
Package ‘fcaR’
January 12, 2026

Title Formal Concept Analysis

Version 1.3.0

Description Provides tools to perform fuzzy formal concept analysis, pre-
sented in Wille (1982) <doi:10.1007/978-3-642-01815-2_23> and in Ganter and Obied-
kov (2016) <doi:10.1007/978-3-662-49291-8>. It provides functions to load and save a for-
mal context, extract its concept lattice and implications. In addition, one can use the implica-
tions to compute semantic closures of fuzzy sets and, thus, build recommendation systems. Ma-
trix factorization is provided by the GreConD+ algorithm (Belohlavek and Trneck-
ova, 2024 <doi:10.1109/TFUZZ.2023.3330760>).

License GPL-3

URL https://github.com/Malaga-FCA-group/fcaR,

https://neuroimaginador.github.io/fcaR/

BugReports https://github.com/Malaga-FCA-group/fcaR/issues

Depends R (>= 4.1)

Imports dplyr, forcats, ggplot2, ggraph, glue, grDevices, igraph,
Matrix, methods, R6, rlang, Rcpp, registry, settings, stringr,
tibble, tidyr, magrittr, purrr, yaml, cli, rstudioapi

Suggests arules, covr, DT, fractional, knitr, markdown, miniUI,
rmarkdown, shiny, testthat (>= 2.1.0), tictoc, tikzDevice,
tinytex, parallel

LinkingTo Rcpp, BH

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

NeedsCompilation yes

Author Domingo Lopez Rodriguez [aut, cre] (ORCID:
<https://orcid.org/0000-0002-0172-1585>),

Angel Mora [aut],
Jesus Dominguez [aut],
Ana Villalon [aut]

1

https://doi.org/10.1007/978-3-642-01815-2_23
https://doi.org/10.1007/978-3-662-49291-8
https://doi.org/10.1109/TFUZZ.2023.3330760
https://github.com/Malaga-FCA-group/fcaR
https://neuroimaginador.github.io/fcaR/
https://github.com/Malaga-FCA-group/fcaR/issues
https://orcid.org/0000-0002-0172-1585

2 Contents

Maintainer Domingo Lopez Rodriguez <dominlopez78@gmail.com>

Repository CRAN

Date/Publication 2026-01-12 10:30:02 UTC

Contents
as_Set . 3
as_vector . 3
calculate_density . 4
calculate_grades . 4
calculate_separation . 5
calculate_stability . 5
cobre32 . 6
cobre61 . 7
compute_labels_and_colors . 8
Concept . 8
ConceptLattice . 10
conceptRegistry . 16
ConceptSet . 16
equivalencesRegistry . 19
export_to_tikz . 19
fcaR_options . 20
fetch_context . 21
FormalContext . 21
get_fcarepository_contexts . 32
ImplicationSet . 33
lattice_plot . 39
parse_implication . 40
parse_implications . 40
planets . 41
print_repo_details . 42
RandomContext . 42
RandomDistributiveContext . 43
randomize_context . 44
save_tikz . 45
scalingRegistry . 45
select_repository_context . 46
Set . 46
vegas . 48
%&% . 49
%entails% . 50
%==% . 51
%-% . 51
%holds_in% . 52
%<=% . 53
%or% . 54
%respects% . 54

as_Set 3

%~% . 55

Index 56

as_Set Convert Named Vector to Set

Description

Convert Named Vector to Set

Usage

as_Set(A)

Arguments

A A named vector or matrix to build a new Set.

Value

A Set object.

Examples

A <- c(a = 0.1, b = 0.2, p = 0.3, q = 0)
as_Set(A)

as_vector Convert Set to vector

Description

Convert Set to vector

Usage

as_vector(v)

Arguments

v A Set to convert to vector.

Value

A vector.

4 calculate_grades

Examples

A <- c(a = 0.1, b = 0.2, p = 0.3, q = 0)
v <- as_Set(A)
A2 <- as_vector(v)
all(A == A2)

calculate_density Calculate Fuzzy Density

Description

Calculates the density of each concept in the original matrix I.

Usage

calculate_density(extents, intents, I)

Arguments

extents A SparseSet or CsparseMatrix of extents.

intents A SparseSet or CsparseMatrix of intents.

I The original numeric matrix (FormalContext$I).

Value

A numeric vector.

calculate_grades Calculate Concept Grades (Levels)

Description

Calculates the grade (level) of each concept using the longest path from the bottom element. This
is a fast C++ implementation.

Usage

calculate_grades(concept_ids, edge_from, edge_to)

Arguments

concept_ids A vector of concept IDs (integers).

edge_from A vector of source concept IDs from the cover relation (Hasse diagram).

edge_to A vector of target concept IDs from the cover relation (Hasse diagram).

calculate_separation 5

Value

An integer vector of the calculated grade for each concept ID.

calculate_separation Calculate Concept Separation

Description

Computes the separation of each concept. Separation is defined as the number of objects in a
concept’s extent that are NOT covered by any of its immediate subconcepts (children).

Usage

calculate_separation(lattice)

Arguments

lattice A ConceptLattice object.

Value

A numeric vector of separation values.

calculate_stability Calculate Concept Stability

Description

Calculates the intensional stability of each concept.
Calculates the intensional stability of each concept in the lattice directly from the sparse matrix
representation. Stability measures the probability that a concept is preserved when a random subset
of objects is removed.

Usage

calculate_stability(extents)

calculate_stability(extents)

Arguments

extents A SparseSet object or a sparse matrix (CsparseMatrix) representing concept
extents (columns are concepts).

Value

A numeric vector.
A numeric vector with stability values in [0, 1].

6 cobre32

cobre32 Data for Differential Diagnosis for Schizophrenia

Description

A subset of the COBRE dataset has been retrieved, by querying SchizConnect for 105 patients with
neurological and clinical symptoms, collecting also their corresponding diagnosis.

Usage

cobre32

Format

A matrix with 105 rows and 32 columns. Column names are related to different scales for depression
and Schizophrenia:

COSAS_n The Simpson-Angus Scale, 7 items to evaluate Parkinsonism-like alterations, related to
schizophrenia, in an individual.

FICAL_n The Calgary Depression Scale for Schizophrenia, 9 items (attributes) assessing the level
of depression in schizophrenia, differentiating between positive and negative aspects of the
disease.

SCIDII_n The Structured Clinical Interview for DSM-III-R Personality Disorders, with 14 vari-
ables related to the presence of signs affecting personality.

dx_ss if TRUE, the diagnosis is strict schizophrenia.

dx_other it TRUE, the diagnosis is other than schizophrenia, including schizoaffective, bipolar dis-
order and major depression.

In summary, the dataset consists in the previous 30 attributes related to signs or symptoms, and
2 attributes related to diagnosis (these diagnoses are mutually exclusive, thus only one of them is
assigned to each patient). This makes a dataset with 105 objects (patients) and 32 attributes to
explore. The symptom attributes are multi-valued.

Thus, according to the specific scales used, all attributes are fuzzy and graded. For a given attribute
(symptom), the available grades range from absent to extreme, with minimal, mild, moderate, mod-
erate severe and severe in between.

These fuzzy attributes are mapped to values in the interval [0, 1].

Source

Aine, C. J., Bockholt, H. J., Bustillo, J. R., Cañive, J. M., Caprihan, A., Gasparovic, C., ... & Liu,
J. (2017). Multimodal neuroimaging in schizophrenia: description and dissemination. Neuroinfor-
matics, 15(4), 343-364. https://pubmed.ncbi.nlm.nih.gov/26142271/

https://pubmed.ncbi.nlm.nih.gov/26142271/

cobre61 7

cobre61 Data for Differential Diagnosis for Schizophrenia

Description

A subset of the COBRE dataset has been retrieved, by querying SchizConnect for 105 patients with
neurological and clinical symptoms, collecting also their corresponding diagnosis.

Usage

cobre61

Format

A matrix with 105 rows and 61 columns. Column names are related to different scales for depression
and Schizophrenia:

COSAS_n The Simpson-Angus Scale, 7 items to evaluate Parkinsonism-like alterations, related to
schizophrenia, in an individual.

FIPAN_n The Positive and Negative Syndrome Scale, a set of 29 attributes measuring different
aspects and symptoms in schizophrenia.

FICAL_n The Calgary Depression Scale for Schizophrenia, 9 items (attributes) assessing the level
of depression in schizophrenia, differentiating between positive and negative aspects of the
disease.

SCIDII_n The Structured Clinical Interview for DSM-III-R Personality Disorders, with 14 vari-
ables related to the presence of signs affecting personality.

dx_ss if TRUE, the diagnosis is strict schizophrenia.

dx_other it TRUE, the diagnosis is other than schizophrenia, including schizoaffective, bipolar dis-
order and major depression.

