</code>	character; the type of change to indicate. If "change", no differentiation is made between periods of significant increase or decrease. If "sizer", the periods of increase and decrease are differentiated in the resulting plot.
<code>alpha</code>	numeric; alpha transparency for confidence or simultaneous interval.
<code>change_col, decrease_col, increase_col</code>	colour specifications to use for indicating periods of change. <code>col_change</code> is used when <code>change_type = "change"</code> , while <code>col_decrease</code> and <code>col_increase</code> are used when <code>'change_type = "sizer"</code> .
<code>lwd_change</code>	numeric; the linewidth to use for the change indicators.
<code>ncol, nrow</code>	numeric; the numbers of rows and columns over which to spread the plots
<code>guides</code>	character; one of "keep" (the default), "collect", or "auto". Passed to <code>patchwork::plot_layout()</code>
<code>angle</code>	numeric; the angle at which the x axis tick labels are to be drawn passed to the <code>angle</code> argument of <code>ggplot2::guide_axis()</code> .
<code>differentiate_factor_smooths</code>	logical; should colour be used to differentiate the levels of the factors involved in random factor smooths (<code>bs = "fs"</code>) or constrained factor smooths (<code>bs = "sz"</code>)? If TRUE, the factor(s) are used to define groups and mapped to the colour aesthetic.
<code>...</code>	additional arguments passed to <code>patchwork::wrap_plots()</code> .

Examples

```
load_mgcv()
dat <- data_sim("eg1", n = 800, dist = "normal", scale = 2, seed = 42)
mod <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

## first derivative of all smooths
df <- derivatives(mod, type = "central")
draw(df)
## fixed axis scales
draw(df, scales = "fixed")
```

```
draw.difference_smooth
  Plot differences of smooths
```

Description

Plot differences of smooths

Usage

```
## S3 method for class 'difference_smooth'
draw(
  object,
  select = NULL,
  rug = FALSE,
  ref_line = FALSE,
  contour = FALSE,
  contour_col = "black",
  n_contour = NULL,
  ci_alpha = 0.2,
  ci_col = "black",
  smooth_col = "black",
  line_col = "red",
  scales = c("free", "fixed"),
  ncol = NULL,
  nrow = NULL,
  guides = "keep",
  xlab = NULL,
  ylab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  angle = NULL,
  ...
)
```

Arguments

<code>object</code>	a fitted GAM, the result of a call to <code>mgcv:::gam()</code> .
<code>select</code>	character, logical, or numeric; which smooths to plot. If <code>NULL</code> , the default, then all model smooths are drawn. Numeric <code>select</code> indexes the smooths in the order they are specified in the formula and stored in <code>object</code> . Character <code>select</code> matches the labels for smooths as shown for example in the output from <code>summary(object)</code> . Logical <code>select</code> operates as per numeric <code>select</code> in the order that smooths are stored.
<code>rug</code>	logical;

ref_line	logical;
contour	logical; should contour lines be added to smooth surfaces?
contour_col	colour specification for contour lines.
n_contour	numeric; the number of contour bins. Will result in n_contour - 1 contour lines being drawn. See ggplot2::geom_contour() .
ci_alpha	numeric; alpha transparency for confidence or simultaneous interval.
ci_col	colour specification for the confidence/credible intervals band. Affects the fill of the interval.
smooth_col	colour specification for the the smooth or difference line.
line_col	colour specification for drawing reference lines
scales	character; should all univariate smooths be plotted with the same y-axis scale? If scales = "free", the default, each univariate smooth has its own y-axis scale. If scales = "fixed", a common y axis scale is used for all univariate smooths. Currently does not affect the y-axis scale of plots of the parametric terms.
ncol, nrow	numeric; the numbers of rows and columns over which to spread the plots
guides	character; one of "keep" (the default), "collect", or "auto". Passed to patchwork::plot_layout()
xlab, ylab, title, subtitle, caption	character; labels with which to annotate plots
angle	numeric; the angle at which the x axis tick labels are to be drawn passed to the angle argument of ggplot2::guide_axis() .
...	additional arguments passed to patchwork::wrap_plots() .

Examples

```
load_mgcv()
# simulate some data; a factor smooth example
df <- data_sim("eg4", seed = 42)
# fit GAM
m <- gam(y ~ fac + s(x2, by = fac) + s(x0), data = df, method = "REML")

# calculate the differences between pairs of smooths the f_j(x2) term
diffs <- difference_smooths(m, select = "s(x2)")
draw(diffs)
```

draw.evaluated_parametric_term
Plot estimated parametric effects

Description

[Deprecated]

Plots estimated univariate and bivariate smooths using ggplot2.

Usage

```
## S3 method for class 'evaluated_parametric_term'
draw(
  object,
  ci_level = 0.95,
  constant = NULL,
  fun = NULL,
  xlab,
  ylab,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  rug = TRUE,
  position = "identity",
  response_range = NULL,
  ...
)
```

Arguments

object	an object, the result of a call to evaluate_parametric_term() .
ci_level	numeric between 0 and 1; the coverage of credible interval.
constant	numeric; a constant to add to the estimated values of the smooth. constant, if supplied, will be added to the estimated value before the confidence band is computed.
fun	function; a function that will be applied to the estimated values and confidence interval before plotting. Can be a function or the name of a function. Function fun will be applied after adding any constant, if provided.
xlab	character or expression; the label for the x axis. If not supplied, a suitable label will be generated from object.
ylab	character or expression; the label for the y axis. If not supplied, a suitable label will be generated from object.
title	character or expression; the title for the plot. See ggplot2::labs() .
subtitle	character or expression; the subtitle for the plot. See ggplot2::labs() .
caption	character or expression; the plot caption. See ggplot2::labs() .
rug	For evaluate_parametric_terms() , a logical to indicate if a rug plot should be drawn.
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
response_range	numeric; a vector of two values giving the range of response data for the guide. Used to fix plots to a common scale/range. Ignored if show is set to "se".
...	arguments passed to other methods.

Value

A [ggplot2::ggplot\(\)](#) object.

Author(s)

Gavin L. Simpson

`draw.gam`

Plot estimated smooths from a fitted GAM

Description

Plots estimated smooths from a fitted GAM model in a similar way to `mgcv:::plot.gam()` but instead of using base graphics, `ggplot2:::ggplot()` is used instead.

Usage

```
## S3 method for class 'gam'
draw(
  object,
  data = NULL,
  select = NULL,
  parametric = FALSE,
  terms = NULL,
  residuals = FALSE,
  scales = c("free", "fixed"),
  ci_level = 0.95,
  n = 100,
  n_3d = 16,
  n_4d = 4,
  unconditional = FALSE,
  overall_uncertainty = TRUE,
  constant = NULL,
  fun = NULL,
  dist = 0.1,
  rug = TRUE,
  distinct_rug = TRUE,
  contour = TRUE,
  grouped_by = FALSE,
  ci_alpha = 0.2,
  ci_col = "black",
  smooth_col = "black",
  resid_col = "steelblue3",
  contour_col = "black",
  n_contour = NULL,
  partial_match = FALSE,
  discrete_colour = NULL,
  discrete_fill = NULL,
  continuous_colour = NULL,
  continuous_fill = NULL,
```

```

  position = "identity",
  angle = NULL,
  ncol = NULL,
  nrow = NULL,
  guides = "keep",
  widths = NULL,
  heights = NULL,
  crs = NULL,
  default_crs = NULL,
  lims_method = "cross",
  wrap = TRUE,
  caption = TRUE,
  envir = environment(formula(object)),
  ...
)

```

Arguments

object	a fitted GAM, the result of a call to mgcv:::gam() .
data	an optional data frame that is used to supply the data at which the smooths will be evaluated and plotted. This is usually not needed, but is an option if you need fine control over exactly what data are used for plotting.
select	character, logical, or numeric; which smooths to plot. If NULL, the default, then all model smooths are drawn. Numeric select indexes the smooths in the order they are specified in the formula and stored in object. Character select matches the labels for smooths as shown for example in the output from <code>summary(object)</code> . Logical select operates as per numeric select in the order that smooths are stored.
parametric	logical; plot parametric terms also? Note that <code>select</code> is used for selecting which smooths to plot. The <code>terms</code> argument is used to select which parametric effects are plotted. The default, as with mgcv:::plot.gam() , is to not draw parametric effects.
terms	character; which model parametric terms should be drawn? The Default of NULL will plot all parametric terms that can be drawn.
residuals	logical; should partial residuals for a smooth be drawn? Ignored for anything but a simple univariate smooth.
scales	character; should all univariate smooths be plotted with the same y-axis scale? If <code>scales = "free"</code> , the default, each univariate smooth has its own y-axis scale. If <code>scales = "fixed"</code> , a common y axis scale is used for all univariate smooths. Currently does not affect the y-axis scale of plots of the parametric terms.
ci_level	numeric between 0 and 1; the coverage of credible interval.
n	numeric; the number of points over the range of the covariate at which to evaluate the smooth.
n_3d	numeric; the number of new observations to generate for the third dimension of a 3D smooth.

n_4d	numeric; the number of new observations to generate for the dimensions higher than 2 (!) of a k D smooth ($k \geq 4$). For example, if the smooth is a 4D smooth, each of dimensions 3 and 4 will get <code>n_4d</code> new observations.
unconditional	logical; should confidence intervals include the uncertainty due to smoothness selection? If <code>TRUE</code> , the corrected Bayesian covariance matrix will be used.
overall_uncertainty	logical; should the uncertainty in the model constant term be included in the standard error of the evaluate values of the smooth?
constant	numeric; a constant to add to the estimated values of the smooth. <code>constant</code> , if supplied, will be added to the estimated value before the confidence band is computed.
fun	function; a function that will be applied to the estimated values and confidence interval before plotting. Can be a function or the name of a function. Function <code>fun</code> will be applied after adding any <code>constant</code> , if provided.
dist	numeric; if greater than 0, this is used to determine when a location is too far from data to be plotted when plotting 2-D smooths. The data are scaled into the unit square before deciding what to exclude, and <code>dist</code> is a distance within the unit square. See <code>mgcv:::exclude.too.far()</code> for further details.
rug	logical; draw a rug plot at the bottom of each plot for 1-D smooths or plot locations of data for higher dimensions.
distinct_rug	logical; should the data for the rug plots be reduced to the distinct values?
contour	logical; should contours be draw on the plot using <code>ggplot2::geom_contour()</code> .
grouped_by	logical; should factor by smooths be drawn as one panel per level of the factor (<code>FALSE</code> , the default), or should the individual smooths be combined into a single panel containing all levels (<code>TRUE</code>)?
ci_alpha	numeric; alpha transparency for confidence or simultaneous interval.
ci_col	colour specification for the confidence/credible intervals band. Affects the fill of the interval.
smooth_col	colour specification for the smooth line.
resid_col	colour specification for the partial residuals.
contour_col	colour specification for contour lines.
n_contour	numeric; the number of contour bins. Will result in <code>n_contour</code> - 1 contour lines being drawn. See <code>ggplot2::geom_contour()</code> .
partial_match	logical; should smooths be selected by partial matches with <code>select</code> ? If <code>TRUE</code> , <code>select</code> can only be a single string to match against.
discrete_colour	a suitable colour scale to be used when plotting discrete variables.
discrete_fill	a suitable fill scale to be used when plotting discrete variables.
continuous_colour	a suitable colour scale to be used when plotting continuous variables.
continuous_fill	a suitable fill scale to be used when plotting continuous variables.

position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
angle	numeric; the angle at which the x axis tick labels are to be drawn passed to the <code>angle</code> argument of <code>ggplot2::guide_axis()</code> .
ncol, nrow	numeric; the numbers of rows and columns over which to spread the plots
guides	character; one of "keep" (the default), "collect", or "auto". Passed to <code>patchwork::plot_layout()</code>
widths, heights	The relative widths and heights of each column and row in the grid. Will get repeated to match the dimensions of the grid. If there is more than 1 plot and <code>widths = NULL</code> , the value of <code>widths</code> will be set internally to <code>widths = 1</code> to accommodate plots of smooths that use a fixed aspect ratio.
crs	the coordinate reference system (CRS) to use for the plot. All data will be projected into this CRS. See <code>ggplot2::coord_sf()</code> for details.
default_crs	the coordinate reference system (CRS) to use for the non-sf layers in the plot. If left at the default <code>NULL</code> , the CRS used is 4326 (WGS84), which is appropriate for spline-on-the-sphere smooths, which are parameterized in terms of latitude and longitude as coordinates. See <code>ggplot2::coord_sf()</code> for more details.
lims_method	character; affects how the axis limits are determined. See <code>ggplot2::coord_sf()</code> . Be careful; in testing of some examples, changing this to "orthogonal" for example with the chlorophyll-a example from Simon Wood's GAM book quickly used up all the RAM in my test system and the OS killed R. This could be incorrect usage on my part; right now the grid of points at which SOS smooths are evaluated (if not supplied by the user) can produce invalid coordinates for the corners of tiles as the grid is generated for tile centres without respect to the spacing of those tiles.
wrap	logical; wrap plots as a patchwork? If <code>FALSE</code> , a list of <code>ggplot</code> objects is returned, 1 per term plotted.
caption	logical; show the smooth type in the caption of each plot?
envir	an environment to look up the data within.
...	additional arguments passed to <code>patchwork::wrap_plots()</code> .

Value

The object returned is created by `patchwork::wrap_plots()`.

Note

Internally, plots of each smooth are created using `ggplot2::ggplot()` and composed into a single plot using `patchwork::wrap_plots()`. As a result, it is not possible to use `+` to add to the plots in the way one might typically work with `ggplot()` plots. Instead, use the `&` operator; see the examples.

Author(s)

Gavin L. Simpson

Examples

```

load_mgcv()

# simulate some data
df1 <- data_sim("eg1", n = 400, dist = "normal", scale = 2, seed = 2)
# fit GAM
m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df1, method = "REML")

# plot all smooths
draw(m1)

# can add partial residuals
draw(m1, residuals = TRUE)

df2 <- data_sim("eg2", n = 1000, dist = "normal", scale = 1, seed = 2)
m2 <- gam(y ~ s(x, z, k = 40), data = df2, method = "REML")
draw(m2, contour = FALSE, n = 50)

# See https://gavinsimpson.github.io/gratia/articles/custom-plotting.html
# for more examples and for details on how to modify the theme of all the
# plots produced by draw(). To modify all panels, for example to change the
# theme, use the & operator

```

draw.gamlss

Plot smooths of a GAMLSS model estimated by GJRM::gamlss

Description

Provides a `draw()` method for GAMLSS (distributional GAMs) fitted by [GJRM::gamlss\(\)](#).

Usage

```

## S3 method for class 'gamlss'
draw(
  object,
  scales = c("free", "fixed"),
  ncol = NULL,
  nrow = NULL,
  guides = "keep",
  widths = NULL,
  heights = NULL,
  ...
)

```

Arguments

object	a model, fitted by GJRM::gamlss()
--------	---

scales	character; should all univariate smooths be plotted with the same y-axis scale? If scales = "free", the default, each univariate smooth has its own y-axis scale. If scales = "fixed", a common y axis scale is used for all univariate smooths. Currently does not affect the y-axis scale of plots of the parametric terms.
ncol, nrow	numeric; the numbers of rows and columns over which to spread the plots
guides	character; one of "keep" (the default), "collect", or "auto". Passed to patchwork::plot_layout()
widths, heights	The relative widths and heights of each column and row in the grid. Will get repeated to match the dimensions of the grid. If there is more than 1 plot and widths = NULL, the value of widths will be set internally to widths = 1 to accommodate plots of smooths that use a fixed aspect ratio.
...	arguments passed to draw.gam()

Note

Plots of smooths are not labelled with the linear predictor to which they belong.

Examples

```
if (suppressPackageStartupMessages(require("GJRM", quietly = TRUE))) {
  # follow example from ?GJRM::gamlss
  load_mgcv()
  suppressPackageStartupMessages(library("GJRM"))
  set.seed(0)
  n <- 100
  x1 <- round(runif(n))
  x2 <- runif(n)
  x3 <- runif(n)
  f1 <- function(x) cos(pi * 2 * x) + sin(pi * x)
  y1 <- -1.55 + 2 * x1 + f1(x2) + rnorm(n)
  dataSim <- data.frame(y1, x1, x2, x3)

  eq_mu <- y1 ~ x1 + s(x2)
  eq_s <- ~ s(x3, k = 6)
  fl <- list(eq_mu, eq_s)
  m <- gamlss(fl, data = dataSim)

  draw(m)
}
```

draw.mgcv_smooth *Plot basis functions*

Description

Plots basis functions using ggplot2

Usage

```
## S3 method for class 'mgcv_smooth'
draw(
  object,
  legend = FALSE,
  use_facets = TRUE,
  labeller = NULL,
  xlab,
  ylab,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  angle = NULL,
  ...
)
```

Arguments

object	an object, the result of a call to basis() .
legend	logical; should a legend be drawn to indicate basis functions?
use_facets	logical; for factor by smooths, use facets to show the basis functions for each level of the factor? If FALSE, a separate ggplot object will be created for each level and combined using patchwork::wrap_plots() . Currently ignored.
labeller	a labeller function with which to label facets. The default is to use ggplot2::label_both() .
xlab	character or expression; the label for the x axis. If not supplied, a suitable label will be generated from object.
ylab	character or expression; the label for the y axis. If not supplied, a suitable label will be generated from object.
title	character or expression; the title for the plot. See ggplot2::labs() .
subtitle	character or expression; the subtitle for the plot. See ggplot2::labs() .
caption	character or expression; the plot caption. See ggplot2::labs() .
angle	numeric; the angle at which the x axis tick labels are to be drawn passed to the angle argument of ggplot2::guide_axis() .
...	arguments passed to other methods. Not used by this method.

Value

A [ggplot2::ggplot\(\)](#) object.

