
Package ‘glmmTMB’
January 15, 2026

Title Generalized Linear Mixed Models using Template Model Builder

Version 1.1.14

Description Fit linear and generalized linear mixed models with various
extensions, including zero-inflation. The models are fitted using maximum
likelihood estimation via 'TMB' (Template Model Builder). Random effects are
assumed to be Gaussian on the scale of the linear predictor and are integrated
out using the Laplace approximation. Gradients are calculated using automatic
differentiation.

License AGPL-3

Depends R (>= 3.6.0)

Imports methods, TMB (>= 1.9.0), lme4 (>= 1.1-18.9000), Matrix, nlme,
numDeriv, mgcv, reformulas (>= 0.4.3.1), pbkrtest, sandwich

LinkingTo TMB, RcppEigen

Suggests knitr, rmarkdown, testthat, MASS, lattice, ggplot2 (>=
2.2.1), mlmRev, bbmle (>= 1.0.19), pscl, coda, reshape2, car
(>= 3.0.6), emmeans (>= 1.4), estimability, DHARMa, multcomp,
MuMIn, effects (>= 4.0-1), dotwhisker, broom, broom.mixed,
plyr, png, boot, texreg, xtable, huxtable, parallel, blme,
purrr, dplyr, ade4, ape, gsl, lmerTest, metafor

SystemRequirements GNU make

VignetteBuilder knitr, rmarkdown

URL https://github.com/glmmTMB/glmmTMB

LazyData TRUE

BugReports https://github.com/glmmTMB/glmmTMB/issues

NeedsCompilation yes

Encoding UTF-8

RoxygenNote 7.3.3

Author Mollie Brooks [aut, cre] (ORCID:
<https://orcid.org/0000-0001-6963-8326>),

Ben Bolker [aut] (ORCID: <https://orcid.org/0000-0002-2127-0443>),

1

https://github.com/glmmTMB/glmmTMB
https://github.com/glmmTMB/glmmTMB/issues
https://orcid.org/0000-0001-6963-8326
https://orcid.org/0000-0002-2127-0443

2 Contents

Kasper Kristensen [aut],
Martin Maechler [aut] (ORCID: <https://orcid.org/0000-0002-8685-9910>),
Arni Magnusson [aut] (ORCID: <https://orcid.org/0000-0003-2769-6741>),
Maeve McGillycuddy [ctb],
Hans Skaug [aut] (ORCID: <https://orcid.org/0000-0003-4235-2592>),
Anders Nielsen [aut] (ORCID: <https://orcid.org/0000-0001-9683-9262>),
Casper Berg [aut] (ORCID: <https://orcid.org/0000-0002-3812-5269>),
Koen van Bentham [aut],
Nafis Sadat [ctb] (ORCID: <https://orcid.org/0000-0001-5715-616X>),
Daniel Lüdecke [ctb] (ORCID: <https://orcid.org/0000-0002-8895-3206>),
Russ Lenth [ctb],
Joseph O'Brien [ctb] (ORCID: <https://orcid.org/0000-0001-9851-5077>),
Charles J. Geyer [ctb],
Mikael Jagan [ctb] (ORCID: <https://orcid.org/0000-0002-3542-2938>),
Brenton Wiernik [ctb] (ORCID: <https://orcid.org/0000-0001-9560-6336>),
Daniel B. Stouffer [ctb] (ORCID:

<https://orcid.org/0000-0001-9436-9674>),
Michael Agronah [ctb] (ORCID: <https://orcid.org/0009-0007-2655-4094>),
Hatice Tül Kübra Akdur [ctb] (ORCID:

<https://orcid.org/0000-0003-2144-0518>),
Daniel Sabanés Bové [ctb] (ORCID:

<https://orcid.org/0000-0002-0176-9239>),
Nikolas Krieger [ctb] (ORCID: <https://orcid.org/0000-0002-4581-3545>),
Coralie Williams [ctb] (ORCID: <https://orcid.org/0000-0003-1312-4953>)

Maintainer Mollie Brooks <mollieebrooks@gmail.com>

Repository CRAN

Date/Publication 2026-01-15 06:10:22 UTC

Contents
Anova.glmmTMB . 3
as.theta.vcov . 5
bread.glmmTMB . 6
confint.glmmTMB . 6
diagnose . 8
dof_KR . 10
dtruncated_nbinom2 . 10
epil2 . 11
estfun.glmmTMB . 12
family_params . 13
fitTMB . 13
fixef . 15
formula.glmmTMB . 16
getCapabilities . 16
getGroups.glmmTMB . 17
getME.glmmTMB . 17
getReStruc . 18

https://orcid.org/0000-0002-8685-9910
https://orcid.org/0000-0003-2769-6741
https://orcid.org/0000-0003-4235-2592
https://orcid.org/0000-0001-9683-9262
https://orcid.org/0000-0002-3812-5269
https://orcid.org/0000-0001-5715-616X
https://orcid.org/0000-0002-8895-3206
https://orcid.org/0000-0001-9851-5077
https://orcid.org/0000-0002-3542-2938
https://orcid.org/0000-0001-9560-6336
https://orcid.org/0000-0001-9436-9674
https://orcid.org/0009-0007-2655-4094
https://orcid.org/0000-0003-2144-0518
https://orcid.org/0000-0002-0176-9239
https://orcid.org/0000-0002-4581-3545
https://orcid.org/0000-0003-1312-4953

Anova.glmmTMB 3

getXReTrms . 19
get_autopar . 20
get_cor . 21
glmmTMB . 22
glmmTMBControl . 26
isLMM.glmmTMB . 29
map.theta.propto . 30
meatHC . 30
nbinom2 . 31
numFactor . 34
omp_check . 35
Owls . 36
predict.glmmTMB . 37
print.VarCorr.glmmTMB . 40
priors . 40
profile.glmmTMB . 42
ranef.glmmTMB . 44
reinstalling . 45
residuals.glmmTMB . 46
Salamanders . 47
sandwich . 48
set_simcodes . 49
sigma.glmmTMB . 49
simulate.glmmTMB . 51
simulate_new . 51
spider_long . 53
summary.glmmTMB . 54
terms.glmmTMB . 55
up2date . 56
vcov.glmmTMB . 56
vcovHC.glmmTMB . 57
weights.glmmTMB . 58

Index 59

Anova.glmmTMB Downstream methods

Description

Methods have been written that allow glmmTMB objects to be used with several downstream packages
that enable different forms of inference. For some methods (Anova and emmeans, but not effects
at present), set the component argument to "cond" (conditional, the default), "zi" (zero-inflation)
or "disp" (dispersion) in order to produce results for the corresponding part of a glmmTMB model.
Support for emmeans also allows additional options component = "response" (response means
taking both the cond and zi components into account), and component = "cmean" (mean of the
[possibly truncated] conditional distribution).

In particular,

4 Anova.glmmTMB

• car::Anova constructs type-II and type-III Anova tables for the fixed effect parameters of any
component

• the emmeans package computes estimated marginal means (previously known as least-squares
means) for the fixed effects of any component, or predictions with type = "response" or
type = "component". Note: In hurdle models, component = "cmean" produces means of the
truncated conditional distribution, while component = "cond", type = "response" produces
means of the untruncated conditional distribution.

• the effects package computes graphical tabular effect displays (only for the fixed effects of
the conditional component)

Usage

Anova.glmmTMB(
mod,
type = c("II", "III", 2, 3),
test.statistic = c("Chisq", "F"),
component = "cond",
vcov. = vcov(mod)[[component]],
singular.ok,
include.rankdef.cols = FALSE,
...

)

Effect.glmmTMB(focal.predictors, mod, ...)

Arguments

mod a glmmTMB model

type type of test, "II", "III", 2, or 3. Roman numerals are equivalent to the corre-
sponding Arabic numerals. See Anova for details.

test.statistic unused: only valid choice is "Chisq" (i.e., Wald chi-squared test)

component which component of the model to test/analyze ("cond", "zi", or "disp") or, in
emmeans only, "response" or "cmean" as described in Details.

vcov. variance-covariance matrix (usually extracted automatically)

singular.ok OK to do ANOVA with singular models (unused) ?
include.rankdef.cols

include all columns of a rank-deficient model matrix?

... Additional parameters that may be supported by the method.
focal.predictors

a character vector of one or more predictors in the model in any order.

Details

While the examples below are disabled for earlier versions of R, they may still work; it may be
necessary to refer to private versions of methods, e.g. glmmTMB:::Anova.glmmTMB(model, ...).

as.theta.vcov 5

Examples

warp.lm <- glmmTMB(breaks ~ wool * tension, data = warpbreaks)
salamander1 <- up2date(readRDS(system.file("example_files","salamander1.rds",package="glmmTMB")))
if (require(emmeans)) withAutoprint({

emmeans(warp.lm, poly ~ tension | wool)
emmeans(salamander1, ~ mined, type="response") # conditional means
emmeans(salamander1, ~ mined, component="cmean") # same as above, but re-gridded
emmeans(salamander1, ~ mined, component="zi", type="response") # zero probabilities

emmeans(salamander1, ~ mined, component="response") # response means including both components
})
if (getRversion() >= "3.6.0") {

if (require(car)) withAutoprint({
Anova(warp.lm,type="III")
Anova(salamander1)
Anova(salamander1, component="zi")

})
if (require(effects)) withAutoprint({

plot(allEffects(warp.lm))
plot(allEffects(salamander1))

})
}

as.theta.vcov Get theta parameterisation of a covariance structure

Description

Get theta parameterisation of a covariance structure

Usage

as.theta.vcov(Sigma, corrs.only = FALSE)

Arguments

Sigma a covariance matrix

corrs.only return only values corresponding to the correlation matrix parameters?

Value

the corresponding theta parameter vector

6 confint.glmmTMB

bread.glmmTMB Bread Matrix for Sandwich Estimator

Description

This method for bread returns the variance-covariance matrix (bread) for a fitted glmmTMB model.

Usage

S3 method for class 'glmmTMB'
bread(x, full = FALSE, rawnames = FALSE, ...)

Arguments

x a fitted glmmTMB object.

full return a full variance-covariance matrix?

rawnames logical; if TRUE, return the raw names of the parameters as in the TMB object. By
default, FALSE such that the names are sanitized to user friendly names.

... ignored additional arguments (only for methods compatibility).

Value

The bread matrix, which is just the variance-covariance matrix.

Examples

m <- glmmTMB(count ~ mined + (1 | spp), data = Salamanders, family = nbinom1)
bread(m)
bread(m, full = TRUE)

confint.glmmTMB Calculate confidence intervals

Description

Calculate confidence intervals

confint.glmmTMB 7

Usage

S3 method for class 'glmmTMB'
confint(
object,
parm = NULL,
level = 0.95,
method = c("wald", "Wald", "profile", "uniroot"),
component = c("all", "cond", "zi", "other"),
estimate = TRUE,
include_nonest = FALSE,
parallel = c("no", "multicore", "snow"),
ncpus = getOption("profile.ncpus", 1L),
cl = NULL,
full = FALSE,
...

)

Arguments

object glmmTMB fitted object.

parm which parameters to profile, specified

• by index (position) [after component selection for confint, if any]
• by name (matching the row/column names of vcov(object,full=TRUE))
• as "theta_" (random-effects variance-covariance parameters), "beta_" (con-

ditional and zero-inflation parameters), or "disp_" or "sigma" (dispersion
parameters)

Parameter indexing by number may give unusual results when some parameters
have been fixed using the map argument: please report surprises to the package
maintainers.

level Confidence level.

method ’wald’, ’profile’, or ’uniroot’: see Details function)

component Which of the three components ’cond’, ’zi’ or ’other’ to select. Default is to
select ’all’.

estimate (logical) add a third column with estimate ?

include_nonest include dummy rows for non-estimated (mapped, rank-deficient) parameters?

parallel method (if any) for parallel computation

ncpus number of CPUs/cores to use for parallel computation

cl cluster to use for parallel computation

full CIs for all parameters (including dispersion) ?

... arguments may be passed to profile.glmmTMB (and possibly from there to
tmbprofile) or tmbroot

8 diagnose

Details

Available methods are

"wald" These intervals are based on the standard errors calculated for parameters on the scale of
their internal parameterization depending on the family. Derived quantities such as standard
deviation parameters and dispersion parameters are back-transformed. It follows that confi-
dence intervals for these derived quantities are typically asymmetric.

"profile" This method computes a likelihood profile for the specified parameter(s) using profile.glmmTMB;
fits a spline function to each half of the profile; and inverts the function to find the specified
confidence interval.