In summary, the dataset consists in the previous 59 attributes related to signs or symptoms, and
2 attributes related to diagnosis (these diagnoses are mutually exclusive, thus only one of them is
assigned to each patient). This makes a dataset with 105 objects (patients) and 61 attributes to
explore. The symptom attributes are multi-valued.

Thus, according to the specific scales used, all attributes are fuzzy and graded. For a given attribute
(symptom), the available grades range from absent to extreme, with minimal, mild, moderate, mod-
erate severe and severe in between.

These fuzzy attributes are mapped to values in the interval [0, 1].

Source

Aine, C. J., Bockholt, H. J., Bustillo, J. R., Cañive, J. M., Caprihan, A., Gasparovic, C., ... & Liu,
J. (2017). Multimodal neuroimaging in schizophrenia: description and dissemination. Neuroinfor-
matics, 15(4), 343-364. https://pubmed.ncbi.nlm.nih.gov/26142271/

https://pubmed.ncbi.nlm.nih.gov/26142271/

8 Concept

compute_labels_and_colors

Compute Labels and Colors for Lattice Nodes

Description

Internal function to calculate node labels based on the selected mode.

Usage

compute_labels_and_colors(
nodes_df,
cover_edges,
extents,
intents,
obj_names,
att_names,
mode

)

Arguments

nodes_df Data frame with ’id’.

cover_edges Data frame with ’from’, ’to’.

extents List of numeric vectors.

intents List of numeric vectors.

obj_names Character vector.

att_names Character vector.

mode Character: "full", "attributes", "reduced", "empty".

Value

A data frame extending nodes_df with labels and colors.

Concept R6 class for a fuzzy concept with sparse internal representation

Description

This class implements the data structure and methods for fuzzy concepts.

Concept 9

Methods

Public methods:
• Concept$new()

• Concept$get_extent()

• Concept$get_intent()

• Concept$print()

• Concept$to_latex()

• Concept$clone()

Method new(): Creator for objects of class Concept
Usage:
Concept$new(extent, intent)

Arguments:
extent (Set) The extent of the concept.
intent (Set) The intent of the concept.

Returns: An object of class Concept.

Method get_extent(): Internal Set for the extent
Usage:
Concept$get_extent()

Returns: The Set representation of the extent.

Method get_intent(): Internal Set for the intent
Usage:
Concept$get_intent()

Returns: The Set representation of the intent.

Method print(): Prints the concept to console
Usage:
Concept$print()

Returns: A string with the elements of the set and their grades between brackets .

Method to_latex(): Write the concept in LaTeX format
Usage:
Concept$to_latex(print = TRUE)

Arguments:
print (logical) Print to output?

Returns: The fuzzy concept in LaTeX.

Method clone(): The objects of this class are cloneable with this method.
Usage:
Concept$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

10 ConceptLattice

Examples

Build a formal context and find its concepts
fc_planets <- FormalContext$new(planets)
fc_planets$find_concepts()

Print the first three concepts
fc_planets$concepts[1:3]

Select the first concept:
C <- fc_planets$concepts$sub(1)

Get its extent and intent
C$get_extent()
C$get_intent()

ConceptLattice R6 class for a concept lattice

Description

This class implements the data structure and methods for concept lattices.

Super class

fcaR::ConceptSet -> ConceptLattice

Methods

Public methods:
• ConceptLattice$new()

• ConceptLattice$plot()

• ConceptLattice$sublattice()

• ConceptLattice$top()

• ConceptLattice$bottom()

• ConceptLattice$join_irreducibles()

• ConceptLattice$meet_irreducibles()

• ConceptLattice$decompose()

• ConceptLattice$supremum()

• ConceptLattice$infimum()

• ConceptLattice$subconcepts()

• ConceptLattice$superconcepts()

• ConceptLattice$lower_neighbours()

• ConceptLattice$upper_neighbours()

• ConceptLattice$stability()

ConceptLattice 11

• ConceptLattice$separation()

• ConceptLattice$density()

• ConceptLattice$is_distributive()

• ConceptLattice$is_modular()

• ConceptLattice$is_semimodular()

• ConceptLattice$is_atomic()

• ConceptLattice$clone()

Method new(): Create a new ConceptLattice object.

Usage:
ConceptLattice$new(extents, intents, objects, attributes, I = NULL)

Arguments:

extents (dgCMatrix) The extents of all concepts
intents (dgCMatrix) The intents of all concepts
objects (character vector) Names of the objects in the formal context
attributes (character vector) Names of the attributes in the formal context
I (dgCMatrix) The matrix of the formal context

Returns: A new ConceptLattice object.

Method plot(): Plot the concept lattice

Usage:
ConceptLattice$plot(
object_names = TRUE,
to_latex = FALSE,
method = c("sugiyama", "force"),
mode = NULL,
...

)

Arguments:

object_names (logical) Deprecated. Use mode instead. If TRUE (default), implies mode =
"reduced" or similar depending on heuristics. Kept for backward compatibility.

to_latex (logical) If TRUE, exports the plot as TikZ code (LaTeX) instead of drawing it. Re-
turns an object of class tikz_code that prints the LaTeX code to console.

method (character) The layout algorithm to use. Options are:
• "sugiyama" (default): A hierarchical layout that minimizes edge crossings and centers

nodes (similar to ConExp or hasseDiagram).
• "force": A force-directed (spring) layout, useful for large or non-hierarchical lattices.

mode (character) The labeling mode for the nodes. If NULL (default), a heuristic based on lattice
size is used. Options are:
• "reduced": Standard FCA labeling. Nodes are labeled with an attribute (or object) only

if they are the supreme (or infimum) of that attribute (or object).
• "full": Each node shows its complete extent and intent.
• "attributes": Nodes show only their intent (attributes).

12 ConceptLattice

• "empty": Nodes are drawn as points without labels. Recommended for very large lattices
(>50 concepts).

... Other parameters passed to the internal plotting function (e.g., graphical parameters for
ggraph).

Returns: If to_latex is FALSE, it returns (invisibly) the ggplot2 object representing the graph.
If to_latex is TRUE, it returns a tikz_code object containing the LaTeX code.

Method sublattice(): Sublattice

Usage:
ConceptLattice$sublattice(...)

Arguments:
... See Details.

Details: As argument, one can provide both integer indices or Concepts, separated by commas.
The corresponding concepts are used to generate a sublattice.

Returns: The generated sublattice as a new ConceptLattice object.

Method top(): Top of a Lattice

Usage:
ConceptLattice$top()

Returns: The top of the Concept Lattice

Examples:
fc <- FormalContext$new(planets)
fc$find_concepts()
fc$concepts$top()

Method bottom(): Bottom of a Lattice

Usage:
ConceptLattice$bottom()

Returns: The bottom of the Concept Lattice

Examples:
fc <- FormalContext$new(planets)
fc$find_concepts()
fc$concepts$bottom()

Method join_irreducibles(): Join-irreducible Elements

Usage:
ConceptLattice$join_irreducibles()

Returns: The join-irreducible elements in the concept lattice.

Method meet_irreducibles(): Meet-irreducible Elements

Usage:

ConceptLattice 13

ConceptLattice$meet_irreducibles()

Returns: The meet-irreducible elements in the concept lattice.

Method decompose(): Decompose a concept as the supremum of meet-irreducible concepts

Usage:
ConceptLattice$decompose(C)

Arguments:

C A list of Concepts

Returns: A list, each field is the set of meet-irreducible elements whose supremum is the
corresponding element in C.

Method supremum(): Supremum of Concepts

Usage:
ConceptLattice$supremum(...)

Arguments:

... See Details.

Details: As argument, one can provide both integer indices or Concepts, separated by commas.
The corresponding concepts are used to compute their supremum in the lattice.

Returns: The supremum of the list of concepts.

Method infimum(): Infimum of Concepts

Usage:
ConceptLattice$infimum(...)

Arguments:

... See Details.

Details: As argument, one can provide both integer indices or Concepts, separated by commas.
The corresponding concepts are used to compute their infimum in the lattice.

Returns: The infimum of the list of concepts.

Method subconcepts(): Subconcepts of a Concept

Usage:
ConceptLattice$subconcepts(C)

Arguments:

C (numeric or SparseConcept) The concept to which determine all its subconcepts.

Returns: A list with the subconcepts.

Method superconcepts(): Superconcepts of a Concept

Usage:
ConceptLattice$superconcepts(C)

Arguments:

C (numeric or SparseConcept) The concept to which determine all its superconcepts.

14 ConceptLattice

Returns: A list with the superconcepts.

