
Package ‘PropensitySub’
July 29, 2021

Title Treatment Effect Estimate in Strata with Missing Data

Version 0.2.0

Maintainer Heng Wang <wangh107@gene.com>

Description Estimate treatment effect in strata when subjects have missing strata labels,
via inverse probability weighting or propensity score matching.

Depends R (>= 3.5.0), survival

Imports Matching, rlang, plyr, nnet, ggplot2, survminer, dplyr,
gridExtra, gtable, grid, pROC, scales

Suggests knitr, rmarkdown

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Ning Leng [aut],
Heng Wang [aut, cre],
Shengchun Kong [aut],
Dominik Heinzmann [aut]

Repository CRAN

Date/Publication 2021-07-29 08:50:11 UTC

R topics documented:
biomarker . 2
bootstrap_propen . 2
calc_std_diff . 6
clinical . 7
expected_feature_diff . 8
forest_bygroup . 9
ipw_strata . 11

1

2 bootstrap_propen

km_plot_weight . 15
ps_match_strata . 16
std_diff . 20
std_diff_plot . 22

Index 24

biomarker Biomarker data

Description

simulated biomarker data

Usage

biomarker

Format

An object of class data.frame with 252 rows and 11 columns.

Source

internal

bootstrap_propen Calculate bootstrap CI for treatment effect estimate

Description

Calculate bootstrap CI for treatment effect estimate

Usage

bootstrap_propen(
data.in,
indicator.var = "indicator",
formula,
indicator.next = NULL,
seed = 100,
class.of.int,
estimate.res,
n.boot = 1000,
method = "ipw",
wild.boot = FALSE,
tte = "AVAL",

bootstrap_propen 3

event = "event",
trt = "trt",
response = NULL,
caliper = NULL,
pairs = NULL,
hr.ratio.ref = NULL,
ref.denom = TRUE,
model = "plain",
max.num.run = 5000,
non.converge.check = FALSE,
multinom.maxit = 100,
non.converge.check.thresh = 1

)

Arguments

data.in (data.frame) input data

indicator.var (string) column name of the strata indicator variable which must be numeric.
Assume arm1 has strata labeling and arm2 does not have strata labeling. pts
without strata labeling should be indicated as -1 (e.g. pts in the arm1, or pts
in arm2 but with missing label). within arm1 (the arm with strata labeling),
subclasss should be indicated as 0,1,2...

formula (formula) to input to the logistic or multinomial logistic model (in the form of
strata~features)

indicator.next (string) column name of the column which indicates status at a different mea-
surement. It should be coded in the same way as in indicator.var (e.g. -1, 0, 1).
Patients who have both missing current status and missing next status should be
excluded in the modeling.

seed seed

class.of.int (list) classes (stratum) of interest. Request to be in list format. It could be
subset of classes in arm1; it could also define combined classes. For example:
class.of.int = list("class1"=0, "class2"=1, "class3"=2, "class2or3"="c(1,2)"). for
"class2or3", Prob(class 2 or 3) will be calculated as Prob(class2) + Prob(class3)

estimate.res result object from ipw_strata() or ps_match_strata()

n.boot number of bootstraps to run; note only runs without warning/error msg will be
considered when calculating bootstrap CI; so it is possible more that n.boot runs
are performed (but capped by max.num.run)

method "ipw" or "ps". If "ipw", ipw_strata() will be used. If "ps", ps_match_strata()
will be used.

wild.boot whether wild bootstrap should be used. If so, weights will be generated using
rexp(1)

tte (string) column name of the time to event variable

event (string) column name of the event variable (1: event, 0: censor)

trt (string) column name of the treatment variable. The variable is expected to
be in factor format and the first level will be considered as reference (control)
arm when calculating summary statistics.