"uniroot" This method uses the uniroot function to find critical values of one-dimensional profile
functions for each specified parameter.

At present, "wald" returns confidence intervals for variance parameters on the standard devia-
tion/correlation scale, while "profile" and "uniroot" report them on the underlying ("theta") scale:
for each random effect, the first set of parameter values are standard deviations on the log scale,
while remaining parameters represent correlations on the scaled Cholesky scale. For a random ef-
fects model with two elements (such as a random-slopes model, or a random effect of factor with
two levels), there is a single correlation parameter θ; the correlation is equal to ρ = θ/

√
1 + θ2.

For random-effects terms with more than two elements, the mapping is more complicated: see
https://github.com/glmmTMB/glmmTMB/blob/master/misc/glmmTMB_corcalcs.ipynb

Examples

data(sleepstudy, package="lme4")
model <- glmmTMB(Reaction ~ Days + (1|Subject), sleepstudy)
model2 <- glmmTMB(Reaction ~ Days + (1|Subject), sleepstudy,

dispformula= ~I(Days>8))
confint(model) ## Wald/delta-method CIs
confint(model,parm="theta_") ## Wald/delta-method CIs
confint(model,parm=1,method="profile")

diagnose diagnose model problems

Description

EXPERIMENTAL. For a given model, this function attempts to isolate potential causes of con-
vergence problems. It checks (1) whether there are any unusually large coefficients; (2) whether
there are any unusually scaled predictor variables; (3) if the Hessian (curvature of the negative
log-likelihood surface at the MLE) is positive definite (i.e., whether the MLE really represents an
optimum). For each case it tries to isolate the particular parameters that are problematic.

diagnose 9

Usage

diagnose(
fit,
eval_eps = 1e-05,
evec_eps = 0.01,
big_coef = 10,
big_sd_log10 = 3,
big_zstat = 5,
check_coefs = TRUE,
check_zstats = TRUE,
check_hessian = TRUE,
check_scales = TRUE,
explain = TRUE

)

Arguments

fit a glmmTMB fit

eval_eps numeric tolerance for ’bad’ eigenvalues

evec_eps numeric tolerance for ’bad’ eigenvector elements

big_coef numeric tolerance for large coefficients

big_sd_log10 numeric tolerance for badly scaled parameters (log10 scale), i.e. for default
value of 3, predictor variables with sd less than 1e-3 or greater than 1e3 will be
flagged)

big_zstat numeric tolerance for Z-statistic

check_coefs identify large-magnitude coefficients? (Only checks conditional-model param-
eters if a (log, logit, cloglog, probit) link is used. Always checks zero-inflation,
dispersion, and random-effects parameters. May produce false positives if pre-
dictor variables have extremely large scales.)

check_zstats identify parameters with unusually large Z-statistics (ratio of standard error to
mean)? Identifies likely failures of Wald confidence intervals/p-values.

check_hessian identify non-positive-definite Hessian components?

check_scales identify predictors with unusually small or large scales?

explain provide detailed explanation of each test?

Details

Problems in one category (e.g. complete separation) will generally also appear in "downstream" cat-
egories (e.g. non-positive-definite Hessians). Therefore, it is generally advisable to try to deal with
problems in order, e.g. address problems with complete separation first, then re-run the diagnostics
to see whether Hessian problems persist.

Value

a logical value based on whether anything questionable was found

10 dtruncated_nbinom2

dof_KR compute denominator degrees-of-freedom approximations

Description

dof_KR uses an adaptation of the machinery from the pbkrtest package to compute the Kenward-
Roger approximation of the ’denominator degrees of freedom’ for each fixed-effect coefficient in
the conditional model; dof_satt does the same for Satterthwaite approximations

Usage

dof_KR(model)

dof_satt(model, L = diag(length(fixef(model)$cond)))

Arguments

model a fitted glmmTMB object

L a contrast matrix: by default, equal to an identity matrix (i.e., ddfs are returned
for each fixed-effect parameter)

Details

Kenward-Roger adjustments should not be used for models fitted with ML rather than REML; the
theory is only well understood, and the model is only tested, for LMMs (family = "gaussian").
Use at your own risk for GLMMs!

Value

a named vector of ddf for each conditional fixed-effect parameter; dof_KR includes attributes ’vcov’
(Kenward-Roger adjusted covariance matrix) and ’se’ (the corresponding standard errors)

dtruncated_nbinom2 truncated distributions

Description

Probability functions for k-truncated Poisson and negative binomial distributions.

Usage

dtruncated_nbinom2(x, size, mu, k = 0, log = FALSE)

dtruncated_poisson(x, lambda, k = 0, log = FALSE)

dtruncated_nbinom1(x, phi, mu, k = 0, log = FALSE)

epil2 11

Arguments

x value

size number of trials/overdispersion parameter

mu mean parameter

k truncation parameter

log (logical) return log-probability?

lambda mean parameter

phi overdispersion parameter

epil2 Seizure Counts for Epileptics - Extended

Description

Extended version of the epil dataset of the MASS package. The three transformed variables Visit,
Base, and Age used by Booth et al. (2003) have been added to epil.

Usage

epil2

Format

A data frame with 236 observations on the following 12 variables:

y an integer vector.

trt a factor with levels "placebo" and "progabide".

base an integer vector.

age an integer vector.

V4 an integer vector.

subject an integer vector.

period an integer vector.

lbase a numeric vector.

lage a numeric vector.

Visit (rep(1:4,59) - 2.5) / 5.

Base log(base/4).

Age log(age).

References

Booth, J.G., G. Casella, H. Friedl, and J.P. Hobert. (2003) Negative binomial loglinear mixed
models. Statistical Modelling 3, 179–191.

12 estfun.glmmTMB

Examples

epil2$subject <- factor(epil2$subject)
op <- options(digits=3)
(fm <- glmmTMB(y ~ Base*trt + Age + Visit + (Visit|subject),

data=epil2, family=nbinom2))
meths <- methods(class = class(fm))
if((Rv <- getRversion()) > "3.1.3") {

funs <- attr(meths, "info")[, "generic"]
funs <- setdiff(funs, "profile") ## too slow! pkgdown is trying to run this??
for(fun in funs[is.na(match(funs, "getME"))]) {

cat(sprintf("%s:\n-----\n", fun))
r <- tryCatch(get(fun)(fm), error=identity)
if (inherits(r, "error")) cat("** Error:", r$message,"\n")
else tryCatch(print(r))
cat(sprintf("---end{%s}--------------\n\n", fun))

}
}
options(op)

estfun.glmmTMB Extract Empirical Estimating Functions

Description

This method for estfun extracts the clusterwise score vectors (empirical estimating functions) from
a fitted glmmTMB model.

Usage

S3 method for class 'glmmTMB'
estfun(x, full = FALSE, cluster = getGroups(x), rawnames = FALSE, ...)

Arguments

x a glmmTMB object fitted with ML (REML is not supported).

full logical; if TRUE, return the full score vectors including random effects, otherwise
only the fixed effects part.

cluster a factor indicating the cluster structure of the data.

rawnames logical; if TRUE, return the raw names of the parameters as in the TMB object. By
default, FALSE such that the names are sanitized to user friendly names.

... additional arguments (ignored).

Value

A matrix where each row corresponds to a cluster and each column corresponds to a parameter in
the model. The values are the empirical estimating functions (score vectors) for each parameter in
each cluster.

family_params 13

Note

If crossed random effects are used in the model, this function will not correctly calculate the score
vectors in general, and warnings will be issued. In general, this function should be used with models
with a single level of random effects or nested random effects only.

Examples

m <- glmmTMB(count ~ mined + (1 | spp), data = Salamanders, family = nbinom1)
estfun(m)
estfun(m, full = TRUE)

family_params Retrieve family-specific parameters

Description

Most conditional distributions have only parameters governing their location (retrieved via predict)
and scale (sigma). A few (e.g. Tweedie, Student t, ordered beta) are characterized by one or more
additional parameters.

Usage

family_params(object)

Arguments

object glmmTMB object

Value

a named numeric vector

fitTMB Optimize TMB models and package results, modularly

Description

These functions (called internally by glmmTMB) perform the actual model optimization, after all
of the appropriate structures have been set up (fitTMB), and finalize the model after optimization
(finalizeTMB). It can be useful to run glmmTMB with doFit=FALSE, adjust the components as re-
quired, and then finish the fitting process with fitTMB (however, it is the user’s responsibility to
make sure that any modifications create an internally consistent final fitted object).

14 fitTMB

Usage

fitTMB(TMBStruc, doOptim = TRUE)

finalizeTMB(TMBStruc, obj, fit, h = NULL, data.tmb.old = NULL)

Arguments

TMBStruc a list containing lots of stuff ...

doOptim logical; do optimization? If FALSE, return TMB object

obj object created by fitTMB(., doOptim = FALSE)

fit a fitted object returned from nlminb, or more generally a similar list (i.e. con-
taining elements par, objective, convergence, message, iterations, evaluations)

h Hessian matrix for fit, if computed in previous step

data.tmb.old stored TMB data, if computed in previous step

Examples

1. regular (non-modular) model fit:
m0 <- glmmTMB(count ~ mined + (1|site),

family=poisson, data=Salamanders)
2. the equivalent fit, done modularly:
a.
m1 <- glmmTMB(count ~ mined + (1|site),

family=poisson, data=Salamanders,
doFit = FALSE)

result is a list of elements (data to be passed to TMB,
random effects structures, etc.) needed to fit the model
names(m1)
b. The next step calls TMB to set up the automatic differentiation
machinery
m2 <- fitTMB(m1, doOptim = FALSE)
The result includes initial parameter values, objective function
(fn), gradient function (gr), etc.
names(m2)
Optionally, one could choose to
modify the components of m1envdata at this point ...
updating the TMB structure as follows may be necessary:
m2 <- with(m2$env,

TMB::MakeADFun(data,
parameters,
map = map,
random = random,
silent = silent,
DLL = "glmmTMB"))

c. Use the starting values, objective function, and gradient
function set up in the previous step to do the nonlinear optimization
m3 <- with(m2, nlminb(par, objective = fn, gr = gr))
the resulting object contains the fitted parameters, value of
the objective function, information on convergence, etc.
names(m3)

fixef 15

d. The last step is to combine the information from the previous
three steps into a \code{glmmTMB} object that is equivalent to
the original fit
m4 <- finalizeTMB(m1, m2, m3)
m4$call$doFit <- NULL ## adjust 'call' element to match
all.equal(m0, m4)

fixef Extract fixed-effects estimates

Description

Extract Fixed Effects

Usage

S3 method for class 'glmmTMB'
fixef(object, ...)

Arguments

object any fitted model object from which fixed effects estimates can be extracted.

... optional additional arguments. Currently none are used in any methods.

Details

Extract fixed effects from a fitted glmmTMB model.

The print method for fixef.glmmTMB object only displays non-trivial components: in particular,
the dispersion parameter estimate is not printed for models with a single (intercept) dispersion
parameter (see examples)

Value

an object of class fixef.glmmTMB comprising a list of components (cond, zi, disp), each contain-
ing a (possibly zero-length) numeric vector of coefficients

Examples

data(sleepstudy, package = "lme4")
fm1 <- glmmTMB(Reaction ~ Days, sleepstudy)
(f1 <- fixef(fm1))
f1$cond
show full coefficients, including empty z-i model and
constant dispersion parameter
print(f1, print_trivials = TRUE)

16 getCapabilities

formula.glmmTMB Extract the formula of a glmmTMB object

Description

Extract the formula of a glmmTMB object

Usage

S3 method for class 'glmmTMB'
formula(x, fixed.only = FALSE, component = c("cond", "zi", "disp"), ...)

Arguments

x a glmmTMB object
fixed.only (logical) drop random effects, returning only the fixed-effect component of the

formula?
component formula for which component of the model to return (conditional, zero-inflation,

or dispersion)
... unused, for generic consistency

getCapabilities List model options that glmmTMB knows about

Description

List model options that glmmTMB knows about

Usage

getCapabilities(what = "all", check = FALSE)

Arguments

what (character) which type of model structure to report on ("all","family","link","covstruct")
check (logical) do brute-force checking to test whether families are really implemented

(only available for what="family")

Value

if check==FALSE, returns a vector of the names (or a list of name vectors) of allowable entries; if
check==TRUE, returns a logical vector of working families

Note

these are all the options that are defined internally; they have not necessarily all been implemented
(FIXME!)

getGroups.glmmTMB 17

getGroups.glmmTMB Extract Grouping Factors from an Object

Description

This (simplified) method for getGroups extracts the grouping factor for a specified level of the
random effects structure in a glmmTMB object.