Method lower_neighbours(): Lower Neighbours of a Concept

Usage:
ConceptLattice$lower_neighbours(C)

Arguments:
C (SparseConcept) The concept to which find its lower neighbours

Returns: A list with the lower neighbours of C.

Method upper_neighbours(): Upper Neighbours of a Concept

Usage:
ConceptLattice$upper_neighbours(C)

Arguments:
C (SparseConcept) The concept to which find its upper neighbours

Returns: A list with the upper neighbours of C.

Method stability(): Computes the stability of each concept.

Usage:
ConceptLattice$stability()

Returns: A numeric vector with the stability of each concept.

Method separation(): Computes the separation of each concept. Separation is the number of
objects covered by the concept but not by any of its immediate subconcepts.

Usage:
ConceptLattice$separation()

Returns: A numeric vector with the separation of each concept.

Method density(): Computes the fuzzy density of each concept.

Usage:
ConceptLattice$density(I = NULL)

Arguments:
I (Optional) The original incidence matrix. If NULL, it tries to access it from the parent For-

malContext if linked.

Returns: A numeric vector with the density of each concept.

Method is_distributive(): Check if the lattice is distributive. A lattice is distributive if
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all elements.

Usage:
ConceptLattice$is_distributive()

Returns: Logical.

Method is_modular(): Check if the lattice is modular. A lattice is modular if x ≤ z =⇒
x ∨ (y ∧ z) = (x ∨ y) ∧ z. Distributive lattices are always modular.

ConceptLattice 15

Usage:
ConceptLattice$is_modular()

Returns: Logical.

Method is_semimodular(): Check if the lattice is upper semimodular. A lattice is upper
semimodular if for every x, y: if x covers x ∧ y, then x ∨ y covers y.

Usage:
ConceptLattice$is_semimodular()

Returns: Logical.

Method is_atomic(): Check if the lattice is atomic. A lattice is atomic if for every element
x > ⊥, there exists an atom a such that a ≤ x. Atoms are elements that cover the bottom element.

Usage:
ConceptLattice$is_atomic()

Returns: Logical.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ConceptLattice$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Build a formal context
fc_planets <- FormalContext$new(planets)

Find the concepts
fc_planets$find_concepts()

Find join- and meet- irreducible elements
fc_planets$concepts$join_irreducibles()
fc_planets$concepts$meet_irreducibles()

Get concept support
fc_planets$concepts$support()

--
Method `ConceptLattice$top`
--

fc <- FormalContext$new(planets)
fc$find_concepts()
fc$concepts$top()

--

16 ConceptSet

Method `ConceptLattice$bottom`
--

fc <- FormalContext$new(planets)
fc$find_concepts()
fc$concepts$bottom()

conceptRegistry Concept Miners Registry

Description

Concept Miners Registry

Usage

conceptRegistry

Format

An object of class concept_miner_registry (inherits from registry) of length 3.

Details

This is a registry that stores the concept miners that can be applied using the find_concepts()
method in an FormalConcept.

One can obtain the list of available equivalence operators by: conceptRegistry$get_entry_names()

ConceptSet R6 class for a set of concepts

Description

This class implements the data structure and methods for concept sets.

Methods

Public methods:
• ConceptSet$new()

• ConceptSet$size()

• ConceptSet$is_empty()

• ConceptSet$extents()

• ConceptSet$intents()

• ConceptSet$print()

ConceptSet 17

• ConceptSet$to_latex()

• ConceptSet$to_list()

• ConceptSet$[()

• ConceptSet$sub()

• ConceptSet$support()

• ConceptSet$stability()

• ConceptSet$clone()

Method new(): Create a new ConceptLattice object.

Usage:
ConceptSet$new(extents, intents, objects, attributes, I = NULL)

Arguments:

extents (dgCMatrix) The extents of all concepts
intents (dgCMatrix) The intents of all concepts
objects (character vector) Names of the objects in the formal context
attributes (character vector) Names of the attributes in the formal context
I (dgCMatrix) The matrix of the formal context

Returns: A new ConceptLattice object.

Method size(): Size of the Lattice

Usage:
ConceptSet$size()

Returns: The number of concepts in the lattice.

Method is_empty(): Is the lattice empty?

Usage:
ConceptSet$is_empty()

Returns: TRUE if the lattice has no concepts.

Method extents(): Concept Extents

Usage:
ConceptSet$extents()

Returns: The extents of all concepts, as a dgCMatrix.

Method intents(): Concept Intents

Usage:
ConceptSet$intents()

Returns: The intents of all concepts, as a dgCMatrix.

Method print(): Print the Concept Set

Usage:
ConceptSet$print()

18 ConceptSet

Returns: Nothing, just prints the concepts

Method to_latex(): Write in LaTeX
Usage:
ConceptSet$to_latex(print = TRUE, ncols = 1, numbered = TRUE, align = TRUE)

Arguments:
print (logical) Print to output?
ncols (integer) Number of columns of the output.
numbered (logical) Number the concepts?
align (logical) Align objects and attributes independently?
Returns: The LaTeX code to list all concepts.

Method to_list(): Returns a list with all the concepts
Usage:
ConceptSet$to_list()

Returns: A list of concepts.

Method [(): Subsets a ConceptSet
Usage:
ConceptSet$[(indices)

Arguments:
indices (numeric or logical vector) The indices of the concepts to return as a list of Concepts.

It can be a vector of logicals where TRUE elements are to be retained.
Returns: Another ConceptSet.

Method sub(): Individual Concepts
Usage:
ConceptSet$sub(index)

Arguments:
index (numeric) The index of the concept to return.
Returns: The Concept.

Method support(): Get support of each concept
Usage:
ConceptSet$support()

Returns: A vector with the support of each concept.

Method stability(): Compute the stability of each concept
Usage:
ConceptSet$stability()

Returns: A numeric vector with the stability of each concept.

Method clone(): The objects of this class are cloneable with this method.
Usage:
ConceptSet$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

equivalencesRegistry 19

Examples

Build a formal context
fc_planets <- FormalContext$new(planets)

Find the concepts
fc_planets$find_concepts()

Find join- and meet- irreducible elements
fc_planets$concepts$join_irreducibles()
fc_planets$concepts$meet_irreducibles()

equivalencesRegistry Equivalence Rules Registry

Description

Equivalence Rules Registry

Usage

equivalencesRegistry

Format

An object of class equivalence_registry (inherits from registry) of length 6.

Details

This is a registry that stores the equivalence rules that can be applied using the apply_rules()
method in an ImplicationSet.

One can obtain the list of available equivalence operators by: equivalencesRegistry$get_entry_names()

export_to_tikz Export Layout to TikZ (LaTeX)

Description

Generates TikZ code for the concept lattice.

20 fcaR_options

Usage

export_to_tikz(
plot_data,
edges_df,
width = 12,
height = 12,
standalone = FALSE,
caption = NULL,
...

)

Arguments

plot_data Data frame with node info.

edges_df Data frame with edge info.

width Numeric. Target width in cm (default: 12).

height Numeric. Target height in cm (default: 12).

standalone Logical. If TRUE, wraps code in a documentclass to be compiled directly.

caption Character. Optional caption for the figure.

... Additional arguments (currently unused).

Value

An object of class ’tikz_code’.

fcaR_options Set or get options for fcaR

Description

Set or get options for fcaR

Usage

fcaR_options(...)

Arguments

... Option names to retrieve option values or [key]=[value] pairs to set options.

fetch_context 21

Supported options

The following options are supported

decimal_places (numeric;2) The number of decimal places to show when printing or exporting
to LATEX sets, implications, concepts, etc.

latex_size (character;"normalsize") Size to use when exporting to LaTeX.
reduced_lattice (logical;TRUE) Plot the reduced concept lattice?

fetch_context Fetch a Formal Context from the FCA Repository

Description

Downloads a context file from the fcarepository.org (via GitHub mirror), parses it, and returns a
FormalContext object.

Usage

fetch_context(filename, verbose = TRUE)

Arguments

filename Character string. The ID/filename of the context (e.g., "animals_en.cxt").
verbose Logical. If TRUE, prints metadata and progress messages using cli/glue.

Value

A FormalContext object.

FormalContext R6 class for a formal context

Description

This class implements the data structure and methods for formal contexts.