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()
df <- data_sim("eg4", n = 400, seed = 42)

bf <- basis(s(x0), data = df)
draw(bf)

bf <- basis(s(x2, by = fac, bs = "bs"), data = df)
draw(bf)
```

draw.pairwise_concurvity

Plot concurvity measures

Description

Plot concurvity measures

Usage

```
## S3 method for class 'pairwise_concurvity'
draw(
  object,
  title = "Smooth-wise concurvity",
  subtitle = NULL,
  caption = NULL,
  x_lab = "Term",
  y_lab = "With",
  fill_lab = "Concurvity",
  continuous_colour = NULL,
  ...
)

## S3 method for class 'overall_concurvity'
draw(
  object,
  title = "Overall concurvity",
  subtitle = NULL,
  caption = NULL,
  y_lab = "Concurvity",
  x_lab = NULL,
  bar_col = "steelblue",
  bar_fill = "steelblue",
  ...
)
```

Arguments

object	An object inheriting from class "concurvity", usually the result of a call to model_concurvity() or its abbreviated form concrvity() .
title	character; the plot title.
subtitle	character; the plot subtitle.
caption	character; the plot caption
x_lab	character; the label for the x axis.
y_lab	character; the label for the y axis.
fill_lab	character; the label to use for the fill guide.
continuous_colour	function; continuous colour (fill) scale to use.
...	arguments passed to other methods.
bar_col	colour specification for the bar colour.
bar_fill	colour specification for the bar fill

draw.parametric_effects

Plot estimated effects for model parametric terms

Description

Plot estimated effects for model parametric terms

Usage

```
## S3 method for class 'parametric_effects'
draw(
  object,
  scales = c("free", "fixed"),
  ci_level = 0.95,
  ci_col = "black",
  ci_alpha = 0.2,
  line_col = "black",
  constant = NULL,
  fun = NULL,
  rug = TRUE,
  position = "identity",
  angle = NULL,
  ...,
  ncol = NULL,
  nrow = NULL,
  guides = "keep"
)
```

Arguments

object	a fitted GAM, the result of a call to <code>mgcv::gam()</code> .
scales	character; should all univariate smooths be plotted with the same y-axis scale? If <code>scales = "free"</code> , the default, each univariate smooth has its own y-axis scale. If <code>scales = "fixed"</code> , a common y axis scale is used for all univariate smooths. Currently does not affect the y-axis scale of plots of the parametric terms.
ci_level	numeric between 0 and 1; the coverage of credible interval.
ci_col	colour specification for the confidence/credible intervals band. Affects the fill of the interval.
ci_alpha	numeric; alpha transparency for confidence or simultaneous interval.
line_col	colour specification used for regression lines of linear continuous terms.
constant	numeric; a constant to add to the estimated values of the smooth. <code>constant</code> , if supplied, will be added to the estimated value before the confidence band is computed.
fun	function; a function that will be applied to the estimated values and confidence interval before plotting. Can be a function or the name of a function. Function <code>fun</code> will be applied after adding any <code>constant</code> , if provided.
rug	logical; draw a rug plot at the bottom of each plot for 1-D smooths or plot locations of data for higher dimensions.
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
angle	numeric; the angle at which the x axis tick labels are to be drawn passed to the <code>angle</code> argument of <code>ggplot2::guide_axis()</code> .
...	additional arguments passed to <code>patchwork::wrap_plots()</code> .
ncol, nrow	numeric; the numbers of rows and columns over which to spread the plots
guides	character; one of "keep" (the default), "collect", or "auto". Passed to <code>patchwork::plot_layout()</code>

draw.penalty_df

Display penalty matrices of smooths using ggplot

Description

Displays the penalty matrices of smooths as a heatmap using ggplot

Usage

```
## S3 method for class 'penalty_df'
draw(
  object,
  normalize = FALSE,
  as_matrix = TRUE,
  continuous_fill = NULL,
```

```

  xlab = NULL,
  ylab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  ncol = NULL,
  nrow = NULL,
  guides = "keep",
  ...
)

```

Arguments

object	a fitted GAM, the result of a call to <code>mgcv:::gam()</code> .
normalize	logical; normalize the penalty to the range -1, 1?
as_matrix	logical; how should the plotted penalty matrix be oriented? If TRUE row 1, column 1 of the penalty matrix is draw in the upper left, whereas, if FALSE it is drawn in the lower left of the plot.
continuous_fill	a suitable fill scale to be used when plotting continuous variables.
xlab	character or expression; the label for the x axis. If not supplied, no axis label will be drawn. May be a vector, one per penalty.
ylab	character or expression; the label for the y axis. If not supplied, no axis label will be drawn. May be a vector, one per penalty.
title	character or expression; the title for the plot. See <code>ggplot2:::labs()</code> . May be a vector, one per penalty.
subtitle	character or expression; the subtitle for the plot. See <code>ggplot2:::labs()</code> . May be a vector, one per penalty.
caption	character or expression; the plot caption. See <code>ggplot2:::labs()</code> . May be a vector, one per penalty.
ncol, nrow	numeric; the numbers of rows and columns over which to spread the plots.
guides	character; one of "keep" (the default), "collect", or "auto". Passed to <code>patchwork:::plot_layout()</code>
...	additional arguments passed to <code>patchwork:::wrap_plots()</code> .

Examples

```

load_mgcv()
dat <- data_sim("eg4", n = 400, seed = 42)
m <- gam(y ~ s(x0) + s(x1, bs = "cr") + s(x2, bs = "bs", by = fac),
  data = dat, method = "REML")
)

## produce a multi-panel plot of all penalties
draw(penalty(m))

# for a specific smooth
draw(penalty(m, select = "s(x2):fac1"))

```

draw.rootogram	<i>Draw a rootogram</i>
----------------	-------------------------

Description

A rootogram is a model diagnostic tool that assesses the goodness of fit of a statistical model. The observed values of the response are compared with those expected from the fitted model. For discrete, count responses, the frequency of each count (0, 1, 2, etc) in the observed data and expected from the conditional distribution of the response implied by the model are compared. For continuous variables, the observed and expected frequencies are obtained by grouping the data into bins. The rootogram is drawn using `ggplot2::ggplot()` graphics. The design closely follows Kleiber & Zeileis (2016).

Usage

```
## S3 method for class 'rootogram'
draw(
  object,
  type = c("hanging", "standing", "suspended"),
  sqrt = TRUE,
  ref_line = TRUE,
  warn_limits = TRUE,
  fitted_colour = "steelblue",
  bar_colour = NA,
  bar_fill = "grey",
  ref_line_colour = "black",
  warn_line_colour = "black",
  ylab = NULL,
  xlab = NULL,
  ...
)
```

Arguments

<code>object</code>	and R object to plot.
<code>type</code>	character; the type of rootogram to draw.
<code>sqrt</code>	logical; show the observed and fitted frequencies
<code>ref_line</code>	logical; draw a reference line at zero?
<code>warn_limits</code>	logical; draw Tukey's warning limit lines at $+$ / $-$ 1?
<code>fitted_colour</code> , <code>bar_colour</code> , <code>bar_fill</code> , <code>ref_line_colour</code> , <code>warn_line_colour</code>	colours used to draw the respective element of the rootogram.
<code>xlab</code> , <code>ylab</code>	character; labels for the x and y axis of the rootogram. May be missing (NULL), in which case suitable labels will be used. '
<code>...</code>	arguments passed to other methods.

Value

A 'ggplot' object.

References

Kleiber, C., Zeileis, A., (2016) Visualizing Count Data Regressions Using Rootograms. *Am. Stat.* **70**, 296–303. doi:10.1080/00031305.2016.1173590

See Also

[rootogram\(\)](#) to compute the data for the rootogram.

Examples

```
load_mgcv()
df <- data_sim("eg1", n = 1000, dist = "poisson", scale = 0.1, seed = 6)

# A poisson example
m <- gam(y ~ s(x0, bs = "cr") + s(x1, bs = "cr") + s(x2, bs = "cr") +
  s(x3, bs = "cr"), family = poisson(), data = df, method = "REML")
rg <- rootogram(m)

# plot the rootogram
draw(rg)

# change the type of rootogram
draw(rg, type = "suspended")
```

draw.smooth_estimates *Plot the result of a call to smooth_estimates()*

Description

Plot the result of a call to `smooth_estimates()`

Usage

```
## S3 method for class 'smooth_estimates'
draw(
  object,
  constant = NULL,
  fun = NULL,
  contour = TRUE,
  grouped_by = FALSE,
  contour_col = "black",
  n_contour = NULL,
  ci_alpha = 0.2,
  ci_col = "black",
```

```

smooth_col = "black",
resid_col = "steelblue3",
decrease_col = "#56B4E9",
increase_col = "#E69F00",
change_lwd = 1.75,
partial_match = FALSE,
discrete_colour = NULL,
discrete_fill = NULL,
continuous_colour = NULL,
continuous_fill = NULL,
angle = NULL,
ylim = NULL,
crs = NULL,
default_crs = NULL,
lims_method = "cross",
caption = TRUE,
...
)

```

Arguments

object	a fitted GAM, the result of a call to <code>mgcv:::gam()</code> .
constant	numeric; a constant to add to the estimated values of the smooth. <code>constant</code> , if supplied, will be added to the estimated value before the confidence band is computed.
fun	function; a function that will be applied to the estimated values and confidence interval before plotting. Can be a function or the name of a function. Function <code>fun</code> will be applied after adding any <code>constant</code> , if provided.
contour	logical; should contours be draw on the plot using <code>ggplot2::geom_contour()</code> .
grouped_by	logical; should factor by smooths be drawn as one panel per level of the factor (FALSE, the default), or should the individual smooths be combined into a single panel containing all levels (TRUE)?
contour_col	colour specification for contour lines.
n_contour	numeric; the number of contour bins. Will result in <code>n_contour</code> - 1 contour lines being drawn. See <code>ggplot2::geom_contour()</code> .
ci_alpha	numeric; alpha transparency for confidence or simultaneous interval.
ci_col	colour specification for the confidence/credible intervals band. Affects the fill of the interval.
smooth_col	colour specification for the smooth line.
resid_col	colour specification for the partial residuals.
decrease_col, increase_col	colour specifications to use for indicating periods of change. <code>col_change</code> is used when <code>change_type = "change"</code> , while <code>col_decrease</code> and <code>col_increase</code> are used when <code>'change_type = "sizer"</code> .
change_lwd	numeric; the value to set the linewidth to in <code>ggplot2::geom_line()</code> , used to represent the periods of change.

partial_match	logical; should smooths be selected by partial matches with <code>select</code> ? If TRUE, <code>select</code> can only be a single string to match against.
discrete_colour	a suitable colour scale to be used when plotting discrete variables.
discrete_fill	a suitable fill scale to be used when plotting discrete variables.
continuous_colour	a suitable colour scale to be used when plotting continuous variables.
continuous_fill	a suitable fill scale to be used when plotting continuous variables.
angle	numeric; the angle at which the x axis tick labels are to be drawn passed to the <code>angle</code> argument of <code>ggplot2::guide_axis()</code> .
ylim	numeric; vector of y axis limits to use all <i>all</i> panels drawn.
crs	the coordinate reference system (CRS) to use for the plot. All data will be projected into this CRS. See <code>ggplot2::coord_sf()</code> for details.
default_crs	the coordinate reference system (CRS) to use for the non-sf layers in the plot. If left at the default NULL, the CRS used is 4326 (WGS84), which is appropriate for spline-on-the-sphere smooths, which are parameterized in terms of latitude and longitude as coordinates. See <code>ggplot2::coord_sf()</code> for more details.
lims_method	character; affects how the axis limits are determined. See <code>ggplot2::coord_sf()</code> . Be careful; in testing of some examples, changing this to "orthogonal" for example with the chlorophyll-a example from Simon Wood's GAM book quickly used up all the RAM in my test system and the OS killed R. This could be incorrect usage on my part; right now the grid of points at which SOS smooths are evaluated (if not supplied by the user) can produce invalid coordinates for the corners of tiles as the grid is generated for tile centres without respect to the spacing of those tiles.
caption	logical; show the smooth type in the caption of each plot?
...	additional arguments passed to <code>patchwork::wrap_plots()</code> .

Examples

```

load_mgcv()
# example data
df <- data_sim("eg1", seed = 21)
# fit GAM
m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = "REML")
# plot all of the estimated smooths
sm <- smooth_estimates(m)
draw(sm)
# evaluate smooth of `x2`
sm <- smooth_estimates(m, select = "s(x2)")
# plot it
draw(sm)

# customising some plot elements
draw(sm, ci_col = "steelblue", smooth_col = "forestgreen", ci_alpha = 0.3)

```

```
# Add a constant to the plotted smooth
draw(sm, constant = coef(m)[1])

# Adding change indicators to smooths based on derivatives of the smooth
d <- derivatives(m, n = 100) # n to match smooth_estimates()

smooth_estimates(m) |>
  add_sizer(derivatives = d, type = "sizer") |>
  draw()
```

draw.smooth_samples *Plot posterior smooths*

Description

Plot posterior smooths

Usage

```
## S3 method for class 'smooth_samples'
draw(
  object,
  select = NULL,
  n_samples = NULL,
  seed = NULL,
  xlab = NULL,
  ylab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  alpha = 1,
  colour = "black",
  contour = FALSE,
  contour_col = "black",
  n_contour = NULL,
  scales = c("free", "fixed"),
  rug = TRUE,
  partial_match = FALSE,
  angle = NULL,
  ncol = NULL,
  nrow = NULL,
  guides = "keep",
  ...
)
```

Arguments

object	a fitted GAM, the result of a call to mgcv::gam() .
select	character, logical, or numeric; which smooths to plot. If NULL, the default, then all model smooths are drawn. Numeric select indexes the smooths in the order they are specified in the formula and stored in object. Character select matches the labels for smooths as shown for example in the output from summary(object) . Logical select operates as per numeric select in the order that smooths are stored.
n_samples	numeric; if not NULL, sample n_samples from the posterior draws for plotting.
seed	numeric; random seed to be used to if sampling draws.
xlab	character or expression; the label for the x axis. If not supplied, a suitable label will be generated from object.
ylab	character or expression; the label for the y axis. If not supplied, a suitable label will be generated from object.
title	character or expression; the title for the plot. See ggplot2::labs() .
subtitle	character or expression; the subtitle for the plot. See ggplot2::labs() .
caption	character or expression; the plot caption. See ggplot2::labs() .
alpha	numeric; alpha transparency for confidence or simultaneous interval.
colour	The colour to use to draw the posterior smooths. Passed to ggplot2::geom_line() as argument colour.
contour	logical; should contour lines be added to smooth surfaces?
contour_col	colour specification for contour lines.
n_contour	numeric; the number of contour bins. Will result in n_contour - 1 contour lines being drawn. See ggplot2::geom_contour() .
scales	character; should all univariate smooths be plotted with the same y-axis scale? If scales = "free", the default, each univariate smooth has its own y-axis scale. If scales = "fixed", a common y axis scale is used for all univariate smooths. Currently does not affect the y-axis scale of plots of the parametric terms.
rug	logical; draw a rug plot at the bottom of each plot for 1-D smooths or plot locations of data for higher dimensions.
partial_match	logical; should smooths be selected by partial matches with select? If TRUE, select can only be a single string to match against.
angle	numeric; the angle at which the x axis tick labels are to be drawn passed to the angle argument of ggplot2::guide_axis() .
ncol, nrow	numeric; the numbers of rows and columns over which to spread the plots
guides	character; one of "keep" (the default), "collect", or "auto". Passed to patchwork::plot_layout() arguments to be passed to patchwork::wrap_plots() .
...	

Author(s)

Gavin L. Simpson

Examples

```

load_mgcv()
dat1 <- data_sim("eg1", n = 400, dist = "normal", scale = 1, seed = 1)
## a single smooth GAM
m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat1, method = "REML")
## posterior smooths from m1
sm1 <- smooth_samples(m1, n = 15, seed = 23478)
## plot
draw(sm1, alpha = 0.7)
## plot only 5 randomly sampled draws
draw(sm1, n_samples = 5, alpha = 0.7)

## A factor-by smooth example
dat2 <- data_sim("eg4", n = 400, dist = "normal", scale = 1, seed = 1)
## a multi-smooth GAM with a factor-by smooth
m2 <- gam(y ~ fac + s(x2, by = fac) + s(x0), data = dat2, method = "REML")
## posterior smooths from m1
sm2 <- smooth_samples(m2, n = 15, seed = 23478)
## plot, this time selecting only the factor-by smooth
draw(sm2, select = "s(x2)", partial_match = TRUE, alpha = 0.7)

## A 2D smooth example
dat3 <- data_sim("eg2", n = 400, dist = "normal", scale = 1, seed = 1)
## fit a 2D smooth
m3 <- gam(y ~ te(x, z), data = dat3, method = "REML")
## get samples
sm3 <- smooth_samples(m3, n = 10)
## plot just 6 of the draws, with contour line overlays
draw(sm3, n_samples = 6, contour = TRUE, seed = 42)

```

edf

Effective degrees of freedom for smooths and GAMs

Description

Extracts the effective degrees of freedom (EDF) for model smooth terms or overall EDF for fitted GAMs

Usage

```

edf(object, ...)

## S3 method for class 'gam'
edf(
  object,
  select = NULL,
  smooth = deprecated(),

```

```

type = c("default", "unconditional", "alternative"),
partial_match = FALSE,
...
)

model_edf(object, ..., type = c("default", "unconditional", "alternative"))

```

Arguments

object	a fitted model from which to extract smooth-specific EDFs.
...	arguments passed to methods.
select	character, logical, or numeric; which smooths EDF to extract. If NULL, the default, EDFs for all smooths will be returned. Numeric select indexes the smooths in the order they are specified in the formula and stored in object. Character select matches the labels for smooths as shown for example in the output from <code>summary(object)</code> . Logical select operates as per numeric select in the order that smooths are stored.
smooth	[Deprecated] Use <code>select</code> instead.
type	character: which type of EDF to return. "default" returns the standard EDF; "unconditional" selects the EDF corrected for smoothness parameter selection, if available; "alternative" returns the alternative formulation for EDF from Wood (2017, pp. 252)
partial_match	logical; should smooths be selected by partial matches with <code>select</code> ? If TRUE, <code>select</code> can only be a single string to match against.

Details

Multiple formulations for the effective degrees of freedom are available. The additional uncertainty due to selection of smoothness parameters can be taken into account when computing the EDF of smooths. This form of the EDF is available with `type = "unconditional"`.

Wood (2017; pp. 252) describes an alternative EDF for the model

$$\text{EDF} = 2\text{tr}(\mathbf{F}) - \text{tr}(\mathbf{FF}),$$

where `tr` is the matrix trace and \mathbf{F} is a matrix mapping unpenalised coefficient estimates to the penalized coefficient estimates. The trace of \mathbf{F} is effectively the average shrinkage of the coefficients multiplied by the number of coefficients (Wood, 2017). Smooth-specific EDFs then are obtained by summing up the relevant elements of $\text{diag}(2\mathbf{F} - \mathbf{FF})$.

Examples

```

load_mgcv()

df <- data_sim("eg1", n = 400, seed = 42)
m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = "REML")

# extract the EDFs for all smooths
edf(m)

```

```

# or selected smooths
edf(m, select = c("s(x0)", "s(x2)"))

# accounting for smoothness parameter uncertainty
edf(m, type = "unconditional")

# over EDF of the model, including the intercept
model_edf(m)

# can get model EDF for multiple models
m2 <- gam(y ~ s(x0) + s(x1) + s(x3), data = df, method = "REML")
model_edf(m, m2)

```

evaluate_parametric_term

Evaluate parametric model terms

Description

[Deprecated] Returns values of parametric model terms at values of factor terms and over a grid of covariate values for linear parametric terms. This function is now deprecated in favour of [parametric_effects\(\)](#).

Usage

```

evaluate_parametric_term(object, ...)

## S3 method for class 'gam'
evaluate_parametric_term(object, term, unconditional = FALSE, ...)

```

Arguments

object	an object of class "gam" or "gamm".
...	arguments passed to other methods.
term	character; which parametric term whose effects are evaluated
unconditional	logical; should confidence intervals include the uncertainty due to smoothness selection? If TRUE, the corrected Bayesian covariance matrix will be used.

evaluate_smooth	<i>Evaluate a smooth</i>
-----------------	--------------------------

Description

[Deprecated] Evaluate a smooth at a grid of evenly spaced value over the range of the covariate associated with the smooth. Alternatively, a set of points at which the smooth should be evaluated can be supplied.

Usage

```
evaluate_smooth(object, ...)
```

Arguments

object	an object of class "gam" or "gamm".
...	arguments passed to other methods.

Details

[Deprecated] `evaluate_smooth()` is deprecated in favour of `smooth_estimates()`, which provides a cleaner way to evaluate a smooth over a range of covariate values. `smooth_estimates()` can handle a much wider range of models than `evaluate_smooth()` is capable of and `smooth_estimates()` is much easier to extend to handle new smooth types.

Most code that uses `evaluate_smooth()` should work simply by changing the function call to `smooth_estimates()`. However, there are some differences:

- the `newdata` argument becomes `data`

Value

A data frame, which is of class "evaluated_1d_smooth" or `evaluated_2d_smooth`, which inherit from classes "evaluated_smooth" and "data.frame".

eval_smooth	<i>S3 methods to evaluate individual smooths</i>
-------------	--

Description

S3 methods to evaluate individual smooths

Usage

```
eval_smooth(smooth, ...)