Usage

S3 method for class 'glmmTMB'
getGroups(object, form = formula(object), level, data, sep = "/", ...)

Arguments

object a fitted glmmTMB object.

form ignored (included for compatibility).

level integer indicating the level of the random effects structure to extract, defaults to
1 if missing.

data ignored (included for compatibility).

sep ignored (included for compatibility).

... additional arguments (not used).

Value

A factor representing the grouping structure at the specified level, with a group attribute indicating
the name of the grouping factor.

Examples

model <- glmmTMB(count ~ mined + (1 | spp), data = Salamanders, family = nbinom1)
getGroups(model)

getME.glmmTMB Extract or Get Generalize Components from a Fitted Mixed Effects
Model

Description

Extract or Get Generalize Components from a Fitted Mixed Effects Model

18 getReStruc

Usage

S3 method for class 'glmmTMB'
getME(
object,
name = c("X", "Xzi", "Z", "Zzi", "Xdisp", "theta", "beta", "b", "Gp"),
...

)

Arguments

object a fitted glmmTMB object

name of the component to be retrieved

... ignored, for method compatibility

See Also

getME Get generic and re-export:

getReStruc Calculate random effect structure Calculates number of random ef-
fects, number of parameters, block size and number of blocks. Mostly
for internal use.

Description

Calculate random effect structure Calculates number of random effects, number of parameters,
block size and number of blocks. Mostly for internal use.

Usage

getReStruc(
reTrms,
ss = NULL,
aa = NULL,
reXterms = NULL,
fr = NULL,
full_cor = NULL

)

Arguments

reTrms random-effects terms list

ss a vector of character strings indicating a valid covariance structure (one for each
RE term). Must be one of names(glmmTMB:::.valid_covstruct); default is
to use an unstructured variance-covariance matrix ("us") for all blocks).

aa additional arguments (i.e. rank, or var-cov matrix)

getXReTrms 19

reXterms terms objects corresponding to each RE term
fr model frame
full_cor compute full correlation matrices? can be either a length-1 logical vector (TRUE/FALSE)

to include full correlation matrices for all or none of the random-effect terms in
the model, or a logical vector with length equal to the number of correlation
matrices, to include/exclude correlation matrices individually

Value

a list

blockNumTheta number of variance covariance parameters per term
blockSize size (dimension) of one block
blockReps number of times the blocks are repeated (levels)
covCode structure code
simCode simulation code; should we "zero" (set to zero/ignore), "fix" (set to existing

parameter values), "random" (draw new random deviations)?
fullCor logical vector (compute/store full correlation matrix?)

Examples

data(sleepstudy, package="lme4")
rt <- lme4::lFormula(Reaction~Days+(1|Subject)+(0+Days|Subject),

sleepstudy)$reTrms
rt2 <- lme4::lFormula(Reaction~Days+(Days|Subject),

sleepstudy)$reTrms
getReStruc(rt)
getReStruc(rt2)

getXReTrms Create X and random effect terms from formula

Description

Create X and random effect terms from formula

Usage

getXReTrms(
formula,
mf,
fr,
ranOK = TRUE,
type = "",
contrasts,
sparse = FALSE,
old_smooths = NULL

)

20 get_autopar

Arguments

formula current formula, containing both fixed & random effects

mf matched call

fr full model frame

ranOK random effects allowed here?

type label for model type

contrasts a list of contrasts (see ?glmmTMB)

sparse (logical) return sparse model matrix?

old_smooths smooth information from a prior model fit (for prediction)

Value

a list composed of

X design matrix for fixed effects

Z design matrix for random effects

reTrms output from mkReTrms, possibly augmented with information about mgcv-style
smooth terms

ss splitform of the formula

aa additional arguments, used to obtain rank

terms terms for the fixed effects

offset offset vector, or vector of zeros if offset not specified

reXterms terms for the model matrix in each RE term

get_autopar retrieve current value of TMB autopar setting

Description

retrieve current value of TMB autopar setting

Usage

get_autopar()

get_cor 21

get_cor transform correlation parameters to and from glmmTMB parameteri-
zation

Description

transform correlation parameters to and from glmmTMB parameterization

Usage

get_cor(theta, return_val = c("vec", "mat"))

put_cor(C, input_val = c("mat", "vec"))

Arguments

theta vector of internal correlation parameters (elements of scaled Cholesky factor, in
row-major order)

return_val return a vector of correlation values from the lower triangle ("vec"), or the full
correlation matrix ("mat")?

C a correlation matrix

input_val input a vector of correlation values from the lower triangle ("vec"), or the full
correlation matrix ("mat")?

Details

get_cor transforms from the glmmTMB parameterization (components of a theta parameter vec-
tor) to correlations; put_cor does the inverse transformations, from correlations to theta values.

These functions follow the definition at http://kaskr.github.io/adcomp/classdensity_1_
1UNSTRUCTURED__CORR__t.html: if L is the lower-triangular matrix with 1 on the diagonal and
the correlation parameters in the lower triangle, then the correlation matrix is defined as Σ =
D−1/2LL⊤D−1/2, where D = diag(LL⊤). For a single correlation parameter θ0 (i.e. the cor-
relation in a 2x2 correlation matrix), this works out to ρ = θ0/

√
1 + θ20 . The get_cor function

returns the elements of the lower triangle of the correlation matrix, in column-major order.

These functions also work for AR1 correlation parameters.

Value

a vector of correlation values (get_cor) or glmmTMB scaled-correlation parameters (put_cor)

Examples

th0 <- 0.5
stopifnot(all.equal(get_cor(th0), th0/sqrt(1+th0^2)))
set.seed(101)
pick 6 values for a random 4x4 correlation matrix

http://kaskr.github.io/adcomp/classdensity_1_1UNSTRUCTURED__CORR__t.html
http://kaskr.github.io/adcomp/classdensity_1_1UNSTRUCTURED__CORR__t.html

22 glmmTMB

print(C <- get_cor(rnorm(6), return_val = "mat"), digits = 3)
transform a correlation matrix to a theta vector
cor_mat <- matrix(c(1,0.3,0.1,

0.3,1,0.2,
0.1,0.2,1), ncol = 3)

put_cor(cor_mat, "mat")
put_cor(cor_mat[lower.tri(cor_mat)], "vec")
test: round-trip
stopifnot(all.equal(get_cor(put_cor(C), return_val = "mat"), C))

glmmTMB Fit Models with TMB

Description

Fit a generalized linear mixed model (GLMM) using Template Model Builder (TMB).

Usage

glmmTMB(
formula,
data = NULL,
family = gaussian(),
ziformula = ~0,
dispformula = ~1,
weights = NULL,
offset = NULL,
contrasts = NULL,
na.action,
se = TRUE,
verbose = FALSE,
doFit = TRUE,
control = glmmTMBControl(),
REML = FALSE,
start = NULL,
map = NULL,
sparseX = NULL,
priors = NULL,
subset = NULL

)

Arguments

formula combined fixed and random effects formula, following lme4 syntax.

data data frame (tibbles are OK) containing model variables. Not required, but strongly
recommended; if data is not specified, downstream methods such as prediction
with new data (predict(fitted_model, newdata = ...)) will fail. If it is nec-
essary to call glmmTMB with model variables taken from the environment rather

glmmTMB 23

than from a data frame, specifying data=NULL will suppress the warning mes-
sage.

family a family function, a character string naming a family function, or the result of
a call to a family function (variance/link function) information. See family
for a generic discussion of families or family_glmmTMB for details of glmmTMB-
specific families.

ziformula a one-sided (i.e., no response variable) formula for zero-inflation combining
fixed and random effects: the default ~0 specifies no zero-inflation. Specifying
~. sets the zero-inflation formula identical to the right-hand side of formula
(i.e., the conditional effects formula); terms can also be added or subtracted.
When using ~. as the zero-inflation formula in models where the condi-
tional effects formula contains an offset term, the offset term will automat-
ically be dropped. The zero-inflation model uses a logit link.

dispformula a one-sided formula for dispersion combining fixed and random effects: the de-
fault ~1 specifies the standard dispersion given any family. The argument is ig-
nored for families that do not have a dispersion parameter. For an explanation of
the dispersion parameter for each family, see sigma. The dispersion model uses
a log link. In Gaussian mixed models, dispformula=~0 fixes the residual vari-
ance to be 0 (actually a small non-zero value), forcing variance into the random
effects. The precise value can be controlled via control=glmmTMBControl(zero_dispval=...);
the default value is sqrt(.Machine$double.eps).

weights weights, as in glm. Not automatically scaled to have sum 1.

offset offset for conditional model (only).

contrasts an optional list, e.g., list(fac1="contr.sum"). See the contrasts.arg of
model.matrix.default.

na.action a function that specifies how to handle observations containing NAs. The default
action (na.omit, inherited from the ’factory fresh’ value of getOption("na.action"))
strips any observations with any missing values in any variables. Using na.action
= na.exclude will similarly drop observations with missing values while fitting
the model, but will fill in NA values for the predicted and residual values for cases
that were excluded during the fitting process because of missingness.

se whether to return standard errors.

verbose whether progress indication should be printed to the console.

doFit whether to fit the full model, or (if FALSE) return the preprocessed data and
parameter objects, without fitting the model.

control control parameters, see glmmTMBControl.

REML whether to use REML estimation rather than maximum likelihood.

start starting values, expressed as a list with possible components beta, betazi,
betadisp (fixed-effect parameters for conditional, zero-inflation, dispersion mod-
els); b, bzi, bdisp (conditional modes for conditional, zero-inflation, and dis-
persion models); theta, thetazi, thetadisp (random-effect parameters, on
the standard deviation/Cholesky scale, for conditional, z-i, and disp models);
psi (extra family parameters, e.g., shape for Tweedie models).

24 glmmTMB

map a list specifying which parameter values should be fixed to a constant value
rather than estimated. map should be a named list containing factors correspond-
ing to a subset of the internal parameter names (see start parameter). Distinct
factor values are fitted as separate parameter values, NA values are held fixed:
e.g., map=list(beta=factor(c(1,2,3,NA))) would fit the first three fixed-
effect parameters of the conditional model and fix the fourth parameter to its
starting value. In general, users will probably want to use start to specify non-
default starting values for fixed parameters. See MakeADFun for more details.

sparseX a named logical vector containing (possibly) elements named "cond", "zi", "disp"
to indicate whether fixed-effect model matrices for particular model components
should be generated as sparse matrices, e.g. c(cond=TRUE). Default is all FALSE

priors a data frame of priors, in a similar format to that accepted by the brms package;
see priors

subset an optional vector specifying a subset of observations to be used in the fitting
process (see model.frame)

Details

• Binomial models with more than one trial (i.e., not binary/Bernoulli) can either be specified in
the form prob ~ ..., weights = N, or in the more typical two-column matrix cbind(successes,failures)~...
form.

• Behavior of REML=TRUE for Gaussian responses matches lme4::lmer. It may also be useful
in some cases with non-Gaussian responses (Millar 2011). Simulations should be done first to
verify.

• Because the df.residual method for glmmTMB currently counts the dispersion parameter,
users should multiply this value by sqrt(nobs(fit) / (1+df.residual(fit))) when com-
paring with lm.

• Although models can be fitted without specifying a data argument, its use is strongly recom-
mended; drawing model components from the global environment, or using df$var notation
within model formulae, can lead to confusing (and sometimes hard-to-detect) errors.

• By default, vector-valued random effects are fitted with unstructured (general symmetric pos-
itive definite) variance-covariance matrices. Structured variance-covariance matrices can be
specified in the form struc(terms|group), where struc is one of

– diag (diagonal, heterogeneous variance)
– ar1 (autoregressive order-1, homogeneous variance)
– hetar1 (autoregressive order-1, heterogeneous variance)
– cs (compound symmetric, heterogeneous variance)
– homcs (compound symmetric, homogeneous variance)
– ou (* Ornstein-Uhlenbeck, homogeneous variance)
– exp (* exponential autocorrelation)
– gau (* Gaussian autocorrelation)
– mat (* Matérn process correlation)
– toep (* Toeplitz, heterogeneous variance)
– homtoep (* Toeplitz, homogeneous variance)
– rr (reduced-rank/factor-analytic model)

glmmTMB 25

– homdiag (diagonal, homogeneous variance)
– propto (* proportional to user-specified variance-covariance matrix)
– equalto (* equal to user-specified variance-covariance matrix)

Structures marked with * are experimental/untested. See vignette("covstruct", package
= "glmmTMB") for more information.

