## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "img/", fig.align = "center", fig.dim = c(8, 6), out.width = "75%" ) library("RprobitB") options("RprobitB_progress" = FALSE) ## ----model-train, message = FALSE--------------------------------------------- form <- choice ~ price + time + change + comfort | 0 data <- prepare_data(form = form, choice_data = train_choice, id = "deciderID", idc = "occasionID") model_train <- fit_model( data = data, scale = "price := -1", R = 1000, B = 500, Q = 10 ) ## ----model-train-sparse, message = FALSE-------------------------------------- model_train_sparse <- update(model_train, form = choice ~ price | 0) ## ----model-selection-example-------------------------------------------------- model_selection(model_train, model_train_sparse) ## ----npar-example------------------------------------------------------------- npar(model_train, model_train_sparse) ## ----loglik-example----------------------------------------------------------- logLik(model_train) logLik(model_train_sparse) ## ----aic-example-------------------------------------------------------------- AIC(model_train, model_train_sparse, k = 2) ## ----bic-example-------------------------------------------------------------- BIC(model_train, model_train_sparse) ## ----compute-p-si------------------------------------------------------------- model_train <- compute_p_si(model_train, ncores = 1) model_train_sparse <- compute_p_si(model_train_sparse, ncores = 1) ## ----waic-example------------------------------------------------------------- WAIC(model_train) WAIC(model_train_sparse) ## ----compute-mml-------------------------------------------------------------- model_train <- mml(model_train) attr(model_train$mml, "mmll") ## ----bayes-factor-example----------------------------------------------------- model_selection(model_train, model_train_sparse, criteria = "BF") ## ----pred-acc-example--------------------------------------------------------- pred_acc(model_train, model_train_sparse)