
Package ‘gdalcubes’
January 19, 2026

Title Earth Observation Data Cubes from Satellite Image Collections

Version 0.7.3

Date 2026-01-18

Description Processing collections of Earth observation images as on-
demand multispectral, multitemporal raster data cubes. Users
define cubes by spatiotemporal extent, resolution, and spatial reference system and let 'gdal-
cubes' automatically apply cropping, reprojection, and
resampling using the 'Geospatial Data Abstraction Library' ('GDAL'). Implemented func-
tions on data cubes include reduction over space and time,
applying arithmetic expressions on pixel band values, moving window aggregates over time, fil-
tering by space, time, bands, and predicates on pixel values,
exporting data cubes as 'netCDF' or 'GeoTIFF' files, plotting, and extraction from spa-
tial and or spatiotemporal features.
All computational parts are implemented in C++, link-
ing to the 'GDAL', 'netCDF', 'CURL', and 'SQLite' libraries.
See Appel and Pebesma (2019) <doi:10.3390/data4030092> for further details.

Depends R (>= 4.1.0)

Imports Rcpp, jsonlite, ncdf4

License MIT + file LICENSE

URL https://github.com/appelmar/gdalcubes

BugReports https://github.com/appelmar/gdalcubes/issues/

Encoding UTF-8

RoxygenNote 7.3.3

LinkingTo Rcpp, BH

Suggests knitr, rmarkdown, stars, av, gifski, sf, tinytest, lubridate

VignetteBuilder knitr

Copyright file inst/COPYRIGHTS

NeedsCompilation yes

SystemRequirements GDAL (>= 2.0.1), PROJ (>= 4.8.0), netcdf, sqlite3

1

https://doi.org/10.3390/data4030092
https://github.com/appelmar/gdalcubes
https://github.com/appelmar/gdalcubes/issues/

2 Contents

Author Marius Appel [aut, cre] (ORCID:
<https://orcid.org/0000-0001-5281-3896>),

Edzer Pebesma [ctb] (ORCID: <https://orcid.org/0000-0001-8049-7069>),
Roger Bivand [ctb],
Jeroen Ooms [ctb] (ORCID: <https://orcid.org/0000-0002-4035-0289>),
Lewis Van Winkle [cph],
Ole Christian Eidheim [cph],
Howard Hinnant [cph],
Adrian Colomitchi [cph],
Florian Dang [cph],
Paul Thompson [cph],
Tomasz Kamiński [cph],
Dropbox, Inc. [cph]

Maintainer Marius Appel <marius.appel@hs-bochum.de>

Repository CRAN

Date/Publication 2026-01-18 23:30:11 UTC

Contents
.copy_cube . 4
add_collection_format . 4
add_images . 5
aggregate_space . 6
aggregate_time . 7
animate . 8
apply_pixel . 10
apply_pixel.array . 11
apply_pixel.cube . 12
apply_time . 14
apply_time.array . 15
apply_time.cube . 16
as.data.frame.cube . 18
as_array . 19
as_json . 20
bands . 21
chunk_apply . 21
collection_formats . 23
create_image_collection . 23
crop . 25
cube_view . 27
dim.cube . 29
dimensions . 30
dimension_bounds . 31
dimension_values . 31
extent . 32
extract_geom . 33
fill_time . 35

https://orcid.org/0000-0001-5281-3896
https://orcid.org/0000-0001-8049-7069
https://orcid.org/0000-0002-4035-0289

Contents 3

filter_geom . 36
filter_pixel . 38
gdalcubes . 39
gdalcubes_gdalformats . 40
gdalcubes_gdalversion . 40
gdalcubes_gdal_has_geos . 40
gdalcubes_options . 41
gdalcubes_selection . 42
gdalcubes_set_gdal_config . 44
image_collection . 45
image_mask . 45
join_bands . 47
json_cube . 48
memsize . 49
names.cube . 50
nbands . 50
ncdf_cube . 51
nt . 52
nx . 53
ny . 54
pack_minmax . 54
plot.cube . 55
predict.cube . 58
print.cube . 59
print.cube_view . 60
print.image_collection . 61
proj4 . 61
raster_cube . 62
read_chunk_as_array . 63
reduce_space . 65
reduce_space.array . 66
reduce_space.cube . 67
reduce_time . 68
reduce_time.array . 69
reduce_time.cube . 70
rename_bands . 72
select_bands . 73
select_time . 74
size . 75
slice_space . 76
slice_time . 77
srs . 78
stack_cube . 79
stac_image_collection . 81
st_as_stars.cube . 82
window_space . 83
window_time . 85
write_chunk_from_array . 86

4 add_collection_format

write_ncdf . 87
write_tif . 89

Index 91

.copy_cube Create a data cube proxy object copy

Description

Copy a data cube proxy object without copying any data

Usage

.copy_cube(cube)

Arguments

cube source data cube proxy object

Details

This internal function copies the complete processing chain / graph of a data cube but does not copy
any data It is used internally to avoid in-place modification for operations with potential side effects
on source data cubes.

Value

copied data cube proxy object

add_collection_format Download and install an image collection format from a URL

Description

Download and install an image collection format from a URL

Usage

add_collection_format(url, name = NULL)

Arguments

url URL pointing to the collection format JSON file

name optional name used to refer to the collection format

add_images 5

Details

By default, the collection format name will be derived from the basename of the URL.

Examples

add_collection_format(
"https://raw.githubusercontent.com/appelmar/gdalcubes_cpp/dev/formats/Sentinel1_IW_GRD.json")

add_images Add images to an existing image collection

Description

This function adds provided files or GDAL dataset identifiers and to an existing image collection by
extracting datetime, image identifiers, and band information according to the collection’s format.

Usage

add_images(
image_collection,
files,
unroll_archives = TRUE,
out_file = "",
quiet = FALSE

)

Arguments

image_collection

image_collection object or path to an existing collection file

files character vector with paths to image files on disk or any GDAL dataset iden-
tifiers (including virtual file systems and higher level drivers or GDAL sub-
datasets)

unroll_archives

automatically convert .zip, .tar archives and .gz compressed files to GDAL vir-
tual file system dataset identifiers (e.g. by prepending /vsizip/) and add con-
tained files to the list of considered files

out_file path to output file, an empty string (the default) will update the collection in-
place, whereas images will be added to a new copy of the image collection at
the given location otherwise.

quiet logical; if TRUE, do not print resulting image collection if return value is not
assigned to a variable

Value

image collection proxy object, which can be used to create a data cube using raster_cube

6 aggregate_space

Examples

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

L8_col = create_image_collection(L8_files[1:12], "L8_L1TP")
add_images(L8_col, L8_files[13:24])

aggregate_space Spatial aggregation of data cubes

Description

Create a proxy data cube, which applies an aggregation function to reduce the spatial resolution.

Usage

aggregate_space(cube, dx, dy, method = "mean", fact = NULL)

Arguments

cube source data cube

dx numeric value; new spatial resolution in x direction

dy numeric value; new spatial resolution in y direction

method aggregation method, one of "mean", "min", "max", "median", "count", "sum",
"prod", "var", and "sd"

fact simple integer factor defining how many cells (per axis) become aggregated to
a single new cell, can be used instead of dx and dy

Details

This function reduces the spatial resolution of a data cube by applying an aggregation function to
smaller blocks of pixels.

The size of the cube may be expanded automatically in all directions if the original extent is not
divisible by the new size of pixels.

Notice that if boundaries of the target cube do not align with the boundaries of the input cube
(for example, if aggregating from 10m to 15m spatial resolution), pixels of the input cube will
contribute to the output pixel that contains its center coordinate. If the center coordinate is exactly
on a boundary, the input pixel will contribute to the right / bottom pixel of the output cube.

Note

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

aggregate_time 7

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}
L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"),
srs="EPSG:32618", dx = 500, dy=500, dt="P3M", aggregation = "median")

L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16))
L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04"))
L8.5km = aggregate_space(L8.rgb, 5000,5000, "mean")
L8.5km

plot(L8.5km, rgb=3:1, zlim=c(5000,12000))

aggregate_time Aggregate data cube time series to lower temporal resolution

Description

Create a proxy data cube, which applies an aggregation function over pixel time series to lower
temporal resolution.

Usage

aggregate_time(cube, dt, method = "mean", fact = NULL)

Arguments

cube source data cube
dt character; new temporal resolution, datetime period string, e.g. "P1M"
method aggregation method, one of "mean", "min", "max", "median", "count", "sum",

"prod", "var", and "sd"
fact simple integer factor defining how many cells become aggregated to a single

new cell, can be used instead of dt

Details

This function can be used to aggregate time series to lower resolution or to regularize a data cube
with irregular (labeled) time axis. It is possible to change the unit of the temporal resolution (e.g. to
create monthly composites from daily images). The size of the cube may be expanded automatically
if the original temporal extent is not divisible by the new temporal size of pixels.

8 animate

Note

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}
L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"),
srs="EPSG:32618", nx = 497, ny=526, dt="P3M", aggregation = "median")

L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16))
L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04"))
L8.two_monthly = aggregate_time(L8.rgb, "P6M", "min")
L8.two_monthly

plot(L8.two_monthly, rgb=3:1, zlim=c(5000,12000))

animate Animate a data cube as an image time series

Description

This function can animate data cube time series as mp4 videos or animated GIFs. Depending on
the desired output format, either the av or the gifski package is needed to create mp4 and GIF
animations respectively.

Usage

animate(
x,
...,
fps = 1,
loop = TRUE,
width = 800,
height = 800,
save_as = tempfile(fileext = ".gif"),
preview = interactive()

)

animate 9

Arguments

x a data cube proxy object (class cube)

... parameters passed to plot.cube

fps frames per second of the animation

loop how many iterations, TRUE = infinite

width width (in pixels) of the animation

height height (in pixels) of the animation

save_as character path where the animation shall be stored, must end with ".mp4" or
".gif"

preview logical; preview the animation

Details

Animations can be created for single band data cubes or RGB plots of multi-band data cubes (by
providing the argument rgb) only.

Value

character; path pointing to the the created file

See Also

plot.cube

Examples

if (!file.exists(file.path(tempdir(), "L8.db"))) {
L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),

".TIF", recursive = TRUE, full.names = TRUE)
create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)

}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P16D")

animate(select_bands(raster_cube(L8.col, v), c("B02", "B03", "B04")), rgb=3:1,
zlim=c(0,20000), fps=1, loop=1)

animate(select_bands(raster_cube(L8.col, v), c("B05")), col=terrain.colors, key.pos=1)

10 apply_pixel

apply_pixel Apply a function over (multi-band) pixels

Description

This generic function applies a function on pixels of a data cube, an R array, or other classes if
implemented.

Usage

apply_pixel(x, ...)

Arguments

x input data

... additional arguments passed to method implementations

Value

return value and type depend on the class of x

See Also

apply_pixel.cube

apply_pixel.array

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

v = cube_view(extent=list(left=388941.2, right=766552.4,
bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

L8.col = image_collection(file.path(tempdir(), "L8.db"))
apply_pixel(raster_cube(L8.col, v), "(B05-B04)/(B05+B04)", "NDVI")

d <- c(4,16,128,128)
x <- array(rnorm(prod(d)), d)
y <- apply_pixel(x, function(v) {

v[1] + v[2] + v[3] - v[4]

apply_pixel.array 11

})

apply_pixel.array Apply a function over pixels in a four-dimensional (band, time, y, x)
array

Description

Apply a function over pixels in a four-dimensional (band, time, y, x) array

Usage

S3 method for class 'array'
apply_pixel(x, FUN, ...)

Arguments

x four-dimensional input array with dimensions band, time, y, x (in this order)

FUN function that receives a vector of band values in a one-dimensional array

... further arguments passed to FUN

Details

FUN is expected to produce a numeric vector (or scalar) where elements are interpreted as new
bands in the result.

Note

This is a helper function that uses the same dimension ordering as gdalcubes. It can be used to
simplify the application of R functions e.g. over time series in a data cube.