• For backward compatibility, the family argument can also be specified as a list compris-
ing the name of the distribution and the link function (e.g. list(family="binomial",
link="logit")). However, this alternative is now deprecated; it produces a warning and
will be removed at some point in the future. Furthermore, certain capabilities such as Pear-
son residuals or predictions on the data scale will only be possible if components such as
variance and linkfun are present, see family.

• Smooths taken from the mgcv package can be included in glmmTMB formulas using s; these
terms will appear as additional components in both the fixed and the random-effects terms.
This functionality is experimental for now. We recommend using REML=TRUE. See s for details
of specifying smooths (and smooth2random and the appendix of Wood (2004) for technical
details).

Note

For more information about the glmmTMB package, see Brooks et al. (2017) and the vignette(package="glmmTMB")
collection. For the underlying TMB package that performs the model estimation, see Kristensen et
al. (2016).

References

Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug,
H. J., Mächler, M. and Bolker, B. M. (2017). glmmTMB balances speed and flexibility among
packages for zero-inflated generalized linear mixed modeling. The R Journal, 9(2), 378–400.

Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H. and Bell, B. (2016). TMB: Automatic differen-
tiation and Laplace approximation. Journal of Statistical Software, 70, 1–21.

Millar, R. B. (2011). Maximum Likelihood Estimation and Inference: With Examples in R, SAS and
ADMB. Wiley, New York. Wood, S. N. (2004) Stable and Efficient Multiple Smoothing Parame-
ter Estimation for Generalized Additive Models. Journal of the American Statistical Association
99(467): 673–86. doi:10.1198/016214504000000980

Examples

(m1 <- glmmTMB(count ~ mined + (1|site),
zi=~mined,
family=poisson, data=Salamanders))

summary(m1)
##' ## Zero-inflated negative binomial model
(m2 <- glmmTMB(count ~ spp + mined + (1|site),

zi=~spp + mined,
family=nbinom2, data=Salamanders))

Hurdle Poisson model
(m3 <- glmmTMB(count ~ spp + mined + (1|site),

https://doi.org/10.1198/016214504000000980

26 glmmTMBControl

zi=~spp + mined,
family=truncated_poisson, data=Salamanders))

Binomial model
data(cbpp, package="lme4")
(bovine <- glmmTMB(cbind(incidence, size-incidence) ~ period + (1|herd),

family=binomial, data=cbpp))

Dispersion model
sim1 <- function(nfac=40, nt=100, facsd=0.1, tsd=0.15, mu=0, residsd=1)
{

dat <- expand.grid(fac=factor(letters[1:nfac]), t=1:nt)
n <- nrow(dat)
dat$REfac <- rnorm(nfac, sd=facsd)[dat$fac]
dat$REt <- rnorm(nt, sd=tsd)[dat$t]
dat$x <- rnorm(n, mean=mu, sd=residsd) + dat$REfac + dat$REt
dat

}
set.seed(101)
d1 <- sim1(mu=100, residsd=10)
d2 <- sim1(mu=200, residsd=5)
d1$sd <- "ten"
d2$sd <- "five"
dat <- rbind(d1, d2)
m0 <- glmmTMB(x ~ sd + (1|t), dispformula=~sd, data=dat)
fixef(m0)$disp
c(log(5), log(10)-log(5)) # expected dispersion model coefficients

Using 'map' to fix random-effects SD to 10
m1_map <- update(m1, map=list(theta=factor(NA)),

start=list(theta=log(10)))
VarCorr(m1_map)

smooth terms
data("Nile")
ndat <- data.frame(time = c(time(Nile)), val = c(Nile))
sm1 <- glmmTMB(val ~ s(time), data = ndat,

REML = TRUE, start = list(theta = 5))
plot(val ~ time, data = ndat)
lines(ndat$time, predict(sm1))

reduced-rank model
m1_rr <- glmmTMB(abund ~ Species + rr(Species + 0|id, d = 1),

data = spider_long)

glmmTMBControl Control parameters for glmmTMB optimization

glmmTMBControl 27

Description

Control parameters for glmmTMB optimization

Usage

glmmTMBControl(
optCtrl = NULL,
optArgs = list(),
optimizer = nlminb,
profile = FALSE,
collect = FALSE,
parallel = list(n = getOption("glmmTMB.cores", 1L), autopar =
getOption("glmmTMB.autopar", get_autopar())),

eigval_check = TRUE,
zerodisp_val = log(.Machine$double.eps)/4,
start_method = list(method = NULL, jitter.sd = 0),
rank_check = c("adjust", "warning", "stop", "skip"),
conv_check = c("warning", "skip"),
full_cor = TRUE

)

Arguments

optCtrl Passed as argument control to optimizer. Default value (if default nlminb
optimizer is used): list(iter.max=300, eval.max=400)

optArgs additional arguments to be passed to optimizer function (e.g.: list(method="BFGS")
when optimizer=optim)

optimizer Function to use in model fitting. See Details for required properties of this
function.

profile (logical) Experimental option to improve speed and robustness when a model
has many fixed effects

collect (logical) Experimental option to improve speed by recognizing duplicated ob-
servations.

parallel (named list with an integer value n and a logical value autopar, e.g. list(n=4L,
autopar=TRUE)) Set number of OpenMP threads to evaluate the negative log-
likelihood in parallel, and determine whether to use auto-parallelization (see
openmp). The default is to evaluate models serially (i.e. single-threaded); users
can set default values for an R session via options(glmmTMB.cores=<value>,
glmmTMB.autopar=<value>). An integer number of cores (only) can be passed
instead of a list, in which case the default or previously set value of autopar
will be used. At present reduced-rank models (i.e., a covariance structure us-
ing rr(...)) cannot be fitted in parallel unless autopar=TRUE; the number of
threads will be automatically set to 1, with a warning if this overrides the user-
specified value. To trace OpenMP settings, use options(glmmTMB_openmp_debug
= TRUE).

eigval_check Check eigenvalues of variance-covariance matrix? (This test may be very slow
for models with large numbers of fixed-effect parameters.)

28 glmmTMBControl

zerodisp_val value of the dispersion parameter when dispformula=~0 is specified
start_method (list) Options to initialize the starting values when fitting models with reduced-

rank (rr) covariance structures; jitter.sd adds variation to the starting values
of latent variables when method = "res".

rank_check Check whether all parameters in fixed-effects models are identifiable? This test
may be slow for models with large numbers of fixed-effect parameters, therefore
default value is ’warning’. Alternatives include ’skip’ (no check), ’stop’ (throw
an error), and ’adjust’ (drop redundant columns from the fixed-effect model
matrix).

conv_check Do basic checks of convergence (check for non-positive definite Hessian and
non-zero convergence code from optimizer). Default is ’warning’; ’skip’ ignores
these tests (not recommended for general use!)

full_cor compute full correlation matrices? can be either a length-1 logical vector (TRUE/FALSE)
to include full correlation matrices for all or none of the random-effect terms in
the model, or a logical vector with length equal to the number of correlation
matrices, to include/exclude correlation matrices individually

Details

By default, glmmTMB uses the nonlinear optimizer nlminb for parameter estimation. Users may
sometimes need to adjust optimizer settings in order to get models to converge. For instance, the
warning ‘iteration limit reached without convergence’ may be fixed by increasing the number of
iterations using (e.g.)

glmmTMBControl(optCtrl=list(iter.max=1e3,eval.max=1e3)).

Setting profile=TRUE allows glmmTMB to use some special properties of the optimization problem
in order to speed up estimation in cases with many fixed effects.

Control parameters may depend on the model specification. The value of the controls is evaluated
inside an R object that is derived from the output of the mkTMBStruc function. For example, to
specify that profile should be enabled if the model has more than 5 fixed-effect parameters, specify

profile=quote(length(parameters$beta)>=5)

The optimizer argument can be any optimization (minimizing) function, provided that:

• the first three arguments, in order, are the starting values, objective function, and gradient
function;

• the function also takes a control argument;
• the function returns a list with elements (at least) par, objective, convergence (0 if conver-

gence is successful) and message (glmmTMB automatically handles output from optim(), by
renaming the value component to objective)

Examples

fit with default (nlminb) and alternative (optim/BFGS) optimizer
m1 <- glmmTMB(count~ mined, family=poisson, data=Salamanders)
m1B <- update(m1, control=glmmTMBControl(optimizer=optim,

optArgs=list(method="BFGS")))
estimates are *nearly* identical:
all.equal(fixef(m1), fixef(m1B))

isLMM.glmmTMB 29

isLMM.glmmTMB support methods for parametric bootstrapping

Description

see refit and isLMM for details

Usage

S3 method for class 'glmmTMB'
isLMM(x, ...)

S3 method for class 'glmmTMB'
refit(object, newresp, ...)

Arguments

x a fitted glmmTMB object

... additional arguments (for generic consistency; ignored)

object a fitted glmmTMB object

newresp a new response vector

Details

These methods are still somewhat experimental (check your results carefully!), but they should
allow parametric bootstrapping. They work by copying and replacing the original response column
in the data frame passed to glmmTMB, so they will only work properly if (1) the data frame is still
available in the environment and (2) the response variable is specified as a single symbol (e.g.
proportion or a two-column matrix constructed on the fly with cbind(). Untested with binomial
models where the response is specified as a factor.

Examples

if (requireNamespace("lme4")) {
Not run:

fm1 <- glmmTMB(count~mined+(1|spp),
ziformula=~mined,
data=Salamanders,
family=nbinom1)

single parametric bootstrap step: refit with data simulated from original model
fm1R <- refit(fm1, simulate(fm1)[[1]])
the bootMer function from lme4 provides a wrapper for doing multiple refits
with a specified summary function
b1 <- lme4::bootMer(fm1, FUN=function(x) fixef(x)$zi, nsim=20, .progress="txt")
if (requireNamespace("boot")) {

boot.ci(b1,type="perc")
}
can run in parallel: may need to set up cluster explicitly,

30 meatHC

use clusterEvalQ() to load packages on workers
if (requireNamespace("parallel")) {

cl <- parallel::makeCluster(2)
parallel::clusterEvalQ(cl, library("lme4"))
parallel::clusterEvalQ(cl, library("glmmTMB"))
b2 <- lme4::bootMer(fm1, FUN = function(x) fixef(x)$cond,

nsim = 10, ncpus = 2, cl = cl, parallel = "snow")
}

End(Not run)
}

map.theta.propto Set map values for theta to be fixed (NA) for propto

Description

Set map values for theta to be fixed (NA) for propto

Usage

map.theta.propto(ReStruc, map, component)

Arguments

ReStruc a random effects structure

map a list of mapped elements

component a character string specifying the parameter component to map

Value

the corresponding theta parameter vector

meatHC Simple Cluster Based Meat Matrix Estimator

Description

This (simplified) method for a new S3 generic based on meatHC computes the meat matrix for a fitted
glmmTMB model, which is the cross-product of the cluster-wise score vectors (empirical estimating
functions) extracted by estfun.

nbinom2 31

Usage

meatHC(x, ...)

Default S3 method:
meatHC(x, ...)

S3 method for class 'glmmTMB'
meatHC(x, ...)

Arguments

x a glmmTMB object fitted with ML (REML is not supported).

... additional arguments passed to estfun, in particular full, cluster and rawnames
arguments.

Value

A square matrix where each element represents the cross-product of the score vectors for the pa-
rameters in the model. The rows and columns are named according to the parameter names.

Note

This meat matrix is not scaled by the number of clusters.