## S3 method for class 'mgcv.smooth'
eval_smooth(
  smooth,
  model,
  n = 100,
  n_3d = NULL,
  n_4d = NULL,
  data = NULL,
  unconditional = FALSE,
  overall_uncertainty = TRUE,
  dist = NULL,
  ...
)

## S3 method for class 'soap.film'
eval_smooth(
  smooth,
  model,
  n = 100,
  n_3d = NULL,
  n_4d = NULL,
  data = NULL,
  unconditional = FALSE,
  overall_uncertainty = TRUE,
  clip = TRUE,
  ...
)

## S3 method for class 'scam_smooth'
eval_smooth(
  smooth,
  model,
  n = 100,
  n_3d = NULL,
  n_4d = NULL,
  data = NULL,
  unconditional = FALSE,
  overall_uncertainty = TRUE,
  dist = NULL,
  ...
)

## S3 method for class 'fs.interaction'
eval_smooth(
  smooth,
```

```
model,
n = 100,
data = NULL,
unconditional = FALSE,
overall_uncertainty = TRUE,
...
)

## S3 method for class 'sz.interaction'
eval_smooth(
  smooth,
  model,
  n = 100,
  data = NULL,
  unconditional = FALSE,
  overall_uncertainty = TRUE,
  ...
)

## S3 method for class 'random.effect'
eval_smooth(
  smooth,
  model,
  n = 100,
  data = NULL,
  unconditional = FALSE,
  overall_uncertainty = TRUE,
  ...
)

## S3 method for class 'mrf.smooth'
eval_smooth(
  smooth,
  model,
  n = 100,
  data = NULL,
  unconditional = FALSE,
  overall_uncertainty = TRUE,
  ...
)

## S3 method for class 't2.smooth'
eval_smooth(
  smooth,
  model,
  n = 100,
  n_3d = NULL,
  n_4d = NULL,
```

```

  data = NULL,
  unconditional = FALSE,
  overall_uncertainty = TRUE,
  dist = NULL,
  ...
)

## S3 method for class 'tensor.smooth'
eval_smooth(
  smooth,
  model,
  n = 100,
  n_3d = NULL,
  n_4d = NULL,
  data = NULL,
  unconditional = FALSE,
  overall_uncertainty = TRUE,
  dist = NULL,
  ...
)

```

Arguments

smooth	currently an object that inherits from class <code>mgcv.smooth</code> .
...	arguments passed to other methods
model	a fitted model; currently only <code>mgcv:::gam()</code> and <code>mgcv:::bam()</code> models are supported.
n	numeric; the number of points over the range of the covariate at which to evaluate the smooth.
n_3d, n_4d	numeric; the number of points over the range of last covariate in a 3D or 4D smooth. The default is NULL which achieves the standard behaviour of using n points over the range of all covariate, resulting in n^d evaluation points, where d is the dimension of the smooth. For d > 2 this can result in very many evaluation points and slow performance. For smooths of d > 4, the value of n_4d will be used for all dimensions > 4, unless this is NULL, in which case the default behaviour (using n for all dimensions) will be observed.
data	an optional data frame of values to evaluate smooth at.
unconditional	logical; should confidence intervals include the uncertainty due to smoothness selection? If TRUE, the corrected Bayesian covariance matrix will be used.
overall_uncertainty	logical; should the uncertainty in the model constant term be included in the standard error of the evaluate values of the smooth?
dist	numeric; if greater than 0, this is used to determine when a location is too far from data to be plotted when plotting 2-D smooths. The data are scaled into the unit square before deciding what to exclude, and dist is a distance within the unit square. See <code>mgcv:::exclude.too.far()</code> for further details.

clip	logical; should evaluation points be clipped to the boundary of a soap film smooth? The default is FALSE, which will return NA for any point that is deemed to lie outside the boundary of the soap film.
------	---

evenly	<i>Create a sequence of evenly-spaced values</i>
--------	--

Description

For a continuous vector x , `evenly` and `seq_min_max()` create a sequence of n evenly-spaced values over the range $\text{lower} - \text{upper}$. By default, lower is defined as $\min(x)$ and upper as $\max(x)$, excluding NAs. For a factor x , the function returns `levels(x)`.

Usage

```
evenly(x, n = 100, by = NULL, lower = NULL, upper = NULL)

seq_min_max(x, n, by = NULL, lower = NULL, upper = NULL)
```

Arguments

x	numeric; vector over which evenly-spaced values are returned
n	numeric; the number of evenly-spaced values to return. A default of 100 is used for convenience as that what is typically used when evaluating a smooth.
by	numeric; the increment of the sequence. If specified, argument n is ignored and the sequence returned will be from $\min(x)$ to $\max(x)$ in increments of by .
lower	numeric; the lower bound of the interval.
upper	numeric; the upper bound of the interval.

Value

A numeric vector of length n .

See Also

See [base::seq\(\)](#) for details of the behaviour of `evenly()` when using `by`.

Examples

```
x <- rnorm(10)
n <- 10L

# 10 values evenly over the range of `x`
evenly(x, n = n)

# evenly spaced values, incrementing by 0.2
evenly(x, by = 0.2)
```

```
# evenly spaced values, incrementing by 0.2, starting at -2
evenly(x, by = 0.2, lower = -2)
```

factor_combos	<i>All combinations of factor levels</i>
---------------	--

Description

All combinations of factor levels

Usage

```
factor_combos(object, ...)

## S3 method for class 'gam'
factor_combos(object, vars = everything(), complete = TRUE, ...)
```

Arguments

object	a fitted model object.
...	arguments passed to methods.
vars	terms to include or exclude from the returned object. Uses tidyselect principles.
complete	logical; should all combinations of factor levels be returned? If FALSE, only those combinations of levels observed in the model are retained.

family.gam	<i>Extract family objects from models</i>
------------	---

Description

Provides a [stats:::family\(\)](#) method for a range of GAM objects.

Usage

```
## S3 method for class 'gam'
family(object, ...)

## S3 method for class 'gamm'
family(object, ...)

## S3 method for class 'bam'
family(object, ...)

## S3 method for class 'list'
family(object, ...)
```

Arguments

- object a fitted model. Models fitted by `mgcv::gam()`, `mgcv::bam()`, `mgcv::gamm()`, and `gamm4::gamm4()` are currently supported.
 ... arguments passed to other methods.

family_name	<i>Name of family used to fit model</i>
-------------	---

Description

Extracts the name of the family used to fit the supplied model.

Usage

```
family_name(object, ...)
```

Arguments

- object an R object.
 ... arguments passed to other methods.

Value

A character vector containing the family name.

family_type	<i>Extracts the type of family in a consistent way</i>
-------------	--

Description

Extracts the type of family in a consistent way

Usage

```
family_type(object, ...)

## S3 method for class 'family'
family_type(object, ...)

## Default S3 method:
family_type(object, ...)
```

Arguments

- object an R object. Currently `family()` objects and anything with a `family()` method.
 ... arguments passed to other methods.

fitted_samples	<i>Draw fitted values from the posterior distribution</i>
----------------	---

Description

Expectations (fitted values) of the response drawn from the posterior distribution of fitted model using a Gaussian approximation to the posterior or a simple Metropolis Hastings sampler.

Usage

```
fitted_samples(model, ...)

## S3 method for class 'gam'
fitted_samples(
  model,
  n = 1,
  data = newdata,
  seed = NULL,
  scale = c("response", "linear_predictor"),
  method = c("gaussian", "mh", "inla", "user"),
  n_cores = 1,
  burnin = 1000,
  thin = 1,
  t_df = 40,
  rw_scale = 0.25,
  freq = FALSE,
  unconditional = FALSE,
  draws = NULL,
  mvn_method = c("mvnfast", "mgcv"),
  ...,
  newdata = NULL,
  ncores = NULL
)

## S3 method for class 'scam'
fitted_samples(
  model,
  n = 1,
  data = NULL,
  seed = NULL,
  scale = c("response", "linear_predictor"),
  method = c("gaussian", "mh", "inla", "user"),
  n_cores = 1,
  burnin = 1000,
  thin = 1,
  t_df = 40,
  rw_scale = 0.25,
```

```

freq = FALSE,
unconditional = FALSE,
draws = NULL,
mvn_method = c("mvnfast", "mgcv"),
...
)

```

Arguments

model	a fitted model of the supported types
...	arguments passed to other methods. For <code>fitted_samples()</code> , these are passed on to <code>mgcv::predict.gam()</code> . For <code>posterior_samples()</code> these are passed on to <code>fitted_samples()</code> . For <code>predicted_samples()</code> these are passed on to the relevant <code>simulate()</code> method.
n	numeric; the number of posterior samples to return.
data	data frame; new observations at which the posterior draws from the model should be evaluated. If not supplied, the data used to fit the model will be used for <code>data</code> , if available in <code>model</code> .
seed	numeric; a random seed for the simulations.
scale	character; what scale should the fitted values be returned on? "linear predictor" is a synonym for "link" if you prefer that terminology.
method	character; which method should be used to draw samples from the posterior distribution. "gaussian" uses a Gaussian (Laplace) approximation to the posterior. "mh" uses a Metropolis Hastings sampler that alternates t proposals with proposals based on a shrunken version of the posterior covariance matrix. "inla" uses a variant of Integrated Nested Laplace Approximation due to Wood (2019), (currently not implemented). "user" allows for user-supplied posterior draws (currently not implemented).
n_cores	number of cores for generating random variables from a multivariate normal distribution. Passed to <code>mvnfast::rmvn()</code> . Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).
burnin	numeric; number of samples to discard as the burnin draws. Only used with <code>method = "mh"</code> .
thin	numeric; the number of samples to skip when taking n draws. Results in <code>thin * n</code> draws from the posterior being taken. Only used with <code>method = "mh"</code> .
t_df	numeric; degrees of freedom for t distribution proposals. Only used with <code>method = "mh"</code> .
rw_scale	numeric; Factor by which to scale posterior covariance matrix when generating random walk proposals. Negative or non finite to skip the random walk step. Only used with <code>method = "mh"</code> .
freq	logical; TRUE to use the frequentist covariance matrix of the parameter estimators, FALSE to use the Bayesian posterior covariance matrix of the parameters.
unconditional	logical; if TRUE (and <code>freq == FALSE</code>) then the Bayesian smoothing parameter uncertainty corrected covariance matrix is used, if available.
draws	matrix; user supplied posterior draws to be used when <code>method = "user"</code> .

mvn_method	character; one of "mvnfast" or "mgcv". The default is uses <code>mvnfast::rmvn()</code> , which can be considerably faster at generate large numbers of MVN random values than <code>mgcv::rmvn()</code> , but which might not work for some marginal fits, such as those where the covariance matrix is close to singular.
newdata	Deprecated: use <code>data</code> instead.
ncores	Deprecated; use <code>n_cores</code> instead. The number of cores for generating random variables from a multivariate normal distribution. Passed to <code>mvnfast::rmvn()</code> . Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).

Value

A tibble (data frame) with 3 columns containing the posterior predicted values in long format. The columns are

- `row` (integer) the row of data that each posterior draw relates to,
- `draw` (integer) an index, in range 1:n, indicating which draw each row relates to,
- `response` (numeric) the predicted response for the indicated row of data.

Note

Models with offset terms supplied via the `offset` argument to `mgcv::gam()` etc. are ignored by `mgcv::predict.gam()`. As such, this kind of offset term is also ignored by `posterior_samples()`. Offset terms that are included in the model formula supplied to `mgcv::gam()` etc are not ignored and the posterior samples produced will reflect those offset term values. This has the side effect of requiring any new data values provided to `posterior_samples()` via the `data` argument must include the offset variable.

Author(s)

Gavin L. Simpson

References

Wood, S.N., (2020). Simplified integrated nested Laplace approximation. *Biometrika* **107**, 223–230. doi:10.1093/biomet/asz044

Examples

```
load_mgcv()

dat <- data_sim("eg1", n = 1000, dist = "normal", scale = 2, seed = 2)
m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

fs <- fitted_samples(m1, n = 5, seed = 42)

fs

# can generate own set of draws and use them
```

```
drws <- generate_draws(m1, n = 2, seed = 24)
fs2 <- fitted_samples(m1, method = "user", draws = drws)

fs2
```

fitted_values	<i>Generate fitted values from a estimated GAM</i>
---------------	--

Description

Generate fitted values from a estimated GAM

Usage

```
fitted_values(object, ...)

## S3 method for class 'gam'
fitted_values(
  object,
  data = NULL,
  scale = c("response", "link", "linear predictor"),
  ci_level = 0.95,
  ...
)

## S3 method for class 'gamm'
fitted_values(object, ...)

## S3 method for class 'scam'
fitted_values(object, ...)
```

Arguments

- | | |
|----------|---|
| object | a fitted model. Currently only models fitted by <code>mgcv:::gam()</code> and <code>mgcv:::bam()</code> are supported. |
| ... | arguments passed to <code>mgcv:::predict.gam()</code> . Note that type, newdata, and se.fit are already used and passed on to <code>mgcv:::predict.gam()</code> . |
| data | optional data frame of covariate values for which fitted values are to be returned. |
| scale | character; what scale should the fitted values be returned on? "linear predictor" is a synonym for "link" if you prefer that terminology. |
| ci_level | numeric; a value between 0 and 1 indicating the coverage of the credible interval. |

Value

A tibble (data frame) whose first m columns contain either the data used to fit the model (if `data` was `NULL`), or the variables supplied to `data`. Four further columns are added:

- `fitted`: the fitted values on the specified scale,
- `se`: the standard error of the fitted values (always on the *link* scale),
- `lower`, `upper`: the limits of the credible interval on the fitted values, on the specified scale.

Models fitted with certain families will include additional variables

- `mgcv:::ocat()` models: when `scale = "response"`, the returned object will contain a `row` column and a `category` column, which indicate to which row of the data each row of the returned object belongs. Additionally, there will be `nrow(data) * n_categories` rows in the returned object; each row is the predicted probability for a single category of the response.

Note

For most families, regardless of the scale on which the fitted values are returned, the `se` component of the returned object is on the *link* (*linear predictor*) scale, not the response scale. An exception is the `mgcv:::ocat()` family, for which the `se` is on the response scale if `scale = "response"`.

Examples

```
load_mgcv()

sim_df <- data_sim("eg1", n = 400, dist = "normal", scale = 2, seed = 2)
m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = sim_df, method = "REML")
fv <- fitted_values(m)
fv
```

fixef

*Extract fixed effects estimates***Description**

Extract fixed effects estimates

Arguments

<code>object</code>	a fitted GAM
...	arguments passed to other methods

`fixef.gam`*Extract fixed effects estimates from a fitted GAM*

Description

Extract fixed effects estimates from a fitted GAM

Usage

```
## S3 method for class 'gam'
fixef(object, ...)

## S3 method for class 'gamm'
fixef(object, ...)

## S3 method for class 'lm'
fixef(object, ...)

## S3 method for class 'glm'
fixef(object, ...)

fixed_effects(object, ...)

## Default S3 method:
fixed_effects(object, ...)
```

Arguments

<code>object</code>	a fitted GAM
<code>...</code>	arguments passed to other methods

Examples

```
load_mgcv()

# run example if lme4 is available
if (require("lme4")) {
  data(sleepstudy, package = "lme4")
  m <- gam(
    Reaction ~ Days + s(Subject, bs = "re") +
      s(Days, Subject, bs = "re"),
    data = sleepstudy, method = "REML"
  )
  fixef(m)
}
```

fix_offset*Fix the names of a data frame containing an offset variable.*

Description

Identifies which variable, if any, is the model offset, and fixed the name such that `offset(foo(var))` is converted to `var`, and possibly sets the values of that variable to `offset_val`.

Usage

```
fix_offset(model, newdata, offset_val = NULL)
```

Arguments

<code>model</code>	a fitted GAM.
<code>newdata</code>	data frame; new values at which to predict at.
<code>offset_val</code>	numeric, optional; if provided, then the offset variable in <code>newdata</code> is set to this constant value before returning <code>newdata</code>

Value

The original `newdata` is returned with fixed names and possibly modified offset variable.

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()
df <- data_sim("eg1", n = 400, dist = "normal", seed = 2)
m <- gam(y ~ s(x0) + s(x1) + offset(x2), data = df, method = "REML")
names(model.frame(m))
names(fix_offset(m, model.frame(m), offset_val = 1L))
```

gaussian_draws*Posterior samples using a simple Metropolis Hastings sampler*

Description

Posterior samples using a simple Metropolis Hastings sampler

Usage

```
gaussian_draws(model, ...)

## S3 method for class 'gam'
gaussian_draws(
  model,
  n,
  n_cores = 1L,
  index = NULL,
  frequentist = FALSE,
  unconditional = FALSE,
  mvn_method = "mvnfast",
  ...
)

## S3 method for class 'scam'
gaussian_draws(
  model,
  n,
  n_cores = 1L,
  index = NULL,
  frequentist = FALSE,
  parametrized = TRUE,
  mvn_method = "mvnfast",
  ...
)
```

Arguments

model	a fitted R model. Currently only models fitted by <code>mgcv:::gam()</code> or <code>mgcv:::bam()</code> , or return an object that <i>inherits</i> from such objects are supported. Here, "inherits" is used in a loose fashion; models fitted by <code>scam:::scam()</code> are support even though those models don't strictly inherit from class "gam" as far as <code>inherits()</code> is concerned.
...	arguments passed to methods.
n	numeric; the number of posterior draws to take.
n_cores	integer; number of CPU cores to use when generating multivariate normal distributed random values. Only used if <code>mvn_method = "mvnfast"</code> and <code>method = "gaussian"</code> .
index	numeric; vector of indices of coefficients to use. Can be used to subset the mean vector and covariance matrix extracted from <code>model</code> .
frequentist	logical; if TRUE, the frequentist covariance matrix of the parameter estimates is used. If FALSE, the Bayesian posterior covariance matrix of the parameters is used. See <code>mgcv:::vcov.gam()</code> .
unconditional	logical; if TRUE the Bayesian smoothing parameter uncertainty corrected covariance matrix is used, <i>if available</i> for <code>model</code> . See <code>mgcv:::vcov.gam()</code> .

mvn_method	character; one of "mvnfast" or "mgcv". The default is uses <code>mvnfast::rmvn()</code> , which can be considerably faster at generate large numbers of MVN random values than <code>mgcv::rmvn()</code> , but which might not work for some marginal fits, such as those where the covariance matrix is close to singular.
parametrized	logical; use parametrized coefficients and covariance matrix, which respect the linear inequality constraints of the model. Only for <code>scam::scam()</code> model fits.

get_by_smooth	<i>Extract an factor-by smooth by name</i>
---------------	--

Description

Extract an factor-by smooth by name

Usage

```
get_by_smooth(object, term, level)
```

Arguments

object	a fitted GAM model object.
term	character; the name of a smooth term to extract.
level	character; which level of the factor to extract the smooth for.

Value

A single smooth object, or a list of smooths if several match the named term.

get_smooth	<i>Extract an mgcv smooth by name</i>
------------	---------------------------------------

Description

Extract an mgcv smooth by name

Usage

```
get_smooth(object, term)
```

Arguments

object	a fitted GAM model object.
term	character; the name of a smooth term to extract

Value

A single smooth object, or a list of smooths if several match the named term.

get_smooths_by_id *Extract an mgcv smooth given its position in the model object*

Description

Extract an mgcv smooth given its position in the model object

Usage

```
get_smooths_by_id(object, id)

## S3 method for class 'gam'
get_smooths_by_id(object, id)

## S3 method for class 'scam'
get_smooths_by_id(object, id)

## S3 method for class 'gamm'
get_smooths_by_id(object, id)

## S3 method for class 'gamm4'
get_smooths_by_id(object, id)

## S3 method for class 'list'
get_smooths_by_id(object, id)
```

Arguments

object	a fitted GAM model object.
id	numeric; the position of the smooth in the model object.

Description

A subset of the data from the `carData::GSSvocab` dataset from the `carData` package, containing observations from 2016 only.

Format

A data frame with 1858 rows and 3 variables:

- vocab: numeric; the number of words out of 10 correct on a vocabulary test.
- nativeBorn: factor; Was the respondent born in the US? A factor with levels no and yes.
- ageGroup: factor; grouped age of the respondent with levels 18-29 30-39, 40-49, 50-59, and 60+.

gw_f0

Gu and Wahba test functions

Description

Gu and Wahba test functions

Usage

```
gw_f0(x, ...)  
gw_f1(x, ...)  
gw_f2(x, ...)  
gw_f3(x, ...)
```

Arguments

x	numeric; vector of points to evaluate the function at, on interval (0,1)
...	arguments passed to other methods, ignored.

Examples

```
x <- seq(0, 1, length = 6)  
gw_f0(x)  
gw_f1(x)  
gw_f2(x)  
gw_f3(x) # should be constant 0
```

has_theta*Are additional parameters available for a GAM?*

Description

Are additional parameters available for a GAM?

Usage

```
has_theta(object)
```

Arguments

object an R object, either a `family()` object or an object whose class has a `family()` method.

Value

A logical; TRUE if additional parameters available, FALSE otherwise.

Examples

```
load_mgcv()
df <- data_sim("eg1", dist = "poisson", seed = 42, scale = 1 / 5)
m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3),
  data = df, method = "REML",
  family = nb())
)
has_theta(m)
p <- theta(m)
```

is_by_smooth*Tests for by variable smooths*

Description

Functions to check if a smooth is a by-variable one and to test of the type of by-variable smooth is a factor-smooth or a continuous-smooth interaction.

Usage

```
is_by_smooth(smooth)

is_factor_by_smooth(smooth)

is_continuous_by_smooth(smooth)

by_variable(smooth)

by_level(smooth)
```

Arguments

smooth an object of class "mgcv.smooth"

Value

A logical vector.

Author(s)

Gavin L. Simpson

is_factor_term *Is a model term a factor (categorical)?*

Description

Given the name (a term label) of a term in a model, identify if the term is a factor term or numeric. This is useful when considering interactions, where terms like fac1:fac2 or num1:fac1 may be requested by the user. Only for terms of the type fac1:fac2 will this function return TRUE.

Usage

```
is_factor_term(object, term, ...)

## S3 method for class 'terms'
is_factor_term(object, term, ...)

## S3 method for class 'gam'
is_factor_term(object, term, ...)

## S3 method for class 'bam'
is_factor_term(object, term, ...)

## S3 method for class 'gamm'
is_factor_term(object, term, ...)
```

```
## S3 method for class 'list'
is_factor_term(object, term, ...)
```

Arguments

- object** an R object on which method dispatch is performed
- term** character; the name of a model term, in the sense of `attr(terms(object), "term.labels")`. Currently not checked to see if the term exists in the model.
- ...** arguments passed to other methods.

Value

A logical: TRUE if and only if all variables involved in the term are factors, otherwise FALSE.

<code>is_mgcv_family</code>	<i>Is an object one of mgcv's family objects?</i>
-----------------------------	---

Description

Checks to determine if `object` is a family object of one of the three or so types that *mgcv* produces.

Usage

```
is_mgcv_family(object)
```

Arguments

- object** the object to test.