Examples

d <- c(4,16,32,32)
x <- array(rnorm(prod(d)), d)
y <- apply_pixel(x, function(v) {

v[1] + v[2] + v[3] - v[4]
})
dim(y)

12 apply_pixel.cube

apply_pixel.cube Apply arithmetic expressions over all pixels of a data cube

Description

Create a proxy data cube, which applies arithmetic expressions over all pixels of a data cube. Ex-
pressions may access band values by name.

Usage

S3 method for class 'cube'
apply_pixel(
x,
expr,
names = NULL,
keep_bands = FALSE,
...,
FUN,
load_pkgs = FALSE,
load_env = FALSE

)

Arguments

x source data cube

expr character vector with one or more arithmetic expressions (see Details)

names optional character vector with the same length as expr to specify band names for
the output cube

keep_bands logical; keep bands of input data cube, defaults to FALSE, i.e. original bands
will be dropped

... not used

FUN user-defined R function that is applied on all pixels (see Details)

load_pkgs logical or character; if TRUE, all currently attached packages will be attached
automatically before executing FUN in spawned R processes, specific packages
can alternatively be provided as a character vector.

load_env logical or environment; if TRUE, the current global environment will be restored
automatically before executing FUN in spawned R processes, can be set to a
custom environment.

Details

The function can either apply simple arithmetic C expressions given as a character vector (expr
argument), or apply a custom R reducer function if FUN is provided.

In the former case, gdalcubes uses the tinyexpr library to evaluate expressions in C / C++, you
can look at the library documentation to see what kind of expressions you can execute. Pixel band

https://github.com/codeplea/tinyexpr
https://github.com/codeplea/tinyexpr#functions-supported

apply_pixel.cube 13

values can be accessed by name. Predefined variables that can be used within the expression include
integer pixel indexes (ix, iy, it), and pixel coordinates (left, right, top, bottom), t0, t1), where
the last two values are provided seconds since epoch time.

FUN receives values of the bands from one pixel as a (named) vector and should return a numeric
vector with identical length for all pixels. Elements of the result vectors will be interpreted as bands
in the result data cube. Notice that by default, since FUN is executed in a separate R process, it
cannot access any variables from outside and required packages must be loaded within FUN. To
restore the current environment and automatically load packages, set load_env and/or load_pkgs
to TRUE.

For more details and examples on how to write user-defined functions, please refer to the gdalcubes
website at https://gdalcubes.github.io/source/concepts/udfs.html.

Value

a proxy data cube object

Note

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

1. Apply a C expression
L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

L8.cube = raster_cube(L8.col, v)
L8.cube = select_bands(L8.cube, c("B04", "B05"))
L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI")
L8.ndvi

plot(L8.ndvi)

2. Apply a user defined R function
L8.ndvi.noisy = apply_pixel(L8.cube, names="NDVI_noisy",

FUN=function(x) {
rnorm(1, 0, 0.1) + (x["B05"]-x["B04"])/(x["B05"]+x["B04"])

})
L8.ndvi.noisy

https://gdalcubes.github.io/source/concepts/udfs.html

14 apply_time

plot(L8.ndvi.noisy)

apply_time Apply a function over (multi-band) pixel time series

Description

This generic function applies a function on pixel time series of a data cube, an R array, or other
classes if implemented. The resulting object is expected to have the same spatial and temporal
shape as the input, i.e., no reduction is performed.

Usage

apply_time(x, ...)

Arguments

x input data

... additional arguments passed to method implementations

Value

return value and type depend on the class of x

See Also

apply_time.cube

apply_time.array

Examples

1. input is data cube
create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

apply_time.array 15

L8.cube = raster_cube(L8.col, v)
L8.cube = select_bands(L8.cube, c("B04", "B05"))
L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI")

Apply a user defined R function
apply_time(L8.ndvi, names="NDVI_residuals",

FUN=function(x) {
y = x["NDVI",]
if (sum(is.finite(y)) < 3) {

return(rep(NA,ncol(x)))
}
t = 1:ncol(x)
return(predict(lm(y ~ t)) - x["NDVI",])})

2. input is array
d <- c(4,16,32,32)
x <- array(rnorm(prod(d)), d)
z <- apply_time(x, function(v) {

y = matrix(NA, ncol=ncol(v), nrow=2)
y[1,] = (v[1,] + v[2,]) / 2
y[2,] = (v[3,] + v[4,]) / 2
y

})
dim(z)

apply_time.array Apply a function over pixel time series in a four-dimensional (band,
time, y, x) array

Description

Apply a function over pixel time series in a four-dimensional (band, time, y, x) array

Usage

S3 method for class 'array'
apply_time(x, FUN, ...)

Arguments

x four-dimensional input array with dimensions band, time, y, x (in this order)

FUN function that receives a vector of band values in a one-dimensional array

... further arguments passed to FUN

Details

FUN is expected to produce a matrix (or vector if result has only one band) where rows are inter-
preted as new bands and columns represent time.

16 apply_time.cube

Note

This is a helper function that uses the same dimension ordering as gdalcubes. It can be used to
simplify the application of R functions e.g. over time series in a data cube.

Examples

d <- c(4,16,32,32)
x <- array(rnorm(prod(d)), d)
z <- apply_time(x, function(v) {

y = matrix(NA, ncol=ncol(v), nrow=2)
y[1,] = (v[1,] + v[2,]) / 2
y[2,] = (v[3,] + v[4,]) / 2
y

})
dim(z)

apply_time.cube Apply a user-defined R function over (multi-band) pixel time series

Description

Create a proxy data cube, which applies a user-defined R function over all pixel time series of a data
cube. In contrast to reduce_time, the time dimension is not reduced, i.e., resulting time series must
have identical length as the input data cube but may contain a different number of bands / variables.
Example uses of this function may include time series decompositions, cumulative sums / products,
smoothing, sophisticated NA filling, or similar.

Usage

S3 method for class 'cube'
apply_time(
x,
names = NULL,
keep_bands = FALSE,
FUN,
load_pkgs = FALSE,
load_env = FALSE,
...

)

Arguments

x source data cube

names optional character vector to specify band names for the output cube

keep_bands logical; keep bands of input data cube, defaults to FALSE, i.e., original bands
will be dropped

FUN user-defined R function that is applied on all pixel time series (see Details)

apply_time.cube 17

load_pkgs logical or character; if TRUE, all currently attached packages will be attached
automatically before executing FUN in spawned R processes, specific packages
can alternatively be provided as a character vector.

load_env logical or environment; if TRUE, the current global environment will be restored
automatically before executing FUN in spawned R processes, can be set to a
custom environment.

... not used

Details

FUN receives a single (multi-band) pixel time series as a matrix with rows corresponding to bands
and columns corresponding to time. In general, the function must return a matrix with the same
number of columns. If the result contains only a single band, it may alternatively return a vector
with length identical to the length of the input time series (number of columns of the input).

For more details and examples on how to write user-defined functions, please refer to the gdalcubes
website at https://gdalcubes.github.io/source/concepts/udfs.html.

Value

a proxy data cube object

Note

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

L8.cube = raster_cube(L8.col, v)
L8.cube = select_bands(L8.cube, c("B04", "B05"))
L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI")

Apply a user defined R function
L8.ndvi.resid = apply_time(L8.ndvi, names="NDVI_residuals",

FUN=function(x) {
y = x["NDVI",]
if (sum(is.finite(y)) < 3) {

return(rep(NA,ncol(x)))

https://gdalcubes.github.io/source/concepts/udfs.html

18 as.data.frame.cube

}
t = 1:ncol(x)
return(predict(lm(y ~ t)) - x["NDVI",])

})
L8.ndvi.resid

plot(L8.ndvi.resid)

as.data.frame.cube Convert a data cube to a data.frame

Description

Convert a data cube to a data.frame

Usage

S3 method for class 'cube'
as.data.frame(x, ..., complete_only = FALSE)

Arguments

x data cube object

... not used

complete_only logical; if TRUE, remove rows with one or more missing values

Value

A data.frame with bands / variables of the cube as columns and pixels as rows

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-05"),
srs="EPSG:32618", nx = 100, ny=100, dt="P1M")

x = select_bands(raster_cube(L8.col, v), c("B04", "B05"))
df = as.data.frame(x, complete_only = TRUE)

as_array 19

head(df)

as_array Convert a data cube to an in-memory R array

Description

Convert a data cube to an in-memory R array

Usage

as_array(x)

Arguments

x data cube

Value

Four dimensional array with dimensions band, t, y, x

Note

Depending on the data cube size, this function may require substantial amounts of main memory,
i.e. it makes sense for small data cubes only.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-05"),
srs="EPSG:32618", nx = 100, ny=100, dt="P1M")

x = as_array(select_bands(raster_cube(L8.col, v), c("B04", "B05")))
dim(x)
dimnames(x)

20 as_json

as_json Query data cube properties

Description

gdalcubes internally uses a graph to serialize data cubes (including chained operations on cubes).
This function derives a JSON representation, which can be used to save data cube objects without
pixel data to disk.

Usage

as_json(obj, file = NULL)

Arguments

obj a data cube proxy object (class cube)

file optional output file

Value

If file is NULL, the function returns a JSON string representing a graph that can be used to recreate
the same chain of gdalcubes operations even in a different R sessions.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-04"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

cat(as_json(select_bands(raster_cube(L8.col, v), c("B04", "B05"))))

bands 21

bands Query data cube properties

Description

Query data cube properties

Usage

bands(obj)

Arguments

obj a data cube proxy object (class cube)

Value

A data.frame with rows representing the bands and columns representing properties of a band
(name, type, scale, offset, unit)

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

bands(raster_cube(L8.col, v))

chunk_apply Apply an R function on chunks of a data cube

Description

Apply an R function on chunks of a data cube

Usage

chunk_apply(cube, f)

22 chunk_apply

Arguments

cube source data cube

f R function to apply over all chunks

Details

This function internally creates a gdalcubes stream data cube, which streams data of a chunk to a
new R process. For reading data, the function typically calls x <- read_chunk_as_array() which
then results in a 4 dimensional (band, time, y, x) array. Similarly write_chunk_from_array(x)
will write a result array as a chunk in the resulting data cube. The chunk size of the input cube is
important to control how the function will be exposed to the data cube. For example, if you want
to apply an R function over complete pixel time series, you must define the chunk size argument in
raster_cube to make sure that chunk contain the correct parts of the data.

Value

a proxy data cube object

Note

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

L8.cube = raster_cube(L8.col, v)
L8.cube = select_bands(L8.cube, c("B04", "B05"))
f <- function() {

x <- read_chunk_as_array()
out <- reduce_time(x, function(x) {
cor(x[1,], x[2,], use="na.or.complete", method = "kendall")

})
write_chunk_from_array(out)

}
L8.cor = chunk_apply(L8.cube, f)

collection_formats 23

collection_formats List predefined image collection formats

Description

gdalcubes comes with some predefined collection formats e.g. to scan Sentinel 2 data. This function
lists available formats including brief descriptions.

Usage

collection_formats(print = TRUE)

Arguments

print logical; should available formats and their descriptions be printed nicely, de-
faults to TRUE

Details

Image collection formats define how individual files / GDAL datasets relate to an image collection,
i.e., which bands they contain, to which image they belong, and how to derive aquisition date/time.
They are described as a set of regular expressions in a JSON file and used by gdalcubes to extract
this information from the paths and/or filenames.

Value

data.frame with columns name and description where the former describes the unique identifier
that can be used in create_image_collection and the latter gives a brief description of the format.

Examples

collection_formats()

create_image_collection

Create an image collection from a set of GDAL datasets or files

Description

This function iterates over files or GDAL dataset identifiers and extracts datetime, image identifiers,
and band information according to a given collection format.