Public fields

I The table of the formal context as a matrix.
attributes The attributes of the formal context.
objects The objects of the formal context.
grades_set The set of degrees (in [0, 1]) the whole set of attributes can take.
expanded_grades_set The set of degrees (in [0, 1]) each attribute can take.
concepts The concept lattice associated to the formal context as a ConceptLattice.
implications A set of implications on the formal context as an ImplicationSet.
description An optional description of the dataset

22 FormalContext

Methods

Public methods:
• FormalContext$new()

• FormalContext$is_empty()

• FormalContext$scale()

• FormalContext$get_scales()

• FormalContext$background_knowledge()

• FormalContext$dual()

• FormalContext$intent()

• FormalContext$uparrow()

• FormalContext$extent()

• FormalContext$downarrow()

• FormalContext$closure()

• FormalContext$obj_concept()

• FormalContext$att_concept()

• FormalContext$is_concept()

• FormalContext$is_closed()

• FormalContext$clarify()

• FormalContext$reduce()

• FormalContext$standardize()

• FormalContext$find_concepts()

• FormalContext$find_implications()

• FormalContext$factorize()

• FormalContext$to_transactions()

• FormalContext$save()

• FormalContext$load()

• FormalContext$dim()

• FormalContext$print()

• FormalContext$to_latex()

• FormalContext$incidence()

• FormalContext$subcontext()

• FormalContext$[()

• FormalContext$plot()

• FormalContext$use_logic()

• FormalContext$get_logic()

• FormalContext$use_connection()

• FormalContext$get_connection()

• FormalContext$clone()

Method new(): Creator for the Formal Context class

Usage:
FormalContext$new(I, filename, remove_const = FALSE)

FormalContext 23

Arguments:

I (numeric matrix) The table of the formal context.
filename (character) Path of a file to import.
remove_const (logical) If TRUE, remove constant columns. The default is FALSE.

Details: Columns of I should be named, since they are the names of the attributes of the formal
context.
If no I is used, the resulting FormalContext will be empty and not usable unless for loading a
previously saved one. In this case, one can provide a filename to import. Only RDS, CSV and
CXT files are currently supported.
If the file is not present, the fcarepository.org is looked for coincidences. If so, the corresponding
context is loaded.

Returns: An object of the FormalContext class.

Method is_empty(): Check if the FormalContext is empty

Usage:
FormalContext$is_empty()

Returns: TRUE if the FormalContext is empty, that is, has not been provided with a matrix, and
FALSE otherwise.

Method scale(): Scale the context

Usage:
FormalContext$scale(attributes, type, ...)

Arguments:

attributes The attributes to scale
type Type of scaling.
...

Details: The types of scaling are implemented in a registry, so that scalingRegistry$get_entries()
returns all types.
In the dots argument, the user can supply the value for bg (logical), which, if set to TRUE, indi-
cates to compute background knowledge as implications on the scales; if FALSE, no implications
will be computed on the scales.

Returns: The scaled formal context

Examples:

filename <- system.file("contexts", "aromatic.csv", package = "fcaR")
fc <- FormalContext$new(filename)
fc$scale("nitro", "ordinal", comparison = `>=`, values = 1:3)
fc$scale("OS", "nominal", c("O", "S"))
fc$scale(attributes = "ring", type = "nominal")

Method get_scales(): Scales applied to the formal context

Usage:
FormalContext$get_scales(attributes = names(private$scales))

Arguments:

24 FormalContext

attributes (character) Name of the attributes for which scales (if applied) are returned.

Returns: The scales that have been applied to the specified attributes of the formal context. If
no attributes are passed, then all applied scales are returned.

Examples:

filename <- system.file("contexts", "aromatic.csv", package = "fcaR")
fc <- FormalContext$new(filename)
fc$scale("nitro", "ordinal", comparison = `>=`, values = 1:3)
fc$scale("OS", "nominal", c("O", "S"))
fc$scale(attributes = "ring", type = "nominal")
fc$get_scales()

Method background_knowledge(): Background knowledge of a scaled formal context

Usage:
FormalContext$background_knowledge()

Returns: An ImplicationSet with the implications extracted from the application of scales.

Examples:

filename <- system.file("contexts", "aromatic.csv", package = "fcaR")
fc <- FormalContext$new(filename)
fc$scale("nitro", "ordinal", comparison = `>=`, values = 1:3)
fc$scale("OS", "nominal", c("O", "S"))
fc$scale(attributes = "ring", type = "nominal")
fc$background_knowledge()

Method dual(): Get the dual formal context

Usage:
FormalContext$dual()

Returns: A FormalContext where objects and attributes have interchanged their roles.

Method intent(): Get the intent of a fuzzy set of objects

Usage:
FormalContext$intent(S)

Arguments:

S (Set) The set of objects to compute the intent for.

Returns: A Set with the intent.

Method uparrow(): Get the intent of a fuzzy set of objects

Usage:
FormalContext$uparrow(S)

Arguments:

S (Set) The set of objects to compute the intent for.

Returns: A Set with the intent.

Method extent(): Get the extent of a fuzzy set of attributes

FormalContext 25

Usage:
FormalContext$extent(S)

Arguments:

S (Set) The set of attributes to compute the extent for.

Returns: A Set with the intent.

Method downarrow(): Get the extent of a fuzzy set of attributes

Usage:
FormalContext$downarrow(S)

Arguments:

S (Set) The set of attributes to compute the extent for.

Returns: A Set with the intent.

Method closure(): Get the closure of a fuzzy set of attributes

Usage:
FormalContext$closure(S)

Arguments:

S (Set) The set of attributes to compute the closure for.

Returns: A Set with the closure.

Method obj_concept(): Object Concept

Usage:
FormalContext$obj_concept(object)

Arguments:

object (character) Name of the object to compute its associated concept

Returns: The object concept associated to the object given.

Method att_concept(): Attribute Concept

Usage:
FormalContext$att_concept(attribute)

Arguments:

attribute (character) Name of the attribute to compute its associated concept

Returns: The attribute concept associated to the attribute given.

Method is_concept(): Is a Concept?

Usage:
FormalContext$is_concept(C)

Arguments:

C A Concept object

Returns: TRUE if C is a concept.

26 FormalContext

Method is_closed(): Testing closure of attribute sets

Usage:
FormalContext$is_closed(S)

Arguments:
S A Set of attributes

Returns: TRUE if the set S is closed in this formal context.

Method clarify(): Clarify a formal context

Usage:
FormalContext$clarify(copy = FALSE)

Arguments:
copy (logical) If TRUE, a new FormalContext object is created with the clarified context, oth-

erwise the current one is overwritten.

Returns: The clarified FormalContext.

Method reduce(): Reduce a formal context

Usage:
FormalContext$reduce(copy = FALSE)

Arguments:
copy (logical) If TRUE, a new FormalContext object is created with the clarified and reduced

context, otherwise the current one is overwritten.

Returns: The clarified and reduced FormalContext.

Method standardize(): Build the Standard Context

Usage:
FormalContext$standardize()

Details: All concepts must be previously computed.

Returns: The standard context using the join- and meet- irreducible elements.

Method find_concepts(): Use Ganter Algorithm to compute concepts

Usage:
FormalContext$find_concepts(method = "InClose", verbose = FALSE)

Arguments:
method (string) The name of a method for the computation of concepts. Available options can

be listed with conceptRegistry$get_entries().
verbose (logical) TRUE will provide a verbose output.

Returns: A list with all the concepts in the formal context.

Method find_implications(): Use modified Ganter algorithm to compute both concepts and
implications

Usage:
FormalContext$find_implications(save_concepts = TRUE, verbose = FALSE)

FormalContext 27

Arguments:

save_concepts (logical) TRUE will also compute and save the concept lattice. FALSE is usually
faster, since it only computes implications.

verbose (logical) TRUE will provide a verbose output.

Returns: Nothing, just updates the internal fields concepts and implications.

Method factorize(): Factorize the formal context using Boolean/Fuzzy Matrix Factorization
algorithms.

Usage:
FormalContext$factorize(method = "GreConD", ...)

Arguments:

method (character) The algorithm to use. Currently supported: "GreConD", "ASSO".
... Additional arguments:

• For GreConD: w (weight, default 1.0), stop_threshold_ratio (error tolerance, default
0.0).

• For ASSO: threshold (confidence threshold, default 0.7), w_pos (reward), w_neg (penalty).

Returns: A list with two FormalContext objects:
• object_factor: The context mapping Objects to Factors (Matrix A).
• factor_attribute: The context mapping Factors to Attributes (Matrix B).

Method to_transactions(): Convert the formal context to object of class transactions from
the arules package

Usage:
FormalContext$to_transactions()

Returns: A transactions object.

Method save(): Save a FormalContext to RDS or CXT format

Usage:
FormalContext$save(filename = tempfile(fileext = ".rds"))

Arguments:

filename (character) Path of the file where to store the FormalContext.

Details: The format is inferred from the extension of the filename.

Returns: Invisibly the current FormalContext.