Value

A logical vector of length 1, indicating if `object` is one of *mgcv*'s (TRUE), or otherwise (FALSE).

is_mgcv_smooth	<i>Check if objects are smooths or are a particular type of smooth</i>
----------------	--

Description

Check if objects are smooths or are a particular type of smooth

Usage

```
is_mgcv_smooth(smooth)  
  
stop_if_not_mgcv_smooth(smooth)  
  
check_is_mgcv_smooth(smooth)  
  
is_mrf_smooth(smooth)
```

Arguments

smooth an R object, typically a list

Details

Check if a smooth inherits from class "`mgcv.smooth`". `stop_if_not_mgcv_smooth()` is a wrapper around `is_mgcv_smooth()`, useful when programming for checking if the supplied object is one of mgcv's smooths, and throwing a consistent error if not. `check_is_mgcv_smooth()` is similar to `stop_if_not_mgcv_smooth()` but returns the result of `is_mgcv_smooth()` invisibly.

is_multivariate_y	<i>Is a model multivariate?</i>
-------------------	---------------------------------

Description

Determines whether a fitted model (GAM) is truly multivariate or not.

Usage

```
is_multivariate_y(model)
```

Arguments

model a fitted model object; currently only for "gam" objects

Value

A logical vector of length 1, indicating if `model` is multivariate (TRUE), or otherwise (FALSE).

is_offset	<i>Is a model term an offset?</i>
------------------	-----------------------------------

Description

Given a character vector of model terms, checks to see which, if any, is the model offset.

Usage

`is_offset(terms)`

Arguments

`terms` character vector of model terms.

Value

A logical vector of the same length as `terms`.

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()
df <- data_sim("eg1", n = 400, dist = "normal")
m <- gam(y ~ s(x0) + s(x1) + offset(x0), data = df, method = "REML")
nm <- names(model.frame(m))
nm
is_offset(nm)
```

link	<i>Extract link and inverse link functions from models</i>
-------------	--

Description

Returns the link or its inverse from an estimated model, and provides a simple way to extract these functions from complex models with multiple links, such as location scale models.

Usage

```
link(object, ...)

## S3 method for class 'family'
link(object, parameter = NULL, which_eta = NULL, ...)

## S3 method for class 'gam'
link(object, parameter = NULL, which_eta = NULL, ...)

## S3 method for class 'bam'
link(object, parameter = NULL, which_eta = NULL, ...)

## S3 method for class 'gamm'
link(object, ...)

## S3 method for class 'glm'
link(object, ...)

## S3 method for class 'list'
link(object, ...)

inv_link(object, ...)

## S3 method for class 'family'
inv_link(object, parameter = NULL, which_eta = NULL, ...)

## S3 method for class 'gam'
inv_link(object, parameter = NULL, which_eta = NULL, ...)

## S3 method for class 'bam'
inv_link(object, parameter = NULL, which_eta = NULL, ...)

## S3 method for class 'gamm'
inv_link(object, ...)

## S3 method for class 'list'
inv_link(object, ...)

## S3 method for class 'glm'
inv_link(object, ...)

extract_link(family, ...)

## S3 method for class 'family'
extract_link(family, inverse = FALSE, ...)

## S3 method for class 'general.family'
extract_link(family, parameter, inverse = FALSE, which_eta = NULL, ...)
```

Arguments

object	a family object or a fitted model from which to extract the family object. Models fitted by <code>stats::glm()</code> , <code>mgcv::gam()</code> , <code>mgcv::bam()</code> , <code>mgcv::gamm()</code> , and <code>gamm4::gamm4()</code> are currently supported.
...	arguments passed to other methods.
parameter	character; which parameter of the distribution. Usually "location" but "scale" and "shape" may be provided for location scale models. Other options include "mu" as a synonym for "location", "sigma" for the scale parameter in <code>mgcv::gaulss()</code> , "pi" for the zero-inflation term in <code>mgcv::ziplss()</code> , "power" for the <code>mgcv::twlss()</code> power parameter, "xi", the shape parameter for <code>mgcv::gevlss()</code> , "epsilon" or "skewness" for the skewness and "delta" or "kurtosis" for the kurtosis parameter for <code>mgcv::shash()</code> , or "phi" for the scale parameter of <code>mgcv::gammals()</code> & <code>mgcv::twlss()</code> .
which_eta	numeric; the linear predictor to extract for families <code>mgcv::mvn()</code> and <code>mgcv::multinom()</code> .
family	a family object, the result of a call to <code>family()</code> .
inverse	logical; return the inverse of the link function?

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()

link(gaussian())
link(nb())

inv_link(nb())

dat <- data_sim("eg1", seed = 4234)
mod <- gam(list(y ~ s(x0) + s(x1) + s(x2) + s(x3), ~1),
           data = dat,
           family = gaulss
)
link(mod, parameter = "scale")
inv_link(mod, parameter = "scale")

## Works with `family` objects too
link(shash(), parameter = "skewness")
```

load_mgcv*Load mgcv quietly*

Description

Simple function that loads the *mgcv* package whilst suppressing the startup messages that it prints to the console.

Usage

```
load_mgcv()
```

Value

Returns a logical vectors invisibly, indicating whether the package was loaded or not.

lp_matrix*Return the linear prediction matrix of a fitted GAM*

Description

`lp_matrix()` is a wrapper to `predict(..., type = "lpmatrix")` for returning the linear predictor matrix for the model training data (when `data = NULL`), or user-specified data values supplied via `data`.

Usage

```
lp_matrix(model, ...)
## S3 method for class 'gam'
lp_matrix(model, data = NULL, ...)
```

Arguments

<code>model</code>	a fitted model
<code>...</code>	arguments passed to other methods and <code>predict</code> methods including <code>mgcv:::predict.gam()</code> and <code>mgcv:::predict.bam()</code>
<code>data</code>	a data frame of values at which to return the linear prediction matrix.

Details

The linear prediction matrix \mathbf{X}_p is a matrix that maps values of parameters $\hat{\beta}_p$ to values on the linear predictor of the model $\hat{\eta}_p = \mathbf{X}_p \hat{\beta}_p$. \mathbf{X}_p is the model matrix where spline covariates have been replaced by the values of the basis functions evaluated at the respective covariates. Parametric covariates are also included.

Value

The linear prediction matrix is returned as a matrix. The object returned is of class "lp_matrix", which inherits from classes "matrix" and "array". The special class allows the printing of the matrix to be controlled, which we do by printing the matrix as a tibble.

Examples

```
load_mgcv()

df <- data_sim("eg1", seed = 1)
m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df)

# linear prediction matrix for observed data
xp <- lp_matrix(m)
## IGNORE_RDIFF_BEGIN
xp
## IGNORE_RDIFF_END

# the object `xp` *is* a matrix
class(xp)
# but we print like a tibble to avoid spamming the R console

# linear predictor matrix for new data set
ds <- data_slice(m, x2 = evenly(x2))
xp <- lp_matrix(m, data = ds)
## IGNORE_RDIFF_BEGIN
xp
## IGNORE_RDIFF_END
```

mh_draws

Posterior samples using a Gaussian approximation to the posterior distribution

Description

Posterior samples using a Gaussian approximation to the posterior distribution

Usage

```
mh_draws(model, ...)

## S3 method for class 'gam'
mh_draws(
  model,
  n,
  burnin = 1000,
  thin = 1,
  t_df = 40,
```

```

  rw_scale = 0.25,
  index = NULL,
  ...
)

```

Arguments

model	a fitted R model. Currently only models fitted by <code>mgcv::gam()</code> or <code>mgcv::bam()</code> , or return an object that <i>inherits</i> from such objects are supported. Here, "inherits" is used in a loose fashion; models fitted by <code>scam::scam()</code> are support even though those models don't strictly inherit from class "gam" as far as <code>inherits()</code> is concerned.
...	arguments passed to methods.
n	numeric; the number of posterior draws to take.
burnin	numeric; the length of any initial burn in period to discard. See <code>mgcv::gam.mh()</code> .
thin	numeric; retain only thin samples. See <code>mgcv::gam.mh()</code> .
t_df	numeric; degrees of freedom for static multivariate <i>t</i> proposal. See <code>mgcv::gam.mh()</code> .
rw_scale	numeric; factor by which to scale posterior covariance matrix when generating random walk proposals. See <code>mgcv::gam.mh()</code> .
index	numeric; vector of indices of coefficients to use. Can be used to subset the mean vector and covariance matrix extracted from <code>model</code> .

model_concurvity	<i>Concurvity of an estimated GAM</i>
------------------	---------------------------------------

Description

Concurvity of an estimated GAM

Usage

```

model_concurvity(model, ...)

## S3 method for class 'gam'
model_concurvity(
  model,
  terms = everything(),
  type = c("all", "estimate", "observed", "worst"),
  pairwise = FALSE,
  ...
)

concrvity(
  model,
  terms = everything(),

```

```

type = c("all", "estimate", "observed", "worst"),
pairwise = FALSE,
...
)

```

Arguments

<code>model</code>	a fitted GAM. Currently only objects of class "gam" are supported
<code>...</code>	arguments passed to other methods.
<code>terms</code>	currently ignored
<code>type</code>	character;
<code>pairwise</code>	logical; extract pairwise concurvity of model terms?

Examples

```

## simulate data with concurvity...
library("tibble")
load_mgcv()
set.seed(8)
n <- 200
df <- tibble(
  t = sort(runif(n)),
  x = gw_f2(t) + rnorm(n) * 3,
  y = sin(4 * pi * t) + exp(x / 20) + rnorm(n) * 0.3
)

## fit model
m <- gam(y ~ s(t, k = 15) + s(x, k = 15), data = df, method = "REML")

## overall concurvity
o_conc <- concrvity(m)
draw(o_conc)

## pairwise concurvity
p_conc <- concrvity(m, pairwise = TRUE)
draw(p_conc)

```

<code>model_constant</code>	<i>Extract the model constant term</i>
-----------------------------	--

Description

[Experimental] Extracts the model constant term(s), the model intercept, from a fitted model object.

Usage

```
model_constant(model, ...)

## S3 method for class 'gam'
model_constant(model, lp = NULL, ...)

## S3 method for class 'gamlss'
model_constant(model, ...)

## S3 method for class 'glm'
model_constant(model, ...)
```

Arguments

model a fitted model for which a `coef()` method exists.
... arguments passed to other methods.
lp numeric; which linear predictors to extract constant terms for.

Examples

```
load_mgcv()

# simulate a small example
df <- data_sim("eg1", seed = 42)

# fit the GAM
m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = "REML")

# extract the estimate of the constant term
model_constant(m)
# same as coef(m)[1L]
coef(m)[1L]
```

model_terms *Find the names of model terms*

Description

Returns the names of any terms in a model, without needing to call `summary()`. The list of model terms is especially useful when predicting from a `mgcv::gam()` model using the `exclude` or `terms` argument of `mgcv::predict.gam()` or `mgcv::predict.bam()`.

Usage

```
model_terms(object, ...)

## S3 method for class 'gam'
model_terms(object, ...)

## S3 method for class 'gamm'
model_terms(object, ...)

## S3 method for class 'gamm4'
model_terms(object, ...)

## S3 method for class 'lm'
model_terms(object, ...)
```

Arguments

object	a fitted model.
...	arguments to be passed to other methods; not currently used.

Details

From the point of view of *gratia*, models contain two types of term:

1. parametric terms, and
2. smooth terms.

If we consider the formula $y \sim \text{fac} + s(x_2, \text{by} = \text{fac}) + s(x_0)$, for a factor `fac` with three levels, there are seven terms in the model:

1. the model constant term, with name "`(Intercept)`",
2. the parametric factor term, with names
 - `fac2`,
 - `fac3`,
3. the univariate smooth of x_0 , named "`s(x0)`", and
4. the three factor-by smooths with names
 - "`s(x2):fac1`",
 - "`s(x2):fac2`", and
 - "`s(x2):fac3`".

`model_terms()` will return a vector of those names.

Value

A character vector of model terms.

Examples

```
load_mgcv()

# simulate data
df <- data_sim("eg4", n = 400, dist = "normal", scale = 2, seed = 1)

# fit model
m <- gam(y ~ fac + s(x2, by = fac) + s(x0),
  data = df, method = "REML")

# return the names of terms in this model
model_terms(m)
```

model_vars

List the variables involved in a model fitted with a formula

Description

List the variables involved in a model fitted with a formula

Usage

```
model_vars(model, ...)

## S3 method for class 'gam'
model_vars(model, ...)

## Default S3 method:
model_vars(model, ...)

## S3 method for class 'bam'
model_vars(model, ...)

## S3 method for class 'gamm'
model_vars(model, ...)

## S3 method for class 'gamm4'
model_vars(model, ...)

## S3 method for class 'list'
model_vars(model, ...)
```

Arguments

model a fitted model object with a \$pred.formula, \$terms component or a "terms" attribute
... Arguments passed to other methods. Currently ignored.

Examples

```
load_mgcv()

# simulate some Gaussian data
df <- data_sim("eg1", n = 50, seed = 2)

# fit a GAM with 1 smooth and 1 linear term
m1 <- gam(y ~ s(x2, k = 7) + x1, data = df, method = "REML")
model_vars(m1)

# fit a lm with two linear terms
m2 <- lm(y ~ x2 + x1, data = df)
model_vars(m2)
```

nb_theta

Negative binomial parameter theta

Description

Negative binomial parameter theta

Usage

```
nb_theta(model)

## S3 method for class 'gam'
nb_theta(model)
```

Arguments

model a fitted model.

Value

A numeric vector of length 1 containing the estimated value of theta.

Methods (by class)

- nb_theta(gam): Method for class "gam"

Examples

```
load_mgcv()
df <- data_sim("eg1", n = 500, dist = "poisson", scale = 0.1, seed = 6)

m <- gam(y ~ s(x0, bs = "cr") + s(x1, bs = "cr") + s(x2, bs = "cr") +
  s(x3, bs = "cr"), family = nb, data = df, method = "REML")
## IGNORE_RDIFF_BEGIN
nb_theta(m)
## IGNORE_RDIFF_END
```

null_deviance	<i>Extract the null deviance of a fitted model</i>
---------------	--

Description

Extract the null deviance of a fitted model

Usage

```
null_deviance(model, ...)  
## Default S3 method:  
null_deviance(model, ...)
```

Arguments

model a fitted model
... arguments passed to other methods

n_eta	<i>The Number of linear predictors in model</i>
-------	---

Description

[Experimental] Extracts the number of linear predictors from the fitted model.

Usage

```
n_eta(model, ...)  
## S3 method for class 'gam'  
n_eta(model, ...)
```

Arguments

model a fitted model. Currently, only models inheriting from class "gam" are supported.
... arguments passed to methods.

Value

An integer vector of length 1 containing the number of linear predictors in the model.

n_smooths	<i>How many smooths in a fitted model</i>
-----------	---

Description

How many smooths in a fitted model

Usage

```
n_smooths(object)

## Default S3 method:
n_smooths(object)

## S3 method for class 'gam'
n_smooths(object)

## S3 method for class 'gamm'
n_smooths(object)

## S3 method for class 'bam'
n_smooths(object)
```

Arguments

object a fitted GAM or related model. Typically the result of a call to [mgcv:::gam\(\)](#), [mgcv:::bam\(\)](#), or [mgcv:::gamm\(\)](#).

observed_fitted_plot	<i>Plot of fitted against observed response values</i>
----------------------	--

Description

Plot of fitted against observed response values

Usage

```
observed_fitted_plot(
  model,
  ylab = NULL,
  xlab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  point_col = "grey20",
  point_alpha = 1
)
```

Arguments

model	a fitted model. Currently only class "gam".
ylab	character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
xlab	character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
title	character or expression; the title for the plot. See ggplot2::labs() .
subtitle	character or expression; the subtitle for the plot. See ggplot2::labs() .
caption	character or expression; the plot caption. See ggplot2::labs() .
point_col	colour used to draw points in the plots. See graphics::par() section Color Specification . This is passed to the individual plotting functions, and therefore affects the points of all plots.
point_alpha	numeric; alpha transparency for points in plots.

overview

Provides an overview of a model and the terms in that model

Description

Provides an overview of a model and the terms in that model

Usage

```
overview(model, ...)

## S3 method for class 'gam'
overview(
  model,
  parametric = TRUE,
  random_effects = TRUE,
  dispersion = NULL,
  frequentist = FALSE,
  accuracy = 0.001,
  digits = 3,
  stars = FALSE,
  ...
)
```

Arguments

model	a fitted model object to overview.
...	arguments passed to other methods.
parametric	logical; include the model parametric terms in the overview?

random_effects	tests of fully penalized smooth terms (those with a zero-dimensional null space, e.g. random effects) are computationally expensive and for large data sets producing these p values can take a very long time. If <code>random_effects = FALSE</code> , the tests of the expensive terms will be skipped.
dispersion	numeric; a known value for the dispersion parameter. The default <code>NULL</code> implies that the estimated value or the default value (1 for the Poisson distribution for example) where this is specified is used instead.
frequentist	logical; by default the Bayesian estimated covariance matrix of the parameter estimates is used to calculate p values for parametric terms. If <code>frequentist = FALSE</code> , the frequentist covariance matrix of the parameter estimates is used.
accuracy	numeric; accuracy with which to report p values, with p values below this value displayed as "< accuracy".
digits	numeric; the number of significant digits to be used.
stars	logical; should significance stars be added to the output?

Examples

```
load_mgcv()

df <- data_sim(n = 400, seed = 2)
m <- gam(y ~ x3 + s(x0) + s(x1, bs = "bs") + s(x2, bs = "ts"),
  data = df, method = "REML"
)
overview(m)
```

parametric_effects	<i>Estimated values for parametric model terms</i>
--------------------	--

Description

Estimated values for parametric model terms

Usage

```
parametric_effects(object, ...)

## S3 method for class 'gam'
parametric_effects(
  object,
  terms = NULL,
  data = NULL,
  unconditional = FALSE,
  unnest = TRUE,
  ci_level = 0.95,
  envir = environment(formula(object)),
```

```
  transform = FALSE,
  ...
)
```

Arguments

object	a fitted model object.
...	arguments passed to other methods.
terms	character; which model parametric terms should be drawn? The Default of NULL will plot all parametric terms that can be drawn.
data	a optional data frame that may or may not be used? FIXME!
unconditional	logical; should confidence intervals include the uncertainty due to smoothness selection? If TRUE, the corrected Bayesian covariance matrix will be used.
unnest	logical; unnest the parametric effect objects?
ci_level	numeric; the coverage required for the confidence interval. Currently ignored.
envir	an environment to look up the data within.
transform	logical; if TRUE, the parametric effect will be plotted on its transformed scale which will result in the effect being a straight line. If FALSE, the effect will be plotted against the raw data (i.e. for $\log_{10}(x)$, or $\text{poly}(z)$, the x-axis of the plot will be x or z respectively.)

parametric_terms	<i>Names of any parametric terms in a GAM</i>
------------------	---

Description

Names of any parametric terms in a GAM

Usage

```
parametric_terms(model, ...)

## Default S3 method:
parametric_terms(model, ...)

## S3 method for class 'gam'
parametric_terms(model, ...)
```

Arguments

model	a fitted model.
...	arguments passed to other methods.

partial_derivatives	<i>Partial derivatives of estimated multivariate smooths via finite differences</i>
---------------------	---

Description

Partial derivatives of estimated multivariate smooths via finite differences

Usage

```
partial_derivatives(object, ...)

## Default S3 method:
partial_derivatives(object, ...)

## S3 method for class 'gamm'
partial_derivatives(object, ...)

## S3 method for class 'gam'
partial_derivatives(
  object,
  select = NULL,
  term = deprecated(),
  focal = NULL,
  data = newdata,
  order = 1L,
  type = c("forward", "backward", "central"),
  n = 100,
  eps = 1e-07,
  interval = c("confidence", "simultaneous"),
  n_sim = 10000,
  level = 0.95,
  unconditional = FALSE,
  frequentist = FALSE,
  offset = NULL,
  ncores = 1,
  partial_match = FALSE,
  seed = NULL,
  ...,
  newdata = NULL
)
```

Arguments

object	an R object to compute derivatives for.
...	arguments passed to other methods.

select	character; vector of one or more smooth terms for which derivatives are required. If missing, derivatives for all smooth terms will be returned. Can be a partial match to a smooth term; see argument <code>partial_match</code> below.
term	[Deprecated] Use <code>select</code> instead.
focal	character; name of the focal variable. The partial derivative of the estimated smooth with respect to this variable will be returned. All other variables involved in the smooth will be held at constant. This can be missing if supplying data, in which case, the focal variable will be identified as the one variable that is not constant.
data	a data frame containing the values of the model covariates at which to evaluate the first derivatives of the smooths. If supplied, all but one variable must be held at a constant value.
order	numeric; the order of derivative.
type	character; the type of finite difference used. One of "forward", "backward", or "central".
n	numeric; the number of points to evaluate the derivative at.
eps	numeric; the finite difference.
interval	character; the type of interval to compute. One of "confidence" for point-wise intervals, or "simultaneous" for simultaneous intervals.
n_sim	integer; the number of simulations used in computing the simultaneous intervals.
level	numeric; $0 < \text{level} < 1$; the confidence level of the point-wise or simultaneous interval. The default is 0.95 for a 95% interval.
unconditional	logical; use smoothness selection-corrected Bayesian covariance matrix?
frequentist	logical; use the frequentist covariance matrix?
offset	numeric; a value to use for any offset term
ncores	number of cores for generating random variables from a multivariate normal distribution. Passed to <code>mvnfast::rmvn()</code> . Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).
partial_match	logical; should smooths be selected by partial matches with <code>term</code> ? If TRUE, <code>term</code> can only be a single string to match against.
seed	numeric; RNG seed to use.
newdata	Deprecated: use <code>data</code> instead.