4 bootstrap_propen

response (string) column name of the response variable. 1 indicates responder and 0
indicates non responder. if response is not NULL, tte and event will be ignored
and the function will assume binary outcome.

caliper A scalar or vector denoting the caliper(s) which should be used when matching.
A caliper is the distance which is acceptable for any match. Observations which
are outside of the caliper are dropped. If a scalar caliper is provided, this caliper
is used for all covariates in X. If a vector of calipers is provided, a caliper value
should be provided for each covariate in X. The caliper is interpreted to be in
standardized units. For example, caliper=.25 means that all matches not equal
to or within .25 standard deviations of each covariate in X are dropped. Note that
dropping observations generally changes the quantity being estimated.

pairs pairs of interest when calculating ratio of HR (delta of delta for OR). this should
be a matrix whose rows are names of strata, 1st column indicates the stratum to
be used as numerator (HR or ORR diff); 2nd column indicates denominator. If
pairs is NULL, ratio of HR (difference of OR difference) will not be calculated.

hr.ratio.ref no longer to be used, please use pairs instead

ref.denom no longer to be used, please use pairs instead

model (string) one of (plain, dwc, wri).

"plain" when 2 levels are specified in indicator variable, a binomial glm will
be fitted; when more than 2 levels are specified, a multinomial glm will be
fitted;

"dwc" Doubly weighted control: Two separated models will be fitted: one is
binomial glm of 2 vs. (1, 0), the other one is bionomial glm of 1 vs 0. The
probability of being each class is then calculated by aggregating these two
models. Note this is similar to the plain method but with different (less
rigid) covariance assumptions.

"wri" Weight regression imputation: the current status is going to be learned
from the next status. Indicator of the next status should be specified using
indicator.next. Currently "wri" only support the case where there are only
two non-missing strata. In indicator variable, the two nonmissing strata
should be coded as 0 and 1, the missing group should be coded as 2.

max.num.run max number of bootstraps to run (include both valid and not valid runs)
non.converge.check

whether to output number of time each level of each categorical variable for
each stratum specified in indicator having N<non.converge.check.thresh when
non-convergence occurs

multinom.maxit see parameter maxit in nnet::multinom, default is 100
non.converge.check.thresh

see above

Value

return a list containing the following components:

• boot.out.est a matrix with rows as estimates such as Coefficient and Variance in strata and
columns as summary statistics such as Mean and Median of the estimates.

bootstrap_propen 5

• est.ci.mat a matrix with rows as strata and columns as Estimate and Bootstrap CIs.

• eff.comp.ci.mat a matrix with rows as strata comparisons and columns as Estimate and Boot-
strp CIs.

• conv.est a logical vector to indicate whether model in each bootstrap converges.

• error.est numeric to indicate the total number of models in bootstrap which gives errors.

• boot.results a matrix with rows as each bootstrap and columns as model results such as Co-
efficient in strata.

• glm.warn.est a logical vector to indicate whether glm model gives warning in each bootstrap.

• num.valid.boots numeric to indicate the total number of valid bootstraps.

• num.total.boots numeric for the total number of bootstrap runs.

• warning.msg a list to capture warning messages from models.

• error.msg a list to capture error messages from models.

• non.converge.dat a matrix with rows as each level of each categorical variable for each stra-
tum specified in indicator having N less than non.converge.check.thresh and columns as
treatment groups

Note

only estimates from runs without error or warning will be considered when calculating bootstrap
CI. If none of the bootstrap runs is error/warning free, CI of est.ci.mat will be NA

Examples

library(dplyr)
clinical_1 <- clinical %>% mutate(

indicator = case_when(
STRATUM == "strata_1" ~ 0,
STRATUM == "strata_2" ~ 1,
is.na(STRATUM) & ARM == "experimental" ~ 1,
TRUE ~ -1