Method load(): Load a FormalContext from a file

Usage:
FormalContext$load(filename)

Arguments:

filename (character) Path of the file to load the FormalContext from.

Details: Currently, only RDS, CSV and CXT files are supported.

Returns: The loaded FormalContext.

28 FormalContext

Method dim(): Dimensions of the formal context

Usage:
FormalContext$dim()

Returns: A vector with (number of objects, number of attributes).

Method print(): Prints the formal context

Usage:
FormalContext$print()

Returns: Prints information regarding the formal context.

Method to_latex(): Write the context in LaTeX format

Usage:
FormalContext$to_latex(table = TRUE, label = "", caption = "")

Arguments:

table (logical) If TRUE, surrounds everything between \begin{table} and \end{table}.
label (character) The label for the table environment.
caption (character) The caption of the table.
fraction (character) If none, no fractions are produced. Otherwise, if it is frac, dfrac or

sfrac, decimal numbers are represented as fractions with the corresponding LaTeX type-
setting.

Returns: A table environment in LaTeX.

Method incidence(): Incidence matrix of the formal context

Usage:
FormalContext$incidence()

Returns: The incidence matrix of the formal context

Examples:

fc <- FormalContext$new(planets)
fc$incidence()

Method subcontext(): Subcontext of the formal context

Usage:
FormalContext$subcontext(objects, attributes)

Arguments:

objects (character array) Name of the objects to keep.
attributes (character array) Names of the attributes to keep.

Details: A warning will be issued if any of the names is not present in the list of objects or
attributes of the formal context.
If objects or attributes is empty, then it is assumed to represent the whole set of objects or
attributes of the original formal context.

Returns: Another FormalContext that is a subcontext of the original one, with only the objects
and attributes selected.

FormalContext 29

Examples:

fc <- FormalContext$new(planets)
fc$subcontext(attributes = c("moon", "no_moon"))

Method [(): Subcontext of the formal context

Usage:
FormalContext$[(objects, attributes)

Arguments:

objects (character array) Name of the objects to keep.
attributes (character array) Names of the attributes to keep.

Details: A warning will be issued if any of the names is not present in the list of objects or
attributes of the formal context.
If objects or attributes is empty, then it is assumed to represent the whole set of objects or
attributes of the original formal context.

Returns: Another FormalContext that is a subcontext of the original one, with only the objects
and attributes selected.

Examples:

fc <- FormalContext$new(planets)
fc[, c("moon", "no_moon")]

Method plot(): Plot the formal context table

Usage:
FormalContext$plot(to_latex = FALSE, ...)

Arguments:

to_latex (logical) If TRUE, export the plot as a tikzpicture environment that can be included
in a LaTeX file.

... Other parameters to be passed to the tikzDevice that renders the lattice in LaTeX, or for
the figure caption. See Details.

Details: Particular parameters that control the size of the tikz output are: width, height
(both in inches), and pointsize (in points), that should be set to the font size used in the
documentclass header in the LaTeX file where the code is to be inserted.
If a caption is provided, the whole tikz picture will be wrapped by a figure environment and
the caption set.

Returns: If to_latex is FALSE, it returns nothing, just plots the graph of the formal context.
Otherwise, this function returns the LaTeX code to reproduce the formal context plot.

Method use_logic(): Sets the logic to use

Usage:
FormalContext$use_logic(name = available_logics())

Arguments:

name The name of the logic to use. To see the available names, run available_logics().

Method get_logic(): Gets the logic used

30 FormalContext

Usage:
FormalContext$get_logic()

Returns: A string with the name of the logic.

Method use_connection(): Sets the name of the Galois connection to use

Usage:
FormalContext$use_connection(connection)

Arguments:
connection The name of the Galois connection. Available connections are "standard" (anti-

tone), "benevolent1" and "benevolent2" (isotone)

Method get_connection(): Gets the name of the Galois connection

Usage:
FormalContext$get_connection()

Returns: A string with the name of the Galois connection

Method clone(): The objects of this class are cloneable with this method.

Usage:
FormalContext$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Guigues J, Duquenne V (1986). “Familles minimales d’implications informatives résultant d’un
tableau de données binaires.” Mathématiques et Sciences humaines, 95, 5-18.

Ganter B, Wille R (1999). Formal concept analysis : mathematical foundations. Springer. ISBN
3540627715.

Belohlavek R (2002). “Algorithms for fuzzy concept lattices.” In Proc. Fourth Int. Conf. on Recent
Advances in Soft Computing. Nottingham, United Kingdom, 200-205.

Hahsler M, Grun B, Hornik K (2005). “arules - a computational environment for mining association
rules and frequent item sets.” J Stat Softw, 14, 1-25.

Examples

Build and print the formal context
fc_planets <- FormalContext$new(planets)
print(fc_planets)

Define a set of attributes
S <- Set$new(attributes = fc_planets$attributes)
S$assign(moon = 1, large = 1)

Compute the closure of S
Sc <- fc_planets$closure(S)
Is Sc a closed set?

FormalContext 31

fc_planets$is_closed(Sc)

Clarify and reduce the formal context
fc2 <- fc_planets$reduce(TRUE)

Find implications
fc_planets$find_implications()

Read a formal context from CSV
filename <- system.file("contexts", "airlines.csv", package = "fcaR")
fc <- FormalContext$new(filename)

Read a formal context from a CXT file
filename <- system.file("contexts", "lives_in_water.cxt", package = "fcaR")
fc <- FormalContext$new(filename)

--
Method `FormalContext$scale`
--

filename <- system.file("contexts", "aromatic.csv", package = "fcaR")
fc <- FormalContext$new(filename)
fc$scale("nitro", "ordinal", comparison = `>=`, values = 1:3)
fc$scale("OS", "nominal", c("O", "S"))
fc$scale(attributes = "ring", type = "nominal")

--
Method `FormalContext$get_scales`
--

filename <- system.file("contexts", "aromatic.csv", package = "fcaR")
fc <- FormalContext$new(filename)
fc$scale("nitro", "ordinal", comparison = `>=`, values = 1:3)
fc$scale("OS", "nominal", c("O", "S"))
fc$scale(attributes = "ring", type = "nominal")
fc$get_scales()

--
Method `FormalContext$background_knowledge`
--

filename <- system.file("contexts", "aromatic.csv", package = "fcaR")
fc <- FormalContext$new(filename)
fc$scale("nitro", "ordinal", comparison = `>=`, values = 1:3)
fc$scale("OS", "nominal", c("O", "S"))
fc$scale(attributes = "ring", type = "nominal")
fc$background_knowledge()

--
Method `FormalContext$incidence`
--

32 get_fcarepository_contexts

fc <- FormalContext$new(planets)
fc$incidence()

--
Method `FormalContext$subcontext`
--

fc <- FormalContext$new(planets)
fc$subcontext(attributes = c("moon", "no_moon"))

--
Method `FormalContext$[`
--

fc <- FormalContext$new(planets)
fc[, c("moon", "no_moon")]

get_fcarepository_contexts

Get Metadata from the FCA Repository

Description

Connects to the official FCA Repository (https://fcarepository.org) and downloads the metadata for
all available datasets.

Usage

get_fcarepository_contexts()

Value

A list containing the metadata for each context (title, dimensions, description, source).

Examples

Not run:
meta <- get_fcarepository_contexts()

End(Not run)

ImplicationSet 33

ImplicationSet R6 Class for Set of implications

Description

This class implements the structure needed to store implications and the methods associated.

Methods

Public methods:

• ImplicationSet$new()

• ImplicationSet$get_attributes()

• ImplicationSet$[()

• ImplicationSet$to_arules()

• ImplicationSet$add()

• ImplicationSet$cardinality()

• ImplicationSet$is_empty()

• ImplicationSet$size()

• ImplicationSet$closure()

• ImplicationSet$recommend()

• ImplicationSet$apply_rules()

• ImplicationSet$to_basis()

• ImplicationSet$to_direct_optimal()

• ImplicationSet$print()

• ImplicationSet$to_latex()

• ImplicationSet$get_LHS_matrix()

• ImplicationSet$get_RHS_matrix()

• ImplicationSet$filter()

• ImplicationSet$support()

• ImplicationSet$use_logic()

• ImplicationSet$get_logic()

• ImplicationSet$use_hedge()

• ImplicationSet$get_hedge()

• ImplicationSet$clone()

Method new(): Initialize with an optional name

Usage:
ImplicationSet$new(...)

Arguments:

... See Details.

34 ImplicationSet

Details: Creates and initialize a new ImplicationSet object. It can be done in two ways:
initialize(name, attributes, lhs, rhs) or initialize(rules)
In the first way, the only mandatory argument is attributes, (character vector) which is a
vector of names of the attributes on which we define the implications. Optional arguments are:
name (character string), name of the implication set, lhs (a dgCMatrix), initial LHS of the
implications stored and the analogous rhs.
The other way is used to initialize the ImplicationSet object from a rules object from pack-
age arules.