24 create_image_collection

Usage

create_image_collection(
files,
format = NULL,
out_file = tempfile(fileext = ".sqlite"),
date_time = NULL,
band_names = NULL,
use_subdatasets = FALSE,
unroll_archives = TRUE,
quiet = FALSE,
one_band_per_file = NULL

)

Arguments

files character vector with paths to image files on disk or any GDAL dataset iden-
tifiers (including virtual file systems and higher level drivers or GDAL sub-
datasets)

format collection format, can be either a name to use predefined formats (as output from
collection_formats) or a path to a custom JSON format description file

out_file optional name of the output SQLite database file, defaults to a temporary file

date_time vector with date/ time for files; can be of class character, Date, or POSIXct
(argument is only applicable for image collections without collection format)

band_names character vector with band names, length must match the number of bands in
provided files (argument is only applicable for image collections without collec-
tion format)

use_subdatasets

logical; use GDAL subdatasets of provided files (argument is only applicable
for image collections without collection format)

unroll_archives

automatically convert .zip, .tar archives and .gz compressed files to GDAL vir-
tual file system dataset identifiers (e.g. by prepending /vsizip/) and add con-
tained files to the list of considered files

quiet logical; if TRUE, do not print resulting image collection if return value is not
assigned to a variable

one_band_per_file

logical; if TRUE, assume that band_names are given for all files (argument is
only applicable for image collections without collection format, see Details)

Details

An image collection is a simple index (a SQLite database) containing references to existing image
files / GDAL dataset identifiers.

Collections can be created in two different ways: First, if a collection format is specified (argument
format), date/time, bands, and metadata are automatically extracted from provided files. This is
the most general approach but requires a collection format for the specific dataset.

crop 25

Second, image collections can sometimes be created without collection format by manually specify-
ing date/time of images (argument date_time) and names of bands (argument band_names). This is
possible if either each image file contains all bands of the collection or only a single band. In the for-
mer case band_names simply contains the names of the bands or can be NULL to use default names.
In the latter case (image files contain a single band only), the lengths of band_names and date_time
must be identical. By default, the function assumes one band per file if length(band_names) ==
length(files). In the unlikely situation that this is not desired, it can be explicitly set using
one_band_per_file.

Value

image collection proxy object, which can be used to create a data cube using raster_cube

Examples

1. create image collection using a collection format
L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),

".TIF", recursive = TRUE, full.names = TRUE)
x = create_image_collection(L8_files, "L8_L1TP")
x

2. create image collection without format for a single band
L8_files_B4 <- list.files(system.file("L8NY18", package = "gdalcubes"),

"_B4.TIF", recursive = TRUE, full.names = TRUE)
d = as.Date(substr(basename(L8_files_B4), 18, 25), "%Y%m%d")
y = create_image_collection(L8_files_B4, date_time = d, band_names = "B4")
y

3. create image collection without format for all bands
d = as.Date(substr(basename(L8_files), 18, 25), "%Y%m%d")
fname = basename(tools::file_path_sans_ext(L8_files))
b = substr(fname, 27, nchar(fname))
z = create_image_collection(L8_files, date_time = d, band_names = b)
z

crop Crop data cube extent by space and/or time

Description

Create a proxy data cube, which crops a data cube by a spatial and/or temporal extent.

Usage

crop(cube, extent = NULL, iextent = NULL, snap = "near")

26 crop

Arguments

cube source data cube

extent list with numeric items left, right, top, bottom, and character items t0 and t1, or
a subset thereof, see examples

iextent list with length-two integer items named x, y, and t, defining the lower and upper
boundaries as integer coordinates, see examples

snap one of ’near’, ’in’, or ’out’; ignored if using iextent

Details

The new extent can be specified by spatial coordinates and datetime values (using the extent argu-
ment), or as zero-based integer indexes (using the iextent argument). In the former case, extent
expects a list with numeric items left, right, top, bottom, t0, and t1, or a subset thereof. In the latter
case, iextent is expected as a list with length-two integer vectors x, y, and t as items, defining the
lower and upper cell indexes per dimension.

Notice that it is possible to crop only selected boundaries (e.g., only the right boundary) as missing
boundaries in the extent or NA / NULL values in the iextent arguments are considered as "no
change". It is, however, not possible to mix arguments extent and iextent.

If extent is given, the snap argument can be used to define what happens if the new boundary falls
within a data cube cell.

Note

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}
L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"),
srs="EPSG:32618", nx = 497, ny=526, dt="P3M", aggregation = "median")

L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16))
L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04"))

crop by integer indexes
L8.cropped = crop(L8.rgb, iextent = list(x=c(0,400), y=c(0,400), t=c(1,1)))

crop by spatiotemporal coordinates
L8.cropped = crop(L8.rgb, extent = list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), snap = "in")
L8.cropped

cube_view 27

L8.cropped = crop(L8.rgb, extent = list(left=388941.2, right=766552.4,
bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), snap = "near")

L8.cropped

plot(L8.cropped, rgb = 3:1, zlim=c(5000,10000))

cube_view Create or update a spatiotemporal data cube view

Description

Data cube views define the shape of a cube, i.e., the spatiotemporal extent, resolution, and spatial
reference system (srs). They are used to access image collections as on-demand data cubes. The
data cube will filter images based on the view’s extent, read image data at the defined resolution,
and warp / reproject images to the target srs automatically.

Usage

cube_view(
view,
extent,
srs,
nx,
ny,
nt,
dx,
dy,
dt,
aggregation,
resampling,
keep.asp = TRUE

)

Arguments

view if provided, update this cube_view object instead of creating a new data cube
view where fields that are already set will be overwritten

extent spatioptemporal extent as a list e.g. from extent or an image collection object,
see Details

srs target spatial reference system as a string; can be a proj4 definition, WKT, or in
the form "EPSG:XXXX"

nx number of pixels in x-direction (longitude / easting)

ny number of pixels in y-direction (latitude / northing)

28 cube_view

nt number of pixels in t-direction

dx size of pixels in x-direction (longitude / easting)

dy size of pixels in y-direction (latitude / northing)

dt size of pixels in time-direction, expressed as ISO8601 period string (only 1 num-
ber and unit is allowed) such as "P16D"

aggregation aggregation method as string, defining how to deal with pixels containing data
from multiple images, can be "min", "max", "mean", "median", or "first"

resampling resampling method used in gdalwarp when images are read, can be "near", "bi-
linear", "bicubic" or others as supported by gdalwarp (see https://gdal.org/
en/stable/programs/gdalwarp.html)

keep.asp if TRUE, derive ny or dy automatically from nx or dx (or vice versa) based on
the aspect ratio of the spatial extent

Details

The extent argument expects a simple list with elementes left, right, bottom, top, t0 (start
date/time), t1 (end date/time) or an image collection object. In the latter case, the extent function
is automatically called on the image collection object to get the full spatiotemporal extent of the
collection. In the former case, datetimes are expressed as ISO8601 datetime strings.

The function can be used in two different ways. First, it can create data cube views from scratch by
defining the extent, the spatial reference system, and for each dimension either the cell size (dx, dy,
dt) or the total number of cells (nx, ny, nt). Second, the function can update an existing data cube
view by overwriting specific fields. In this case, the extent or some elements of the extent may be
missing.

In some cases, the extent of the view is automatically extended if the provided resolution would end
within a pixel. For example, if the spatial extent covers an area of 1km x 1km and dx = dy = 300m,
the extent would be enlarged to 1.2 km x 1.2km. The alignment will be reported to the user in a
diagnostic message.

Value

A list with data cube view properties

Examples

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

L8.col = create_image_collection(L8_files, "L8_L1TP")

1. Create a new data cube view specification
v = cube_view(extent=extent(L8.col,"EPSG:4326"), srs="EPSG:4326", dt="P1M",

nx=1000, ny=500, aggregation = "mean", resampling="bilinear")
v

2. overwrite parts of an existing data cube view
vnew = cube_view(v, dt="P1M")

https://gdal.org/en/stable/programs/gdalwarp.html
https://gdal.org/en/stable/programs/gdalwarp.html

dim.cube 29

dim.cube Query data cube properties

Description

Query data cube properties

Usage

S3 method for class 'cube'
dim(x)

Arguments

x a data cube proxy object (class cube)

Value

size of a data cube (number of cells) as integer vector in the order t, y, x

See Also

size

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

dim(raster_cube(L8.col, v))

30 dimensions

dimensions Query data cube properties

Description

Query data cube properties

Usage

dimensions(obj)

Arguments

obj a data cube proxy object (class cube)

Details

Elements of the returned list represent individual dimensions with properties such as dimension
boundaries, names, and chunk size stored as inner lists

Value

Dimension information as a list

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

dimensions(raster_cube(L8.col, v))

dimension_bounds 31

dimension_bounds Query coordinate bounds for all dimensions of a data cube

Description

Dimension values give the coordinates bounds the spatial and temporal axes of a data cube.

Usage

dimension_bounds(obj, datetime_unit = NULL)

Arguments

obj a data cube proxy (class cube)

datetime_unit unit used to format values in the datetime dimension, one of "Y", "m", "d", "H",
"M", "S", defaults to the unit of the cube.

Value

list with elements t,y,x, each a list with two elements, start and end

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

dimension_bounds(raster_cube(L8.col, v))

dimension_values Query coordinate values for all dimensions of a data cube

Description

Dimension values give the coordinates along the spatial and temporal axes of a data cube.

Usage

dimension_values(obj, datetime_unit = NULL)

32 extent

Arguments

obj a data cube proxy (class cube), or a data cube view object

datetime_unit unit used to format values in the datetime dimension, one of "Y", "m", "d", "H",
"M", "S", defaults to the unit of the cube.

Value

list with elements t,y,x

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

dimension_values(raster_cube(L8.col, v))

extent Derive the spatiotemporal extent of an image collection

Description

Derive the spatiotemporal extent of an image collection

Usage

extent(x, srs = "EPSG:4326")

Arguments

x image collection proxy object

srs target spatial reference system

Value

a list with elements left, right, bottom, top, t0 (start date/time), and t1 (end date/time)

extract_geom 33

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
extent(L8.col,"EPSG:32618")
cube_view(extent=extent(L8.col,"EPSG:32618"),

srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

extract_geom Extract values from a data cube by spatial or spatiotemporal features

Description

Extract pixel values of a data cube from a set of spatial or spatiotemporal features. Applications
include the extraction of full time series at irregular points, extraction from spatiotemporal points,
extraction of pixel values in polygons, and computing summary statistics over polygons.

Usage

extract_geom(
cube,
sf,
datetime = NULL,
time_column = NULL,
FUN = NULL,
merge = FALSE,
drop_geom = FALSE,
...,
reduce_time = FALSE

)

Arguments

cube source data cube to extract values from

sf object of class sf, see sf package

datetime Date, POSIXt, or character vector containing per feature time information; length
must be identical to the number of features in sf

time_column name of the column in sf containing per feature time information

FUN optional function to compute per feature summary statistics

34 extract_geom

merge logical; return a combined data.frame with data cube values and labels, defaults
to FALSE

drop_geom logical; remove geometries from output, only used if merge is TRUE, defaults
to FALSE

... additional arguments passed to FUN

reduce_time logical; if TRUE, time is ignored when FUN is applied

Details

The geometry in sf can be of any simple feature type supported by GDAL, including POINTS,
LINES, POLYGONS, MULTI*, and more. If no time information is provided in one of the ar-
guments datetime or time_column, the full time series of pixels with regard to the features are
returned.

Notice that feature identifiers in the FID column typically correspond to the row names / numbers
of the provided sf object. This can be used to combine the output with the original geometries, e.g.,
using merge(). with gdalcubes > 0.6.4, this can be done automatically by setting merge=TRUE. In
this case, the FID column is dropped from the result.

Pixels with missing values are automatically dropped from the result. It is hence not guaranteed
that the result will contain rows for all input features.

Features are automatically reprojected if the coordinate reference system differs from the data cube.

Extracted values can be aggregated by features by providing a summary function. If reduce_time is
FALSE (the default), the values are grouped by feature and time, i.e., the result will contain unique
combinations of FID and time. To ignore time and produce a single value per feature, reduce_time
can be set to TRUE.