Value

A tibble, currently with the following variables:

- `.smooth`: the smooth each row refers to,
- `.partial_deriv`: the estimated partial derivative,
- `.se`: the standard error of the estimated partial derivative,
- `.crit`: the critical value such that $\text{derivative} \pm (\text{crit} * \text{se})$ gives the upper and lower bounds of the requested confidence or simultaneous interval (given `level`),
- `.lower_ci`: the lower bound of the confidence or simultaneous interval,
- `.upper_ci`: the upper bound of the confidence or simultaneous interval.

Note

`partial_derivatives()` will ignore any random effect smooths it encounters in `object`.

Author(s)

Gavin L. Simpson

Examples

```
library("ggplot2")
library("patchwork")
load_mgcv()

df <- data_sim("eg2", n = 2000, dist = "normal", scale = 0.5, seed = 42)

# fit the GAM (note: for execution time reasons, k is set artificially low)
m <- gam(y ~ te(x, z, k = c(5, 5)), data = df, method = "REML")

# data slice through te(x,z) holding z == 0.4
ds <- data_slice(m, x = evenly(x, n = 100), z = 0.4)

# evaluate te(x,z) at values of x & z
sm <- smooth_estimates(m, select = "te(x,z)", data = ds) |>
  add_confint()

# partial derivatives
pd_x <- partial_derivatives(m, data = ds, type = "central", focal = "x")

# draw te(x,z)
p1 <- draw(m, rug = FALSE) &
  geom_hline(yintercept = 0.4, linewidth = 1)
p1

# draw te(x,z) along slice
cap <- expression(z == 0.4)
p2 <- sm |>
  ggplot(aes(x = x, y = .estimate)) +
  geom_ribbon(aes(ymin = .lower_ci, ymax = .upper_ci), alpha = 0.2) +
  geom_line() +
  labs(
    x = "x", y = "Partial effect", title = "te(x,z)",
    caption = cap
  )
p2

# draw partial derivs
p3 <- pd_x |>
  draw() +
  labs(caption = cap)
p3

# draw all three panels
```

```
p1 + p2 + p3 + plot_layout(ncol = 3)
```

partial_residuals	<i>Partial residuals</i>
-------------------	--------------------------

Description

Partial residuals

Usage

```
partial_residuals(object, ...)

## S3 method for class 'gam'
partial_residuals(object, select = NULL, partial_match = FALSE, ...)
```

Arguments

- object an R object, typically a model. Currently only objects of class "gam" (or that inherit from that class) are supported.
- ... arguments passed to other methods.
- select character, logical, or numeric; which smooths to plot. If NULL, the default, then all model smooths are drawn. Numeric select indexes the smooths in the order they are specified in the formula and stored in object. Character select matches the labels for smooths as shown for example in the output from `summary(object)`. Logical select operates as per numeric select in the order that smooths are stored.
- partial_match logical; should smooths be selected by partial matches with select? If TRUE, select can only be a single string to match against.

Examples

```
## load mgcv
load_mgcv()

## example data - Gu & Wahba four term model
df <- data_sim("eg1", n = 400, seed = 42)
## fit the model
m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = "REML")

## extract partial residuals
partial_residuals(m)

## and for a select term
partial_residuals(m, select = "s(x2)")

## or with partial matching
```

```
partial_residuals(m, select = "x", partial_match = TRUE) # returns all
```

penalty

Extract and tidy penalty matrices

Description

Extract and tidy penalty matrices

Usage

```
penalty(object, ...)

## Default S3 method:
penalty(
  object,
  rescale = FALSE,
  data,
  knots = NULL,
  constraints = FALSE,
  diagonalize = FALSE,
  ...
)

## S3 method for class 'gam'
penalty(
  object,
  select = NULL,
  smooth = deprecated(),
  rescale = FALSE,
  partial_match = FALSE,
  ...
)

## S3 method for class 'mgcv.smooth'
penalty(object, rescale = FALSE, ...)

## S3 method for class 'tensor.smooth'
penalty(object, margins = FALSE, ...)

## S3 method for class 't2.smooth'
penalty(object, margins = FALSE, ...)

## S3 method for class 're.smooth.spec'
penalty(object, data, ...)
```

Arguments

object	a fitted GAM or a smooth.
...	additional arguments passed to methods.
rescale	logical; by default, <i>mgcv</i> will scale the penalty matrix for better performance in mgcv::gamm() . If rescale is TRUE, this scaling will be undone to put the penalty matrix back on the original scale.
data	data frame; a data frame of values for terms mentioned in the smooth specification.
knots	a list or data frame with named components containing knots locations. Names must match the covariates for which the basis is required. See mgcv::smoothCon() .
constraints	logical; should identifiability constraints be applied to the smooth basis. See argument absorb.cons in mgcv::smoothCon() .
diagonalize	logical; if TRUE, reparameterises the smooth such that the associated penalty is an identity matrix. This has the effect of turning the last diagonal elements of the penalty to zero, which highlights the penalty null space.
select	character, logical, or numeric; which smooths to extract penalties for. If NULL, the default, then penalties for all model smooths are drawn. Numeric select indexes the smooths in the order they are specified in the formula and stored in object. Character select matches the labels for smooths as shown for example in the output from <code>summary(object)</code> . Logical select operates as per numeric select in the order that smooths are stored.
smooth	[Deprecated] Use select instead.
partial_match	logical; should smooths be selected by partial matches with select? If TRUE, select can only be a single string to match against.
margins	logical; extract the penalty matrices for the tensor product or the marginal smooths of the tensor product?

Value

A 'tibble' (data frame) of class `penalty_df` inheriting from `tbl_df`, with the following components:

- `.smooth` - character; the label *mgcv* uses to refer to the smooth,
- `.type` - character; the type of smooth,
- `.penalty` - character; the label for the specific penalty. Some smooths have multiple penalty matrices, so the penalty component identifies the particular penalty matrix and uses the labelling that *mgcv* uses internally,
- `.row` - character; a label of the form `fn` where `n` is an integer for the `n`th basis function, referencing the columns of the penalty matrix,
- `.col` - character; a label of the form `fn` where `n` is an integer for the `n`th basis function, referencing the columns of the penalty matrix,
- `.value` - double; the value of the penalty matrix for the combination of `row` and `col`,

Note

The `print()` method uses `base::zapsmall()` to turn very small numbers into 0s for display purposes only; the underlying values of the penalty matrix or matrices are not changed.

For smooths that are subject to an eigendecomposition (e.g. the default thin plate regression splines, `bs = "tp"`), the signs of the eigenvectors are not defined and as such you can expect differences across systems in the penalties for such smooths that are system-, OS-, and CPU architecture-specific.

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()
dat <- data_sim("eg4", n = 400, seed = 42)
m <- gam(
  y ~ s(x0, bs = "cr") + s(x1, bs = "cr") +
    s(x2, by = fac, bs = "cr"),
  data = dat, method = "REML"
)
# penalties for all smooths
penalty(m)

# for a specific smooth
penalty(m, select = "s(x2):fac1")
```

posterior_samples *Draw samples from the posterior distribution of an estimated model*

Description

Draw samples from the posterior distribution of an estimated model

Usage

```
posterior_samples(model, ...)

## S3 method for class 'gam'
posterior_samples(
  model,
  n = 1,
  data = newdata,
  seed = NULL,
  method = c("gaussian", "mh", "inla", "user"),
```

```

n_cores = 1,
burnin = 1000,
thin = 1,
t_df = 40,
rw_scale = 0.25,
freq = FALSE,
unconditional = FALSE,
weights = NULL,
draws = NULL,
mvn_method = c("mvnfast", "mgcv"),
...
newdata = NULL,
ncores = NULL
)

## S3 method for class 'scam'
posterior_samples(
  model,
  n = 1,
  data = NULL,
  seed = NULL,
  method = c("gaussian", "mh", "inla", "user"),
  n_cores = 1,
  burnin = 1000,
  thin = 1,
  t_df = 40,
  rw_scale = 0.25,
  freq = FALSE,
  unconditional = FALSE,
  weights = NULL,
  draws = NULL,
  mvn_method = c("mvnfast", "mgcv"),
  ...
)

```

Arguments

model	a fitted model of the supported types
...	arguments passed to other methods. For <code>fitted_samples()</code> , these are passed on to <code>mgcv::predict.gam()</code> . For <code>posterior_samples()</code> these are passed on to <code>fitted_samples()</code> . For <code>predicted_samples()</code> these are passed on to the relevant <code>simulate()</code> method.
n	numeric; the number of posterior samples to return.
data	data frame; new observations at which the posterior draws from the model should be evaluated. If not supplied, the data used to fit the model will be used for data, if available in <code>model</code> .
seed	numeric; a random seed for the simulations.

method	character; which method should be used to draw samples from the posterior distribution. "gaussian" uses a Gaussian (Laplace) approximation to the posterior. "mh" uses a Metropolis Hastings sampler that alternates t proposals with proposals based on a shrunken version of the posterior covariance matrix. "inla" uses a variant of Integrated Nested Laplace Approximation due to Wood (2019), (currently not implemented). "user" allows for user-supplied posterior draws (currently not implemented).
n_cores	number of cores for generating random variables from a multivariate normal distribution. Passed to mvnfast::rmvn() . Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).
burnin	numeric; number of samples to discard as the burnin draws. Only used with method = "mh".
thin	numeric; the number of samples to skip when taking n draws. Results in thin * n draws from the posterior being taken. Only used with method = "mh".
t_df	numeric; degrees of freedom for t distribution proposals. Only used with method = "mh".
rw_scale	numeric; Factor by which to scale posterior covariance matrix when generating random walk proposals. Negative or non finite to skip the random walk step. Only used with method = "mh".
freq	logical; TRUE to use the frequentist covariance matrix of the parameter estimators, FALSE to use the Bayesian posterior covariance matrix of the parameters.
unconditional	logical; if TRUE (and freq == FALSE) then the Bayesian smoothing parameter uncertainty corrected covariance matrix is used, if available.
weights	numeric; a vector of prior weights. If data is null then defaults to object[["prior.weights"]], otherwise a vector of ones.
draws	matrix; user supplied posterior draws to be used when method = "user".
mvn_method	character; one of "mvnfast" or "mgcv". The default is uses mvnfast::rmvn() , which can be considerably faster at generate large numbers of MVN random values than mgcv::rmvn() , but which might not work for some marginal fits, such as those where the covariance matrix is close to singular.
newdata	Deprecated: use data instead.
ncores	Deprecated; use n_cores instead. The number of cores for generating random variables from a multivariate normal distribution. Passed to mvnfast::rmvn() . Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).

Value

A tibble (data frame) with 3 columns containing the posterior predicted values in long format. The columns are

- `row` (integer) the row of data that each posterior draw relates to,
- `draw` (integer) an index, in range 1:n, indicating which draw each row relates to,
- `response` (numeric) the predicted response for the indicated row of data.

Note

Models with offset terms supplied via the `offset` argument to `mgcv:::gam()` etc. are ignored by `mgcv:::predict.gam()`. As such, this kind of offset term is also ignored by `posterior_samples()`. Offset terms that are included in the model formula supplied to `mgcv:::gam()` etc are not ignored and the posterior samples produced will reflect those offset term values. This has the side effect of requiring any new data values provided to `posterior_samples()` via the `data` argument must include the offset variable.

Author(s)

Gavin L. Simpson

References

Wood, S.N., (2020). Simplified integrated nested Laplace approximation. *Biometrika* **107**, 223–230. doi:10.1093/biomet/asz044

post_draws

Low-level Functions to generate draws from the posterior distribution of model coefficients

Description

Low-level Functions to generate draws from the posterior distribution of model coefficients
Generate posterior draws from a fitted model

Usage

```
post_draws(model, ...)

## Default S3 method:
post_draws(
  model,
  n,
  method = c("gaussian", "mh", "inla", "user"),
  mu = NULL,
  sigma = NULL,
  n_cores = 1L,
  burnin = 1000,
  thin = 1,
  t_df = 40,
  rw_scale = 0.25,
  index = NULL,
  frequentist = FALSE,
  unconditional = FALSE,
  parametrized = TRUE,
```

```

mvn_method = c("mvnfast", "mgcv"),
draws = NULL,
seed = NULL,
...
)

generate_draws(model, ...)

## S3 method for class 'gam'
generate_draws(
  model,
  n,
  method = c("gaussian", "mh", "inla"),
  mu = NULL,
  sigma = NULL,
  n_cores = 1L,
  burnin = 1000,
  thin = 1,
  t_df = 40,
  rw_scale = 0.25,
  index = NULL,
  frequentist = FALSE,
  unconditional = FALSE,
  mvn_method = c("mvnfast", "mgcv"),
  seed = NULL,
  ...
)

```

Arguments

model	a fitted R model. Currently only models fitted by <code>mgcv:::gam()</code> or <code>mgcv:::bam()</code> , or return an object that <i>inherits</i> from such objects are supported. Here, "inherits" is used in a loose fashion; models fitted by <code>scam::scam()</code> are support even though those models don't strictly inherit from class "gam" as far as <code>inherits()</code> is concerned.
...	arguments passed to methods.
n	numeric; the number of posterior draws to take.
method	character; which algorithm to use to sample from the posterior. Currently implemented methods are: "gaussian" and "mh". "gaussian" calls <code>gaussian_draws()</code> which uses a Gaussian approximation to the posterior distribution. "mh" uses a simple Metropolis Hastings sampler which alternates static proposals based on a Gaussian approximation to the posterior, with random walk proposals. Note, setting <code>t_df</code> to a low value will result in heavier-tailed statistic proposals. See <code>mgcv:::gam.mh()</code> for more details.
mu	numeric; user-supplied mean vector (vector of model coefficients). Currently ignored.
sigma	matrix; user-supplied covariance matrix for <code>mu</code> . Currently ignored.

n_cores	integer; number of CPU cores to use when generating multivariate normal distributed random values. Only used if <code>mvn_method = "mvnfast"</code> and <code>method = "gaussian"</code> .
burnin	numeric; the length of any initial burn in period to discard. See <code>mgcv::gam.mh()</code> .
thin	numeric; retain only thin samples. See <code>mgcv::gam.mh()</code> .
t_df	numeric; degrees of freedom for static multivariate t proposal. See <code>mgcv::gam.mh()</code> .
rw_scale	numeric; factor by which to scale posterior covariance matrix when generating random walk proposals. See <code>mgcv::gam.mh()</code> .
index	numeric; vector of indices of coefficients to use. Can be used to subset the mean vector and covariance matrix extracted from <code>model</code> .
frequentist	logical; if TRUE, the frequentist covariance matrix of the parameter estimates is used. If FALSE, the Bayesian posterior covariance matrix of the parameters is used. See <code>mgcv::vcov.gam()</code> .
unconditional	logical; if TRUE the Bayesian smoothing parameter uncertainty corrected covariance matrix is used, <i>if available</i> for <code>model</code> . See <code>mgcv::vcov.gam()</code> .
parametrized	logical; use parametrized coefficients and covariance matrix, which respect the linear inequality constraints of the model. Only for <code>scam::scam()</code> model fits.
mvn_method	character; one of "mvnfast" or "mgcv". The default is uses <code>mvnfast::rmvn()</code> , which can be considerably faster at generate large numbers of MVN random values than <code>mgcv::rmvn()</code> , but which might not work for some marginal fits, such as those where the covariance matrix is close to singular.
draws	matrix; user supplied posterior draws to be used when <code>method = "user"</code> .
seed	numeric; the random seed to use. If NULL, a random seed will be generated without affecting the current state of R's RNG.

<code>predicted_samples</code>	<i>Draw new response values from the conditional distribution of the response</i>
--------------------------------	---

Description

Predicted values of the response (new response data) are drawn from the fitted model, created via `simulate()` (e.g. `simulate.gam()`) and returned in a tidy, long, format. These predicted values do not include the uncertainty in the estimated model; they are simply draws from the conditional distribution of the response.

Usage

```
predicted_samples(model, ...)
## Default S3 method:
predicted_samples(model, ...)
```

```

## S3 method for class 'gam'
predicted_samples(
  model,
  n = 1,
  data = newdata,
  seed = NULL,
  weights = NULL,
  ...,
  newdata = NULL
)

## S3 method for class 'scam'
predicted_samples(model, n = 1, data = NULL, seed = NULL, weights = NULL, ...)

```

Arguments

model	a fitted model of the supported types
...	arguments passed to other methods. For <code>fitted_samples()</code> , these are passed on to <code>mgcv:::predict.gam()</code> . For <code>posterior_samples()</code> these are passed on to <code>fitted_samples()</code> . For <code>predicted_samples()</code> these are passed on to the relevant <code>simulate()</code> method.
n	numeric; the number of posterior samples to return.
data	data frame; new observations at which the posterior draws from the model should be evaluated. If not supplied, the data used to fit the model will be used for data, if available in model.
seed	numeric; a random seed for the simulations.
weights	numeric; a vector of prior weights. If data is null then defaults to <code>object[["prior.weights"]]</code> , otherwise a vector of ones.
newdata	Deprecated: use data instead.

Value

A tibble (data frame) with 3 columns containing the posterior predicted values in long format. The columns are

- `row` (integer) the row of data that each posterior draw relates to,
- `draw` (integer) an index, in range 1:n, indicating which draw each row relates to,
- `response` (numeric) the predicted response for the indicated row of data.

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()
```

```

dat <- data_sim("eg1", n = 1000, dist = "normal", scale = 2, seed = 2)
m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

predicted_samples(m, n = 5, seed = 42)

## Can pass arguments to predict.gam()

newd <- data.frame(
  x0 = runif(10), x1 = runif(10), x2 = runif(10),
  x3 = runif(10)
)

## Exclude s(x2)
predicted_samples(m, n = 5, newd, exclude = "s(x2)", seed = 25)

## Exclude s(x1)
predicted_samples(m, n = 5, newd, exclude = "s(x1)", seed = 25)

## Select which terms --- result should be the same as previous
## but note that we have to include any parametric terms, including the
## constant term
predicted_samples(m,
  n = 5, newd, seed = 25,
  terms = c("Intercept", "s(x0)", "s(x2)", "s(x3)")
)

```

qq_plot

Quantile-quantile plot of model residuals

Description

Quantile-quantile plots (QQ-plots) for GAMs using the reference quantiles of Augustin *et al* (2012).

Usage

```

qq_plot(model, ...)

## Default S3 method:
qq_plot(model, ...)

## S3 method for class 'gam'
qq_plot(
  model,
  method = c("uniform", "simulate", "normal", "direct"),
  type = c("deviance", "response", "pearson"),
  n_uniform = 10,
  n_simulate = 50,
  seed = NULL,

```

```

  level = 0.9,
  ylab = NULL,
  xlab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  ci_col = "black",
  ci_alpha = 0.2,
  point_col = "grey20",
  point_alpha = 1,
  line_col = "red",
  ...
)
## S3 method for class 'glm'
qq_plot(model, ...)

## S3 method for class 'lm'
qq_plot(model, ...)

```

Arguments

model	a fitted model. Currently models inheriting from class "gam", as well as classes "glm" and "lm" from calls to <code>stats::glm</code> or <code>stats::lm</code> are supported.
...	arguments passed to other methods.
method	character; method used to generate theoretical quantiles. The default is "uniform", which generates reference quantiles using random draws from a uniform distribution and the inverse cumulative distribution function (CDF) of the fitted values. The reference quantiles are averaged over <code>n_uniform</code> draws. "simulate" generates reference quantiles by simulating new response data from the model at the observed values of the covariates, which are then residualised to generate reference quantiles, using <code>n_simulate</code> simulated data sets. "normal" generates reference quantiles using the standard normal distribution. "uniform" is more computationally efficient, but "simulate" allows reference bands to be drawn on the QQ-plot. "normal" should be avoided but is used as a fall back if a random number generator ("simulate") or the inverse of the CDF are not available from the family used during model fitting ("uniform""). Note that <code>method = "direct"</code> is deprecated in favour of <code>method = "uniform"</code> .
type	character; type of residuals to use. Only "deviance", "response", and "pearson" residuals are allowed.
<code>n_uniform</code>	numeric; number of times to randomize uniform quantiles in the direct computation method (<code>method = "uniform"</code>).
<code>n_simulate</code>	numeric; number of data sets to simulate from the estimated model when using the simulation method (<code>method = "simulate"</code>).
<code>seed</code>	numeric; the random number seed to use for <code>method = "simulate"</code> and <code>method = "uniform"</code> .

level	numeric; the coverage level for reference intervals. Must be strictly $0 < \text{level} < 1$. Only used with <code>method = "simulate"</code> .
ylab	character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
xlab	character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
title	character or expression; the title for the plot. See <code>ggplot2::labs()</code> . May be a vector, one per penalty.
subtitle	character or expression; the subtitle for the plot. See <code>ggplot2::labs()</code> . May be a vector, one per penalty.
caption	character or expression; the plot caption. See <code>ggplot2::labs()</code> . May be a vector, one per penalty.
ci_col	fill colour for the reference interval when <code>method = "simulate"</code> .
ci_alpha	alpha transparency for the reference interval when <code>method = "simulate"</code> .
point_col	colour of points on the QQ plot.
point_alpha	alpha transparency of points on the QQ plot.
line_col	colour used to draw the reference line.

