# Transformation matrices

#### 2021-05-03

For most transformation, we assume that we can compute only the translation coefficients ($$a_i$$). The only exception are Euclidean transformation around a single axis of rotation that allow to compute a single scaling and a single rotation coefficient. In all other cases, values of computed coefficients would depend on the assumed order of individual transformation, making them no more than a potentially misleading guesses.

## Bidimensional regression

### Translation

Number of parameters: 2

• translation: $$a_1$$, $$a_2$$

$\begin{bmatrix} 1 & 0 & a_1 \\ 0 & 1 & a_2 \\ 0 & 0 & 1 \end{bmatrix}$

### Euclidean

Number of parameters: 4

• translation: $$a_1$$, $$a_2$$
• scaling: $$\phi$$
• rotation: $$\theta$$

$\begin{bmatrix} b_1 & b_2 & a_1 \\ -b_2 & b_1 & a_2 \\ 0 & 0 & 1 \end{bmatrix}$

The Euclidean transformation is a special case, where we can compute rotation ($$\theta$$) and the single scaling ($$\phi$$) coefficients, as follows: $\phi = \sqrt{b_1^2 + b_2^2}\\ \theta = tan^{-1}(\frac{b_2}{b_1})$

### Affine

Number of parameters: 6

• translation: $$a_1$$, $$a_2$$
• scaling · rotation · sheer: $$b_1$$, $$b_2$$, $$b_3$$, $$b_4$$

$\begin{bmatrix} b_1 & b_2 & a_1 \\ b_3 & b_4 & a_2 \\ 0 & 0 & 1 \end{bmatrix}$

### Projective

Number of parameters: 8

• translation: $$a_1$$, $$a_2$$
• scaling · rotation · sheer · projection: $$b_1$$$$b_6$$

$\begin{bmatrix} b_1 & b_2 & a_1 \\ b_3 & b_4 & a_2 \\ b_5 & b_6 & 1 \end{bmatrix}$

## Tridimensional regression

### Translation

Number of parameters: 3

• translation: $$a_1$$, $$a_2$$, $$a_3$$

$\begin{bmatrix} 1 & 0 & 0 & a_1 \\ 0 & 1 & 0 & a_2 \\ 0 & 0 & 1 & a_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

### Euclidean

Number of parameters: 5

• translation: $$a_1$$, $$a_2$$, $$a_3$$
• scaling: $$\phi$$
• rotation: $$\theta$$

For all Euclidean rotations, we opted to use coefficient $$b_3$$ to code scaling ($$\phi$$), whereas $$b_2 = sin(\theta)$$ and $$b_1=\phi~ cos(\theta)$$. The coefficients are computed as follows: $\phi = \sqrt{b_1^2 + b_2^2}\\ \theta = tan^{-1}(\frac{b_2}{b_1})$

#### Euclidean, rotation about x axis

Note that during fitting $$\phi$$ is computed from $$b_1$$ and $$b_2$$ on the fly. $\begin{bmatrix} \phi & 0 & 0 & a_1 \\ 0 & b_1 &-b_2 & a_2 \\ 0 & b_2 & b_1 & a_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

#### Euclidean, rotation about y axis

$\begin{bmatrix} b_1 & 0 & b_2 & a_1 \\ 0 & \phi & 0 & a_2 \\ -b_2 & 0 & b_1 & a_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

#### Euclidean, rotation about z axis

$\begin{bmatrix} b_1 &-b_2 & 0 & a_1 \\ b_2 & b_1 & 0 & a_2 \\ 0 & 0 & \phi & a_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

### Affine

Number of parameters: 12

• translation: $$a_1$$, $$a_2$$, $$a_3$$
• scaling · rotation · sheer: $$b_1$$$$b_9$$

$\begin{bmatrix} b_1 & b_2 & b_3 & a_1 \\ b_4 & b_5 & b_6 & a_2 \\ b_7 & b_8 & b_9 & a_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

### Projective

Number of parameters: 15

• translation: $$a_1$$, $$a_2$$, $$a_3$$
• scaling · rotation · sheer · projection: $$b_1$$$$b_12$$

$\begin{bmatrix} b_1 & b_2 & b_3 & a_1 \\ b_4 & b_5 & b_6 & a_2 \\ b_7 & b_8 & b_9 & a_3 \\ b_{10} & b_{11} & b_{12} & 1 \end{bmatrix}$