Value

A data.frame with columns FID, time, and data cube bands / variables, see Details

Examples

if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}
L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(srs="EPSG:32618", dy=1000, dx=1000, dt="P1M",

aggregation = "median", resampling = "bilinear",
extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931,
t0="2018-01-01", t1="2018-04-30"))

L8.cube = raster_cube(L8.col, v)
L8.cube = select_bands(L8.cube, c("B04", "B05"))
L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI")
L8.ndvi

fill_time 35

if (gdalcubes_gdal_has_geos()) {
if (requireNamespace("sf", quietly = TRUE)) {

create 50 random point locations
x = runif(50, v$space$left, v$space$right)
y = runif(50, v$space$bottom, v$space$top)

t = sample(seq(as.Date("2018-01-01"),as.Date("2018-04-30"), by = 1),50, replace = TRUE)
df = sf::st_as_sf(data.frame(x = x, y = y), coords = c("x", "y"), crs = v$space$srs)

1. spatiotemporal points
extract_geom(L8.ndvi, df, datetime = t)

2. time series at spatial points
extract_geom(L8.ndvi, df)

3. summary statistics over polygons
x = sf::st_read(system.file("nycd.gpkg", package = "gdalcubes"))
zstats = extract_geom(L8.ndvi,x, FUN=median, reduce_time = TRUE, merge = TRUE)
zstats
plot(zstats["NDVI"])

}
}

fill_time Fill NA data cube pixels by simple time series interpolation

Description

Create a proxy data cube, which fills NA pixels of a data cube by nearest neighbor or linear time
series interpolation.

Usage

fill_time(cube, method = "near")

Arguments

cube source data cube

method interpolation method, can be "near" (nearest neighbor), "linear" (linear inter-
polation), "locf" (last observation carried forward), or "nocb" (next observation
carried backward)

Details

Please notice that completely empty (NA) time series will not be filled, i.e. the result cube might
still contain NA values.

36 filter_geom

Value

a proxy data cube object

Note

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}
L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"),
srs="EPSG:32618", nx = 497, ny=526, dt="P3M", aggregation = "median")

L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16))
L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04"))
L8.filled = fill_time(L8.rgb, "linear")
L8.filled

plot(L8.filled, rgb=3:1, zlim=c(5000,12000))

filter_geom Filter data cube pixels by a polygon

Description

Create a proxy data cube, which filters pixels by a spatial (multi)polygon For all pixels whose center
is within the polygon, the original

Usage

filter_geom(cube, geom, srs = NULL)

Arguments

cube source data cube

geom either a WKT string, or an sfc or sfg object (sf package)

srs string identifier of the polygon’s coordinate reference system understandable for
GDAL

filter_geom 37

Details

The resulting data cube will not be cropped but pixels outside of the polygon will be set to NAN.

If geom is provided as an sfc object with length > 1, geometries will be combined with sf::st_combine()
before.

The geometry is automatically transformed to the data cube’s spatial reference system if needed.

Value

a proxy data cube object

Note

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

L8.cube = raster_cube(L8.col, v)
L8.cube = select_bands(L8.cube, c("B04", "B05"))
L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI")
WKT = gsub(pattern='\\n',replacement="",x =

"Polygon ((-74.3541 40.9254,
-73.9813 41.2467,
-73.9997 41.4400,
-74.5362 41.1795,
-74.6286 40.9137,
-74.3541 40.9254))")

L8.ndvi.filtered = filter_geom(L8.ndvi, WKT, "EPSG:4326")
L8.ndvi.filtered

plot(L8.ndvi.filtered)

38 filter_pixel

filter_pixel Filter data cube pixels by a user-defined predicate on band values

Description

Create a proxy data cube, which evaluates a predicate over all pixels of a data cube. For all pixels
that fulfill the predicate, the original band values are returned. Other pixels are simply filled with
NANs. The predicate may access band values by name.

Usage

filter_pixel(cube, pred)

Arguments

cube source data cube

pred predicate to be evaluated over all pixels

Details

gdalcubes uses and extends the tinyexpr library to evaluate expressions in C / C++, you can look at
the library documentation to see what kind of expressions you can execute. Pixel band values can
be accessed by name.

Value

a proxy data cube object

Note

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

L8.cube = raster_cube(L8.col, v)
L8.cube = select_bands(L8.cube, c("B04", "B05"))

https://github.com/codeplea/tinyexpr
https://github.com/codeplea/tinyexpr#functions-supported

gdalcubes 39

L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI")
L8.ndvi.filtered = filter_pixel(L8.ndvi, "NDVI > 0.5")
L8.ndvi.filtered

plot(L8.ndvi.filtered)

gdalcubes gdalcubes: Earth Observation Data Cubes from Satellite Image Col-
lections

Description

Processing collections of Earth observation images as on-demand multispectral, multitemporal
raster data cubes. Users define cubes by spatiotemporal extent, resolution, and spatial reference
system and let ’gdalcubes’ automatically apply cropping, reprojection, and resampling using the
’Geospatial Data Abstraction Library’ (’GDAL’). Implemented functions on data cubes include re-
duction over space and time, applying arithmetic expressions on pixel band values, moving window
aggregates over time, filtering by space, time, bands, and predicates on pixel values, exporting data
cubes as ’netCDF’ or ’GeoTIFF’ files, plotting, and extraction from spatial and or spatiotempo-
ral features. All computational parts are implemented in C++, linking to the ’GDAL’, ’netCDF’,
’CURL’, and ’SQLite’ libraries. See Appel and Pebesma (2019) <doi:10.3390/data4030092> for
further details.

Author(s)

Maintainer: Marius Appel <marius.appel@hs-bochum.de> (ORCID)

Other contributors:

• Edzer Pebesma (ORCID) [contributor]
• Roger Bivand [contributor]
• Jeroen Ooms (ORCID) [contributor]
• Lewis Van Winkle [copyright holder]
• Ole Christian Eidheim [copyright holder]
• Howard Hinnant [copyright holder]
• Adrian Colomitchi [copyright holder]
• Florian Dang [copyright holder]
• Paul Thompson [copyright holder]
• Tomasz Kamiński [copyright holder]
• Dropbox, Inc. [copyright holder]

See Also

Useful links:

• https://github.com/appelmar/gdalcubes

• Report bugs at https://github.com/appelmar/gdalcubes/issues/

https://orcid.org/0000-0001-5281-3896
https://orcid.org/0000-0001-8049-7069
https://orcid.org/0000-0002-4035-0289
https://github.com/appelmar/gdalcubes
https://github.com/appelmar/gdalcubes/issues/

40 gdalcubes_gdal_has_geos

gdalcubes_gdalformats Get available GDAL drivers

Description

Get available GDAL drivers

Usage

gdalcubes_gdalformats()

Examples

gdalcubes_gdalformats()

gdalcubes_gdalversion Get the GDAL version used by gdalcubes

Description

Get the GDAL version used by gdalcubes

Usage

gdalcubes_gdalversion()

Examples

gdalcubes_gdalversion()

gdalcubes_gdal_has_geos

Check if GDAL was built with GEOS

Description

Check if GDAL was built with GEOS

Usage

gdalcubes_gdal_has_geos()

Examples

gdalcubes_gdal_has_geos()

gdalcubes_options 41

gdalcubes_options Set or read global options of the gdalcubes package

Description

Set global package options to change the default behavior of gdalcubes. These include how many
parallel processes are used to process data cubes, how created netCDF files are compressed, and
whether or not debug messages should be printed.

Usage

gdalcubes_options(
...,
parallel,
ncdf_compression_level,
debug,
cache,
ncdf_write_bounds,
use_overview_images,
show_progress,
default_chunksize,
streaming_dir,
log_file,
threads

)

Arguments

... not used
parallel number of parallel workers used to process data cubes or TRUE to use the num-

ber of available cores automatically
ncdf_compression_level

integer; compression level for created netCDF files, 0=no compression, 1=fast
compression, 9=small compression

debug logical; print debug messages
cache logical; TRUE if temporary data cubes should be cached to support fast repro-

cessing of the same cubes
ncdf_write_bounds

logical; write dimension bounds as additional variables in netCDF files
use_overview_images

logical; if FALSE, all images are read on original resolution and existing overviews
will be ignored

show_progress logical; if TRUE, a progress bar will be shown for actual computations
default_chunksize

length-three vector with chunk size in t, y, x directions or a function taking a
data cube size and returning a suggested chunk size

42 gdalcubes_selection

streaming_dir directory where temporary binary files for process streaming will be written to

log_file character, if empty string or NULL, diagnostic messages will be printed to the
console, otherwise to the provided file

threads number of threads used to process data cubes (deprecated)

Details

Data cubes can be processed in parallel where the number of chunks in a cube is distributed among
parallel worker processes. The actual number of used workers can be lower if a data cube as less
chunks. If parallel is TRUE, the number of available cores is used. Setting parallel = FALSE can
be used to disable parallel processing. Notice that since version 0.6.0, separate processes are being
used instead of parallel threads to avoid possible R session crashes due to some multithreading
issues.

Caching has no effect on disk or memory consumption, it simply tries to reuse existing temporary
files where possible. For example, changing only parameters to plot will void reprocessing the
same data cube if cache is TRUE.

The streaming directory can be used to control the performance of user-defined functions, if disk
IO is a bottleneck. Ideally, this can be set to a directory on a shared memory device.

Passing no arguments will return the current options as a list.

Examples

gdalcubes_options(parallel=4) # set the number
gdalcubes_options() # print current options
gdalcubes_options(parallel=FALSE) # reset

gdalcubes_selection Subsetting data cubes

Description

Subset data cube dimensions and bands / variables.

Usage

S3 method for class 'cube'
x$name

S3 method for class 'cube'
x[ib = TRUE, it = TRUE, iy = TRUE, ix = TRUE, ...]

gdalcubes_selection 43

Arguments

x source data cube

name character; name of selected band

ib first selector (optional), object of type character, list, Date, POSIXt, numeric,
st_bbox, or st_sfc, see Details and examples

it second selector (optional), see ib

iy third selector (optional), see ib

ix fourth selector (optional), see ib

... further arguments, not used

Details

The [] operator allows for flexible subsetting of data cubes by date, datetime, bounding box, spatial
points, and band names. Depending on the arguments, it supports slicing (selecting one element
of a dimension), cropping (selecting a subinterval of a dimension) and combinations thereof (e.g.,
selecting a spatial window and a temporal slice). Dimension subsets can be specified by integer
indexes or coordinates / datetime values. Arguments are matched by type and order. For example,
if the first argument is a length-two vector of type Date, the function will understand to subset the
time dimension. Otherwise, arguments are treated in the order band, time, y, x.

Note

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}
L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"),
srs="EPSG:32618", nx = 497, ny=526, dt="P3M", aggregation = "median")

L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16))
L8.red = L8.cube$B04

plot(L8.red)

v = cube_view(extent=list(left=388941.2, right=766552.4,
bottom=4345299, top=4744931, t0="2018-01-01", t1="2018-12-31"),

srs="EPSG:32618", nx = 497, ny=526, dt="P1D", aggregation = "median")
L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16))

44 gdalcubes_set_gdal_config

L8.cube[c("B05","B04")] # select bands
L8.cube[as.Date(c("2018-01-10", "2018-01-20"))] # crop by time
L8.cube[as.Date("2018-01-10")] # slice by time
L8.cube["B05", "2018-01-10"] # select bands and slice by time
L8.cube["B05", c("2018-01-10","2018-01-17")] # select bands and crop by time
L8.cube[, c("2018-01-10","2018-01-17")] # crop by time

crop by space (coordinates and integer indexes respectively)
L8.cube[list(left=388941.2 + 1e5, right=766552.4 - 1e5, bottom=4345299 + 1e5, top=4744931 - 1e5)]
L8.cube[,,c(1,100), c(1,100)]

L8.cube[,c(1,2),,] # crop by time (integer indexes)

subset by spatial point or bounding box
if (requireNamespace("sf", quietly = TRUE)) {

s = sf::st_sfc(sf::st_point(c(500000, 4500000)), crs = "EPSG:32618")
L8.cube[s]

bbox = sf::st_bbox(c(xmin = 388941.2 + 1e5, xmax = 766552.4 - 1e5,
ymax = 4744931 - 1e5, ymin = 4345299 + 1e5), crs = sf::st_crs(32618))

L8.cube[bbox]
}

gdalcubes_set_gdal_config

Set GDAL config options

Description

Set GDAL config options

Usage

gdalcubes_set_gdal_config(key, value)

Arguments

key name of a GDAL config option to be set

value value

Details

Details and a list of possible options can be found at https://gdal.org/en/stable/user/configoptions.html.