),
ARM = factor(ARM, levels = c("control","experimental")),
BNLR = case_when(

is.na(BNLR) ~ median(BNLR, na.rm = TRUE),
TRUE ~ BNLR

)
)
ipw: default model
ipw_res <- ipw_strata(

data.in = clinical_1, formula = indicator ~ BECOG + SEX + BNLR,
indicator.var = "indicator", tte = "OS_MONTH", event = "OS_EVENT", trt = "ARM",
class.of.int = list("strata_1" = 1, "strata_2" = 0)
)

boot_ipw <- bootstrap_propen(
data.in = clinical_1, formula = indicator ~ BECOG + SEX + BNLR,
indicator.var = "indicator", tte = "OS_MONTH", event = "OS_EVENT", trt = "ARM",
class.of.int = list("strata_1" = 1, "strata_2" = 0),
estimate.res = ipw_res, method = "ipw", n.boot = 5

6 calc_std_diff

)
boot_ipw$est.ci.mat
boot_ipw$boot.out.est
ps: DWC model
clinical_2 <- clinical %>% mutate(

indicator = case_when(
STRATUM == "strata_1" ~ 0,
STRATUM == "strata_2" ~ 1,
is.na(STRATUM) & ARM == "experimental" ~ 2,
TRUE ~ -1

),
ARM = factor(ARM, levels = c("control","experimental")),
BNLR = case_when(

is.na(BNLR) ~ median(BNLR, na.rm = TRUE),
TRUE ~ BNLR

)
)
ps_res <- ps_match_strata(

data.in = clinical_2, formula = indicator ~ BECOG + SEX + BNLR, model = "dwc",
indicator.var = "indicator", tte = "OS_MONTH", event = "OS_EVENT", trt = "ARM",
class.of.int = list("strata_1" = 0, "strata_2" = 1, "missing" = 2)
)

boot_ps <- bootstrap_propen(
data.in = clinical_2, formula = indicator ~ BECOG + SEX + BNLR, model = "dwc",
indicator.var = "indicator", tte = "OS_MONTH", event = "OS_EVENT", trt = "ARM",
class.of.int = list("strata_1" = 0, "strata_2" = 1, "missing" = 2),
estimate.res = ps_res, method = "ps", n.boot = 5

)
boot_ps$est.ci.mat
boot_ps$boot.out.est

calc_std_diff Calculate standardized difference

Description

Calculate standardized difference

Usage

calc_std_diff(vars, data0, weight0, data1, weight1)

Arguments

vars variables of interest. standardized difference of each variable
listed here will be calculated.

data0 A data.frame which include vars as columns from reference arm. All data
are expected to be numerical. If a column is not numerical, it will be turned to
numerical by model.matrix.

clinical 7

weight0 weights for each record in reference arm.

data1 A data.frame which include vars as columns from comparison arm. All data
are expected to be numerical. If a column is not numerical, it will be turned to
numerical by model.matrix.

weight1 weights for each record in comparison arm.

Value

return a numeric vector for standardized difference of each variable

Note

Calculation from Austin and Stuart (2015)

Examples

library(dplyr)
data0 <- clinical %>% filter(ARM == "experimental")
data1 <- clinical %>% filter(ARM == "control")
calc_std_diff(

vars = c("BECOG", "SEX"),
data0 = data0,
weight0 = rep(1, nrow(data0)),
data1 = data1,
weight1 = rep(1, nrow(data1))
)

clinical Clinical data

Description

simulated data from clinical studies

Usage

clinical

Format

An object of class data.frame with 652 rows and 12 columns.

Source

internal

8 expected_feature_diff

expected_feature_diff Expected number of not optimally balanced features as defined by a
threshold

Description

Calculate expected number of features showing balance difference greater than a threshold

Usage

expected_feature_diff(n.feature, n.arm1, n.arm2, threshold)

Arguments

n.feature (numeric) total number of features

n.arm1 (numeric) number of patients in comparison arm.

n.arm2 (numeric) number of patients in control arm

threshold (numeric) positive number(s) for threshold to compare to.