Returns: A new ImplicationSet object.

Method get_attributes(): Get the names of the attributes

Usage:
ImplicationSet$get_attributes()

Returns: A character vector with the names of the attributes used in the implications.

Method [(): Get a subset of the implication set

Usage:
ImplicationSet$[(idx)

Arguments:
idx (integer or logical vector) Indices of the implications to extract or remove. If logical vector,

only TRUE elements are retained and the rest discarded.

Returns: A new ImplicationSet with only the rules given by the idx indices (if all idx > 0
and all but idx if all idx < 0.

Method to_arules(): Convert to arules format

Usage:
ImplicationSet$to_arules(quality = TRUE)

Arguments:
quality (logical) Compute the interest measures for each rule?

Returns: A rules object as used by package arules.

Method add(): Add a precomputed implication set

Usage:
ImplicationSet$add(...)

Arguments:
... An ImplicationSet object, a rules object, or a pair lhs, rhs of Set objects or dgCMatrix.

The implications to add to this formal context.

Returns: Nothing, just updates the internal implications field.

Method cardinality(): Cardinality: Number of implications in the set

Usage:
ImplicationSet$cardinality()

Returns: The cardinality of the implication set.

ImplicationSet 35

Method is_empty(): Empty set

Usage:
ImplicationSet$is_empty()

Returns: TRUE if the set of implications is empty, FALSE otherwise.

Method size(): Size: number of attributes in each of LHS and RHS

Usage:
ImplicationSet$size()

Returns: A vector with two components: the number of attributes present in each of the LHS
and RHS of each implication in the set.

Method closure(): Compute the semantic closure of a fuzzy set with respect to the implication
set

Usage:
ImplicationSet$closure(S, reduce = FALSE, verbose = FALSE)

Arguments:
S (a Set object) Fuzzy set to compute its closure. Use class Set to build it.
reduce (logical) Reduce the implications using simplification logic?
verbose (logical) Show verbose output?

Returns: If reduce == FALSE, the output is a fuzzy set corresponding to the closure of S. If
reduce == TRUE, a list with two components: closure, with the closure as above, and implications,
the reduced set of implications.

Method recommend(): Generate a recommendation for a subset of the attributes

Usage:
ImplicationSet$recommend(S, attribute_filter)

Arguments:
S (a vector) Vector with the grades of each attribute (a fuzzy set).
attribute_filter (character vector) Names of the attributes to get recommendation for.

Returns: A fuzzy set describing the values of the attributes in attribute_filter within the
closure of S.

Method apply_rules(): Apply rules to remove redundancies

Usage:
ImplicationSet$apply_rules(
rules = c("composition", "generalization"),
batch_size = 25000L,
parallelize = FALSE,
reorder = FALSE

)

Arguments:
rules (character vector) Names of the rules to use. See details.
batch_size (integer) If the number of rules is large, apply the rules by batches of this size.

36 ImplicationSet

parallelize (logical) If possible, should we parallelize the computation among different batches?
reorder (logical) Should the rules be randomly reordered previous to the computation?

Details: Currently, the implemented rules are "generalization", "simplification", "reduction"
and "composition".

Returns: Nothing, just updates the internal matrices for LHS and RHS.

Method to_basis(): Convert Implications to Canonical Basis

Usage:
ImplicationSet$to_basis()

Returns: The canonical basis of implications obtained from the current ImplicationSet

Method to_direct_optimal(): Compute the Direct Optimal Basis using optimized C++ algo-
rithms.

Usage:
ImplicationSet$to_direct_optimal(
method = c("direct_optimal", "final_ts", "monotonic", "priority"),
verbose = FALSE

)

Arguments:

method (character) The specific algorithm to run:
• "direct_optimal": (Default) The Direct Optimal Saturation-Pruning algorithm.
• "final_ts": Computes Transitive Closure then Prunes (Standard approach).
• "monotonic": Incremental algorithm maintaining monotonicity.
• "priority": Priority-based refinement algorithm.

verbose (logical) Print verbose output from the C++ backend.

Returns: Nothing, updates the ImplicationSet in place with the new basis.

Method print(): Print all implications to text

Usage:
ImplicationSet$print()

Returns: A string with all the implications in the set.

Method to_latex(): Export to LaTeX

Usage:
ImplicationSet$to_latex(
print = TRUE,
ncols = 1,
numbered = TRUE,
numbers = seq(self$cardinality())

)

Arguments:

print (logical) Print to output?
ncols (integer) Number of columns for the output.

ImplicationSet 37

numbered (logical) If TRUE (default), implications will be numbered in the output.
numbers (vector) If numbered, use these elements to enumerate the implications. The default

is to enumerate 1, 2, ..., but can be changed.

Returns: A string in LaTeX format that prints nicely all the implications.

Method get_LHS_matrix(): Get internal LHS matrix

Usage:
ImplicationSet$get_LHS_matrix()

Returns: A sparse matrix representing the LHS of the implications in the set.

Method get_RHS_matrix(): Get internal RHS matrix

Usage:
ImplicationSet$get_RHS_matrix()

Returns: A sparse matrix representing the RHS of the implications in the set.

Method filter(): Filter implications by attributes in LHS and RHS

Usage:
ImplicationSet$filter(
lhs = NULL,
not_lhs = NULL,
rhs = NULL,
not_rhs = NULL,
drop = FALSE

)

Arguments:
lhs (character vector) Names of the attributes to filter the LHS by. If NULL, no filtering is done

on the LHS.
not_lhs (character vector) Names of the attributes to not include in the LHS. If NULL (the

default), it is not considered at all.
rhs (character vector) Names of the attributes to filter the RHS by. If NULL, no filtering is done

on the RHS.
not_rhs (character vector) Names of the attributes to not include in the RHS. If NULL (the

default), it is not considered at all.
drop (logical) Remove the rest of attributes in RHS?

Returns: An ImplicationSet that is a subset of the current set, only with those rules which
has the attributes in lhs and rhs in their LHS and RHS, respectively.

Method support(): Compute support of each implication

Usage:
ImplicationSet$support()

Returns: A vector with the support of each implication

Method use_logic(): Sets the logic to use

Usage:

38 ImplicationSet

ImplicationSet$use_logic(name = available_logics())

Arguments:
name The name of the logic to use. To see the available names, run available_logics().

Method get_logic(): Gets the logic used

Usage:
ImplicationSet$get_logic()

Returns: A string with the name of the logic.

Method use_hedge(): Sets the hedge to use when computing closures

Usage:
ImplicationSet$use_hedge(name = c("globalization", "identity"))

Arguments:
name The name of the hedge to use. Only "globalization" and "identity" are allowed.

Method get_hedge(): Gets the hedge used to compute closures

Usage:
ImplicationSet$get_hedge()

Returns: A string with the name of the hedge

Method clone(): The objects of this class are cloneable with this method.

Usage:
ImplicationSet$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Ganter B, Obiedkov S (2016). Conceptual Exploration. Springer. https://doi.org/10.1007/978-3-
662-49291-8

Hahsler M, Grun B, Hornik K (2005). “arules - a computational environment for mining association
rules and frequent item sets.” J Stat Softw, 14, 1-25.

Belohlavek R, Cordero P, Enciso M, Mora Á, Vychodil V (2016). “Automated prover for attribute
dependencies in data with grades.” International Journal of Approximate Reasoning, 70, 51-67.

Mora A, Cordero P, Enciso M, Fortes I, Aguilera G (2012). “Closure via functional dependence
simplification.” International Journal of Computer Mathematics, 89(4), 510-526.

Examples

Build a formal context
fc_planets <- FormalContext$new(planets)

Find its implication basis
fc_planets$find_implications()

lattice_plot 39

Print implications
fc_planets$implications

Cardinality and mean size in the ruleset
fc_planets$implications$cardinality()
sizes <- fc_planets$implications$size()
colMeans(sizes)

Simplify the implication set
fc_planets$implications$apply_rules("simplification")

lattice_plot Plot Concept Lattice

Description

Visualization of the concept lattice using ’ggraph’.

Usage

lattice_plot(
nodes_df,
cover_matrix,
method = "sugiyama",
mode = NULL,
objects = NULL,
attributes = NULL,
object_names = TRUE,
to_latex = FALSE,
extents = NULL,
intents = NULL,
...

)

Arguments

nodes_df Data frame with ’id’.

cover_matrix Sparse matrix.

method Layout method ("sugiyama", "force").

mode Labeling mode ("reduced", "full", "empty").

objects Character vector.

attributes Character vector.

object_names Logical (Deprecated).

to_latex Logical.