Examples

gdalcubes_set_gdal_config("GDAL_NUM_THREADS", "ALL_CPUS")

https://gdal.org/en/stable/user/configoptions.html

image_collection 45

image_collection Load an existing image collection from a file

Description

This function will load an image collection from an SQLite file. Image collection files index and ref-
erence existing imagery. To create a collection from files on disk, use create_image_collection.

Usage

image_collection(path)

Arguments

path path to an existing image collection file

Value

an image collection proxy object, which can be used to create a data cube using raster_cube

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
L8.col

image_mask Create a mask for images in a raster data cube

Description

Create an image mask based on a band and provided values to filter pixels of images read by
raster_cube

46 image_mask

Usage

image_mask(
band,
min = NULL,
max = NULL,
values = NULL,
bits = NULL,
invert = FALSE

)

Arguments

band name of the mask band

min minimum value, values between min and max will be masked

max maximum value, values between min and max will be masked

values numeric vector; specific values that will be masked.

bits for bitmasks, extract the given bits (integer vector) with a bitwise AND before
filtering the mask values, bit indexes are zero-based

invert logical; invert mask

Details

Values of the selected mask band can be based on a range (by passing min and max) or on a set
of values (by passing values). By default pixels with mask values contained in the range or in
the values are masked out, i.e. set to NA. Setting invert = TRUE will invert the masking behavior.
Passing values will override min and max.

Note

Notice that masks are applied per image while reading images as a raster cube. They can be useful
to eliminate e.g. cloudy pixels before applying the temporal aggregation to merge multiple values
for the same data cube pixel.

Examples

image_mask("SCL", values = c(3,8,9)) # Sentinel 2 L2A: mask cloud and cloud shadows
image_mask("BQA", bits=4, values=16) # Landsat 8: mask clouds
image_mask("B10", min = 8000, max=65000)

join_bands 47

join_bands Join bands of two identically shaped data cubes

Description

Create a proxy data cube, which joins the bands of two identically shaped data cubes. The resulting
cube will have bands from both input cubes.

Usage

join_bands(cube_list, cube_names = NULL)

Arguments

cube_list a list with two or more source data cubes

cube_names list or character vector with optional name prefixes for bands in the output data
cube (see Details)

Details

The number of provided cube_names must match the number of provided input cubes. If no
cube_names are provided, bands of the output cube will adopt original names from the input cubes
(without any prefix). If any two of the input bands have identical names, prefixes default prefixes
("X1", "X2", ...) will be used.

Value

proxy data cube object

Note

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-05"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

48 json_cube

L8.cube = raster_cube(L8.col, v)
L8.cube.b04 = select_bands(raster_cube(L8.col, v), c("B04"))
L8.cube.b05 = select_bands(raster_cube(L8.col, v), c("B05"))
join_bands(list(L8.cube.b04,L8.cube.b05))

plot(join_bands(list(L8.cube.b04,L8.cube.b05)))

json_cube Read a data cube from a json description file

Description

Read a data cube from a json description file

Usage

json_cube(json, path = NULL)

Arguments

json length-one character vector with a valid json data cube description

path source data cube proxy object

Details

Data cubes can be stored as JSON description files. These files do not store any data but the recipe
how a data cube is constructed, i.e., the chain (or graph) of processes involved.

Since data cube objects (as returned from raster_cube) cannot be saved with normal R methods,
the combination of as_json and json_cube provides a cheap way to save virtual data cube objects
across several R sessions, as in the examples.

Value

data cube proxy object

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"),

memsize 49

srs="EPSG:32618", nx = 497, ny=526, dt="P1M")
cube = raster_cube(L8.col, v)

save
fname = tempfile()
as_json(cube, fname)

load
json_cube(path = fname)

memsize Query data cube properties

Description

Query data cube properties

Usage

memsize(obj, unit = "MiB")

Arguments

obj a data cube proxy object (class cube)

unit Unit of data size, can be "B", "KB", "KiB", "MB", "MiB", "GB", "GiB", "TB",
"TiB", "PB", "PiB"

Value

Total data size of data cube values expressed in the given unit

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

memsize(raster_cube(L8.col, v))

50 nbands

names.cube Query data cube properties

Description

Query data cube properties

Usage

S3 method for class 'cube'
names(x)

Arguments

x a data cube proxy object (class cube)

Value

Band names as character vector

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

names(raster_cube(L8.col, v))

nbands Query data cube properties

Description

Query data cube properties

Usage

nbands(obj)

ncdf_cube 51

Arguments

obj a data cube proxy object (class cube)

Value

Number of bands

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

nbands(raster_cube(L8.col, v))

ncdf_cube Read a data cube from an existing netCDF file

Description

Create a proxy data cube from a netCDF file that has been created using write_ncdf. This function
does not read cubes from arbitrary netCDF files and can be used e.g., to load intermediate results
and/or plotting existing netCDF cubes on disk without doing the data cube creation from image
collections.

Usage

ncdf_cube(path, chunking = NULL, auto_unpack = TRUE)

Arguments

path path to an existing netCDF file

chunking custom chunk sizes to read form the netCDF file; defaults to using chunk sizes
from the netCDF file

auto_unpack logical; automatically apply offset and scale when reading data values

Value

a proxy data cube object

52 nt

Note

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

ncfile = write_ncdf(select_bands(raster_cube(L8.col, v), c("B02", "B03", "B04")))
ncdf_cube(ncfile)

nt Query data cube properties

Description

Query data cube properties

Usage

nt(obj)

Arguments

obj a data cube proxy object (class cube)

Value

Number of pixels in the time dimension

nx 53

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

nt(raster_cube(L8.col, v))

nx Query data cube properties

Description

Query data cube properties

Usage

nx(obj)

Arguments

obj a data cube proxy object (class cube)

Value

Number of pixels in the x dimension

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

nx(raster_cube(L8.col, v))

54 pack_minmax

ny Query data cube properties

Description

Query data cube properties

Usage

ny(obj)

Arguments

obj a data cube proxy object (class cube)

Value

Number of pixels in the y dimension

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

ny(raster_cube(L8.col, v))

pack_minmax Helper function to define packed data exports by min / max values

Description

This function can be used to define packed exports in write_ncdf and write_tif. It will generate
scale and offset values with maximum precision (unless simplify=TRUE).

Usage

pack_minmax(type = "int16", min, max, simplify = FALSE)

plot.cube 55

Arguments

type target data type of packed values (one of "uint8", "uint16", "uint32", "int16", or
"int32")

min numeric; minimum value(s) of original values, will be packed to the 2nd lowest
value of the target data type

max numeric; maximum value(s) in original scale, will be packed to the highest value
of the target data type

simplify logical; round resulting scale and offset to power of 10 values

Details

Nodata values will be mapped to the lowest value of the target data type.

Arguments min and max must have length 1 or length equal to the number of bands of the data cube
to be exported. In the former case, the same values are used for all bands of the exported target
cube, whereas the latter case allows to use different ranges for different bands.

Note

Using simplify=TRUE will round scale values to the next smaller power of 10.

Examples

ndvi_packing = pack_minmax(type="int16", min=-1, max=1)
ndvi_packing

plot.cube Plot a gdalcubes data cube

Description

Plot a gdalcubes data cube

Usage

S3 method for class 'cube'
plot(
x,
y,
...,
nbreaks = 11,
breaks = NULL,
col = grey(1:(nbreaks - 1)/nbreaks),
key.pos = NULL,
bands = NULL,
t = NULL,

56 plot.cube

rgb = NULL,
zlim = NULL,
gamma = 1,
periods.in.title = TRUE,
join.timeseries = FALSE,
axes = TRUE,
ncol = NULL,
nrow = NULL,
downsample = TRUE,
na.color = "#AAAAAA"

)

Arguments

x a data cube proxy object (class cube)

y __not used__

... further arguments passed to image.default

nbreaks number of breaks, should be one more than the number of colors given

breaks actual breaks used to assign colors to values; if missing, the function subsamples
values and uses equally sized intervals between min and max or zlim[0] and
zlim[1] if defined

col color definition, can be a character vector with nbreaks - 1 elements or a function
such as heat.colors

key.pos position for the legend, 1 (bottom), 2 (left), 3 (top), or 4 (right). If NULL (the
default), do not plot a legend.

bands integer vector with band numbers to plot (this must be band numbers, not band
names)

t integer vector with time indexes to plot (this must be time indexes, not date /
time)

rgb bands used to assign RGB color channels, vector of length 3 (this must be band
numbers, not band names)

zlim vector of length 2, defining the minimum and maximum values to either derive
breaks, or define black and white values in RGB plots

gamma gamma correction value, used for RGB plots only
periods.in.title

logical value, if TRUE, the title of plots includes the datetime period length as
ISO 8601 string

join.timeseries

logical, for pure time-series plots, shall time series of multiple bands be plotted
in a single plot (with different colors)?

axes logical, if TRUE, plots include axes

ncol number of columns for arranging plots with layout(), see Details

nrow number of rows for arranging plots with layout(), see Details

plot.cube 57

downsample length-one integer or logical value used to select only every i-th pixel (in space
only) for faster plots; by default (TRUE), downsampling will be determined
automatically based on the resolution of the graphics device; set to FALSE to
avoid downsampling.

na.color color used to plot NA pixels

Details

The style of the plot depends on provided parameters and on the shape of the cube, i.e., whether it is
a pure time series and whether it contains multiple bands or not. Multi-band, multi-temporal images
will be arranged with layout() such that bands are represented by columns and time is represented
by rows. Time series plots can be combined to a single plot by setting join.timeseries = TRUE.
The layout can be controlled with ncol and nrow, which define the number of rows and columns in
the plot layout. Typically, only one of ncol and nrow is provided. For multi-band, multi-temporal
plots, the actual number of rows or columns can be less if the input cube has less bands or time
slices.

The downsample argument is used to speed-up plotting if the cube has much more pixels than the
graphics device. If set to a scalar integer value > 1, the value is used to skip pixels in the spatial
dimensions. For example, setting downsample = 4 means that every fourth pixel is used in the spatial
dimensions. If TRUE (the default) downsample is derived automatically based on the sizes of the
cube and the graphics device. If 1 or FALSE, no additional downsampling is performed. Notice
that downsampling is only used for plotting. The size of the data cube (and hence the computation
time to process the data cube) is not modified.

Note

If caching is enabled for the package (see gdalcubes_options), repeated calls of plot for the same
data cube will not reevaluate the cube. Instead, the temporary result file will be reused, if possible.

Some parts of the function have been copied from the stars package (c) Edzer Pebesma

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

plot(select_bands(raster_cube(L8.col, v), c("B02", "B03", "B04")), rgb=3:1)

L8.cube = select_bands(raster_cube(L8.col, v), c("B04", "B05"))
L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI")
plot(reduce_time(L8.ndvi, "median(NDVI)"), key.pos=1, zlim=c(0,1))

58 predict.cube

predict.cube Model prediction

Description

Apply a trained model on all pixels of a data cube.

Usage

S3 method for class 'cube'
predict(object, model, ..., output_names = c("pred"), keep_bands = FALSE)

Arguments

object a data cube proxy object (class cube)

model model used for prediction (e.g. from caret or tidymodels)

... further arguments passed to the model-specific predict method

output_names optional character vector for output variable(s)

keep_bands logical; keep bands of input data cube, defaults to FALSE, i.e. original bands
will be dropped

Details

The model-specific predict method will be automatically chosen based on the class of the provided
model. It aims at supporting models from the packages tidymodels, caret, and simple models as
from lm or glm.

For multiple output variables or output in form of lists or data.frames, output_names must be
provided and match names of the columns / items of the result object returned from the underly-
ing predict method. For example, predictions using tidymodels return a tibble (data.frame) with
columns like .pred_class (classification case). This must be explicitly provided as output_names.
Similarly, predict.lm and the like return lists if the standard error is requested by the user and
output_names hence should be set to c("fit","se.fit").

For more complex cases or when predict expects something else than a data.frame, this function
may not work at all.

