--- title: "Applications" output: html_document: theme: flatly keep_md: yes number_sections: true highlighted: default toc: yes toc_float: collapsed: no smooth_scroll: no toc_depth: 2 vignette: > %\VignetteIndexEntry{Applications withs StreamCatTools} %\VignetteEncoding{UTF-8}{inputenc} %\VignetteEngine{knitr::rmarkdown} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE, message = FALSE ) ``` ### Plotting watershed data In this example we access a single variable for the Calapooia River using `sc_get_data` function. We then use the `nhdplusTools` library to grab flowlines and watershed for the Calapooia, plot the selected StreamCat metric for the Calapooia River and show the watershed. ```{r wshd, results='hide'} library(StreamCatTools) start_comid = 23763517 nldi_feature <- list(featureSource = "comid", featureID = start_comid) flowline_nldi <- nhdplusTools::navigate_nldi(nldi_feature, mode = "UT", data_source = "flowlines", distance=5000) # get StreamCat metrics df <- sc_get_data(metric='pctimp2011', aoi='cat', comid=flowline_nldi$UT_flowlines$nhdplus_comid) # We can also pull out comids the following way: # comids <- paste(as.integer(flowline_nldi$UT_flowlines$nhdplus_comid), collapse=",",sep="") # df <- sc_get_data(metric='pctimp2011', aoi='cat', comid=comids) flowline_nldi <- flowline_nldi$UT_flowlines flowline_nldi$PCTIMP2011CAT <- df$pctimp2011cat[match(flowline_nldi$nhdplus_comid, df$comid)] basin <- nhdplusTools::get_nldi_basin(nldi_feature = nldi_feature) ``` ```{r wshd pt2} library(mapview) mapview::mapviewOptions(fgb=FALSE) mapview::mapview(basin, alpha.regions=.08) + mapview::mapview(flowline_nldi, zcol = "PCTIMP2011CAT", legend = TRUE) ``` ### Working with NARS data In this example we demonstrate a data 'mashup' by grabbing NRSA data from the EPA National Aquatic Resource Surveys (NARS) website directly in R, pull particular StreamCat metrics for sites using `sc_get_data`, and compare landscape metrics with other NRSA metrics ```{r nars, results='hide'} nrsa <- readr::read_csv("https://www.epa.gov/sites/production/files/2015-09/siteinfo_0.csv") dplyr::glimpse(nrsa) # Promote data frame to sf spatial points data frame nrsa_sf <- sf::st_as_sf(nrsa, coords = c("LON_DD83", "LAT_DD83"), crs = 4269) # Get COMIDs using nhdplusTools package # nrsa$COMID<- NA # for (i in 1:nrow(nrsa_sf)){ # print (i) # nrsa_sf[i,'COMID'] <- discover_nhdplus_id(nrsa_sf[i,c('geometry')]) # } load(system.file("extdata", "sample_nrsa_data.rda", package="StreamCatTools")) # get particular StreamCat data for all these NRSA sites # nrsa_sf$COMID <- as.character(nrsa_sf$COMID) comids <- nrsa_sf$COMID comids <- comids[!is.na(comids)] comids <- comids[c(1:700)] comids <- paste(comids,collapse=',') df <- sc_get_data(metric='pctcrop2006', aoi='ws', comid=comids) # glimpse(df) df$COMID <- as.integer(df$comid) nrsa_sf <- dplyr::left_join(nrsa_sf, df, by='COMID') ``` ```{r nars_ggplot, warning=FALSE} #| fig.alt: > #| NRSA Benthic MMI versus % Crop in Watershed from 2006 NLCD. # download mmi from NARS web page library(dplyr) library(ggplot2) mmi <- readr::read_csv("https://www.epa.gov/sites/production/files/2015-09/bentcond.csv") # dplyr::glimpse(mmi) # join mmi to NARS info data frame with StreamCat PctCrop metric nrsa_sf <- dplyr::left_join(nrsa_sf, mmi[,c('SITE_ID','BENT_MMI_COND')], by='SITE_ID') bxplt <- nrsa_sf %>% tidyr::drop_na(BENT_MMI_COND) %>% ggplot2::ggplot(aes(x=pctcrop2006ws, y=BENT_MMI_COND))+ ggplot2::geom_boxplot()+ ggplot2::ggtitle('NRSA Benthic MMI versus % Crop in Watershed from 2006 NLCD') suppressWarnings(print(bxplt)) ```