Note

The wording used in `mgcv::qq.gam()` uses *direct* in reference to the simulated residuals method (`method = "simulated"`). To avoid confusion, `method = "direct"` is deprecated in favour of `method = "uniform"`.

References

The underlying methodology used when `method` is "simulate" or "uniform" is described in Augustin *et al* (2012):

Augustin, N.H., Sauleau, E.-A., Wood, S.N., (2012) On quantile quantile plots for generalized linear models. *Computational Statistics and Data Analysis* **56**, 2404-2409 doi:10.1016/j.csda.2012.01.026.

See Also

`mgcv::qq.gam` for more details on the methods used.

Examples

```
load_mgcv()
## simulate binomial data...
dat <- data_sim("eg1", n = 200, dist = "binary", scale = .33, seed = 0)
p <- binomial()$linkinv(dat$f) # binomial p
n <- sample(c(1, 3), 200, replace = TRUE) # binomial n
dat <- transform(dat, y = rbinom(n, n, p), n = n)
m <- gam(y / n ~ s(x0) + s(x1) + s(x2) + s(x3),
  family = binomial, data = dat, weights = n,
  method = "REML"
)
```

```

## Q-Q plot; default using direct randomization of uniform quantiles
qq_plot(m)

## Alternatively use simulate new data from the model, which
## allows construction of reference intervals for the Q-Q plot
qq_plot(m,
  method = "simulate",
  seed = 42,
  point_col = "steelblue",
  point_alpha = 0.4
)

## ... or use the usual normality assumption
qq_plot(m, method = "normal")

```

quantile_residuals *Randomised residuals*

Description

Randomised residuals

Usage

```

quantile_residuals(model, type = c("pit", "quantile"), seed = NULL, ...)

## S3 method for class 'gam'
quantile_residuals(model, type = c("pit", "quantile"), seed = NULL, ...)

## S3 method for class 'glm'
quantile_residuals(model, type = c("pit", "quantile"), seed = NULL, ...)

```

Arguments

<code>model</code>	a fitted model object.
<code>type</code>	character; which type of randomised residual to return
<code>seed</code>	integer; the random seed to use when generating randomised residuals. Can be missing, in which case the current state residuals are computed using the current state of the random number generator.
<code>...</code>	arguments passed to other methods.

ref_level	<i>Return the reference or specific level of a factor</i>
-----------	---

Description

Extracts the reference or a specific level the supplied factor, returning it as a factor with the same levels as the one supplied.

Usage

```
ref_level(fct)  
  
level(fct, level)
```

Arguments

fct factor; the factor from which the reference or specific level will be extracted.
level character; the specific level to extract in the case of level().

Value

A length 1 factor with the same levels as the supplied factor fct.

Examples

```
f <- factor(sample(letters[1:5], 100, replace = TRUE))  
  
# the reference level  
ref_level(f)  
  
# a specific level  
level(f, level = "b")  
  
# note that the levels will always match the input factor  
identical(levels(f), levels(ref_level(f)))  
identical(levels(f), levels(level(f, "c")))
```

ref_sims	<i>Reference simulation data</i>
----------	----------------------------------

Description

A set of reference objects for testing [data_sim\(\)](#).

Format

A named list of simulated data sets created by [data_sim\(\)](#).

rep_first_factor_value

Repeat the first level of a factor n times

Description

Function to repeat the first level of a factor n times and return this vector as a factor with the original levels intact

Usage

```
rep_first_factor_value(f, n)
```

Arguments

f	a factor
n	numeric; the number of times to repeat the first level of f

Value

A factor of length n with the levels of f, but whose elements are all the first level of f.

residuals_hist_plot *Histogram of model residuals*

Description

Histogram of model residuals

Usage

```
residuals_hist_plot(
  model,
  type = c("deviance", "pearson", "response", "pit", "quantile"),
  n_bins = c("sturges", "scott", "fd"),
  ylab = NULL,
  xlab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  seed = NULL
)
```

Arguments

model	a fitted model. Currently only class "gam".
type	character; type of residuals to use. One of "deviance", "response", "pearson", "pit", and "quantile" residuals are allowed. "pit" uses probability integral transform (PIT) residuals, which, if the model is correct should be approximately uniformly distributed, while "quantile" transforms the PIT residuals through application of the inverse CDF of the standard normal, and therefore the quantile residuals should be approximately normally distributed (mean = 0, sd = 1) if the model is correct. PIT and quantile residuals are not yet available for most families that can be handled by <code>gam()</code> , but most standard families are supported, e.g. those used by <code>glm()</code> .
n_bins	character or numeric; either the number of bins or a string indicating how to calculate the number of bins.
ylab	character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
xlab	character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
title	character or expression; the title for the plot. See ggplot2::labs() .
subtitle	character or expression; the subtitle for the plot. See ggplot2::labs() .
caption	character or expression; the plot caption. See ggplot2::labs() .
seed	integer; random seed to use for PIT or quantile residuals.

residuals_linpred_plot*Plot of residuals versus linear predictor values*

Description

Plot of residuals versus linear predictor values

Usage

```
residuals_linpred_plot(
  model,
  type = c("deviance", "pearson", "response", "pit", "quantile"),
  ylab = NULL,
  xlab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  point_col = "grey20",
  point_alpha = 1,
  line_col = "red",
  seed = NULL
)
```

Arguments

model	a fitted model. Currently only class "gam".
type	character; type of residuals to use. One of "deviance", "response", "pearson", "pit", and "quantile" residuals are allowed. "pit" uses probability integral transform (PIT) residuals, which, if the model is correct should be approximately uniformly distributed, while "quantile" transforms the PIT residuals through application of the inverse CDF of the standard normal, and therefore the quantile residuals should be approximately normally distributed (mean = 0, sd = 1) if the model is correct. PIT and quantile residuals are not yet available for most families that can be handled by <code>gam()</code> , but most standard families are supported, e.g. those used by <code>glm()</code> .
ylab	character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
xlab	character or expression; the label for the x axis. If not supplied, a suitable label will be generated.
title	character or expression; the title for the plot. See ggplot2::labs() .
subtitle	character or expression; the subtitle for the plot. See ggplot2::labs() .
caption	character or expression; the plot caption. See ggplot2::labs() .
point_col	colour used to draw points in the plots. See graphics::par() section Color Specification . This is passed to the individual plotting functions, and therefore affects the points of all plots.
point_alpha	numeric; alpha transparency for points in plots.
line_col	colour specification for 1:1 line.
seed	integer; random seed to use for PIT or quantile residuals.

response_derivatives *Derivatives on the response scale from an estimated GAM*

Description

Derivatives on the response scale from an estimated GAM

Usage

```
response_derivatives(object, ...)

## Default S3 method:
response_derivatives(object, ...)

## S3 method for class 'gamm'
response_derivatives(object, ...)

## S3 method for class 'gam'
```

```

response_derivatives(
  object,
  focal = NULL,
  data = NULL,
  order = 1L,
  type = c("forward", "backward", "central"),
  scale = c("response", "linear_predictor"),
  method = c("gaussian", "mh", "inla", "user"),
  n = 100,
  eps = 1e-07,
  n_sim = 10000,
  level = 0.95,
  seed = NULL,
  mvn_method = c("mvnfast", "mgcv"),
  ...
)

## S3 method for class 'scam'
response_derivatives(
  object,
  focal = NULL,
  data = NULL,
  order = 1L,
  type = c("forward", "backward", "central"),
  scale = c("response", "linear_predictor"),
  method = c("gaussian", "mh", "inla", "user"),
  n = 100,
  eps = 1e-07,
  n_sim = 10000,
  level = 0.95,
  seed = NULL,
  mvn_method = c("mvnfast", "mgcv"),
  ...
)

```

Arguments

object	an R object to compute derivatives for.
...	arguments passed to other methods and on to <code>fitted_samples()</code>
focal	character; name of the focal variable. The response derivative of the response with respect to this variable will be returned. All other variables involved in the model will be held at constant values. This can be missing if supplying <code>data</code> , in which case, the focal variable will be identified as the one variable that is not constant.
data	a data frame containing the values of the model covariates at which to evaluate the first derivatives of the smooths. If supplied, all but one variable must be held at a constant value.
order	numeric; the order of derivative.

type	character; the type of finite difference used. One of "forward", "backward", or "central".
scale	character; should the derivative be estimated on the response or the linear predictor (link) scale? One of "response" (the default), or "linear predictor".
method	character; which method should be used to draw samples from the posterior distribution. "gaussian" uses a Gaussian (Laplace) approximation to the posterior. "mh" uses a Metropolis Hastings sample that alternates t proposals with proposals based on a shrunken version of the posterior covariance matrix. "inla" uses a variant of Integrated Nested Laplace Approximation due to Wood (2019), (currently not implemented). "user" allows for user-supplied posterior draws (currently not implemented).
n	numeric; the number of points to evaluate the derivative at (if data is not supplied).
eps	numeric; the finite difference.
n_sim	integer; the number of simulations used in computing the simultaneous intervals.
level	numeric; $0 < \text{level} < 1$; the coverage level of the credible interval. The default is 0.95 for a 95% interval.
seed	numeric; a random seed for the simulations.
mvn_method	character; one of "mvnfast" or "mgcv". The default is uses <code>mvnfast::rmvn()</code> , which can be considerably faster at generate large numbers of MVN random values than <code>mgcv::rmvn()</code> , but which might not work for some marginal fits, such as those where the covariance matrix is close to singular.

Value

A tibble, currently with the following variables:

- `.row`: integer, indexing the row of data each row in the output represents
- `.focal`: the name of the variable for which the partial derivative was evaluated,
- `.derivative`: the estimated partial derivative,
- `.lower_ci`: the lower bound of the confidence or interval,
- `.upper_ci`: the upper bound of the confidence or interval,
- additional columns containing the covariate values at which the derivative was evaluated.

Author(s)

Gavin L. Simpson

Examples

```
library("ggplot2")
library("patchwork")
load_mgcv()

df <- data_sim("eg1", dist = "negbin", scale = 0.25, seed = 42)
```

```

# fit the GAM (note: for execution time reasons using bam())
m <- bam(y ~ s(x0) + s(x1) + s(x2) + s(x3),
           data = df, family = nb(), method = "fREML"
         )

# data slice through data along x2 - all other covariates will be set to
# typical values (value closest to median)
ds <- data_slice(m, x2 = evenly(x2, n = 100))

# fitted values along x2
fv <- fitted_values(m, data = ds)

# response derivatives - ideally n_sim = >10000
y_d <- response_derivatives(m,
                             data = ds, type = "central", focal = "x2",
                             eps = 0.01, seed = 21, n_sim = 1000
                           )

# draw fitted values along x2
p1 <- fv |>
  ggplot(aes(x = x2, y = .fitted)) +
  geom_ribbon(aes(ymin = .lower_ci, ymax = .upper_ci, y = NULL),
              alpha = 0.2
            ) +
  geom_line() +
  labs(
    title = "Estimated count as a function of x2",
    y = "Estimated count"
  )

# draw response derivatives
p2 <- y_d |>
  ggplot(aes(x = x2, y = .derivative)) +
  geom_ribbon(aes(ymin = .lower_ci, ymax = .upper_ci), alpha = 0.2) +
  geom_line() +
  labs(
    title = "Estimated 1st derivative of estimated count",
    y = "First derivative"
  )

# draw both panels
p1 + p2 + plot_layout(nrow = 2)

```

Description

A rootogram is a model diagnostic tool that assesses the goodness of fit of a statistical model. The observed values of the response are compared with those expected from the fitted model. For dis-

crete, count responses, the frequency of each count (0, 1, 2, etc) in the observed data and expected from the conditional distribution of the response implied by the model are compared. For continuous variables, the observed and expected frequencies are obtained by grouping the data into bins. The rootogram is drawn using `ggplot2::ggplot()` graphics. The design closely follows Kleiber & Zeileis (2016).

Usage

```
rootogram(object, ...)
## S3 method for class 'gam'
rootogram(object, max_count = NULL, breaks = "Sturges", ...)
```

Arguments

object	an R object
...	arguments passed to other methods
max_count	integer; the largest count to consider
breaks	for continuous responses, how to group the response. Can be anything that is acceptable as the <code>breaks</code> argument of <code>graphics::hist.default()</code>

References

Kleiber, C., Zeileis, A., (2016) Visualizing Count Data Regressions Using Rootograms. *Am. Stat.* **70**, 296–303. doi:10.1080/00031305.2016.1173590

Examples

```
load_mgcv()
df <- data_sim("eg1", n = 1000, dist = "poisson", scale = 0.1, seed = 6)
# A poisson example
m <- gam(y ~ s(x0, bs = "cr") + s(x1, bs = "cr") + s(x2, bs = "cr") +
  s(x3, bs = "cr"), family = poisson(), data = df, method = "REML")
rg <- rootogram(m)
rg
draw(rg) # plot the rootogram

# A Gaussian example
df <- data_sim("eg1", dist = "normal", seed = 2)
m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = "REML")
draw(rootogram(m, breaks = "FD"), type = "suspended")
```

rtw*Simulator for tweedie LSS models*

Description

Simulate random deviates from a Tweedie distribution with given parameters μ , p , and ϕ . Works with vector values for all parameters, unlike the version on *mgcv*.

Usage

```
rtw(mu, p, phi)
```

Arguments

mu	numeric vector of mean values of Tweedie distribution.
p	numeric vector of values for the power parameter of the Tweedie distribution.
phi	numeric vector of values for the scale parameter ϕ of the Tweedie distribution.

scale_fill_partial_effect

Default diverging red-blue colour palette for partial effects

Description

Default diverging red-blue colour palette for partial effects

Usage

```
scale_fill_partial_effect(
  name = "Partial effect",
  ...
  na.value = "grey50",
  guide = "colourbar",
  direction = -1
)
```

Arguments

name	The name of the scale. Used as the legend title. If NULL the legend title will be omitted.
...	arguments passed to ggplot2::continuous_scale() .
na.value	Missing values will be replaced with this value (colour).
guide	A function used to create a guide or its name. See ggplot2::guides() for more information.
direction	Sets the order of colours in the scale. If 1, the default, colours are as output by RColorBrewer::brewer.pal() . If -1, the order of colours is reversed.

seq_min_max_eps	<i>Create a sequence of evenly-spaced values adjusted to accommodate a small adjustment</i>
-----------------	---

Description

Creates a sequence of n evenly-spaced values over the range $\min(x) - \max(x)$, where the minimum and maximum are adjusted such that they are always contained within the range of x when x may be shifted forwards or backwards by an amount related to eps . This is particularly useful in computing derivatives via finite differences where without this adjustment we may be predicting for values outside the range of the data and hence the constraints of the penalty.

Usage

```
seq_min_max_eps(x, n, order, type = c("forward", "backward", "central"), eps)
```

Arguments

x	numeric; vector over which evenly-spaced values are returned
n	numeric; the number of evenly-spaced values to return
order	integer; the order of derivative. Either 1 or 2 for first or second order derivatives
type	character; the type of finite difference used. One of "forward", "backward", or "central"
eps	numeric; the finite difference

Value

A numeric vector of length n .

shift_values	<i>Shift numeric values in a data frame by an amount eps</i>
--------------	--

Description

Shift numeric values in a data frame by an amount eps

Usage

```
shift_values(df, h, i, FUN = `+`, focal = NULL)
```

Arguments

df	a data frame or tibble.
h	numeric; the amount to shift values in df by.
i	logical; a vector indexing columns of df that should not be included in the shift.
FUN	function; a function to apply the shift. Typically + or -.
focal	character; the focal variable when computing partial derivatives. This allows shifting only the focal variable by eps.

simulate.gam

Simulate from the posterior distribution of a GAM

Description

Simulations from the posterior distribution of a fitted GAM model involve computing predicted values for the observation data for which simulated data are required, then generating random draws from the probability distribution used when fitting the model.

Usage

```
## S3 method for class 'gam'
simulate(
  object,
  nsim = 1,
  seed = NULL,
  data = newdata,
  weights = NULL,
  ...,
  newdata = NULL
)

## S3 method for class 'gamm'
simulate(
  object,
  nsim = 1,
  seed = NULL,
  data = newdata,
  weights = NULL,
  ...,
  newdata = NULL
)

## S3 method for class 'scam'
simulate(
  object,
  nsim = 1,
```

```

  seed = NULL,
  data = newdata,
  weights = NULL,
  ...,
  newdata = NULL
)

```

Arguments

object	a fitted GAM, typically the result of a call to <code>mgcv::gam</code> or <code>mgcv::gamm()</code> .
nsim	numeric; the number of posterior simulations to return.
seed	numeric; a random seed for the simulations.
data	data frame; new observations at which the posterior draws from the model should be evaluated. If not supplied, the data used to fit the model will be used for newdata, if available in object.
weights	numeric; a vector of prior weights. If newdata is null then defaults to <code>object[["prior.weights"]]</code> , otherwise a vector of ones.
...	arguments passed to methods. <code>simulate.gam()</code> and <code>simulate.scam()</code> pass ... on to <code>predict.gam()</code> . As such you can pass additional arguments such as <code>terms</code> , <code>exclude</code> , to select which model terms are included in the predictions. This may be useful, for example, for excluding the effects of random effect terms.
newdata	Deprecated. Use data instead.

Details

For `simulate.gam()` to function, the `family` component of the fitted model must contain, or be updatable to contain, the required random number generator. See `mgcv::fix.family.rd()`.

Value

(Currently) A data frame with `nsim` columns.

Author(s)

Gavin L. Simpson

Examples

```

load_mgcv()
dat <- data_sim("eg1", n = 400, dist = "normal", scale = 2, seed = 2)
m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

sims <- simulate(m1, nsim = 5, seed = 42)
head(sims)

```

smallAges

Lead-210 age-depth measurements for Small Water

Description

A dataset containing lead-210 based age depth measurements for the SMALL1 core from Small Water.

Format

A data frame with 12 rows and 7 variables.

Details

The variables are as follows:

- Depth
- Drymass
- Date
- Age
- Error
- SedAccRate
- SedPerCentChange

Source

Simpson, G.L. (Unpublished data).

smooths

Names of smooths in a GAM

Description

Names of smooths in a GAM

Usage

```
smooths(object)

## Default S3 method:
smooths(object)

## S3 method for class 'gamm'
smooths(object)

## S3 method for class 'gamm4'
smooths(object)
```

Arguments

- object a fitted GAM or related model. Typically the result of a call to `mgcv:::gam()`, `mgcv:::bam()`, or `mgcv:::gamm()`.

smooth_coefs

Coefficients for a particular smooth

Description

Returns a vector of model coefficients of the parametric terms that represent the supplied smooth.

Usage

```
smooth_coefs(object, ...)

## S3 method for class 'gam'
smooth_coefs(object, select, term = deprecated(), ...)

## S3 method for class 'bam'
smooth_coefs(object, select, term = deprecated(), ...)

## S3 method for class 'gamm'
smooth_coefs(object, select, term = deprecated(), ...)

## S3 method for class 'gamm4'
smooth_coefs(object, select, term = deprecated(), ...)

## S3 method for class 'list'
smooth_coefs(object, select, term = deprecated(), ...)

## S3 method for class 'mgcv.smooth'
smooth_coefs(object, model, ...)

## S3 method for class 'scam'
smooth_coefs(object, select, term = deprecated(), ...)
```

Arguments

- object a fitted GAM(M) object, or, for the "mgcv.smooth" method, an object that inherits from class `mgcv.smooth`.
- ... arguments passed to other methods.
- select character; the label of the smooth whose coefficients will be returned.
- term [Deprecated] Use `select` instead.
- model a fitted GAM(M) object.

Value

A numeric vector of model coefficients.

Author(s)

Gavin L. Simpson

See Also

[smooth_coef_indices\(\)](#) for extracting the indices of the coefficients for a particular smooth.