Note

This function returns a proxy object, i.e., it will not immediately start any computations.

print.cube 59

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

v = cube_view(extent=list(left=388941.2, right=766552.4,
bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),

srs="EPSG:32618", nx = 497, ny=526, dt="P3M")

L8.col = image_collection(file.path(tempdir(), "L8.db"))

x = sf::st_read(system.file("ny_samples.gpkg", package = "gdalcubes"))

raster_cube(L8.col, v) |>
select_bands(c("B02","B03","B04","B05")) |>
extract_geom(x) -> train

x$FID = rownames(x)
train = merge(train, x, by = "FID")
train$iswater = as.factor(train$class == "water")

log_model <- glm(iswater ~ B02 + B03 + B04 + B05, data = train, family = "binomial")

raster_cube(L8.col, v) |>
select_bands(c("B02","B03","B04","B05")) |>
predict(model=log_model, type="response") |>
plot(key.pos=1)

print.cube Print data cube information

Description

Prints information about the dimensions and bands of a data cube.

Usage

S3 method for class 'cube'
print(x, ...)

Arguments

x Object of class "cube"

... Further arguments passed to the generic print function

60 print.cube_view

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

print(raster_cube(L8.col, v))

print.cube_view Print data cube view information

Description

Prints information about a data cube view, including its dimensions, spatial reference, aggregation
method, and resampling method.

Usage

S3 method for class 'cube_view'
print(x, ...)

Arguments

x Object of class "cube_view"

... Further arguments passed to the generic print function

Examples

v = cube_view(extent=list(left=388941.2, right=766552.4,
bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

print(v)

print.image_collection 61

print.image_collection

Print image collection information

Description

Prints information about images in an image collection.

Usage

S3 method for class 'image_collection'
print(x, ..., n = 6)

Arguments

x Object of class "image_collection"

... Further arguments passed to the generic print function

n Number of images for which details are printed

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
print(L8.col)

proj4 Query data cube properties

Description

Query data cube properties

Usage

proj4(obj)

Arguments

obj a data cube proxy object (class cube)

62 raster_cube

Value

The spatial reference system expressed as proj4 string

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

proj4(raster_cube(L8.col, v))

raster_cube Create a data cube from an image collection

Description

Create a proxy data cube, which loads data from a given image collection according to a data cube
view

Usage

raster_cube(
image_collection,
view,
mask = NULL,
chunking = .pkgenv$default_chunksize,
incomplete_ok = TRUE

)

Arguments

image_collection

Source image collection as from image_collection or create_image_collection
view A data cube view defining the shape (spatiotemporal extent, resolution, and spa-

tial reference), if missing, a default overview is used
mask mask pixels of images based on band values, see image_mask

chunking length-3 vector or a function returning a vector of length 3, defining the size of
data cube chunks in the order time, y, x.

incomplete_ok logical, if TRUE (the default), chunks will ignore IO failures and simply use as
much images as possible, otherwise the result will contain empty chunks if IO
errors or similar occur.

read_chunk_as_array 63

Details

The following steps will be performed when the data cube is requested to read data of a chunk:

1. Find images from the input collection that intersect with the spatiotemporal extent of the chunk 2.
For all resulting images, apply gdalwarp to reproject, resize, and resample to an in-memory GDAL
dataset 3. Read the resulting data to the chunk buffer and optionally apply a mask on the result
4. Update pixel-wise aggregator (as defined in the data cube view) to combine values of multiple
images within the same data cube pixels

If chunking is provided as a function, it must accept exactly three arguments for the total size of the
cube in t, y, and x axes (in this order).

Value

A proxy data cube object

Note

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

raster_cube(L8.col, v)

using a mask on the Landsat quality bit band to filter out clouds
raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16))

read_chunk_as_array Read chunk data of a data cube from stdin or a file

Description

This function can be used within function passed to chunk_apply in order to read a data cube
chunk as a four-dimensional R array. It works only for R processes, which have been started from
the gdalcubes C++ library. The resulting array has dimensions band, time, y, x (in this order).

64 read_chunk_as_array

Usage

read_chunk_as_array(with.dimnames = TRUE)

Arguments

with.dimnames if TRUE, the resulting array will contain dimnames with coordinates, datetime,
and band names

Value

four-dimensional array

Note

Call this function ONLY from a function passed to chunk_apply.

This function only works in R sessions started from gdalcubes streaming.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

L8.cube = raster_cube(L8.col, v)
L8.cube = select_bands(L8.cube, c("B04", "B05"))
f <- function() {

x <- read_chunk_as_array()
out <- reduce_time(x, function(x) {
cor(x[1,], x[2,], use="na.or.complete", method = "kendall")

})
write_chunk_from_array(out)

}
L8.cor = chunk_apply(L8.cube, f)
plot(L8.cor, zlim=c(0,1), key.pos=1)

reduce_space 65

reduce_space Reduce multidimensional data over space

Description

This generic function applies a reducer function over a data cube, an R array, or other classes if
implemented.

Usage

reduce_space(x, ...)

Arguments

x object to be reduced
... further arguments passed to specific implementations

Value

return value and type depend on the class of x

See Also

reduce_space.cube

reduce_space.array

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

reduce_space(raster_cube(L8.col, v) , "median(B02)")

d <- c(4,16,32,32)
x <- array(rnorm(prod(d)), d)
y <- reduce_space(x, function(v) {

apply(v, 1, mean)
})

66 reduce_space.array

reduce_space.array Apply a function over space and bands in a four-dimensional (band,
time, y, x) array and reduce spatial dimensions

Description

Apply a function over space and bands in a four-dimensional (band, time, y, x) array and reduce
spatial dimensions

Usage

S3 method for class 'array'
reduce_space(x, FUN, ...)

Arguments

x four-dimensional input array with dimensions band, time, y, x (in this order)

FUN function which receives one spatial slice in a three-dimensional array with di-
mensions bands, y, x as input

... further arguments passed to FUN

Details

FUN is expected to produce a numeric vector (or scalar) where elements are interpreted as new
bands in the result.

Note

This is a helper function that uses the same dimension ordering as gdalcubes streaming. It can be
used to simplify the application of R functions e.g. over spatial slices in a data cube.

Examples

d <- c(4,16,32,32)
x <- array(rnorm(prod(d)), d)
reduce individual bands over spatial slices
y <- reduce_space(x, function(v) {

apply(v, 1, mean)
})
dim(y)

reduce_space.cube 67

reduce_space.cube Reduce a data cube over spatial (x,y or lat,lon) dimensions

Description

Create a proxy data cube, which applies one or more reducer functions to selected bands over spatial
slices of a data cube

Usage

S3 method for class 'cube'
reduce_space(
x,
expr,
...,
FUN,
names = NULL,
load_pkgs = FALSE,
load_env = FALSE

)

Arguments

x source data cube

expr either a single string, or a vector of strings defining which reducers will be ap-
plied over which bands of the input cube

... optional additional expressions (if expr is not a vector)

FUN a user-defined R function applied over pixel time series (see Details)

names character vector; names of the output bands, if FUN is provided, the length of
names is used as the expected number of output bands

load_pkgs logical or character; if TRUE, all currently attached packages will be attached
automatically before executing FUN in spawned R processes, specific packages
can alternatively be provided as a character vector.

load_env logical or environment; if TRUE, the current global environment will be restored
automatically before executing FUN in spawned R processes, can be set to a
custom environment.

Details

Notice that expressions have a very simple format: the reducer is followed by the name of a band
in parentheses. You cannot add more complex functions or arguments.

Possible reducers currently include "min", "max", "sum", "prod", "count", "mean", "median", "var",
and "sd".

For more details and examples on how to write user-defined functions, please refer to the gdalcubes
website at https://gdalcubes.github.io/source/concepts/udfs.html.

https://gdalcubes.github.io/source/concepts/udfs.html

68 reduce_time

Value

proxy data cube object

Note

Implemented reducers will ignore any NAN values (as na.rm=TRUE does).

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

L8.cube = raster_cube(L8.col, v)
L8.b02 = select_bands(L8.cube, c("B02"))
L8.b02.median = reduce_space(L8.b02, "median(B02)")
L8.b02.median

plot(L8.b02.median)

reduce_time Reduce multidimensional data over time

Description

This generic function applies a reducer function over a data cube, an R array, or other classes if
implemented.

Usage

reduce_time(x, ...)

Arguments

x object to be reduced

... further arguments passed to specific implementations

reduce_time.array 69

Value

return value and type depend on the class of x

See Also

reduce_time.cube

reduce_time.array

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

reduce_time(raster_cube(L8.col, v) , "median(B02)", "median(B03)", "median(B04)")

d <- c(4,16,32,32)
x <- array(rnorm(prod(d)), d)
y <- reduce_time(x, function(v) {

apply(v, 1, mean)
})

reduce_time.array Apply a function over time and bands in a four-dimensional (band,
time, y, x) array and reduce time dimension

Description

Apply a function over time and bands in a four-dimensional (band, time, y, x) array and reduce time
dimension

Usage

S3 method for class 'array'
reduce_time(x, FUN, ...)

70 reduce_time.cube

Arguments

x four-dimensional input array with dimensions band, time, y, x (in this order)

FUN function which receives one time series in a two-dimensional array with dimen-
sions bands, time as input

... further arguments passed to FUN

Details

FUN is expected to produce a numeric vector (or scalar) where elements are interpreted as new
bands in the result.

Note

This is a helper function that uses the same dimension ordering as gdalcubes streaming. It can be
used to simplify the application of R functions e.g. over time series in a data cube.

Examples

d <- c(4,16,32,32)
x <- array(rnorm(prod(d)), d)
reduce individual bands over pixel time series
y <- reduce_time(x, function(v) {

apply(v, 1, mean)
})
dim(y)

reduce_time.cube Reduce a data cube over the time dimension

Description

Create a proxy data cube, which applies one or more reducer functions to selected bands over pixel
time series of a data cube

Usage

S3 method for class 'cube'
reduce_time(
x,
expr,
...,
FUN,
names = NULL,
load_pkgs = FALSE,
load_env = FALSE

)

reduce_time.cube 71

Arguments

x source data cube

expr either a single string, or a vector of strings defining which reducers will be ap-
plied over which bands of the input cube

... optional additional expressions (if expr is not a vector)

FUN a user-defined R function applied over pixel time series (see Details)

names character vector; names of the output bands, if FUN is provided, the length of
names is used as the expected number of output bands

load_pkgs logical or character; if TRUE, all currently attached packages will be attached
automatically before executing FUN in spawned R processes, specific packages
can alternatively be provided as a character vector.

load_env logical or environment; if TRUE, the current global environment will be restored
automatically before executing FUN in spawned R processes, can be set to a
custom environment.

Details

The function can either apply a built-in reducer if expr is given, or apply a custom R reducer function
if FUN is provided.

In the former case, notice that expressions have a very simple format: the reducer is followed
by the name of a band in parantheses. You cannot add more complex functions or arguments.
Possible reducers currently are "min", "max", "sum", "prod", "count", "mean", "median", "var",
"sd", "which_min", "which_max", "Q1" (1st quartile), and "Q3" (3rd quartile).

User-defined R reducer functions receive a two-dimensional array as input where rows correspond
to the band and columns represent the time dimension. For example, one row is the time series of
a specific band. FUN should always return a numeric vector with the same number of elements,
which will be interpreted as bands in the result cube. Notice that it is recommended to specify the
names of the output bands as a character vector. If names are missing, the number and names of
output bands is tried to be derived automatically, which may fail in some cases.

For more details and examples on how to write user-defined functions, please refer to the gdalcubes
website at https://gdalcubes.github.io/source/concepts/udfs.html.