40 parse_implications

extents List of extents.

intents List of intents.

... Extra args.

parse_implication Parses a string into an implication

Description

Parses a string into an implication

Usage

parse_implication(string, attributes)

Arguments

string (character) The string to be parsed

attributes (character vector) The attributes’ names

Value

Two vectors as sparse matrices representing the LHS and RHS of the implication

parse_implications Parses several implications given as a string

Description

Parses several implications given as a string

Usage

parse_implications(input)

Arguments

input (character) The string with the implications or a file containing the implications

Details

The format for the input file is:

• Every implication in its own line or separated by semicolon (;)

• Attributes are separated by commas (,)

• The LHS and RHS of each implication are separated by an arrow (->)

planets 41

Value

An ImplicationSet

Examples

input <- system.file("implications", "ex_implications", package = "fcaR")
imps <- parse_implications(input)

planets Planets data

Description

This dataset records some properties of the planets in our solar system.

Usage

planets

Format

A matrix with 9 rows (the planets) and 7 columns, representing additional features of the planets:

small 1 if the planet is small, 0 otherwise.

medium 1 if the planet is medium-sized, 0 otherwise.

large 1 if the planet is large, 0 otherwise.

near 1 if the planet belongs in the inner solar system, 0 otherwise.

far 1 if the planet belongs in the outer solar system, 0 otherwise.

moon 1 if the planet has a natural moon, 0 otherwise.

no_moon 1 if the planet has no moon, 0 otherwise.

Source

Wille R (1982). “Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts.”
In Ordered Sets, pp. 445–470. Springer.

42 RandomContext

print_repo_details Print Details of Repository Contexts

Description

Prints a formatted summary of the contexts available in the FCA Repository to the console. It
displays the filename, title, dimensions (objects x attributes), and description for each entry.

Usage

print_repo_details(meta)

Arguments

meta A list of metadata objects, typically obtained via get_fcarepository_contexts.

Value

Prints the summary to the console. Returns NULL invisibly.

Examples

Not run:
meta <- get_fcarepository_contexts()
print_repo_details(meta)

End(Not run)

RandomContext Generate Random Formal Contexts

Description

Functions to generate synthetic formal contexts using advanced statistical distributions. These
methods allow creating datasets that mimic real-world properties (non-uniform density) or ran-
domizing existing contexts while preserving their structural properties.

Usage

RandomContext(
n_objects,
n_attributes,
density = 0.1,
distribution = "uniform",
alpha = 1,
...

)

RandomDistributiveContext 43

Arguments

n_objects (integer) Number of objects.

n_attributes (integer) Number of attributes.

density (numeric) Expected density of the context (proportion of 1s). Used for uniform
distribution.

distribution (character) The distribution to use for generating the context.

• "uniform": Each cell is 1 with probability density.
• "dirichlet": The number of attributes per object follows a categorical

distribution derived from a Dirichlet distribution. This creates "clumpy" or
"sparse" rows typical of real data.

alpha (numeric) Concentration parameter for the Dirichlet distribution. Low values
(e.g., 0.1) produce very skewed distributions (some objects have few attributes,
others many). High values produce more uniform row sums. Default is 1.0.

... Additional arguments passed to internal methods.

Value

A FormalContext object.

Examples

1. Uniform Random Context
fc_uni <- RandomContext(10, 5, density = 0.2)
print(fc_uni)

2. Dirichlet Random Context (Mimicking real data structure)
Objects will have varying 'sizes' (number of attributes)
fc_dir <- RandomContext(10, 5, distribution = "dirichlet", alpha = 0.5)
print(fc_dir)

RandomDistributiveContext

Generate a Random Distributive Context

Description

Generates a random formal context that is guaranteed to produce a Distributive Concept Lattice.

It relies on Birkhoff’s Representation Theorem: The lattice of order ideals of a Poset is always
distributive. The context is constructed such that objects and attributes are the elements of the
poset, and the incidence relation is gIm ⇐⇒ ¬(g ≥ m).

Usage

RandomDistributiveContext(n_elements, density = 0.1)

44 randomize_context

Arguments

n_elements Number of elements in the underlying Poset.

density Probability of an order relation a ≤ b.

Value

A FormalContext.

randomize_context Randomize an Existing Formal Context

Description

Modifies the incidence matrix of a formal context to create a random variation while preserving
certain statistical properties. This is essential for statistical significance testing in FCA (e.g., "is this
concept structure random?").

Usage

randomize_context(fc, method = "swap", iterations = NULL)

Arguments

fc (FormalContext) The context to randomize.

method (character) The randomization strategy:

• "swap": Edge Swapping (Curveball algorithm). Preserves exact row sums
and column sums (marginal distributions). The structure changes, but the
statistics of objects and attributes remain identical.

• "rewire": Edge Rewiring. Preserves only the global density (total number
of 1s). Row and column sums may change.

iterations (integer) Number of swap/rewire operations to perform. Default is 10 * number
of 1s, which is usually sufficient for mixing.

Value

A new FormalContext object with the randomized incidence.

Examples

data(planets)
fc <- FormalContext$new(planets)

1. Edge Swapping (Preserves degree distribution)
Useful for null-model testing
fc_rand_swap <- randomize_context(fc, method = "swap")

Verify marginals are preserved

save_tikz 45

colSums(fc$incidence())
colSums(fc_rand_swap$incidence())

2. Rewiring (Preserves only density)
fc_rand_rewire <- randomize_context(fc, method = "rewire")

save_tikz Save TikZ Code to File

Description

Exports the generated TikZ code to a .tex file.

Usage

save_tikz(x, file, ...)

Arguments

x An object of class ’tikz_code’.

file Character. Path to the output file.

... Additional arguments.

scalingRegistry Scaling Registry

Description

Scaling Registry

Usage

scalingRegistry

Format

An object of class scaling_registry (inherits from registry) of length 6.

Details

This is a registry that stores the implemented scales that can be applied using the scale() method
in an FormalContext.

One can obtain the list of available equivalence operators by: scalingRegistry$get_entry_names()

46 Set

select_repository_context

GUI to select and download a context from the repository

Description

GUI to select and download a context from the repository

Usage

select_repository_context(meta)

Arguments

meta A list of metadata objects (obtained via get_fcarepository_contexts).

Set R6 class for a fuzzy set with sparse internal representation

Description

This class implements the data structure and methods for fuzzy sets.

Methods

Public methods:
• Set$new()

• Set$assign()

• Set$[()

• Set$cardinal()

• Set$get_vector()

• Set$get_attributes()

• Set$length()

• Set$print()

• Set$to_latex()

• Set$clone()

Method new(): Creator for objects of class Set

Usage:
Set$new(attributes, M = NULL, ...)

Arguments:
attributes (character vector) Names of the attributes that will be available in the fuzzy set.
M (numeric vector or column Matrix) Values (grades) to be assigned to the attributes.

Set 47

... key = value pairs, where the value value is assigned to the key attribute name.

Details: If M is omitted and no pair key = value, the fuzzy set is the empty set. Later, one can
use the assign method to assign grades to any of its attributes.

Returns: An object of class Set.

Method assign(): Assign grades to attributes in the set

Usage:
Set$assign(attributes = c(), values = c(), ...)

Arguments:

attributes (character vector) Names of the attributes to assign a grade to.
values (numeric vector) Grades to be assigned to the previous attributes.
... key = value pairs, where the value value is assigned to the key attribute name.

Details: One can use both of: S$assign(A = 1, B = 0.3) S$assign(attributes = c(A, B),
values = c(1, 0.3)).

Method [(): Get elements by index

Usage:
Set$[(indices)

Arguments:

indices (numeric, logical or character vector) The indices of the elements to return. It can be
a vector of logicals where TRUE elements are to be retained.

Returns: A Set but with only the required elements.

Method cardinal(): Cardinal of the Set

Usage:
Set$cardinal()

Returns: the cardinal of the Set, counted as the sum of the degrees of each element.

Method get_vector(): Internal Matrix

Usage:
Set$get_vector()

Returns: The internal sparse Matrix representation of the set.

Method get_attributes(): Attributes defined for the set

Usage:
Set$get_attributes()

Returns: A character vector with the names of the attributes.

Method length(): Number of attributes

Usage:
Set$length()

Returns: The number of attributes that are defined for this fuzzy set.

48 vegas

Method print(): Prints the set to console

Usage:
Set$print(eol = TRUE)

Arguments:

eol (logical) If TRUE, adds an end of line to the output.

Returns: A string with the elements of the set and their grades between brackets .