Value

return a numeric vector for expected number of unbalanced features

Note

The output number indicates when running a randomized trial with n.arm1 and n.arm2 samples in
two arms and n.feature features are of interest, the expected number of features showing balance
difference greater than threshold. p = Prob(|Y|>threshold) is calculated from t distribution. With
n.feature features in total, expected number of features with abs value > threshold can be calculated
from Binomial(n.feature, p)

Examples

expected_feature_diff(n.feature = 10, n.arm1 = 240, n.arm2 = 300, threshold = 0.2)
expected_feature_diff(n.feature = 10, n.arm1 = 240, n.arm2 = 300, threshold = c(0.1, 0.25))

forest_bygroup 9

forest_bygroup Forest plot: colored by groups

Description

Forest plot: colored by groups

Usage

forest_bygroup(
data,
summarystat,
upperci,
lowerci,
population.name,
group.name = population.name,
color.group.name = population.name,
stat.label = "Hazard Ratio",
text.column = NULL,
text.column.addition = NULL,
color = NULL,
stat.type.hr = TRUE,
log.scale = FALSE,
extra.stat = NULL,
extra.stat.label = NULL,
endpoint.name = "OS",
study.name = "",
draw = TRUE,
shape.column = NULL,
shape.vec = NULL

)

Arguments

data data frame. plotting order will be following the order in the data frame.

summarystat column name that indicates the summary statistics column (e.g. HR, ORR)
upperci, lowerci

column names that indicate the lower and upper CI of the summary statistics
population.name

column name of the column which indicates population names of the summary
statistics

group.name column name of the column which indicates which group each population is in.
group names will be shown in the left panel of the forest plot

color.group.name

column name of the column which indicates how to color different groups

10 forest_bygroup

stat.label Y axis label text

text.column column name of the column which provides texts to be display on the right side
of the forest plot. If it is NULL, the text will be generated by pasting summary
stat column, the lowerci column and the upperci column

text.column.addition

additional columns to put (will be placed on the right of the figures), could be a
vector of multiple column names

color customized colors to different groups.

stat.type.hr whether the summary statistics is HR. If so, the forest plot will be centered at 1

log.scale whether show summary statistics in log scale

extra.stat column name of the column which indicates the extra statistics to be drawn on
the forest plot. The extra statistics will be drawn by "+". Could be NULL

extra.stat.label

label of the extra.stat (to be shown on y axis)
endpoint.name, study.name

text to be shown in title

draw whether to draw

shape.column column to pass to adjust shape. Use NULL for none

shape.vec a vector to sepecify shapes, e.g. c(15, 16).

Value

return forest plot of class grob.

Examples

library(dplyr)
clinical_1 <- clinical %>% mutate(

indicator = case_when(
STRATUM == "strata_1" ~ 0,
STRATUM == "strata_2" ~ 1,
is.na(STRATUM) & ARM == "experimental" ~ 1,
TRUE ~ -1

),
ARM = factor(ARM, levels = c("control","experimental")),
BNLR = case_when(

is.na(BNLR) ~ median(BNLR, na.rm = TRUE),
TRUE ~ BNLR

)
)
ipw_res <- ipw_strata(

data.in = clinical_1, formula = indicator ~ BECOG + SEX + BNLR,
indicator.var = "indicator", tte = "OS_MONTH", event = "OS_EVENT", trt = "ARM",
class.of.int = list("strata_1" = 1, "strata_2" = 0)
)

boot_ipw <- bootstrap_propen(
data.in = clinical_1, formula = indicator ~ BECOG + SEX + BNLR,

ipw_strata 11

indicator.var = "indicator", tte = "OS_MONTH", event = "OS_EVENT", trt = "ARM",
class.of.int = list("strata_1" = 1, "strata_2" = 0),
estimate.res = ipw_res, method = "ipw", n.boot = 5

)
ps_res <- ps_match_strata(

data.in = clinical_1, formula = indicator ~ BECOG + SEX + BNLR,
indicator.var = "indicator", tte = "OS_MONTH", event = "OS_EVENT", trt = "ARM",
class.of.int = list("strata_1" = 1, "strata_2" = 0)
)

boot_ps <- bootstrap_propen(
data.in = clinical_1, formula = indicator ~ BECOG + SEX + BNLR,
indicator.var = "indicator", tte = "OS_MONTH", event = "OS_EVENT", trt = "ARM",
class.of.int = list("strata_1" = 0, "strata_2" = 1),
estimate.res = ps_res, method = "ps", n.boot = 5