Value

proxy data cube object

Note

Implemented reducers will ignore any NAN values (as na.rm=TRUE does)

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

https://gdalcubes.github.io/source/concepts/udfs.html

72 rename_bands

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

L8.cube = raster_cube(L8.col, v)
L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04"))
L8.rgb.median = reduce_time(L8.rgb, "median(B02)", "median(B03)", "median(B04)")
L8.rgb.median

plot(L8.rgb.median, rgb=3:1)

user defined reducer calculating interquartile ranges
L8.rgb.iqr = reduce_time(L8.rgb, names=c("iqr_R", "iqr_G","iqr_B"), FUN = function(x) {

c(diff(quantile(x["B04",],c(0.25,0.75), na.rm=TRUE)),
diff(quantile(x["B03",],c(0.25,0.75), na.rm=TRUE)),
diff(quantile(x["B02",],c(0.25,0.75), na.rm=TRUE)))

})
L8.rgb.iqr

plot(L8.rgb.iqr, key.pos=1)

rename_bands Rename bands of a data cube

Description

Create a proxy data cube, which renames specific bands of a data cube.

Usage

rename_bands(cube, ...)

Arguments

cube source data cube

... named arguments with bands that will be renamed, see Details

select_bands 73

Details

The result data cube always contains the same number of bands. No subsetting is done if only
names for some of the bands are provided. In this case, only provided bands are renamed whereas
other bands keep their original name. Variable arguments must be named by the old band name and
the new names must be provided as simple character values (see example).

Value

proxy data cube object

Note

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-07"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

L8.cube = raster_cube(L8.col, v)
L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04"))
L8.rgb
L8.rgb = rename_bands(L8.cube, B02 = "blue", B03 = "green", B04 = "red")
L8.rgb

select_bands Select bands of a data cube

Description

Create a proxy data cube, which selects specific bands of a data cube. The resulting cube will drop
any other bands.

Usage

select_bands(cube, bands)

74 select_time

Arguments

cube source data cube

bands character vector with band names

Value

proxy data cube object

Note

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

For performance reasons, select_bands should always be called directly on a cube created with
raster_cube and drop all unneded bands. This allows to reduce RasterIO and warp operations in
GDAL.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-07"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

L8.cube = raster_cube(L8.col, v)
L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04"))
L8.rgb

plot(L8.rgb, rgb=3:1)

select_time Select time slices of a data cube

Description

Create a proxy data cube, which selects specific time slices of a data cube. The time dimension of
the resulting cube will be irregular / labeled.

Usage

select_time(cube, t)

size 75

Arguments

cube source data cube

t character vector with date/time

Value

proxy data cube object

Note

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-07"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

L8.cube = raster_cube(L8.col, v)
L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04"))
L8.rgb = select_time(L8.rgb, c("2018-04", "2018-07"))
L8.rgb

plot(L8.rgb, rgb=3:1)

size Query data cube properties

Description

Query data cube properties

Usage

size(obj)

76 slice_space

Arguments

obj a data cube proxy object (class cube)

Value

size of a data cube (number of cells) as integer vector in the order t, y, x

See Also

dim.cube

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

size(raster_cube(L8.col, v))

slice_space Extract a single time series (spatial slice) from a data cube

Description

Create a proxy data cube, which extracts a time series from a data cube defined by spatial coordi-
nates or integer x and y indexes.

Usage

slice_space(cube, loc = NULL, i = NULL)

Arguments

cube source data cube

loc numeric length-two vector; spatial coordinates (x, y) of the time series, ex-
pressed in the coordinate reference system of the source data cube

i integer length-2 vector; indexes (x,y) of the time slice (zero-based)

Details

Either loc or i must be non-NULL. If both arguments are provided, integer indexes i are ignored.

slice_time 77

Note

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}
L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"),
srs="EPSG:32618", nx = 497, ny=526, dt="P3M", aggregation = "median")

L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16))
L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04"))
L8.ts = slice_space(L8.rgb, loc = c(5e05, 4400000))
L8.ts

plot(L8.ts, join.timeseries = TRUE)

slice_time Extract a single time slice from a data cube

Description

Create a proxy data cube, which extracts a time slice from a data cube defined by label (datetime
string) or integer index.

Usage

slice_time(cube, datetime = NULL, it = NULL)

Arguments

cube source data cube

datetime character; datetime string of the time slice

it integer; index of the time slice (zero-based)

Details

Either datetime or it must be non-NULL. If both arguments are provided, the integer index it is
ignored.

78 srs

Note

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}
L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M", aggregation = "median")

L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16))
L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04"))
L8.slice = slice_time(L8.rgb, "2018-03")
L8.slice

plot(L8.slice, rgb=3:1, zlim=c(5000,12000))

srs Query data cube properties

Description

Query data cube properties

Usage

srs(obj)

Arguments

obj a data cube proxy object (class cube)

Value

The spatial reference system expressed as a string readable by GDAL

stack_cube 79

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

srs(raster_cube(L8.col, v))

stack_cube Create a data cube from a set of images with the same spatial extent
and spatial reference system

Description

Create a spatiotemporal data cube directly from images with identical spatial extent and spatial
reference system, similar to a raster stack with an additional dimension supporting both, time and
multiple bands / variables.

Usage

stack_cube(
x,
datetime_values,
bands = NULL,
band_names = NULL,
chunking = c(1, 256, 256),
dx = NULL,
dy = NULL,
incomplete_ok = TRUE

)

Arguments

x character vector where items point to image files
datetime_values

vector of type character, Date, or POSIXct with recording date of images

bands optional character vector defining the band or spectral band of each item in x, if
files relate to different spectral bands or variables

band_names name of bands, only used if bands is NULL, i.e., if all files contain the same
spectral band(s) / variable(s)

80 stack_cube

chunking vector of length 3 defining the size of data cube chunks in the order time, y, x.

dx optional target pixel size in x direction, by default (NULL) the original or high-
est resolution of images is used

dy optional target pixel size in y direction, by default (NULL) the original or high-
est resolution of images is used

incomplete_ok logical, if TRUE (the default), chunks will ignore IO failures and simply use as
much images as possible, otherwise the result will contain empty chunks if IO
errors or similar occur.

Details

This function creates a four-dimensional (space, time, bands / variables) raster data cube from a
set of provided files without the need to create an image collection before. This is possible if all
images have the same spatial extent and spatial reference system and can be used for two different
file organizations:

1. If all image files share the same bands / variables, the bands argument can be ignored (default
NULL) can names of the bands can be specified using the band_names argument.

2. If image files represent different band / variable (e.g. individual files for red, green, and blue
channels), the bands argument must be used to define the corresponding band / variable. Notice that
in this case all files are expected to represent exactly one variable / band at one point in datetime.
It is not possible to combine files with different numbers of variables / bands. If image files for
different bands have different pixel sizes, the smallest size is used by default.

Notice that to avoid opening all image files in advance,no automatic check whether all images share
the spatial extent and spatial reference system is performed.

Value

A proxy data cube object

Note

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

toy example, repeating the same image as a daily time series
L8_file_nir <-
system.file("L8NY18/LC08_L1TP_014032_20181122_20181129_01_T1/LC08_L1TP_014032_20181122_B5.TIF",

package = "gdalcubes")
files = rep(L8_file_nir, 10)
datetime = as.Date("2018-11-22") + 1:10
stack_cube(files, datetime, band_names = "B05")

using a second band from different files
L8_file_red <-
system.file("L8NY18/LC08_L1TP_014032_20181122_20181129_01_T1/LC08_L1TP_014032_20181122_B4.TIF",

package = "gdalcubes")
files = rep(c(L8_file_nir, L8_file_red), each = 10)

stac_image_collection 81

datetime = rep(as.Date("2018-11-22") + 1:10, 2)
bands = rep(c("B5","B4"), each = 10)
stack_cube(files, datetime, bands = bands)

stac_image_collection Create an image collection from a STAC feature collection

Description

This function creates an image collection from a STAC API collection response. It does not need to
read any image data. Additionally, bands can be filtered and asset links can be transformed to make
them readable for GDAL.

Usage

stac_image_collection(
s,
out_file = tempfile(fileext = ".db"),
asset_names = NULL,
asset_regex = NULL,
url_fun = .default_url_fun,
property_filter = NULL,
skip_image_metadata = FALSE,
srs = NULL,
srs_overwrite = FALSE,
duration = c("center", "start")

)

Arguments

s STAC feature collection

out_file optional name of the output SQLite database file, defaults to a temporary file

asset_names character vector with names of assets (e.g., bands) to be used, other assets will
be ignored. By default (NULL), all asset names with "eo:bands" attributes will
be used

asset_regex length 1 character defining a regular expression asset names must match to be
considered

url_fun optional function to modify URLs of assets, e.g, to add /vsicurl/ to URLS (the
default)

property_filter

optional function to filter STAC items (images) by their properties; see Details
skip_image_metadata

logical, if TRUE per-image metadata (STAC item properties) will not be added
to the image collection

82 st_as_stars.cube

srs character spatial reference system of images used either for images without cor-
responding STAC property ony or for all images

srs_overwrite logical, if FALSE, use srs only for images with unknown srs (missing STAC
metadata)

duration character, if images represent time intervals, use either the"start" or "center" of
time intervals

Details

The property_filter argument can be used to filter images by metadata such as cloud coverage. The
functions receives all properties of a STAC item (image) as input list and is expected to produce a
single logical value, where an image will be ignored if the function returns FALSE.

Some STAC API endpoints may return items with duplicte IDs (image names), pointing to identical
URLs. Such items are only added once during creation of the image collection.

Note

Currently, bbox results are expected to be WGS84 coordinates, even if bbox-crs is given in the
STAC response.

st_as_stars.cube Coerce gdalcubes object into a stars object

Description

The function materializes a data cube as a temporary netCDF file and loads the file with the stars
package.

Usage

st_as_stars.cube(.x, ...)

Arguments

.x data cube object to coerce

... not used

Value

stars object

window_space 83

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-04"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

if(require("stars"))
st_as_stars(select_bands(raster_cube(L8.col, v), c("B04", "B05")))

window_space Apply a moving window (focal) operation or a convolution kernel over
spatial dimensions of a data cube.

Description

Create a proxy data cube, which applies a convolution kernel or aggregation functions over two-
dimensional moving windows sliding over spatial slices of a data cube. The function can either
execute one or more predefined aggregation functions or apply a custom convolution kernel. Among
others, use cases include image processing (edge detection, noise reduction, etc.) and enriching
pixel values with local neighborhood properties (e.g. to use as predictor variables in ML models).

Usage

window_space(x, expr, ..., kernel, window, keep_bands = FALSE, pad = NA)

Arguments

x source data cube

expr either a single string, or a vector of strings, defining which reducers will be
applied over which bands of the input cube

... optional additional expressions (if expr is not a vector)

kernel two dimensional kernel (matrix) applied as convolution (with odd number of
rows and columns)

window integer vector with two elements defining the size (number of pixels) of the win-
dow in y and x direction, the total size of the window is window[1] * window[2]

keep_bands logical; if FALSE (the default), original data cube bands will be dropped.

pad padding method applied to the borders; use NULL for no padding (NA), a nu-
meric a fill value, or one of "REPLICATE", "REFLECT", "REFLECT_PIXEL"

84 window_space

Details

The function either applies a kernel convolution (if the kernel argument is provided) or one or
more built-in reducer function over moving windows.

In the former case, the kernel convolution will be applied over all bands of the input cube, i.e., the
output cube will have the same number of bands as the input cubes.

To apply one or more aggregation functions over moving windows, the window argument must be
provided as a vector with two integer sizes in the order y, x. Several string expressions can be
provided to create multiple bands in the output cube. Notice that expressions have a very simple
format: the reducer is followed by the name of a band in parentheses, e.g, "mean(band1)". Possible
reducers include "min", "max", "sum", "prod", "count", "mean", "median", "var", and "sd".

Padding methods "REPLICATE", "REFLECT", "REFLEX_PIXEL" are defined according to https:
//openeo.org/documentation/1.0/processes.html#apply_kernel.

Value

proxy data cube object

Note

Implemented reducers will ignore any NAN values (as na.rm = TRUE does).

Calling this function consecutively many times may result in long computation times depending on
chunk and window sizes due to the need to read adjacent data cube chunks.