Method to_latex(): Write the set in LaTeX format

Usage:
Set$to_latex(print = TRUE)

Arguments:

print (logical) Print to output?

Returns: The fuzzy set in LaTeX.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Set$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

S <- Set$new(attributes = c("A", "B", "C"))
S$assign(A = 1)
print(S)
S$to_latex()

S <- Set$new(c("A", "B", "C"), C = 1, B = 0.5)
S

vegas Data for Tourist Destination in Las Vegas

Description

The dataset vegas is the binary translation of the Las Vegas Strip dataset (@moro2017stripping),
which records more than 500 TripAdvisor reviews of hotels in Las Vegas Strip. The uninformative
attributes (such as the user continent or the weekday of the review) are removed.

Usage

vegas

%&% 49

Format

A matrix with 504 rows and 25 binary columns. Column names are related to different features of
the hotels:

Period of Stay 4 categories are present in the original data, which produces as many binary vari-
ables: Period of stay=Dec-Feb, Period of stay=Mar-May, Period of stay=Jun-Aug and
Period of stay=Sep-Nov.

Traveler type Five binary categories are created from the original data: Traveler type=Business,
Traveler type=Couples, Traveler type=Families, Traveler type=Friends and Traveler
type=Solo.

Pool, Gym, Tennis court, Spa, Casino, Free internet Binary variables for the services offered by
each destination hotel

Stars Five binary variables are created, according to the number of stars of the hotel, Stars=3,
Stars=3.5, Stars=4, Stars=4.5 and Stars=5.

Score The score assigned in the review, from Score=1 to Score=5.

Source

Moro, S., Rita, P., & Coelho, J. (2017). Stripping customers’ feedback on hotels through data
mining: The case of Las Vegas Strip. Tourism Management Perspectives, 23, 41-52.

%&% Intersection (Logical AND) of Fuzzy Sets

Description

Intersection (Logical AND) of Fuzzy Sets

Usage

S1 %&% S2

Arguments

S1 A Set

S2 A Set

Details

Both S1 and S2 must be Sets.

Value

Returns the intersection of S1 and S2.

50 %entails%

Examples

Build two sparse sets
S <- Set$new(attributes = c("A", "B", "C"))
S$assign(A = 1, B = 1)
T <- Set$new(attributes = c("A", "B", "C"))
T$assign(A = 1, C = 1)

Intersection
S %&% T

%entails% Entailment between implication sets

Description

Entailment between implication sets

Usage

imps %entails% imps2

Arguments

imps (ImplicationSet) A set of implications.

imps2 (ImplicationSet) A set of implications which is tested to check if it follows
semantically from imps.

Value

A logical vector, where element k is TRUE if the k-th implication in imps2 follows from imps.

Examples

fc <- FormalContext$new(planets)
fc$find_implications()
imps <- fc$implications[1:4]$clone()
imps2 <- fc$implications[3:6]$clone()
imps %entails% imps2

%==% 51

%==% Equality in Sets and Concepts

Description

Equality in Sets and Concepts

Usage

C1 %==% C2

Arguments

C1 A Set or Concept

C2 A Set or Concept

Details

Both C1 and C2 must be of the same class.

Value

Returns TRUE if C1 is equal to C2.

Examples

Build two sparse sets
S <- Set$new(attributes = c("A", "B", "C"))
S$assign(A = 1)
T <- Set$new(attributes = c("A", "B", "C"))
T$assign(A = 1)

Test whether S and T are equal
S %==% T

%-% Difference in Sets

Description

Difference in Sets

Usage

S1 %-% S2

52 %holds_in%

Arguments

S1 A Set

S2 A Set

Details

Both S1 and S2 must be Sets.

Value

Returns the difference S1 - S2.

Examples

Build two sparse sets
S <- Set$new(attributes = c("A", "B", "C"))
S$assign(A = 1, B = 1)
T <- Set$new(attributes = c("A", "B", "C"))
T$assign(A = 1)

Difference
S %-% T

%holds_in% Implications that hold in a Formal Context

Description

Implications that hold in a Formal Context

Usage

imps %holds_in% fc

Arguments

imps (ImplicationSet) The set of implications to test if hold in the formal context.

fc (FormalContext) A formal context where to test if the implications hold.

Value

A logical vector, indicating if each implication holds in the formal context.

%<=% 53

Examples

fc <- FormalContext$new(planets)
fc$find_implications()
imps <- fc$implications$clone()
imps %holds_in% fc

%<=% Partial Order in Sets and Concepts

Description

Partial Order in Sets and Concepts

Usage

C1 %<=% C2

Arguments

C1 A Set or Concept

C2 A Set or Concept

Details

Both C1 and C2 must be of the same class.

Value

Returns TRUE if concept C1 is subconcept of C2 or if set C1 is subset of C2.

Examples

Build two sparse sets
S <- Set$new(attributes = c("A", "B", "C"))
S$assign(A = 1)
T <- Set$new(attributes = c("A", "B", "C"))
T$assign(A = 1, B = 1)

Test whether S is subset of T
S %<=% T

54 %respects%

%or% Union (Logical OR) of Fuzzy Sets

Description

Union (Logical OR) of Fuzzy Sets

Usage

S1 %|% S2

Arguments

S1 A Set

S2 A Set

Details

Both S1 and S2 must be Sets.

Value

Returns the union of S1 and S2.

Examples

Build two sparse sets
S <- Set$new(attributes = c("A", "B", "C"))
S$assign(A = 1, B = 1)
T <- Set$new(attributes = c("A", "B", "C"))
T$assign(C = 1)

Union
S %|% T

%respects% Check if Set or FormalContext respects an ImplicationSet

Description

Check if Set or FormalContext respects an ImplicationSet

Usage

set %respects% imps

%~% 55

Arguments

set (list of Sets, or a FormalContext) The sets of attributes to check whether they
respect the ImplicationSet.

imps (ImplicationSet) The set of implications to check.

Value

A logical matrix with as many rows as Sets and as many columns as implications in the ImplicationSet.
A TRUE in element (i, j) of the result means that the i-th Set respects the j-th implication of the
ImplicationSet.

Examples

fc <- FormalContext$new(planets)
fc$find_implications()
imps <- fc$implications$clone()
fc %respects% imps

%~% Equivalence of sets of implications

Description

Equivalence of sets of implications

Usage

imps %~% imps2

Arguments

imps A ImplicationSet.

imps2 Another ImplicationSet.

Value

TRUE of and only if imps and imps2 are equivalent, that is, if every implication in imps follows
from imps2 and viceversa.

Examples

fc <- FormalContext$new(planets)
fc$find_implications()
imps <- fc$implications$clone()
imps2 <- imps$clone()
imps2$apply_rules(c("simp", "rsimp"))
imps %~% imps2
imps %~% imps2[1:9]

Index

∗ datasets
cobre32, 6
cobre61, 7
conceptRegistry, 16
equivalencesRegistry, 19
planets, 41
scalingRegistry, 45
vegas, 48

%-%, 51
%<=%, 53
%==%, 51
%&%, 49
%~%, 55
%entails%, 50
%holds_in%, 52
%or%, 54
%respects%, 54

as_Set, 3
as_vector, 3

calculate_density, 4
calculate_grades, 4
calculate_separation, 5
calculate_stability, 5
cobre32, 6
cobre61, 7
compute_labels_and_colors, 8
Concept, 8
ConceptLattice, 10, 21
conceptRegistry, 16
ConceptSet, 16

equivalencesRegistry, 19
export_to_tikz, 19

fcaR::ConceptSet, 10
fcaR_options, 20
fetch_context, 21
FormalContext, 21

get_fcarepository_contexts, 32, 42

ImplicationSet, 21, 33

lattice_plot, 39

parse_implication, 40
parse_implications, 40
planets, 41
print_repo_details, 42

RandomContext, 42
RandomDistributiveContext, 43
randomize_context, 44

save_tikz, 45
scalingRegistry, 45
select_repository_context, 46
Set, 46

vegas, 48

56

	as_Set
	as_vector
	calculate_density
	calculate_grades
	calculate_separation
	calculate_stability
	cobre32
	cobre61
	compute_labels_and_colors
	Concept
	ConceptLattice
	conceptRegistry
	ConceptSet
	equivalencesRegistry
	export_to_tikz
	fcaR_options
	fetch_context
	FormalContext
	get_fcarepository_contexts
	ImplicationSet
	lattice_plot
	parse_implication
	parse_implications
	planets
	print_repo_details
	RandomContext
	RandomDistributiveContext
	randomize_context
	save_tikz
	scalingRegistry
	select_repository_context
	Set
	vegas
	&
	entails
	==
	-
	holds_in
	<=
	or
	respects
	~
	Index