)
boot.out.ipw <- boot_ipw$boot.out.est
boot.out.ps <- boot_ps$boot.out.est
ipw.ci.mat <- boot_ipw$est.ci.mat
ps.ci.mat <- boot_ps$est.ci.mat

data.fp <- data.frame(
HR = round(exp(c(ipw.ci.mat[, 1], ps.ci.mat[, 1])), 2),
LOWER = round(exp(c(ipw.ci.mat[, 2], ps.ci.mat[, 2])), 2),
UPPER = round(exp(c(ipw.ci.mat[, 3], ps.ci.mat[, 3])), 2),
ADA_Group = rep(rownames(ipw.ci.mat), 2),
n = paste("n =", rep(table(clinical_1$indicator)[c("0", "1")], 2)),
Methods_ADA = paste(

rep(c("IPW", "PS"), each = 2), rep(rownames(ipw.ci.mat), 2)
),
Methods = rep(c("IPW", "PS"), each = 2),
bootstrapHR = c(

boot.out.ipw[grep("HR", rownames(boot.out.ipw)), "Median"],
boot.out.ps[grep("HR", rownames(boot.out.ps)), "Median"]

)
)
forest_bygroup(

data = data.fp, summarystat = "HR", upperci = "UPPER", lowerci = "LOWER",
population.name = "Methods_ADA", group.name = "Methods",
color.group.name = "ADA_Group", text.column.addition = "n",
stat.label = "Hazard Ratio", text.column = NULL,
stat.type.hr = TRUE, log.scale = FALSE, extra.stat = "bootstrapHR",
extra.stat.label = "bootstrap median",
endpoint.name = "OS", study.name = "Example Study", draw = TRUE
)

ipw_strata Inverse Probability weighting of strata (two or more strata, survival
or binary endpoint)

12 ipw_strata

Description

This function performs inverse probability weighting of two or more strata.
It could be used when arm1 has 2 or more strata, while stratum information is unknown in arm2.
The function will fit a logistic regression (when 2 classes) or multinomial logistic regression (when
> 2 classes) based on stratum labels in arm1 (model: label ~ features), then predict stratum labels
for pts in arm2 based on the fitted model (as well as pts in arm1 who have missing labels, if there
is any). The predicted probability of being stratum X will be used as weights when estimating
treatment difference of two arms (Hazard ratio for survival endpoint; response rate difference for
binary endpoint)

Usage

ipw_strata(
data.in,
formula,
indicator.var = "indicator",
class.of.int = NULL,
tte = "AVAL",
event = "event",
trt = "trt",
response = NULL,
model = "plain",
indicator.next = NULL,
weights = NULL,
multinom.maxit = 100,
return.data = TRUE

)

Arguments

data.in (data.frame) input data

formula (formula) to input to the logistic or multinomial logistic model (in the form of
strata~features)

indicator.var (string) column name of the strata indicator variable which must be numeric.
Assume arm1 has strata labeling and arm2 does not have strata labeling. pts
without strata labeling should be indicated as -1 (e.g. pts in the arm1, or pts
in arm2 but with missing label). within arm1 (the arm with strata labeling),
subclasss should be indicated as 0,1,2...

class.of.int (list) classes (stratum) of interest. Request to be in list format. It could be
subset of classes in arm1; it could also define combined classes. For example:
class.of.int = list("class1"=0, "class2"=1, "class3"=2, "class2or3"="c(1,2)"). for
"class2or3", Prob(class 2 or 3) will be calculated as Prob(class2) + Prob(class3)

tte (string) column name of the time to event variable

event (string) column name of the event variable (1: event, 0: censor)

trt (string) column name of the treatment variable. The variable is expected to
be in factor format and the first level will be considered as reference (control)
arm when calculating summary statistics.

ipw_strata 13

response (string) column name of the response variable. 1 indicates responder and 0
indicates non responder. if response is not NULL, tte and event will be ignored
and the function will assume binary outcome.

model (string) one of (plain, dwc, wri).