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

L8.cube = raster_cube(L8.col, v, chunking = c(1,1000,1000))
L8.cube = select_bands(L8.cube, c("B04", "B05"))
L8.cube.mean5x5 = window_space(L8.cube, kernel = matrix(1/25, 5, 5))
L8.cube.mean5x5

plot(L8.cube.mean5x5, key.pos=1)

L8.cube.med_sd = window_space(L8.cube, "median(B04)" ,"sd(B04)", "median(B05)", "sd(B05)",

https://openeo.org/documentation/1.0/processes.html#apply_kernel
https://openeo.org/documentation/1.0/processes.html#apply_kernel

window_time 85

window = c(5,5), keep_bands = TRUE)
L8.cube.med_sd

plot(L8.cube.med_sd, key.pos=1)

window_time Apply a moving window operation over the time dimension of a data
cube

Description

Create a proxy data cube, which applies one ore more moving window functions to selected bands
over pixel time series of a data cube. The function can either apply a built-in aggregation function
or apply a custom one-dimensional convolution kernel.

Usage

window_time(x, expr, ..., kernel, window)

Arguments

x source data cube

expr either a single string, or a vector of strings defining which reducers wlil be ap-
plied over which bands of the input cube

... optional additional expressions (if expr is not a vector)

kernel numeric vector with elements of the kernel

window integer vector with two elements defining the size of the window before and
after a cell, the total size of the window is window[1] + 1 + window[2]

Details

The function either applies a kernel convolution (if the kernel argument is provided) or a general
reducer function over moving temporal windows. In the former case, the kernel convolution will be
applied over all bands of the input cube, i.e., the output cube will have the same number of bands
as the input cubes. If a kernel is given and the window argument is missing, the window will be
symmetric to the center pixel with the size of the provided kernel. For general reducer functions, the
window argument must be provided and several expressions can be used to create multiple bands in
the output cube.

Notice that expressions have a very simple format: the reducer is followed by the name of a band
in parantheses. You cannot add more complex functions or arguments.

Possible reducers include "min", "max", "sum", "prod", "count", "mean", and "median".

Value

proxy data cube object

86 write_chunk_from_array

Note

Implemented reducers will ignore any NAN values (as na.rm=TRUE does).

This function returns a proxy object, i.e., it will not start any computations besides deriving the
shape of the result.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-07"),
srs="EPSG:32618", nx = 400, dt="P1M")

L8.cube = raster_cube(L8.col, v)
L8.nir = select_bands(L8.cube, c("B05"))
L8.nir.min = window_time(L8.nir, window = c(2,2), "min(B05)")
L8.nir.min

L8.nir.kernel = window_time(L8.nir, kernel=c(-1,1), window=c(1,0))
L8.nir.kernel

write_chunk_from_array

Write chunk data of a cube to stdout or a file

Description

This function can be used within function passed to chunk_apply in order to pass four-dimensional
R arrays as a data cube chunk to the gdalcubes C++ library. It works only for R processes, which
have been started from the gdalcubes C++ library. The input array must have dimensions band,
time, y, x (in this order).

Usage

write_chunk_from_array(v)

Arguments

v four-dimensional array with dimensions band, time, y, and x

write_ncdf 87

Note

Call this function ONLY from a function passed to chunk_apply.

This function only works in R sessions started from gdalcubes streaming.

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

L8.cube = raster_cube(L8.col, v)
L8.cube = select_bands(L8.cube, c("B04", "B05"))
f <- function() {

x <- read_chunk_as_array()
out <- reduce_time(x, function(x) {
cor(x[1,], x[2,], use="na.or.complete", method = "kendall")

})
write_chunk_from_array(out)

}
L8.cor = chunk_apply(L8.cube, f)
plot(L8.cor, zlim=c(0,1), key.pos=1)

write_ncdf Export a data cube as netCDF file(s)

Description

This function will read chunks of a data cube and write them to a single (the default) or multit-
ple (if chunked = TRUE) netCDF file(s). The resulting file(s) uses the enhanced netCDF-4 format,
supporting chunking and compression.

Usage

write_ncdf(
x,
fname = tempfile(pattern = "gdalcubes", fileext = ".nc"),
overwrite = FALSE,
write_json_descr = FALSE,
with_VRT = FALSE,

88 write_ncdf

pack = NULL,
chunked = FALSE

)

Arguments

x a data cube proxy object (class cube)

fname output file name

overwrite logical; overwrite output file if it already exists
write_json_descr

logical; write a JSON description of x as additional file

with_VRT logical; write additional VRT datasets (one per time slice)

pack reduce output file size by packing values (see Details), defaults to no packing

chunked logical; if TRUE, write one netCDF file per chunk; defaults to FALSE

Details

The resulting netCDF file(s) contain three dimensions (t, y, x) and bands as variables.

If write_json_descr is TRUE, the function will write an addition file with the same name as the
NetCDF file but ".json" suffix. This file includes a serialized description of the input data cube,
including all chained data cube operations.

To reduce the size of created files, values can be packed by applying a scale factor and an offset
value and using a smaller integer data type for storage (only supported if chunked = TRUE). The
pack argument can be either NULL (the default), or a list with elements type, scale, offset,
and nodata. type can be any of "uint8", "uint16" , "uint32", "int16", or "int32". scale, offset,
and nodata must be numeric vectors with length one or length equal to the number of data cube
bands (to use different values for different bands). The helper function pack_minmax can be used to
derive offset and scale values with maximum precision from minimum and maximum data values
on original scale.

If chunked = TRUE, names of the produced files will start with name (with removed extension),
followed by an underscore and the internal integer chunk number.

Value

returns (invisibly) the path of the created netCDF file(s)

Note

Packing is currently ignored if chunked = TRUE

See Also

gdalcubes_options

pack_minmax

write_tif 89

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-04"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

write_ncdf(select_bands(raster_cube(L8.col, v), c("B04", "B05")), fname=tempfile(fileext = ".nc"))

write_tif Export a data cube as a collection of GeoTIFF files

Description

This function will time slices of a data cube as GeoTIFF files in a given directory.

Usage

write_tif(
x,
dir = tempfile(pattern = ""),
prefix = basename(tempfile(pattern = "cube_")),
overviews = FALSE,
COG = FALSE,
rsmpl_overview = "nearest",
creation_options = NULL,
write_json_descr = FALSE,
pack = NULL

)

Arguments

x a data cube proxy object (class cube)

dir destination directory

prefix output file name

overviews logical; generate overview images

COG logical; create cloud-optimized GeoTIFF files (forces overviews=TRUE)

rsmpl_overview resampling method for overviews (image pyramid) generation (see https://
gdal.org/en/stable/programs/gdaladdo.html for available methods)

https://gdal.org/en/stable/programs/gdaladdo.html
https://gdal.org/en/stable/programs/gdaladdo.html

90 write_tif

creation_options

additional creation options for resulting GeoTIFF files, e.g. to define compres-
sion (see https://gdal.org/en/stable/drivers/raster/gtiff.html#creation-options)

write_json_descr

logical; write a JSON description of x as additional file

pack reduce output file size by packing values (see Details), defaults to no packing

Details

If write_json_descr is TRUE, the function will write an additional file with name according to
prefix (if not missing) or simply cube.json This file includes a serialized description of the input
data cube, including all chained data cube operations.

Additional GDAL creation options for resulting GeoTIFF files must be passed as a named list
of simple strings, where element names refer to the key. For example, creation_options =
list("COMPRESS" = "DEFLATE", "ZLEVEL" = "5") would enable deflate compression at level 5.

To reduce the size of created files, values can be packed by applying a scale factor and an offset
value and using a smaller integer data type for storage. The pack argument can be either NULL
(the default), or a list with elements type, scale, offset, and nodata. type can be any of "uint8",
"uint16" , "uint32", "int16", or "int32". scale, offset, and nodata must be numeric vectors with
length one or length equal to the number of data cube bands (to use different values for differ-
ent bands). The helper function pack_minmax can be used to derive offset and scale values with
maximum precision from minimum and maximum data values on original scale.

If overviews=TRUE, the numbers of pixels are halved until the longer spatial dimensions counts less
than 256 pixels. Setting COG=TRUE automatically sets overviews=TRUE.

Value

returns (invisibly) a vector of paths pointing to the created GeoTIFF files

See Also

pack_minmax

Examples

create image collection from example Landsat data only
if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {

L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)

create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}

L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,

bottom=4345299, top=4744931, t0="2018-04", t1="2018-04"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")

write_tif(select_bands(raster_cube(L8.col, v), c("B04", "B05")), dir=tempdir())

https://gdal.org/en/stable/drivers/raster/gtiff.html#creation-options

Index

.copy_cube, 4
[.cube (gdalcubes_selection), 42
$.cube (gdalcubes_selection), 42

add_collection_format, 4
add_images, 5
aggregate_space, 6
aggregate_time, 7
animate, 8
apply_pixel, 10
apply_pixel.array, 10, 11
apply_pixel.cube, 10, 12
apply_time, 14
apply_time.array, 14, 15
apply_time.cube, 14, 16
as.data.frame.cube, 18
as_array, 19
as_json, 20, 48

bands, 21

chunk_apply, 21, 63, 64, 86, 87
collection_formats, 23, 24
create_image_collection, 23, 45
crop, 25
cube_view, 27

dim.cube, 29, 76
dimension_bounds, 31
dimension_values, 31
dimensions, 30

extent, 27, 28, 32
extract_geom, 33

fill_time, 35
filter_geom, 36
filter_pixel, 38

gdalcubes, 39
gdalcubes-package (gdalcubes), 39

gdalcubes_gdal_has_geos, 40
gdalcubes_gdalformats, 40
gdalcubes_gdalversion, 40
gdalcubes_options, 41, 57, 88
gdalcubes_selection, 42
gdalcubes_set_gdal_config, 44

image_collection, 45
image_mask, 45, 62

join_bands, 47
json_cube, 48, 48

memsize, 49
merge(), 34

names.cube, 50
nbands, 50
ncdf_cube, 51
nt, 52
nx, 53
ny, 54

pack_minmax, 54, 88, 90
plot.cube, 9, 55
predict.cube, 58
print.cube, 59
print.cube_view, 60
print.image_collection, 61
proj4, 61

raster_cube, 5, 22, 25, 45, 48, 62, 74
read_chunk_as_array, 63
reduce_space, 65
reduce_space.array, 65, 66
reduce_space.cube, 65, 67
reduce_time, 16, 68
reduce_time.array, 69, 69
reduce_time.cube, 69, 70
rename_bands, 72

91

92 INDEX

select_bands, 73
select_time, 74
sf package, 33
size, 29, 75
slice_space, 76
slice_time, 77
srs, 78
st_as_stars.cube, 82
st_bbox, 43
st_sfc, 43
stac_image_collection, 81
stack_cube, 79

window_space, 83
window_time, 85
write_chunk_from_array, 86
write_ncdf, 51, 54, 87
write_tif, 54, 89

	.copy_cube
	add_collection_format
	add_images
	aggregate_space
	aggregate_time
	animate
	apply_pixel
	apply_pixel.array
	apply_pixel.cube
	apply_time
	apply_time.array
	apply_time.cube
	as.data.frame.cube
	as_array
	as_json
	bands
	chunk_apply
	collection_formats
	create_image_collection
	crop
	cube_view
	dim.cube
	dimensions
	dimension_bounds
	dimension_values
	extent
	extract_geom
	fill_time
	filter_geom
	filter_pixel
	gdalcubes
	gdalcubes_gdalformats
	gdalcubes_gdalversion
	gdalcubes_gdal_has_geos
	gdalcubes_options
	gdalcubes_selection
	gdalcubes_set_gdal_config
	image_collection
	image_mask
	join_bands
	json_cube
	memsize
	names.cube
	nbands
	ncdf_cube
	nt
	nx
	ny
	pack_minmax
	plot.cube
	predict.cube
	print.cube
	print.cube_view
	print.image_collection
	proj4
	raster_cube
	read_chunk_as_array
	reduce_space
	reduce_space.array
	reduce_space.cube
	reduce_time
	reduce_time.array
	reduce_time.cube
	rename_bands
	select_bands
	select_time
	size
	slice_space
	slice_time
	srs
	stack_cube
	stac_image_collection
	st_as_stars.cube
	window_space
	window_time
	write_chunk_from_array
	write_ncdf
	write_tif
	Index