Examples

m <- glmmTMB(count ~ mined + (1 | spp), data = Salamanders, family = nbinom1)
meatHC(m)
meatHC(m, full = TRUE)

nbinom2 Family functions for glmmTMB

Description

Family functions for glmmTMB

Usage

nbinom2(link = "log")

nbinom1(link = "log")

nbinom12(link = "log")

compois(link = "log")

32 nbinom2

truncated_compois(link = "log")

genpois(link = "log")

truncated_genpois(link = "log")

truncated_poisson(link = "log")

truncated_nbinom2(link = "log")

truncated_nbinom1(link = "log")

beta_family(link = "logit")

betabinomial(link = "logit")

tweedie(link = "log")

skewnormal(link = "identity")

lognormal(link = "log")

ziGamma(link = "inverse")

t_family(link = "identity")

ordbeta(link = "logit")

bell(link = "log")

Arguments

link (character) link function for the conditional mean ("log", "logit", "probit", "in-
verse", "cloglog", "identity", or "sqrt")

Details

If specified, the dispersion model uses a log link; additional family parameters (Student-t df, Tweedie
power parameters, ordered beta cutpoints, skew-normal skew parameters, etc.) use various link
functions and are accessible via family_params. Denoting the variance as V , the dispersion pa-
rameter as ϕ = exp(η) (where η is the linear predictor from the dispersion model), and the predicted
mean as µ:

gaussian (from base R): constant V = ϕ2

Gamma (from base R) phi is the shape parameter. V = µϕ

ziGamma a modified version of Gamma that skips checks for zero values, allowing it to be used to
fit hurdle-Gamma models

nbinom2 Negative binomial distribution: quadratic parameterization (Hardin & Hilbe 2007). V =
µ(1 + µ/ϕ) = µ+ µ2/ϕ.

nbinom2 33

nbinom1 Negative binomial distribution: linear parameterization (Hardin & Hilbe 2007). V =
µ(1+ϕ). Note that the phi parameter has opposite meanings in the nbinom1 and nbinom2 fam-
ilies. In nbinom1 overdispersion increases with increasing phi (the Poisson limit is phi=0);
in nbinom2 overdispersion decreases with increasing phi (the Poisson limit is reached as phi
goes to infinity).

nbinom12 Negative binomial distribution: mixed linear/quadratic, as in the DESeq2 package or
as described by Lindén and Mäntyniemi (2011). V = µ(1 + ϕ + µ/psi). (In Lindén and
Mäntyniemi’s parameterization, ω = ϕ and θ = 1/ψ.) If a dispersion model is specified, it
applies only to the linear (phi) term.

truncated_nbinom2 Zero-truncated version of nbinom2: variance expression from Shonkwiler
2016. Simulation code (for this and the other truncated count distributions) is taken from C.
Geyer’s functions in the aster package; the algorithms are described in this vignette.

compois Conway-Maxwell Poisson distribution: parameterized with the exact mean (Huang 2017),
which differs from the parameterization used in the COMPoissonReg package (Sellers &
Shmueli 2010, Sellers & Lotze 2015). V = µϕ.

genpois Generalized Poisson distribution (Consul & Famoye 1992). V = µ exp(η). (Note that
Consul & Famoye (1992) define ϕ differently.) Our implementation is taken from the HMMpa
package, based on Joe and Zhu (2005) and implemented by Vitali Witowski.

beta Beta distribution: parameterization of Ferrari and Cribari-Neto (2004) and the betareg pack-
age (Cribari-Neto and Zeileis 2010); V = µ(1− µ)/(ϕ+ 1)

betabinomial Beta-binomial distribution: parameterized according to Morris (1997). V = µ(1 −
µ)(n(ϕ+ n)/(ϕ+ 1))

tweedie Tweedie distribution: V = ϕµpower. The power parameter is restricted to the interval
1 < power < 2, i.e. the compound Poisson-gamma distribution. Code taken from the
tweedie package, written by Peter Dunn. The power parameter (designated psi in the list of
parameters) uses the link function qlogis(psi-1.0); thus one can fix the power parameter to
a specified value using start = list(psi = qlogis(fixed_power-1.0)), map = list(psi
= factor(NA)).

t_family Student-t distribution with adjustable scale and location parameters (also called a Pear-
son type VII distribution). The shape (degrees of freedom parameter) is fitted with a log link; it
may be often be useful to fix the shape parameter using start = list(psi = log(fixed_df)),
map = list(psi = factor(NA)).

ordbeta Ordered beta regression from Kubinec (2022); fits continuous (e.g. proportion) data in the
closed interval [0,1]. Unlike the implementation in the ordbeta package, this family will not
automatically scale the data. If your response variable is defined on the closed interval [a,b],
transform it to [0,1] via y_scaled <- (y-a)/(b-a).

lognormal Log-normal, parameterized by the mean and standard deviation on the data scale

skewnormal Skew-normal, parameterized by the mean, standard deviation, and shape (Azzalini &
Capitanio, 2014); constant V = ϕ2

bell Bell distribution (see Castellares et al 2018).

Value

returns a list with (at least) components

family length-1 character vector giving the family name

https://cran.r-project.org/package=aster/vignettes/trunc.pdf
https://en.wikipedia.org/wiki/Pearson_distribution#The_Pearson_type_VII_distribution
https://en.wikipedia.org/wiki/Pearson_distribution#The_Pearson_type_VII_distribution

34 numFactor

link length-1 character vector specifying the link function

variance a function of either 1 (mean) or 2 (mean and dispersion parameter) arguments
giving a value proportional to the predicted variance (scaled by sigma(.))

References

• Azzalini A & Capitanio A (2014). "The skew-normal and related families." Cambridge: Cam-
bridge University Press.

• Castellares F, Ferrari SLP, & Lemonte AJ (2018) "On the Bell Distribution and Its Asso-
ciated Regression Model for Count Data" Applied Mathematical Modelling 56: 172–85.
doi:10.1016/j.apm.2017.12.014

• Consul PC & Famoye F (1992). "Generalized Poisson regression model." Communications in
Statistics: Theory and Methods 21:89–109.

• Ferrari SLP, Cribari-Neto F (2004). "Beta Regression for Modelling Rates and Proportions."
J. Appl. Stat. 31(7), 799-815.

• Hardin JW & Hilbe JM (2007). "Generalized linear models and extensions." Stata Press.

• Huang A (2017). "Mean-parametrized Conway–Maxwell–Poisson regression models for dis-
persed counts." Statistical Modelling 17(6), 1-22.

• Joe H & Zhu R (2005). "Generalized Poisson Distribution: The Property of Mixture of Poisson
and Comparison with Negative Binomial Distribution." Biometrical Journal 47(2): 219–29.
doi:10.1002/bimj.200410102.

• Lindén, A & Mäntyniemi S. (2011). "Using the Negative Binomial Distribution to Model
Overdispersion in Ecological Count Data." Ecology 92 (7): 1414–21. doi:10.1890/101831.1.

• Morris W (1997). "Disentangling Effects of Induced Plant Defenses and Food Quantity on
Herbivores by Fitting Nonlinear Models." American Naturalist 150:299-327.

• Kubinec R (2022). "Ordered Beta Regression: A Parsimonious, Well-Fitting Model for Con-
tinuous Data with Lower and Upper Bounds." Political Analysis. doi:10.1017/pan.2022.20.

• Sellers K & Lotze T (2015). "COMPoissonReg: Conway-Maxwell Poisson (COM-Poisson)
Regression". R package version 0.3.5. https://CRAN.R-project.org/package=COMPoissonReg

• Sellers K & Shmueli G (2010) "A Flexible Regression Model for Count Data." Annals of
Applied Statistics 4(2), 943–61. doi:10.1214/09AOAS306.

• Shonkwiler, J. S. (2016). "Variance of the truncated negative binomial distribution." Journal
of Econometrics 195(2), 209–210. doi:10.1016/j.jeconom.2016.09.002.

numFactor Factor with numeric interpretable levels.

Description

Create a factor with numeric interpretable factor levels.

https://doi.org/10.1016/j.apm.2017.12.014
https://doi.org/10.1002/bimj.200410102
https://doi.org/10.1890/10-1831.1
https://doi.org/10.1214/09-AOAS306
https://doi.org/10.1016/j.jeconom.2016.09.002

omp_check 35

Usage

numFactor(x, ...)

parseNumLevels(levels)

Arguments

x Vector, matrix or data.frame that constitute the coordinates.

... Additional vectors, matrices or data.frames that constitute the coordinates.

levels Character vector to parse into numeric values.

Details

Some glmmTMB covariance structures require extra information, such as temporal or spatial coor-
dinates. numFactor allows to associate such extra information as part of a factor via the factor
levels. The original numeric coordinates are recoverable without loss of precision using the func-
tion parseNumLevels. Factor levels are sorted coordinate wise from left to right: first coordinate is
fastest running.

Value

Factor with specialized coding of levels.

Examples

1D example
numFactor(sample(1:5,20,TRUE))
2D example
coords <- cbind(sample(1:5,20,TRUE), sample(1:5,20,TRUE))
(f <- numFactor(coords))
parseNumLevels(levels(f)) ## Sorted
Used as part of a model.matrix
model.matrix(~f)
parseNumLevels(colnames(model.matrix(~f)))
Error: 'Failed to parse numeric levels: (Intercept)'
parseNumLevels(colnames(model.matrix(~ f-1)))

omp_check Check OpenMP status

Description

Checks whether OpenMP has been successfully enabled for this installation of the package. (Use the
parallel argument to glmmTMBControl, or set options(glmmTMB.cores=[value]), to specify
that computations should be done in parallel.) To further trace OpenMP settings, use options(glmmTMB_openmp_debug
= TRUE).

36 Owls

Usage

omp_check()

Value

TRUE or FALSE depending on availability of OpenMP,

See Also

benchmark, glmmTMBControl

Owls Begging by Owl Nestlings

Description

Begging by owl nestlings

Usage

data(Owls)

Format

The Owls data set is a data frame with 599 observations on the following variables:

Nest a factor describing individual nest locations

FoodTreatment (factor) food treatment: Deprived or Satiated

SexParent (factor) sex of provisioning parent: Female or Male

ArrivalTime a numeric vector

SiblingNegotiation a numeric vector

BroodSize brood size

NegPerChick number of negotations per chick

Note

Access to data kindly provided by Alain Zuur

Source

Roulin, A. and L. Bersier (2007) Nestling barn owls beg more intensely in the presence of their
mother than in the presence of their father. Animal Behaviour 74 1099–1106. doi:10.1016/j.anbehav.2007.01.027;
http://www.highstat.com/Books/Book2/ZuurDataMixedModelling.zip

https://doi.org/10.1016/j.anbehav.2007.01.027
http://www.highstat.com/Books/Book2/ZuurDataMixedModelling.zip

predict.glmmTMB 37

References

Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith (2009) Mixed Effects Models
and Extensions in Ecology with R; Springer.

Examples

data(Owls, package = "glmmTMB")
require("lattice")
bwplot(reorder(Nest,NegPerChick) ~ NegPerChick | FoodTreatment:SexParent,

data=Owls)
dotplot(reorder(Nest,NegPerChick) ~ NegPerChick| FoodTreatment:SexParent,

data=Owls)
Not run:
Fit negative binomial model with "constant" Zero Inflation :
owls_nb1 <- glmmTMB(SiblingNegotiation ~ FoodTreatment*SexParent +

(1|Nest)+offset(log(BroodSize)),
family = nbinom1(), zi = ~1, data=Owls)

owls_nb1_bs <- update(owls_nb1,
. ~ . - offset(log(BroodSize)) + log(BroodSize))

fixef(owls_nb1_bs)

End(Not run)

predict.glmmTMB prediction

Description

prediction

Usage

S3 method for class 'glmmTMB'
predict(
object,
newdata = NULL,
newparams = NULL,
se.fit = FALSE,
cov.fit = FALSE,
re.form = NULL,
allow.new.levels = NULL,
type = c("link", "response", "conditional", "zprob", "zlink", "disp", "latent"),
zitype = NULL,
na.action = na.pass,
fast = NULL,
debug = FALSE,
aggregate = NULL,
do.bias.correct = FALSE,

38 predict.glmmTMB

bias.correct.control = list(sd = TRUE),
...