Examples

```
load_mgcv()
df <- data_sim("eg1", seed = 2)
m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = "REML")

## IGNORE_RDIFF_BEGIN
smooth_coefs(m, select = "s(x2)")
## IGNORE_RDIFF_END
```

smooth_coef_indices *Indices of the parametric terms for a particular smooth*

Description

Returns a vector of indices of the parametric terms that represent the supplied smooth. Useful for extracting model coefficients and columns of their covariance matrix.

Usage

```
smooth_coef_indices(smooth)
```

Arguments

smooth an object that inherits from class `mgcv.smooth`

Value

A numeric vector of indices.

Author(s)

Gavin L. Simpson

See Also

[smooth_coefs\(\)](#) for extracting the coefficients for a particular smooth.

`smooth_data`*Generate regular data over the covariates of a smooth*

Description

Generate regular data over the covariates of a smooth

Usage

```
smooth_data(
  model,
  id,
  n = 100,
  n_2d = NULL,
  n_3d = NULL,
  n_4d = NULL,
  offset = NULL,
  include_all = FALSE,
  var_order = NULL
)
```

Arguments

<code>model</code>	a fitted model
<code>id</code>	the number ID of the smooth within <code>model</code> to process.
<code>n</code>	numeric; the number of new observations to generate.
<code>n_2d</code>	numeric; the number of new observations to generate for the second dimension of a 2D smooth. <i>Currently ignored.</i>
<code>n_3d</code>	numeric; the number of new observations to generate for the third dimension of a 3D smooth.
<code>n_4d</code>	numeric; the number of new observations to generate for the dimensions higher than 2 (!) of a k D smooth ($k \geq 4$). For example, if the smooth is a 4D smooth, each of dimensions 3 and 4 will get <code>n_4d</code> new observations.
<code>offset</code>	numeric; value of the model offset to use.
<code>include_all</code>	logical; include all covariates involved in the smooth? if FALSE, only the covariates involved in the smooth will be included in the returned data frame. If TRUE, a representative value will be included for all other covariates in the model that aren't actually used in the smooth. This can be useful if you want to pass the returned data frame on to <code>mgcv::PredictMat()</code> .
<code>var_order</code>	character; the order in which the terms in the smooth should be processed. Only useful for tensor products with at least one 2d marginal smooth.

Examples

```
load_mgcv()
df <- data_sim("eg1", seed = 42)
m <- bam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df)

# generate data over range of x1 for smooth s(x1)
smooth_data(m, id = 2)

# generate data over range of x1 for smooth s(x1), with typical value for
# other covariates in the model
smooth_data(m, id = 2, include_all = TRUE)
```

smooth_dim

Dimension of a smooth

Description

Extracts the dimension of an estimated smooth.

Usage

```
smooth_dim(object)

## S3 method for class 'gam'
smooth_dim(object)

## S3 method for class 'gamm'
smooth_dim(object)

## S3 method for class 'mgcv.smooth'
smooth_dim(object)
```

Arguments

object an R object. See Details for list of supported objects.

Details

This is a generic function with methods for objects of class "gam", "gamm", and "mgcv.smooth".

Value

A numeric vector of dimensions for each smooth.

Author(s)

Gavin L. Simpson

smooth_estimates	<i>Evaluate smooths at covariate values</i>
------------------	---

Description

Evaluate a smooth at a grid of evenly spaced value over the range of the covariate associated with the smooth. Alternatively, a set of points at which the smooth should be evaluated can be supplied. `smooth_estimates()` is a new implementation of `evaluate_smooth()`, and replaces that function, which has been removed from the package.

Usage

```
smooth_estimates(object, ...)

## S3 method for class 'gam'
smooth_estimates(
  object,
  select = NULL,
  smooth = deprecated(),
  n = 100,
  n_3d = 16,
  n_4d = 4,
  data = NULL,
  unconditional = FALSE,
  overall_uncertainty = TRUE,
  dist = NULL,
  unnest = TRUE,
  partial_match = FALSE,
  clip = FALSE,
  ...
)
```

Arguments

<code>object</code>	an object of class "gam" or "gamm".
<code>...</code>	arguments passed to other methods.
<code>select</code>	character; select which smooth's posterior to draw from. The default (NULL) means the posteriors of all smooths in <code>model</code> will be sampled from. If supplied, a character vector of requested terms.
<code>smooth</code>	[Deprecated] Use <code>select</code> instead.
<code>n</code>	numeric; the number of points over the range of the covariate at which to evaluate the smooth.
<code>n_3d, n_4d</code>	numeric; the number of points over the range of last covariate in a 3D or 4D smooth. The default is NULL which achieves the standard behaviour of using <code>n</code> points over the range of all covariate, resulting in n^d evaluation points, where d

is the dimension of the smooth. For $d > 2$ this can result in very many evaluation points and slow performance. For smooths of $d > 4$, the value of n_{-4d} will be used for all dimensions > 4 , unless this is NULL, in which case the default behaviour (using n for all dimensions) will be observed.

data	a data frame of covariate values at which to evaluate the smooth.
unconditional	logical; should confidence intervals include the uncertainty due to smoothness selection? If TRUE, the corrected Bayesian covariance matrix will be used.
overall_uncertainty	logical; should the uncertainty in the model constant term be included in the standard error of the evaluate values of the smooth?
dist	numeric; if greater than 0, this is used to determine when a location is too far from data to be plotted when plotting 2-D smooths. The data are scaled into the unit square before deciding what to exclude, and dist is a distance within the unit square. See <code>mgcv:::exclude.too.far()</code> for further details.
unnest	logical; unnest the smooth objects?
partial_match	logical; in the case of character select, should select match partially against smooths? If partial_match = TRUE, select must only be a single string, a character vector of length 1.
clip	logical; should evaluation points be clipped to the boundary of a soap film smooth? The default is FALSE, which will return NA for any point that is deemed to lie outside the boundary of the soap film.

Value

A data frame (tibble), which is of class "smooth_estimates".

Examples

```
load_mgcv()

dat <- data_sim("eg1", n = 400, dist = "normal", scale = 2, seed = 2)
m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

## evaluate all smooths
smooth_estimates(m1)

## or selected smooths
smooth_estimates(m1, select = c("s(x0)", "s(x1)"))

# parallel processing of smooths
if (requireNamespace("mirai") && requireNamespace("carrier")) {
  library("mirai")
  daemons(2)                      # only low for CRAN requirements
  smooth_estimates(m1)
}
```

smooth_label	<i>Extract the label for a smooth used by 'mgcv'</i>
--------------	--

Description

The label 'mgcv' uses for smooths is useful in many contexts, including selecting smooths or labelling plots. `smooth_label()` extracts this label from an 'mgcv' smooth object, i.e. an object that inherits from class "`mgcv.smooth`". These would typically be found in the `$smooth` component of a GAM fitted by `mgcv::gam()` or `mgcv::bam()`, or related functions.

Usage

```
smooth_label(object, ...)

## S3 method for class 'gam'
smooth_label(object, id, ...)

## S3 method for class 'mgcv.smooth'
smooth_label(object, ...)
```

Arguments

<code>object</code>	an R object. Currently, methods for class "gam" and for mgcv smooth objects inheriting from class "mgcv.smooth" are supported.
<code>...</code>	arguments passed to other methods.
<code>id</code>	numeric; the indices of the smooths whose labels are to be extracted. If missing, labels for all smooths in the model are returned.

Value

A character vector.

Examples

```
load_mgcv()
df <- data_sim("gwf2", n = 100)
m <- gam(y ~ s(x), data = df, method = "REML")

# extract the smooth
sm <- get_smooths_by_id(m, id = 1)[[1]]

# extract the label
smooth_label(sm)

# or directly on the fitted GAM
smooth_label(m$smooth[[1]])

# or extract labels by index/position
smooth_label(m, id = 1)
```

smooth_samples	<i>Posterior draws for individual smooths</i>
----------------	---

Description

Returns draws from the posterior distributions of smooth functions in a GAM. Useful, for example, for visualising the uncertainty in individual estimated functions.

Usage

```
smooth_samples(model, ...)

## S3 method for class 'gam'
smooth_samples(
  model,
  select = NULL,
  term = deprecated(),
  n = 1,
  data = newdata,
  method = c("gaussian", "mh", "inla", "user"),
  seed = NULL,
  freq = FALSE,
  unconditional = FALSE,
  n_cores = 1L,
  n_vals = 200,
  burnin = 1000,
  thin = 1,
  t_df = 40,
  rw_scale = 0.25,
  rng_per_smooth = FALSE,
  draws = NULL,
  partial_match = NULL,
  mvn_method = c("mvnfast", "mgcv"),
  ...,
  newdata = NULL,
  ncores = NULL
)
```

Arguments

- | | |
|-------|---|
| model | a fitted model of the supported types |
| ... | arguments passed to other methods. For <code>fitted_samples()</code> , these are passed on to <code>mgcv::predict.gam()</code> . For <code>posterior_samples()</code> these are passed on to <code>fitted_samples()</code> . For <code>predicted_samples()</code> these are passed on to the relevant <code>simulate()</code> method. |

select	character; select which smooth's posterior to draw from. The default (NULL) means the posteriors of all smooths in <code>model</code> will be sampled from. If supplied, a character vector of requested terms.
term	[Deprecated] Use <code>select</code> instead.
n	numeric; the number of posterior samples to return.
data	data frame; new observations at which the posterior draws from the model should be evaluated. If not supplied, the data used to fit the model will be used for <code>data</code> , if available in <code>model</code> .
method	character; which method should be used to draw samples from the posterior distribution. "gaussian" uses a Gaussian (Laplace) approximation to the posterior. "mh" uses a Metropolis Hastings sampler that alternates t proposals with proposals based on a shrunken version of the posterior covariance matrix. "inla" uses a variant of Integrated Nested Laplace Approximation due to Wood (2019), (currently not implemented). "user" allows for user-supplied posterior draws (currently not implemented).
seed	numeric; a random seed for the simulations.
freq	logical; TRUE to use the frequentist covariance matrix of the parameter estimators, FALSE to use the Bayesian posterior covariance matrix of the parameters.
unconditional	logical; if TRUE (and <code>freq == FALSE</code>) then the Bayesian smoothing parameter uncertainty corrected covariance matrix is used, if available.
n_cores	number of cores for generating random variables from a multivariate normal distribution. Passed to <code>mvnfast::rmvnm()</code> . Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).
n_vals	numeric; how many locations to evaluate the smooth at if <code>data</code> not supplied
burnin	numeric; number of samples to discard as the burnin draws. Only used with <code>method = "mh"</code> .
thin	numeric; the number of samples to skip when taking <code>n</code> draws. Results in <code>thin * n</code> draws from the posterior being taken. Only used with <code>method = "mh"</code> .
t_df	numeric; degrees of freedom for t distribution proposals. Only used with <code>method = "mh"</code> .
rw_scale	numeric; Factor by which to scale posterior covariance matrix when generating random walk proposals. Negative or non finite to skip the random walk step. Only used with <code>method = "mh"</code> .
rng_per_smooth	logical; if TRUE, the behaviour of <code>gratia</code> version 0.8.1 or earlier is used, whereby a separate call to the random number generator (RNG) is performed for each smooth. If FALSE, a single call to the RNG is performed for all model parameters
draws	matrix; user supplied posterior draws to be used when <code>method = "user"</code> .
partial_match	logical; should smooths be selected by partial matches with <code>select</code> ? If TRUE, <code>select</code> can only be a single string to match against.
mvn_method	character; one of "mvnfast" or "mgcv". The default is uses <code>mvnfast::rmvnm()</code> , which can be considerably faster at generate large numbers of MVN random values than <code>mgcv::rmvnm()</code> , but which might not work for some marginal fits, such as those where the covariance matrix is close to singular.

newdata	Deprecated: use data instead.
ncores	Deprecated; use n_cores instead. The number of cores for generating random variables from a multivariate normal distribution. Passed to mvnfast::rmvn() . Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).

Value

A tibble with additional classes "smooth_samples" and "posterior_samples".

For the "gam" method, the columns currently returned (not in this order) are:

- .smooth; character vector. Indicates the smooth function for that particular draw,
- .term; character vector. Similar to smooth, but will contain the full label for the smooth, to differentiate factor-by smooths for example.
- .by; character vector. If the smooth involves a by term, the by variable will be named here, NA_character_ otherwise.
- .row; integer. A vector of values seq_len(n_vals), repeated if n > 1L. Indexes the row in data for that particular draw.
- .draw; integer. A vector of integer values indexing the particular posterior draw that each row belongs to.
- .value; numeric. The value of smooth function for this posterior draw and covariate combination.
- xxx; numeric. A series of one or more columns containing data required for the smooth, named as per the variables involved in the respective smooth.
- Additional columns will be present in the case of factor by smooths, which will contain the level for the factor named in by_variable for that particular posterior draw.

Warning

The set of variables returned and their order in the tibble is subject to change in future versions.
Don't rely on position.

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()

dat <- data_sim("eg1", n = 400, seed = 2)
m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

sms <- smooth_samples(m1, select = "s(x0)", n = 5, seed = 42)

sms
```

```
## A factor by example (with a spurious covariate x0)
dat <- data_sim("eg4", n = 1000, seed = 2)

## fit model...
m2 <- gam(y ~ fac + s(x2, by = fac) + s(x0), data = dat)
sms <- smooth_samples(m2, n = 5, seed = 42)
draw(sms)
```

smooth_terms

*List the variables involved in smooths***Description****[Experimental]****Usage**

smooth_terms(object, ...)

Arguments

- object an R object the result of a call to `mgcv:::gam()`, `mgcv:::bam()`, or `mgcv:::gamm()`, or that inherits from classes "gam" or "mgcv.smooth", or "fs.interaction".
 ... arguments passed to other methods. Currently unused.

smooth_type

*Determine the type of smooth and return it n a human readable form***Description**

Determine the type of smooth and return it n a human readable form

Usage

```
smooth_type(smooth)

## Default S3 method:
smooth_type(smooth)

## S3 method for class 'tprs.smooth'
smooth_type(smooth)

## S3 method for class 'ts.smooth'
smooth_type(smooth)
```

```
## S3 method for class 'cr.smooth'  
smooth_type(smooth)  
  
## S3 method for class 'cs.smooth'  
smooth_type(smooth)  
  
## S3 method for class 'cyclic.smooth'  
smooth_type(smooth)  
  
## S3 method for class 'pspline.smooth'  
smooth_type(smooth)  
  
## S3 method for class 'cpspline.smooth'  
smooth_type(smooth)  
  
## S3 method for class 'Bspline.smooth'  
smooth_type(smooth)  
  
## S3 method for class 'duchon.spline'  
smooth_type(smooth)  
  
## S3 method for class 'fs.interaction'  
smooth_type(smooth)  
  
## S3 method for class 'sz.interaction'  
smooth_type(smooth)  
  
## S3 method for class 'gp.smooth'  
smooth_type(smooth)  
  
## S3 method for class 'mrf.smooth'  
smooth_type(smooth)  
  
## S3 method for class 'random.effect'  
smooth_type(smooth)  
  
## S3 method for class 'sw'  
smooth_type(smooth)  
  
## S3 method for class 'sf'  
smooth_type(smooth)  
  
## S3 method for class 'soap.film'  
smooth_type(smooth)  
  
## S3 method for class 't2.smooth'  
smooth_type(smooth)
```

```

## S3 method for class 'sos.smooth'
smooth_type(smooth)

## S3 method for class 'tensor.smooth'
smooth_type(smooth)

## S3 method for class 'mpi.smooth'
smooth_type(smooth)

## S3 method for class 'mpd.smooth'
smooth_type(smooth)

## S3 method for class 'cx.smooth'
smooth_type(smooth)

## S3 method for class 'cv.smooth'
smooth_type(smooth)

## S3 method for class 'micx.smooth'
smooth_type(smooth)

## S3 method for class 'micv.smooth'
smooth_type(smooth)

## S3 method for class 'mdcx.smooth'
smooth_type(smooth)

## S3 method for class 'mdcv.smooth'
smooth_type(smooth)

## S3 method for class 'miso.smooth'
smooth_type(smooth)

## S3 method for class 'mifo.smooth'
smooth_type(smooth)

```

Arguments

`smooth` an object inheriting from class `mgcv.smooth`.

<code>spline_values</code>	<i>Evaluate a spline at provided covariate values</i>
----------------------------	---

Description

Evaluate a spline at provided covariate values

Usage

```
spline_values(
  smooth,
  data,
  model,
  unconditional,
  overall_uncertainty = TRUE,
  frequentist = FALSE
)
```

Arguments

smooth	currently an object that inherits from class <code>mgcv.smooth</code> .
data	a data frame of values to evaluate <code>smooth</code> at.
model	a fitted model; currently only <code>mgcv:::gam()</code> and <code>mgcv:::bam()</code> models are supported.
unconditional	logical; should confidence intervals include the uncertainty due to smoothness selection? If TRUE, the corrected Bayesian covariance matrix will be used.
overall_uncertainty	logical; should the uncertainty in the model constant term be included in the standard error of the evaluate values of the smooth?
frequentist	logical; use the frequentist covariance matrix?

term_names*Extract names of all variables needed to fit a GAM or a smooth*

Description

Extract names of all variables needed to fit a GAM or a smooth

Usage

```
term_names(object, ...)

## S3 method for class 'gam'
term_names(object, ...)

## S3 method for class 'mgcv.smooth'
term_names(object, ...)

## S3 method for class 'gamm'
term_names(object, ...)
```

Arguments

- object a fitted GAM object (inheriting from class "gam" or an [mgcv::smooth.construct](#) smooth object, inheriting from class "mgcv.smooth").
 ... arguments passed to other methods. Not currently used.

Value

A vector of variable names required for terms in the model

term_variables	<i>Names of variables involved in a specified model term</i>
----------------	--

Description

Given the name (a term label) of a term in a model, returns the names of the variables involved in the term.

Usage

```
term_variables(object, term, ...)

## S3 method for class 'terms'
term_variables(object, term, ...)

## S3 method for class 'gam'
term_variables(object, term, ...)

## S3 method for class 'bam'
term_variables(object, term, ...)
```

Arguments

- object an R object on which method dispatch is performed
 term character; the name of a model term, in the sense of `attr(terms(object), "term.labels")`. Currently not checked to see if the term exists in the model.
 ... arguments passed to other methods.

Value

A character vector of variable names.

theta*General extractor for additional parameters in mgcv models*

Description

General extractor for additional parameters in mgcv models

Usage

```
theta(object, ...)

## S3 method for class 'gam'
theta(object, transform = TRUE, ...)

## S3 method for class 'family'
theta(object, transform = TRUE, ...)
```

Arguments

object	a fitted model
...	arguments passed to other methods.
transform	logical; transform to the natural scale of the parameter

Value

Returns a numeric vector of additional parameters

Examples

```
load_mgcv()
df <- data_sim("eg1", dist = "poisson", seed = 42, scale = 1 / 5)
m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3),
          data = df, method = "REML",
          family = nb())
p <- theta(m)
```

tidy_basis*A tidy basis representation of a smooth object*

Description

Takes an object of class `mgcv.smooth` and returns a tidy representation of the basis.

Usage

```
tidy_basis(smooth, data = NULL, at = NULL, coefs = NULL, p_ident = NULL)
```

Arguments

smooth	a smooth object of or inheriting from class " <code>mgcv.smooth</code> ". Typically, such objects are returned as part of a fitted GAM or GAMM in the <code>\$smooth</code> component of the model object or the <code>\$gam\$smooth</code> component if the model was fitted by <code>mgcv::gamm()</code> or <code>gamm4::gamm4()</code> .
data	a data frame containing the variables used in <code>smooth</code> .
at	a data frame containing values of the smooth covariate(s) at which the basis should be evaluated.
coefs	numeric; an optional vector of coefficients for the smooth
p_ident	logical vector; only used for handling <code>scam::scam()</code> smooths.

Value

A tibble.

Author(s)

Gavin L. Simpson

Examples

```
load_mgcv()

df <- data_sim("eg1", n = 400, seed = 42)

# fit model
m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = "REML")

# tidy representaiton of a basis for a smooth definition
# extract the smooth
sm <- get_smooth(m, "s(x2)")
# get the tidy basis - need to pass where we want it to be evaluated
bf <- tidy_basis(sm, at = df)

# can weight the basis by the model coefficients for this smooth
bf <- tidy_basis(sm, at = df, coefs = smooth_coefs(sm, model = m))
```

too_far	<i>Exclude values that lie too far from the support of data</i>
---------	---

Description

Identifies pairs of covariate values that lie too far from the original data. The function is currently a basic wrapper around [mgcv:::exclude.too.far\(\)](#).

Usage

```
too_far(x, y, ref_1, ref_2, dist = NULL)
```

Arguments

x, y	numeric; vector of values of the covariates to compare with the observed data
ref_1, ref_2	numeric; vectors of covariate values that represent the reference against which x1 and x2 ^c are compared
dist	if supplied, a numeric vector of length 1 representing the distance from the data beyond which an observation is excluded. For example, you want to exclude values that lie further from an observation than 10% of the range of the observed data, use 0.1.

Value

Returns a logical vector of the same length as x1.

too_far_to_na	<i>Set rows of data to NA if the lie too far from a reference set of values</i>
---------------	---

Description

Set rows of data to NA if the lie too far from a reference set of values

Usage

```
too_far_to_na(smooth, input, reference, cols, dist = NULL)
```

Arguments

smooth	an mgcv smooth object
input	data frame containing the input observations and the columns to be set to NA
reference	data frame containing the reference values
cols	character vector of columns whose elements will be set to NA if the data lies too far from the reference set
dist	numeric, the distance from the reference set beyond which elements of input will be set to NA

to_na	<i>Sets the elements of vector to NA</i>
-------	--

Description

Given a vector *i* indexing the elements of *x*, sets the selected elements of *x* to NA.

Usage

```
to_na(x, i)
```

Arguments

<i>x</i>	vector of values
<i>i</i>	vector of values used to subset <i>x</i>

Value

Returns *x* with possibly some elements set to NA

transform_fun	<i>Transform estimated values and confidence intervals by applying a function</i>
---------------	---

Description

Transform estimated values and confidence intervals by applying a function

Usage

```
transform_fun(object, fun = NULL, ...)