)

Arguments

object a glmmTMB object
newdata new data for prediction
newparams new parameters for prediction
se.fit return the standard errors of the predicted values?
cov.fit return the covariance matrix of the predicted values?
re.form NULL to specify individual-level predictions; ~0 or NA to specify population-level

predictions (i.e., setting all random effects to zero)
allow.new.levels

allow previously unobserved levels in random-effects variables? see details.
type Denoting mu as the mean of the conditional distribution and p as the zero-

inflation probability, the possible choices are:
"link" the linear predictor of the conditional model, or equivalently the condi-

tional mean on the scale of the link function (this equivalence does not hold
for truncated distributions, where the link-scaled value is not adjusted for
the effect of truncation on the mean; to get the corrected value of the condi-
tional mean on the linear predictor scale, use family(m)$linkfun(predict(m,
type = "conditional")))

"response" expected value; this is mu ∗ (1 − p) for zero-inflated models and
mu otherwise

"conditional" mean of the conditional response; mu for all models (i.e., syn-
onymous with "response" in the absence of zero-inflation

"zprob" the probability of a structural zero (returns 0 for non-zero-inflated
models)

"zlink" predicted zero-inflation probability on the scale of the logit link func-
tion (returns -Inf for non-zero-inflated models)

"disp" dispersion parameter, however it is defined for that particular family (as
described in sigma.glmmTMB)

"latent" return latent variables
zitype deprecated: formerly used to specify type of zero-inflation probability. Now

synonymous with type

na.action how to handle missing values in newdata (see na.action); the default (na.pass)
is to predict NA

fast predict without expanding memory (default is TRUE if newdata and newparams
are NULL and population-level prediction is not being done)

debug (logical) return the TMBStruc object that will be used internally for debugging?
aggregate (optional factor vector) sum the elements with matching factor levels
do.bias.correct

(logical) should aggregated predictions use Taylor expanded estimate of nonlin-
ear contribution of random effects (see details)

predict.glmmTMB 39

bias.correct.control

a list sent to TMB’s function sdreport(). See documentation there.

... unused - for method compatibility

Details

• To compute population-level predictions for a given grouping variable (i.e., setting all random
effects for that grouping variable to zero), set the grouping variable values to NA. Finer-scale
control of conditioning (e.g. allowing variation among groups in intercepts but not slopes
when predicting from a random-slopes model) is not currently possible.

• Prediction of new random effect levels is possible as long as the model specification (fixed
effects and parameters) is kept constant. However, to ensure intentional usage, a warn-
ing is triggered if allow.new.levels is NULL (the default) and re.form is not NA, or if
allow.new.levels is explicitly set to TRUE.

• Prediction using "data-dependent bases" (variables whose scaling or transformation depends
on the original data, e.g. poly, ns, or poly) should work properly; however, users are advised
to check results extra-carefully when using such variables. Models with different versions of
the same data-dependent basis type in different components (e.g. formula= y ~ poly(x,3),
dispformula= ~poly(x,2)) will probably not produce correct predictions.

• Bias corrected predictions are based on the method described in Thorson J.T. & Kristensen
(2016). These should be checked carefully by the user and are not extensively tested.

References

Thorson J.T. & Kristensen K. (2016) Implementing a generic method for bias correction in statistical
models using random effects, with spatial and population dynamics examples. Fish. Res. 175, 66-
74.

Examples

data(sleepstudy,package="lme4")
g0 <- glmmTMB(Reaction~Days+(Days|Subject),sleepstudy)
predict(g0, sleepstudy)
Predict new Subject
nd <- sleepstudy[1,]
nd$Subject <- "new"
predict(g0, newdata=nd, allow.new.levels=TRUE)
population-level prediction
nd_pop <- data.frame(Days=unique(sleepstudy$Days),

Subject=NA)
predict(g0, newdata=nd_pop)
return latent variables (BLUPs/conditional modes/etc.) with standard errors
(actually conditional standard deviations)
predict(g0, type = "latent", se.fit = TRUE)

40 priors

print.VarCorr.glmmTMB Printing The Variance and Correlation Parameters of a glmmTMB

Description

Printing The Variance and Correlation Parameters of a glmmTMB

Usage

S3 method for class 'VarCorr.glmmTMB'
print(
x,
digits = max(3, getOption("digits") - 2),
comp = "Std.Dev.",
formatter = format,
maxdim = 10,
...

)

Arguments

x a result of VarCorr(<glmmTMB>).

digits number of significant digits to use.

comp a string specifying the component to format and print.

formatter a function.

maxdim maximum number of SDs/correlations to print

... optional further arguments, passed to print.default (for printing a character
matrix)

priors use of priors in glmmTMB

Description

(EXPERIMENTAL/subject to change)

Details

glmmTMB can accept prior specifications, for doing maximum a posteriori (MAP) estimation (or
Hamiltonian MC with the tmbstan package), or (outside of a Bayesian framework) for the purposes
of regularizing parameter estimates

The priors argument to glmmTMB must (if not NULL) be a data frame with columns

prior character; the prior specification, e.g. "normal(0,2)"

priors 41

class the name of the underlying parameter vector on which to impose the prior ("fixef", "fixef_zi",
"fixef_disp", "ranef", "ranef_zi", "psi")

coef (optional) a string (if present) specifying the particular elements of the parameter vector to
apply the prior to. coef should specify an integer parameter index, a column name from the
fixed effect model matrix or a grouping variable for a random effect (the behaviour is currently
undefined if there is more one than random effect term with the same grouping variable in a
model ...); one can also append "_cor" or "_sd" to a random-effects class specification to
denote the correlation parameters, or all of the standard deviation parameters, corresponding
to a particular random effect term. If the class element is missing, or a particular element is
blank, then all of the elements of the specified parameter vector use independent priors with the
given specification. The exception is for the fixed-effect parameter vectors ("fixef", "fixef_zi",
"fixef_disp"), where the intercept (if present) is not included; the prior on the intercept must
be set explicitly.

‘The available prior distributions are:

• "normal" (mean/sd parameterization)

• "t" (mean/sd/df)

• "cauchy" (location/scale)

• "gamma" (mean/shape); applied on the SD (not the log-SD) scale

• "lkj" (correlation) [WARNING, maybe buggy at present!]

The first three are typically used for fixed effect parameters; the fourth for standard deviation pa-
rameters; and the last for correlation structures. See the "priors" vignette for examples and further
information.

Examples

data("sleepstudy", package = "lme4")
prior1 <- data.frame(prior = c("normal(250,3)","t(0,3,3)","gamma(10,1)"),

class = c("fixef", "fixef", "ranef_sd"),
coef = c("(Intercept)", "Days", "Subject"))

g1 <- glmmTMB(Reaction ~ 1 + Days + (1 + Days |Subject), sleepstudy)
update(g1, priors = prior1)
prior2 <- data.frame(prior = c("t(0,3,3)","gamma(10,1)"),

class = c("fixef", "ranef_sd"),
coef = c("", "Subject"))

update(g1, priors = prior2)
no prior is set for the intercept in this case - see Details above
prior3 <- data.frame(prior = "t(0, 3, 3)",

class = "fixef")
update(g1, priors = prior3)

42 profile.glmmTMB

profile.glmmTMB Compute likelihood profiles for a fitted model

Description

Compute likelihood profiles for a fitted model

Usage

S3 method for class 'glmmTMB'
profile(
fitted,
parm = NULL,
level_max = 0.99,
npts = 8,
stepfac = 1/4,
stderr = NULL,
trace = FALSE,
parallel = c("no", "multicore", "snow"),
ncpus = getOption("profile.ncpus", 1L),
cl = NULL,
...

)

S3 method for class 'profile.glmmTMB'
confint(object, parm = NULL, level = 0.95, ...)

Arguments

fitted a fitted glmmTMB object

parm which parameters to profile, specified

• by index (position)
• by name (matching the row/column names of vcov(object,full=TRUE))
• as "theta_" (random-effects variance-covariance parameters) or "beta_"

(conditional and zero-inflation parameters)

level_max maximum confidence interval target for profile

npts target number of points in (each half of) the profile (approximate)

stepfac initial step factor (fraction of estimated standard deviation)

stderr standard errors to use as a scaling factor when picking step sizes to compute the
profile; by default (if stderr is NULL, or NA for a particular element), uses the
estimated (Wald) standard errors of the parameters

trace print tracing information? If trace=FALSE or 0, no tracing; if trace=1, print
names of parameters currently being profiled; if trace>1, turn on tracing for the
underlying tmbprofile function

profile.glmmTMB 43

parallel method (if any) for parallel computation

ncpus number of CPUs/cores to use for parallel computation

cl cluster to use for parallel computation

... additional arguments passed to tmbprofile

object a fitted profile (profile.glmmTMB) object

level confidence level

Details

Fits natural splines separately to the points from each half of the profile for each specified parameter
(i.e., values above and below the MLE), then finds the inverse functions to estimate the endpoints
of the confidence interval

Value

An object of class profile.glmmTMB, which is also a data frame, with columns .par (parameter
being profiled), .focal (value of focal parameter), value (negative log-likelihood).

Examples

Not run:
m1 <- glmmTMB(count~ mined + (1|site),

zi=~mined, family=poisson, data=Salamanders)
salamander_prof1 <- profile(m1, parallel="multicore",

ncpus=2, trace=1)
testing
salamander_prof1 <- profile(m1, trace=1,parm=1)
salamander_prof1M <- profile(m1, trace=1,parm=1, npts = 4)
salamander_prof2 <- profile(m1, parm="theta_")

End(Not run)
salamander_prof1 <- readRDS(system.file("example_files","salamander_prof1.rds",package="glmmTMB"))
if (require("ggplot2")) {

ggplot(salamander_prof1,aes(.focal,sqrt(value))) +
geom_point() + geom_line()+
facet_wrap(~.par,scale="free_x")+

geom_hline(yintercept=1.96,linetype=2)
}
salamander_prof1 <- readRDS(system.file("example_files","salamander_prof1.rds",package="glmmTMB"))
confint(salamander_prof1)
confint(salamander_prof1,level=0.99)

44 ranef.glmmTMB

ranef.glmmTMB Extract Random Effects

Description

Extract random effects from a fitted glmmTMB model, both for the conditional model and zero infla-
tion.

Usage

S3 method for class 'glmmTMB'
ranef(object, condVar = TRUE, ...)

S3 method for class 'ranef.glmmTMB'
as.data.frame(x, ...)

S3 method for class 'glmmTMB'
coef(object, condVar = FALSE, ...)

Arguments

object a glmmTMB model.

condVar whether to include conditional variances in result.

... some methods for this generic function require additional arguments (they are
unused here and will trigger an error)

x a ranef.glmmTMB object (i.e., the result of running ranef on a fitted glmmTMB
model)

Value

• For ranef, an object of class ranef.glmmTMB with two components:

cond a list of data frames, containing random effects for the conditional model.
zi a list of data frames, containing random effects for the zero inflation.
disp a list of data frames, containing random effects for the dispersion model.

If condVar=TRUE, the individual list elements within the cond, zi, and disp components
(corresponding to individual random effects terms) will have associated condVar attributes
giving the conditional variances of the random effects values. These are in the form of three-
dimensional arrays: see ranef.merMod for details. The only difference between the packages
is that the attributes are called ‘postVar’ in lme4, vs. ‘condVar’ in glmmTMB.

• For coef.glmmTMB: a similar list, but containing the overall coefficient value for each level,
i.e., the sum of the fixed effect estimate and the random effect value for that level. Conditional
variances are not yet available as an option for coef.glmmTMB.

• For as.data.frame: a data frame with components

component part of the model to which the random effects apply (conditional or zero-inflation)

reinstalling 45

grpvar grouping variable
term random-effects term (e.g., intercept or slope)
grp group, or level of the grouping variable
condval value of the conditional mode
condsd conditional standard deviation

Note

When a model has no zero inflation, the ranef and coef print methods simplify the structure shown,
by default. To show the full list structure, use print(ranef(model),simplify=FALSE) or the
analogous code for coef. In all cases, the full list structure is used to access the data frames, see
example.

See Also

fixef.glmmTMB.

Examples

if (requireNamespace("lme4")) {
data(sleepstudy, package="lme4")
model <- glmmTMB(Reaction ~ Days + (1|Subject), sleepstudy)
rr <- ranef(model)
print(rr, simplify=FALSE)
extract Subject conditional modes for conditional model
rr$cond$Subject
as.data.frame(rr)

}

reinstalling Reinstalling binary dependencies

Description

The glmmTMB package depends on several upstream packages, which it uses in a way that depends
heavily on their internal (binary) structure. Sometimes, therefore, installing an update to one of
these packages will require that you re-install a binary-compatible version of glmmTMB, i.e. a version
that has been compiled with the updated version of the upstream package.

• If you have development tools (compilers etc.) installed, you should be able to re-install a
binary-compatible version of the package by running install.packages("glmmTMB", type="source").
If you want to install the development version of glmmTMB instead, you can use remotes::install_github("glmmTMB/glmmTMB/glmmTMB").
(On Windows, you can install development tools following the instructions at https://
cran.r-project.org/bin/windows/Rtools/; on MacOS, see https://mac.r-project.
org/tools/.)