## S3 method for class 'smooth_estimates'
transform_fun(object, fun = NULL, constant = NULL, ...)

## S3 method for class 'smooth_samples'
transform_fun(object, fun = NULL, constant = NULL, ...)

## S3 method for class 'mgcv_smooth'
transform_fun(object, fun = NULL, constant = NULL, ...)

## S3 method for class 'evaluated_parametric_term'
transform_fun(object, fun = NULL, constant = NULL, ...)

## S3 method for class 'parametric_effects'
```

```
transform_fun(object, fun = NULL, constant = NULL, ...)

## S3 method for class 'tbl_df'
transform_fun(object, fun = NULL, column = NULL, constant = NULL, ...)
```

Arguments

object	an object to apply the transform function to.
fun	the function to apply.
...	additional arguments passed to methods.
constant	numeric; a constant to apply before transformation.
column	character; for the "tbl_df" method, which column to transform.

Value

Returns object but with the estimate and upper and lower values of the confidence interval transformed via the function.

Author(s)

Gavin L. Simpson

typical_values	<i>Typical values of model covariates</i>
----------------	---

Description

Typical values of model covariates

Usage

```
typical_values(object, ...)

## S3 method for class 'gam'
typical_values(
  object,
  vars = everything(),
  envir = environment(formula(object)),
  data = NULL,
  ...
)

## S3 method for class 'data.frame'
typical_values(object, vars = everything(), ...)
```

Arguments

object	a fitted GAM(M) model.
...	arguments passed to other methods.
vars	terms to include or exclude from the returned object. Uses tidyselect principles.
envir	the environment within which to recreate the data used to fit object.
data	an optional data frame of data used to fit the model if reconstruction of the data from the model doesn't work.

user_draws*Handle user-supplied posterior draws*

Description

Handle user-supplied posterior draws

Usage

```
user_draws(model, draws, ...)
## S3 method for class 'gam'
user_draws(model, draws, index = NULL, ...)
```

Arguments

model	a fitted R model. Currently only models fitted by <code>mgcv::gam()</code> or <code>mgcv::bam()</code> , or return an object that <i>inherits</i> from such objects are supported. Here, "inherits" is used in a loose fashion; models fitted by <code>scam::scam()</code> are support even though those models don't strictly inherit from class "gam" as far as <code>inherits()</code> is concerned.
draws	matrix; user supplied posterior draws to be used when <code>method = "user"</code> .
...	arguments passed to methods.
index	a vector to index (subset) the columns of <code>draws</code> .

Details

The supplied `draws` must be a matrix (currently), with 1 column per model coefficient, and 1 row per posterior draw. The "gam" method has argument `index`, which can be used to subset (select) coefficients (columns) of `draws`. `index` can be any valid way of selecting (indexing) columns of a matrix. `index` is useful if you have a set of posterior draws for the entire model (say from `mgcv::gam.mh()`) and you wish to use those draws for an individual smooth, via `smooth_samples()`.

variance_comp

*Variance components of smooths from smoothness estimates***Description**

A wrapper to `mgcv:::gam.vcomp()` which returns the smoothing parameters expressed as variance components.

Usage

```
variance_comp(object, ...)

## S3 method for class 'gam'
variance_comp(object, rescale = TRUE, coverage = 0.95, ...)
```

Arguments

- | | |
|----------|--|
| object | an R object. Currently only models fitted by <code>mgcv:::gam()</code> or <code>mgcv:::bam()</code> are supported. |
| ... | arguments passed to other methods |
| rescale | logical; for numerical stability reasons the penalty matrices of smooths are rescaled before fitting. If <code>rescale = TRUE</code> , this rescaling is undone, resulting in variance components that are on their original scale. This is needed if comparing with other mixed model software, such as <code>lmer()</code> . |
| coverage | numeric; a value between 0 and 1 indicating the (approximate) coverage of the confidence interval that is returned. |

Details

This function is a wrapper to `mgcv:::gam.vcomp()` which performs three additional services

- it suppresses the annoying text output that `mgcv:::gam.vcomp()` prints to the terminal,
- returns the variance of each smooth as well as the standard deviation, and
- returns the variance components as a tibble.

vars_from_label

*Returns names of variables from a smooth label***Description**

Returns names of variables from a smooth label

Usage

```
vars_from_label(label)
```

Arguments

label character; a length 1 character vector containing the label of a smooth.

Examples

```
vars_from_label("s(x1)")
vars_from_label("t2(x1,x2,x3)")
```

which_smooths	<i>Identify a smooth term by its label</i>
---------------	--

Description

Identify a smooth term by its label

Usage

```
which_smooths(object, ...)

## Default S3 method:
which_smooths(object, ...)

## S3 method for class 'gam'
which_smooths(object, terms, ...)

## S3 method for class 'bam'
which_smooths(object, terms, ...)

## S3 method for class 'gamm'
which_smooths(object, terms, ...)
```

Arguments

object a fitted GAM.
 ... arguments passed to other methods.
 terms character; one or more (partial) term labels with which to identify required smooths.

worm_plot *Worm plot of model residuals*

Description

Worm plot of model residuals

Usage

```
worm_plot(model, ...)

## S3 method for class 'gam'
worm_plot(
  model,
  method = c("uniform", "simulate", "normal", "direct"),
  type = c("deviance", "response", "pearson"),
  n_uniform = 10,
  n_simulate = 50,
  level = 0.9,
  ylab = NULL,
  xlab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  ci_col = "black",
  ci_alpha = 0.2,
  point_col = "grey20",
  point_alpha = 1,
  line_col = "red",
  ...
)

## S3 method for class 'glm'
worm_plot(model, ...)

## S3 method for class 'lm'
worm_plot(model, ...)
```

Arguments

- model** a fitted model. Currently models inheriting from class "gam", as well as classes "glm" and "lm" from calls to `stats::glm` or `stats::lm` are supported.
- ...** arguments passed to other methods.
- method** character; method used to generate theoretical quantiles. The default is "uniform", which generates reference quantiles using random draws from a uniform distribution and the inverse cumulative distribution function (CDF) of the fitted values. The reference quantiles are averaged over `n_uniform` draws. "simulate"

generates reference quantiles by simulating new response data from the model at the observed values of the covariates, which are then residualised to generate reference quantiles, using `n_simulate` simulated data sets. "normal" generates reference quantiles using the standard normal distribution. "uniform" is more computationally efficient, but "simulate" allows reference bands to be drawn on the QQ-plot. "normal" should be avoided but is used as a fall back if a random number generator ("simulate") or the inverse of the CDF are not available from the family used during model fitting ("uniform"“).

Note that `method = "direct"` is deprecated in favour of `method = "uniform"`.

<code>type</code>	character; type of residuals to use. Only "deviance", "response", and "pearson" residuals are allowed.
<code>n_uniform</code>	numeric; number of times to randomize uniform quantiles in the direct computation method (<code>method = "uniform"</code>).
<code>n_simulate</code>	numeric; number of data sets to simulate from the estimated model when using the simulation method (<code>method = "simulate"</code>).
<code>level</code>	numeric; the coverage level for reference intervals. Must be strictly $0 < \text{level} < 1$. Only used with <code>method = "simulate"</code> .
<code>ylab</code>	character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
<code>xlab</code>	character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
<code>title</code>	character or expression; the title for the plot. See <code>ggplot2::labs()</code> . May be a vector, one per penalty.
<code>subtitle</code>	character or expression; the subtitle for the plot. See <code>ggplot2::labs()</code> . May be a vector, one per penalty.
<code>caption</code>	character or expression; the plot caption. See <code>ggplot2::labs()</code> . May be a vector, one per penalty.
<code>ci_col</code>	fill colour for the reference interval when <code>method = "simulate"</code> .
<code>ci_alpha</code>	alpha transparency for the reference interval when <code>method = "simulate"</code> .
<code>point_col</code>	colour of points on the QQ plot.
<code>point_alpha</code>	alpha transparency of points on the QQ plot.
<code>line_col</code>	colour used to draw the reference line.

Note

The wording used in `mgcv::qq.gam()` uses *direct* in reference to the simulated residuals method (`method = "simulated"`). To avoid confusion, `method = "direct"` is deprecated in favour of `method = "uniform"`.

Examples

```
load_mgcv()
## simulate binomial data...
dat <- data_sim("eg1", n = 200, dist = "binary", scale = .33, seed = 0)
p <- binomial()$linkinv(dat$f) # binomial p
```

```
n <- sample(c(1, 3), 200, replace = TRUE) # binomial n
dat <- transform(dat, y = rbinom(n, n, p), n = n)
m <- gam(y / n ~ s(x0) + s(x1) + s(x2) + s(x3),
  family = binomial, data = dat, weights = n,
  method = "REML"
)
## Worm plot; default using direct randomization of uniform quantiles
## Note no reference bands are drawn with this method.
worm_plot(m)

## Alternatively use simulate new data from the model, which
## allows construction of reference intervals for the Q-Q plot
worm_plot(m,
  method = "simulate", point_col = "steelblue",
  point_alpha = 0.4
)
## ... or use the usual normality assumption
worm_plot(m, method = "normal")
```

zooplankton

Madison lakes zooplankton data

Description

The Madison lake zooplankton data are from a long-term study in seasonal dynamics of zooplankton, collected by the Richard Lathrop. The data were collected from a chain of lakes in Wisconsin (Mendota, Monona, Kegnonsa, and Waubesa) approximately bi-weekly from 1976 to 1994. They consist of samples of the zooplankton communities, taken from the deepest point of each lake via vertical tow. The data are provided by the Wisconsin Department of Natural Resources and their collection and processing are fully described in Lathrop (2000).

Format

A data frame

Details

Each record consists of counts of a given zooplankton taxon taken from a subsample from a single vertical net tow, which was then scaled to account for the relative volume of subsample versus the whole net sample and the area of the net tow and rounded to the nearest 1000 to give estimated population density per m² for each taxon at each point in time in each sampled lake.

Source

Pedersen EJ, Miller DL, Simpson GL, Ross N. 2018. Hierarchical generalized additive models: an introduction with mgcv. *PeerJ Preprints* 6:e27320v1 doi:10.7287/peerj.preprints.27320v1.

References

- Lathrop RC. (2000). Madison Wisconsin Lakes Zooplankton 1976–1994. Environmental Data Initiative.

Index

* **data**
 bird_move, 23
 gss_vocab, 90
 ref_sims, 129
 smallAges, 141
 zooplankton, 167

* **draw methods**
 draw.rootogram, 65

* **utility**
 boundary, 23
 n_eta, 107

add_confint, 5
add_constant, 5
add_fitted, 6
add_fitted.gam, 7
add_fitted_samples, 8
add_partial_residuals, 9
add_posterior_samples
 (add_fitted_samples), 8
add_predicted_samples
 (add_fitted_samples), 8
add_residuals, 10
add_residuals.gam, 10
add_sizer, 11
add_smooth_samples
 (add_fitted_samples), 8
appraise, 12
assemble, 14
assemble.gam, 15

base::levels(), 37
base::seq(), 78
base::set.seed(), 35
base::zapsmall(), 118
basis, 19
basis(), 46, 60
basis_size, 22
bird_move, 23
boundary, 23

by_level(is_by_smooth), 92
by_variable(is_by_smooth), 92

check_is_mgcv_smooth(is_mgcv_smooth), 95
check_user_select_smooths, 24
coef.scam, 25
compare_smooths, 25
compare_smooths(), 48
concrvity(model_concurvity), 101
concrvity(), 62
conditional_values, 26
conditional_values(), 27, 48
confint.fderiv, 29
confint.gam, 31
confint.gamm(confint.gam), 31
confint.list(confint.gam), 31

data_combos, 33
data_sim, 34
data_sim(), 129
data_slice, 36
data_slice(), 37
derivative_samples, 40
derivatives, 38
derivatives(), 11
difference_smooths, 43
dispersion, 45
draw, 45
draw(), 58
draw.basis, 46
draw.compare_smooths, 47
draw.conditional_values, 48
draw.conditional_values(), 27
draw.derivatives, 49
draw.difference_smooth, 51
draw.evaluated_parametric_term, 52
draw.gam, 54
draw.gam(), 59
draw.gamlss, 58

draw.mgcv_smooth, 59
 draw.overall_concurvity
 (draw.pairwise_concurvity), 61
 draw.pairwise_concurvity, 61
 draw.parametric_effects, 62
 draw.partial_derivatives
 (draw.derivatives), 49
 draw.penalty_df, 63
 draw.rootogram, 65
 draw.smooth_estimates, 66
 draw.smooth_samples, 69

 edf, 71
 eval_smooth, 74
 evaluate_parametric_term, 73
 evaluate_parametric_term(), 53
 evaluate_smooth, 74
 evenly, 78
 evenly(), 37
 extract_link(link), 96

 factor_combos, 79
 family(), 80, 92, 98
 family.bam(family.gam), 79
 family.gam, 79
 family.gamm(family.gam), 79
 family.list(family.gam), 79
 family_name, 80
 family_type, 80
 fitted_samples, 81
 fitted_samples(), 8
 fitted_values, 84
 fitted_values(), 27
 fix_offset, 87
 fixed_effects(fixef.gam), 86
 fixef, 85
 fixef.gam, 86
 fixef.gamm(fixef.gam), 86
 fixef.glm(fixef.gam), 86
 fixef.lm(fixef.gam), 86

 gamm4::gamm4(), 80, 98, 158
 gaussian_draws, 87
 generate_draws(post_draws), 121
 get_by_smooth, 89
 get_smooth, 89
 get_smooths_by_id, 90
 ggplot2::continuous_scale(), 137
 ggplot2::coord_sf(), 18, 57, 68

 ggplot2::facet_grid(), 27
 ggplot2::facet_wrap(), 27, 48
 ggplot2::geom_contour(), 17, 47, 52, 56,
 67, 70
 ggplot2::geom_line(), 67, 70
 ggplot2::ggplot(), 15, 18, 46, 53, 54, 57,
 60, 65, 136
 ggplot2::guide_axis(), 18, 47, 50, 52, 57,
 60, 63, 68, 70
 ggplot2::guides(), 137
 ggplot2::label_both(), 46, 60
 ggplot2::labs(), 47, 53, 60, 64, 70, 109,
 127, 131, 132, 166
 GJRM::gamlss(), 58
 graphics::hist.default(), 136
 graphics::par(), 13, 109, 132
 gss_vocab, 90
 gw_f0, 91
 gw_f1(gw_f0), 91
 gw_f2(gw_f0), 91
 gw_f3(gw_f0), 91
 gw_functions, 35
 gw_functions(gw_f0), 91

 has_theta, 92

 inv_link(link), 96
 is_by_smooth, 92
 is_continuous_by_smooth(is_by_smooth),
 92
 is_factor_by_smooth(is_by_smooth), 92
 is_factor_term, 93
 is_mgcv_family, 94
 is_mgcv_smooth, 95
 is_mrf_smooth(is_mgcv_smooth), 95
 is_multivariate_y, 95
 is_offset, 96

 level(ref_level), 129
 level(), 37
 link, 96
 load_mgcv, 99
 lp_matrix, 99

 marginaleffects::plot_predictions(),
 27
 mgcv::bam(), 22, 77, 80, 84, 98, 108, 142,
 148, 152, 155, 163
 mgcv::exclude.too.far(), 17, 56, 77, 147,
 159

`mgcv::fix.family.rd()`, 140
`mgcv::gam`, 140
`mgcv::gam()`, 16, 22, 49, 51, 55, 63, 64, 67, 70, 77, 80, 83, 84, 98, 103, 108, 121, 142, 148, 152, 155, 163
`mgcv::gam.mh()`, 162
`mgcv::gam.vcomp()`, 163
`mgcv::gamm()`, 22, 80, 98, 108, 117, 140, 142, 152, 158
`mgcv::gammals()`, 98
`mgcv::gamSim()`, 34
`mgcv::gaulss()`, 98
`mgcv::gevlss()`, 98
`mgcv::gfam()`, 35
`mgcv::multinom()`, 98
`mgcv::mvn()`, 98
`mgcv::plot.gam()`, 16, 55
`mgcv::predict.bam()`, 99, 103
`mgcv::predict.gam()`, 7, 37, 82–84, 99, 103, 119, 121, 124, 149
`mgcv::PredictMat()`, 144
`mgcv::qq.gam`, 127
`mgcv::qq.gam()`, 14, 127, 166
`mgcv::residuals.gam()`, 10
`mgcv::s()`, 19, 21
`mgcv::shash()`, 98
`mgcv::smooth.construct`, 156
`mgcv::smoothCon()`, 21, 117
`mgcv::soap`, 24
`mgcv::t2()`, 19, 21
`mgcv::te()`, 19, 21
`mgcv::ti()`, 19, 21
`mgcv::twlss()`, 98
`mgcv::zipLSS()`, 98
`mh_draws`, 100
`model_concurvity`, 101
`model_concurvity()`, 62
`model_constant`, 102
`model_edf(edf)`, 71
`model_terms`, 103
`model_vars`, 105
`mvnfast::rmvnorm()`, 30, 32, 39, 82, 83, 113, 120, 150, 151

`n_eta`, 107
`n_smooths`, 108
`nb_theta`, 106
`null_deviance`, 107

`observed_fitted_plot`, 108
`observed_fitted_plot()`, 14
`overview`, 109

`parametric_effects`, 110
`parametric_effects()`, 73
`parametric_terms`, 111
`partial_derivatives`, 112
`partial_residuals`, 115
`patchwork::plot_layout()`, 13, 18, 47, 48, 50, 52, 57, 59, 63, 64, 70
`patchwork::wrap_plots()`, 13, 18, 48, 50, 52, 57, 60, 63, 64, 68, 70
`penalty`, 116
`post_draws`, 121
`posterior_samples`, 118
`posterior_samples()`, 8
`predicted_samples`, 123
`predicted_samples()`, 8

`qq_plot`, 125
`qq_plot()`, 14
`quantile_residuals`, 128

`RColorBrewer::brewer.pal()`, 137
`ref_level`, 129
`ref_level()`, 37
`ref_sims`, 129
`rep_first_factor_value`, 130
`residuals_hist_plot`, 130
`residuals_hist_plot()`, 14
`residuals_linpred_plot`, 131
`residuals_linpred_plot()`, 14
`response_derivatives`, 132
`rootogram`, 135
`rootogram()`, 66
`rtw`, 137

`scale_fill_partial_effect`, 137
`scam::scam()`, 158
`seq_min_max(evenly)`, 78
`seq_min_max_eps`, 138
`shift_values`, 138
`simulate.gam`, 139
`simulate.gam()`, 123
`simulate.gamm(simulate.gam)`, 139
`simulate.scam(simulate.gam)`, 139
`smallAges`, 141
`smooth_coef_indices`, 143

smooth_coef_indices(), 143
smooth_coefs, 142
smooth_coefs(), 143
smooth_data, 144
smooth_dim, 145
smooth_estimates, 146
smooth_estimates(), 74
smooth_label, 148
smooth_samples, 149
smooth_samples(), 162
smooth_terms, 152
smooth_type, 152
smooths, 141
smooths(), 44
spline_values, 154
stats::family(), 79
stats::glm, 13, 126, 165
stats::glm(), 98
stats::lm, 13, 126, 165
stats::predict(), 6, 7, 10
stats::residuals(), 9, 10
stop_if_not_mgcv_smooth
 (is_mgcv_smooth), 95

term_names, 155
term_variables, 156
theta, 157
tidy_basis, 157
to_na, 160
too_far, 159
too_far_to_na, 159
transform_fun, 160
typical_values, 161
typical_values(), 37

user_draws, 162

variance_comp, 163
vars_from_label, 163

which_smooths, 164
worm_plot, 165

zooplankton, 167