• If you do not have development tools and can’t/don’t want to install them (and so can’t install
packages with compiled code from source), you have two choices:

https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/bin/windows/Rtools/
https://mac.r-project.org/tools/
https://mac.r-project.org/tools/

46 residuals.glmmTMB

– revert the upstream package(s) to their previous binary version. For example, using the
checkpoint package:
load (installing if necessary) the checkpoint package
while (!require("checkpoint")) install.packages("checkpoint")
retrieve build date of installed version of glmmTMB
bd <- as.character(asDateBuilt(

packageDescription("glmmTMB",fields="Built")))
oldrepo <- getOption("repos")
use_mran_snapshot(bd) ## was setSnapshot() pre-checkpoint v1.0.0
install.packages("TMB")
options(repos=oldrepo) ## restore original repo

A similar recipe (substituting Matrix for TMB and TMB for glmmTMB) can be used if you
get warnings about an incompatibility between TMB and Matrix.

– hope that the glmmTMB maintainers have posted a binary version of the package that
works with your system; try installing it via install.packages("glmmTMB",repos="https://glmmTMB.github.io/glmmTMB/repos",type="binary")
If this doesn’t work, please file an issue (with full details about your operating system and
R version) asking the maintainers to build and post an appropriate binary version of the
package.

residuals.glmmTMB Compute residuals for a glmmTMB object

Description

Compute residuals for a glmmTMB object

Usage

S3 method for class 'glmmTMB'
residuals(
object,
type = c("response", "pearson", "working", "deviance", "dunn-smyth"),
re.form = NULL,
...

)

S3 method for class 'glmmTMB'
deviance(object, ...)

Arguments

object a “glmmTMB” object

type (character) residual type

re.form NULL to specify individual-level predictions; ~0 or NA to specify population-level
predictions (i.e., setting all random effects to zero)

... for method compatibility (unused arguments will throw an error)

Salamanders 47

Details

• Residuals are computed based on predictions of type "response", i.e. equal to the conditional
mean for non-zero-inflated models and to mu*(1-p) for zero-inflated models

• Computing deviance residuals depends on the implementation of the dev.resids function
from the object’s family component; at present this returns NA for most "exotic" families
(i.e. deviance residuals are currently only implemented for families built into base R plus
nbinom1, nbinom2). Deviance residuals are based on the conditional distributions only, i.e.
ignoring zero-inflation components.

• Deviance is computed as the sum of squared deviance residuals, so is available only for the
families listed in the bullet point above. See deviance.merMod for more details on the defini-
tion of the deviance for GLMMs.

• for distributions in the exponential dispersion family (Gaussian, Poisson, binomial, Gamma),
for models with a fixed dispersion parameter (Poisson, binomial) or constant dispformula
component, reported Pearson residuals are only scaled by a factor proportional to the residual
standard deviation (for compatibility with base R); divide these values by sigma(fitted_model)
to get raw residuals scaled by the standard deviation. For all other distributions/models, Pear-
son residuals are scaled by the residual standard deviation. (The beta-binomial currently re-
turns unscaled residuals.)

Salamanders Repeated counts of salamanders in streams

Description

A data set containing counts of salamanders with site covariates and sampling covariates. Each of
23 sites was sampled 4 times. When using this data set, please cite Price et al. (2016) as well as the
Dryad data package (Price et al. 2015).

Usage

data(Salamanders)

Format

A data frame with 644 observations on the following 10 variables:

site name of a location where repeated samples were taken

mined factor indicating whether the site was affected by mountain top removal coal mining

cover amount of cover objects in the stream (scaled)

sample repeated sample

DOP Days since precipitation (scaled)

Wtemp water temperature (scaled)

DOY day of year (scaled)

spp abbreviated species name, possibly also life stage

count number of salamanders observed

48 sandwich

References

Price SJ, Muncy BL, Bonner SJ, Drayer AN, Barton CD (2016) Effects of mountaintop removal
mining and valley filling on the occupancy and abundance of stream salamanders. Journal of Ap-
plied Ecology 53 459–468. doi:10.1111/13652664.12585

Price SJ, Muncy BL, Bonner SJ, Drayer AN, Barton CD (2015) Data from: Effects of mountaintop
removal mining and valley filling on the occupancy and abundance of stream salamanders. Dryad
Digital Repository. doi:10.5061/dryad.5m8f6

Examples

require("glmmTMB")
data(Salamanders)

zipm3 = glmmTMB(count~spp * mined + (1|site), zi=~spp * mined, Salamanders, family="poisson")

sandwich Sandwich Estimator based on Bread and Meat Matrices

Description

This (simplified) method for a new S3 generic based on sandwich computes the sandwich estimator
for a fitted glmmTMB model.

Usage

sandwich(x, ...)

Default S3 method:
sandwich(x, ...)

S3 method for class 'glmmTMB'
sandwich(x, full = FALSE, cluster = getGroups(x), rawnames = FALSE, ...)

Arguments

x a glmmTMB object fitted with ML (REML is not supported).

... ignored by the glmmTMB method.

full logical; if TRUE, return the full sandwich matrix including variance components,
otherwise only the fixed effects part (if the model was fit with ML).

cluster a factor indicating the cluster structure of the data.

rawnames logical; if TRUE, keep the original names of the parameters as in the TMB object.
By default, FALSE such that the names are sanitized to user friendly names.

Value

A square matrix representing the sandwich estimator.

https://doi.org/10.1111/1365-2664.12585
https://doi.org/10.5061/dryad.5m8f6

set_simcodes 49

Examples

m <- glmmTMB(count ~ mined + (1 | site), data = Salamanders, family = nbinom1)
sandwich(m)
sandwich(m, full = TRUE)

set_simcodes helper function to modify simulation settings for random effects

Description

This modifies the TMB object in place (beware!) Ultimately this will allow terms to be a vector of
term names, with a matching val vector to specify the behaviour for each term

Usage

set_simcodes(g, val = "zero", terms = "ALL")

Arguments

g a TMB object

val a legal setting for sim codes ("zero", "random", or "fix")

terms which terms to apply this to

sigma.glmmTMB Extract residual standard deviation or dispersion parameter

Description

For Gaussian models, sigma returns the value of the residual standard deviation; for other families,
it returns the dispersion parameter, however it is defined for that particular family. See details for
each family below.

Usage

S3 method for class 'glmmTMB'
sigma(object, ...)

Arguments

object a “glmmTMB” fitted object

... (ignored; for method compatibility)

50 sigma.glmmTMB

Details

The value returned varies by family:

gaussian returns the maximum likelihood estimate of the standard deviation (i.e., smaller than the
results of sigma(lm(...)) by a factor of (n-1)/n)

nbinom1 returns a dispersion parameter (usually denoted α as in Hardin and Hilbe (2007)): such
that the variance equals µ(1 + α).

nbinom2 returns a dispersion parameter (usually denoted θ or k); in contrast to most other families,
larger θ corresponds to a lower variance which is µ(1 + µ/θ).

Gamma Internally, glmmTMB fits Gamma responses by fitting a mean and a shape parameter;
sigma is estimated as (1/sqrt(shape)), which will typically be close (but not identical to) that
estimated by stats:::sigma.default, which uses sqrt(deviance/df.residual)

beta returns the value of ϕ, where the conditional variance is µ(1− µ)/(1 + ϕ) (i.e., increasing ϕ
decreases the variance.) This parameterization follows Ferrari and Cribari-Neto (2004) (and
the betareg package):

betabinomial This family uses the same parameterization (governing the Beta distribution that
underlies the binomial probabilities) as beta.

genpois returns the index of dispersion ϕ2, where the variance is µϕ2 (Consul & Famoye 1992)

compois returns the value of 1/ν; when ν = 1, compois is equivalent to the Poisson distribution.
There is no closed form equation for the variance, but it is approximately underdispersed when
1/ν < 1 and approximately overdispersed when 1/ν > 1. In this implementation, µ is exactly
equal to the mean (Huang 2017), which differs from the COMPoissonReg package (Sellers &
Lotze 2015).

tweedie returns the value of ϕ, where the variance is ϕµp. The value of p can be extracted using
family_params

ordbeta see details for beta

The most commonly used GLM families (binomial, poisson) have fixed dispersion parameters
which are internally ignored.

References

• Consul PC, and Famoye F (1992). "Generalized Poisson regression model. Communications
in Statistics: Theory and Methods" 21:89–109.

• Ferrari SLP, Cribari-Neto F (2004). "Beta Regression for Modelling Rates and Proportions."
J. Appl. Stat. 31(7), 799-815.

• Hardin JW & Hilbe JM (2007). "Generalized linear models and extensions." Stata press.

• Huang A (2017). "Mean-parametrized Conway–Maxwell–Poisson regression models for dis-
persed counts. " Statistical Modelling 17(6), 1-22.

• Sellers K & Lotze T (2015). "COMPoissonReg: Conway-Maxwell Poisson (COM-Poisson)
Regression". R package version 0.3.5. https://CRAN.R-project.org/package=COMPoissonReg

simulate.glmmTMB 51

simulate.glmmTMB Simulate from a glmmTMB fitted model

Description

Simulate from a glmmTMB fitted model

Usage

S3 method for class 'glmmTMB'
simulate(object, nsim = 1, seed = NULL, re.form = NULL, ...)

Arguments

object glmmTMB fitted model

nsim number of response lists to simulate. Defaults to 1.

seed random number seed

re.form (Not yet implemented)

... extra arguments

Details

Random effects are also simulated from their estimated distribution. Currently, it is not possible to
condition on estimated random effects.

Value

returns a list of vectors. The list has length nsim. Each simulated vector of observations is the same
size as the vector of response variables in the original data set. In the binomial family case each
simulation is a two-column matrix with success/failure.

simulate_new Simulate from covariate/metadata in the absence of a real data set
(EXPERIMENTAL)

Description

See vignette("sim", package = "glmmTMB") for more details and examples, and vignette("covstruct",
package = "glmmTMB") for more information on the parameterization of different covariance struc-
tures.

52 simulate_new

Usage

simulate_new(
object,
nsim = 1,
seed = NULL,
family = gaussian,
newdata,
newparams = NULL,
...,
return_val = c("sim", "pars", "object")

)

Arguments

object a one-sided model formula (e.g. ~ a + b + c (peculiar naming is for consistency
with the generic function, which typically takes a fitted model object)

nsim number of simulations

seed random-number seed

family a family function, a character string naming a family function, or the result of
a call to a family function (variance/link function) information. See family
for a generic discussion of families or family_glmmTMB for details of glmmTMB-
specific families.

newdata a data frame containing all variables listed in the formula, including the response
variable (which needs to fall within the domain of the conditional distribution,
and should probably not be all zeros, but whose value is otherwise irrelevant)

newparams a list of parameters containing sub-vectors (beta, betazi, betadisp, theta,
etc.) to be used in the model. If b is specified in this list, then the conditional
modes/BLUPs will be set to these values; otherwise they will be drawn from
the appropriate Normal distribution. See vignette("covstruct", package =
"glmmTMB") for details on the parameterizations used for various random-effects
models (i.e., theta).

... other arguments to glmmTMB (e.g. family)

return_val what information to return: "sim" (the default) returns a list of vectors of simu-
lated outcomes; "pars" returns the default parameter vector (this variant does not
require newparams to be specified, and is useful for figuring out the appropriate
dimensions of the different parameter vectors); "object" returns a fake glmmTMB
object (useful, e.g., for retrieving the Z matrix (getME(simulate_new(...),
"Z")) or covariance matrices (VarCorr(simulate_new(...))) implied by a
particular set of input data and parameter values)

Details

Use the weights argument to set the size/number of trials per observation for binomial-type models;
the default is 1 for every observation (i.e., Bernoulli trials)

spider_long 53

See Also

glmmTMB, family_glmmTMB (for conditional distribution parameterizations [betadisp]), put_cor
(for correlation matrix parameterizations)

Examples

use Salamanders data for observational design and covariate values
parameters used here are sensible, but do not fit the original data
params <- list(beta = c(2, 1),

betazi = c(-0.5, 0.5), ## logit-linear model for zi
betadisp = log(2), ## log(NB dispersion)
theta = log(1)) ## log(among-site SD)

sim_count <- simulate_new(~ mined + (1|site),
newdata = Salamanders,
zi = ~ mined,
family = nbinom2,
seed = 101,
newparams = params

)
simulate_new with return="sim" always returns a list of response vectors
Salamanders$sim_count <- sim_count[[1]]
summary(glmmTMB(sim_count ~ mined + (1|site), data=Salamanders, ziformula=~mined, family=nbinom2))
return a glmmTMB object
sim_obj <- simulate_new(~ mined + (1|site),

return_val = "object",
newdata = Salamanders,
zi = ~ mined,
family = nbinom2,
newparams = params)

simulate Gaussian data, multivariate random effect
data("sleepstudy", package = "lme4")
sim_obj <- simulate_new(~ 1 + (1|Subject) + ar1(0 + factor(Days)|Subject),

return_val = "pars",
newdata = sleepstudy,
family = gaussian,
newparams = list(beta = c(280, 1),

betad = log(2), ## log(residual std err)
theta = c(log(2), ## log(SD(subject))

log(2), ## log(SD(slope))
AR1 correlation = 0.2
put_cor(0.2, input_val = "vec"))

)
)

spider_long Spider data from CANOCO, long format

54 summary.glmmTMB

Description

data from spider2 directory, CANOCO FORTRAN package, with trait variables added; taken from
the mvabund package and converted to long form. Variables:

• soil.dry
• bare.sand
• fallen.leaves
• moss
• herb.layer
• reflection
• id
• Species
• abund

Usage

spider_long

Format

An object of class data.frame with 336 rows and 9 columns.

References

• ter Braak, C. J. F. and Smilauer, P. (1998) CANOCO reference manual and user’s guide to
CANOCO for Windows: software for canonical community ordination (version 4). Micro-
computer Power, New York, New York, USA

• van der Aart, P. J. M., and Smeenk-Enserink, N. (1975) Correlations between distributions
of hunting spiders (Lycosidae, Ctenidae) and environmental characteristics in a dune area.
Netherlands Journal of Zoology 25, 1-45.

summary.glmmTMB summary for glmmTMB fits

Description

summary for glmmTMB fits

Usage

S3 method for class 'glmmTMB'
summary(
object,
sandwich = FALSE,
ddf = c("asymptotic", "kenward-roger", "satterthwaite"),
cluster = getGroups(object),
...

)

terms.glmmTMB 55

Arguments

object a fitted glmmTMB object
sandwich use the sandwich estimator for the variance-covariance matrix? (this only works

for ML fits, but not for REML fits)
ddf denominator degrees-of-freedom calculation. Default "asymptotic" gives stan-

dard Z-statistics (i.e., ’infinite’ denominator df); "kenward-roger" uses the
Kenward-Roger approximation, which will be ignored for non-REML fits and is
entirely untested for GLMMs (see dof_KR); "satterthwaite" uses a Satterth-
waite approximation

cluster grouping factor for the sandwich estimator, only used if sandwich==TRUE.
... unused, for method compatibility

terms.glmmTMB Methods for extracting developer-level information from glmmTMB
models

Description

Methods for extracting developer-level information from glmmTMB models

Usage

S3 method for class 'glmmTMB'
terms(x, component = "cond", part = "fixed", ...)

S3 method for class 'glmmTMB'
model.matrix(
object,
component = "cond",
part = "fixed",
include_rankdef = FALSE,
...

)

Arguments

x a fitted glmmTMB object
component model component ("cond", "zi", or "disp"; not all models contain all compo-

nents)
part whether to return results for the fixed or random effect part of the model (at

present only part="fixed" is implemented for most methods)
... additional arguments (ignored or passed to model.frame)
object a fitted glmmTMB object
include_rankdef

include all columns of a rank-deficient model matrix?

56 vcov.glmmTMB

up2date conditionally update glmmTMB object fitted with an old TMB version

Description

conditionally update glmmTMB object fitted with an old TMB version

Load data from system file, updating glmmTMB objects

Usage

up2date(oldfit, update_gauss_disp = FALSE)

gt_load(fn, verbose = FALSE, ...)

Arguments

oldfit a fitted glmmTMB object
update_gauss_disp

update betadisp from variance to SD parameterization?

fn partial path to system file (e.g. test_data/foo.rda)

verbose print names of updated objects?

... values passed through to up2date

vcov.glmmTMB Calculate Variance-Covariance Matrix for a Fitted glmmTMB model

Description

Calculate Variance-Covariance Matrix for a Fitted glmmTMB model

Usage

S3 method for class 'glmmTMB'
vcov(
object,
full = FALSE,
include_nonest = TRUE,
sandwich = FALSE,
cluster = getGroups(object),
...

)

vcovHC.glmmTMB 57

Arguments

object a “glmmTMB” fit

full return a full variance-covariance matrix?

include_nonest include variables that are mapped or dropped due to rank-deficiency? (these will
be given variances and covariances of NA)

sandwich use the sandwich estimator for the variance-covariance matrix? (this only works
for ML fits, but not for REML fits)

cluster grouping factor for the sandwich estimator, only used if sandwich==TRUE.

... ignored, for method compatibility

Value

By default (full==FALSE), a list of separate variance-covariance matrices for each model compo-
nent (conditional, zero-inflation, dispersion). If full==TRUE, a single square variance-covariance
matrix for all top-level model parameters (conditional, dispersion, and variance-covariance param-
eters)

vcovHC.glmmTMB Cluster Robust Variance-Covariance Matrix Estimator

Description

This method for vcovHC computes the cluster-robust variance-covariance matrix for a glmmTMB
model fitted with ML.

Usage

S3 method for class 'glmmTMB'
vcovHC(x, type = "HC0", sandwich = TRUE, ...)

Arguments

x a glmmTMB object fitted with ML (REML is not supported).

type only "HC0" is currently supported for glmmTMB models.

sandwich logical; if TRUE, return the sandwich estimator, otherwise only the meat matrix
is returned.

... additional arguments passed to meatHC and sandwich, in particular the full
and cluster arguments are useful.

Details

The sandwich estimator is computed as B * M * B where B is the bread matrix and M is the meat
matrix. The bread matrix is just the usual inverse Hessian obtained by vcov(). The meat matrix is
calculated as the sum of the cluster-wise score vector cross-products.

58 weights.glmmTMB

Value

A square matrix representing the cluster-robust variance-covariance matrix.

Examples

m <- glmmTMB(count ~ mined + (1 | spp), data = Salamanders, family = nbinom1)

Standard variance-covariance matrix:
vcov(m)$cond

Cluster-robust variance-covariance matrix:
vcovHC(m)

Include the variance parameters:
vcovHC(m, full = TRUE)

This can be compared with:
vcov(m, full = TRUE)

Only look at the meat part:
vcovHC(m, sandwich = FALSE)

weights.glmmTMB Extract weights from a glmmTMB object

Description

Extract weights from a glmmTMB object

Usage

S3 method for class 'glmmTMB'
weights(object, type = "prior", ...)

Arguments

object a fitted glmmTMB object
type weights type
... additional arguments (not used; for methods compatibility)

Details

At present only explicitly specified prior weights (i.e., weights specified in the weights argument)
can be extracted from a fitted model.

• Unlike other GLM-type models such as glm or glmer, weights() does not currently return
the total number of trials when binomial responses are specified as a two-column matrix.

• Since glmmTMB does not fit models via iteratively weighted least squares, working weights
(see weights.glm) are unavailable.

Index

∗ datasets
epil2, 11
Owls, 36
Salamanders, 47

∗ data
spider_long, 53

∗ models
fixef, 15

Anova, 4
Anova.glmmTMB, 3
as.data.frame.ranef.glmmTMB

(ranef.glmmTMB), 44
as.theta.vcov, 5

bell (nbinom2), 31
benchmark, 36
beta_family (nbinom2), 31
betabinomial (nbinom2), 31
bread, 6
bread (bread.glmmTMB), 6
bread.glmmTMB, 6

coef.glmmTMB (ranef.glmmTMB), 44
compois (nbinom2), 31
confint.glmmTMB, 6
confint.profile.glmmTMB

(profile.glmmTMB), 42

deviance.glmmTMB (residuals.glmmTMB), 46
deviance.merMod, 47
df.residual, 24
diagnose, 8
dof_KR, 10, 55
dof_satt (dof_KR), 10
downstream_methods (Anova.glmmTMB), 3
dtruncated_nbinom1

(dtruncated_nbinom2), 10
dtruncated_nbinom2, 10
dtruncated_poisson

(dtruncated_nbinom2), 10

Effect.glmmTMB (Anova.glmmTMB), 3
emmeans.glmmTMB (Anova.glmmTMB), 3
epil2, 11
estfun, 12, 30, 31
estfun (estfun.glmmTMB), 12
estfun.glmmTMB, 12

family, 23, 25, 52
family_glmmTMB, 23, 52, 53
family_glmmTMB (nbinom2), 31
family_params, 13, 32
finalizeTMB (fitTMB), 13
fitTMB, 13
fixef, 15
fixef.glmmTMB, 45
formula.glmmTMB, 16
function, 40

genpois (nbinom2), 31
get_autopar, 20
get_cor, 21, 21
getCapabilities, 16
getGroups, 17
getGroups (getGroups.glmmTMB), 17
getGroups.glmmTMB, 17
getME, 18
getME (getME.glmmTMB), 17
getME.glmmTMB, 17
getReStruc, 18
getXReTrms, 19
glm, 58
glmer, 58
glmmTMB, 13, 22, 28, 53
glmmTMBControl, 23, 26, 35, 36
gt_load (up2date), 56

isLMM, 29
isLMM.glmmTMB, 29

lognormal (nbinom2), 31

59

60 INDEX

MakeADFun, 24
map.theta.propto, 30
meatHC, 30, 30, 57
mkReTrms, 20
mkTMBStruc, 28
model.frame, 24, 55
model.matrix.default, 23
model.matrix.glmmTMB (terms.glmmTMB), 55

na.action, 38
nbinom1 (nbinom2), 31
nbinom12 (nbinom2), 31
nbinom2, 31
nlminb, 28
ns, 39
numFactor, 34

omp_check, 35
openmp, 27
openmp (omp_check), 35
ordbeta (nbinom2), 31
OwlModel (Owls), 36
OwlModel_nb1_bs (Owls), 36
OwlModel_nb1_bs_mcmc (Owls), 36
Owls, 36

parseNumLevels (numFactor), 34
poly, 39
predict.glmmTMB, 37
print.default, 40
print.VarCorr.glmmTMB, 40
priors, 24, 40
profile.glmmTMB, 7, 42
put_cor, 21, 53
put_cor (get_cor), 21

ranef (ranef.glmmTMB), 44
ranef.glmmTMB, 44
ranef.merMod, 44
refit, 29
refit.glmmTMB (isLMM.glmmTMB), 29
reinstalling, 45
residuals.glmmTMB, 46

s, 25
Salamanders, 47
sandwich, 48, 48, 57
set_simcodes, 49
sigma, 23

sigma (sigma.glmmTMB), 49
sigma.glmmTMB, 38, 49
simulate.glmmTMB, 51
simulate_new, 51
skewnormal (nbinom2), 31
smooth2random, 25
spider_long, 53
summary.glmmTMB, 54

t_family (nbinom2), 31
terms.glmmTMB, 55
tmbprofile, 7, 42, 43
tmbroot, 7
truncated_compois (nbinom2), 31
truncated_genpois (nbinom2), 31
truncated_nbinom1 (nbinom2), 31
truncated_nbinom2 (nbinom2), 31
truncated_poisson (nbinom2), 31
tweedie (nbinom2), 31

uniroot, 8
up2date, 56

VarCorr, 40
vcov.glmmTMB, 56
vcovHC, 57
vcovHC (vcovHC.glmmTMB), 57
vcovHC.glmmTMB, 57

weights.glm, 58
weights.glmmTMB, 58

ziGamma (nbinom2), 31

	Anova.glmmTMB
	as.theta.vcov
	bread.glmmTMB
	confint.glmmTMB
	diagnose
	dof_KR
	dtruncated_nbinom2
	epil2
	estfun.glmmTMB
	family_params
	fitTMB
	fixef
	formula.glmmTMB
	getCapabilities
	getGroups.glmmTMB
	getME.glmmTMB
	getReStruc
	getXReTrms
	get_autopar
	get_cor
	glmmTMB
	glmmTMBControl
	isLMM.glmmTMB
	map.theta.propto
	meatHC
	nbinom2
	numFactor
	omp_check
	Owls
	predict.glmmTMB
	print.VarCorr.glmmTMB
	priors
	profile.glmmTMB
	ranef.glmmTMB
	reinstalling
	residuals.glmmTMB
	Salamanders
	sandwich
	set_simcodes
	sigma.glmmTMB
	simulate.glmmTMB
	simulate_new
	spider_long
	summary.glmmTMB
	terms.glmmTMB
	up2date
	vcov.glmmTMB
	vcovHC.glmmTMB
	weights.glmmTMB
	Index