"plain" when 2 levels are specified in indicator variable, a binomial glm will
be fitted; when more than 2 levels are specified, a multinomial glm will be
fitted;

"dwc" Doubly weighted control: Two separated models will be fitted: one is
binomial glm of 2 vs. (1, 0), the other one is bionomial glm of 1 vs 0. The
probability of being each class is then calculated by aggregating these two
models. Note this is similar to the plain method but with different (less
rigid) covariance assumptions.

"wri" Weight regression imputation: the current status is going to be learned
from the next status. Indicator of the next status should be specified using
indicator.next. Currently "wri" only support the case where there are only
two non-missing strata. In indicator variable, the two nonmissing strata
should be coded as 0 and 1, the missing group should be coded as 2.

indicator.next (string) column name of the column which indicates status at a different mea-
surement. It should be coded in the same way as in indicator.var (e.g. -1, 0, 1).
Patients who have both missing current status and missing next status should be
excluded in the modeling.

weights (numeric) weights of each subject. If not NULL, the estimated probabilities will
be reweightsed to ensure sum(probability) of a subject = the subject’s weights.
If weights is not NULL, quasibinomial model will be used.

multinom.maxit see parameter maxit in nnet::multinom, default is 100

return.data (logical) whether to return data with estimated probabilities.

Value

return a list containing the following components:

• stat a matrix with rows as strata and columns as Estimate and CIs.

• converged logical to indicate whether model converges.

• any_warning_glm logical to indicate whether there’s warning from glm model.

• warning.msg a list to capture any warning message from the modeling process.

• models a list to capture the glm model results.

• roc.list a list to capture information about Area under the curve from glm model.

• data a data.frame which is the original input data plus predicted probabilities.

Note

Three elements in the output list - the data element is a data frame that contains input data and
estimated probabilities. The stat element contains estimated treatment difference between 2 arms,
in each of the strata of interest. The converge element indicates whether the model converged
(taking from $converged from stats::glm
and $convergency from nnet::multinom). if return.data is FALSE, data won’t be returned.

14 ipw_strata

Examples

example 1: Impute NA as one stratum in experimental arm; default model
library(dplyr)
clinical_1 <- clinical %>% mutate(
indicator = case_when(
STRATUM == "strata_1" ~ 0,
STRATUM == "strata_2" ~ 1,
is.na(STRATUM) & ARM == "experimental" ~ 1,
TRUE ~ -1

),
ARM = factor(ARM, levels = c("control","experimental")),
BNLR = case_when(

is.na(BNLR) ~ median(BNLR, na.rm = TRUE),
TRUE ~ BNLR

)
)
ipw_res1 <- ipw_strata(

data.in = clinical_1, formula = indicator ~ BECOG + SEX + BNLR,
indicator.var = "indicator", tte = "OS_MONTH", event = "OS_EVENT", trt = "ARM",
class.of.int = list("strata_1" = 1, "strata_2" = 0)
)
Weighted HRs
ipw_res1$stat

example 2: "Weight regression imputation" model
clinical_2 <- clinical %>% mutate(

indicator = case_when(
STRATUM == "strata_1" ~ 0,
STRATUM == "strata_2" ~ 1,
is.na(STRATUM) & ARM == "experimental" ~ 2,
TRUE ~ -1

),
indicator_next = case_when(

STRATUM_NEXT == "strata_1" ~ 0,
STRATUM_NEXT == "strata_2" ~ 1,
is.na(STRATUM_NEXT) & ARM == "experimental" ~ 2,
TRUE ~ -1

),
ARM = factor(ARM, levels = c("control","experimental")),
BNLR = case_when(

is.na(BNLR) ~ median(BNLR, na.rm = TRUE),
TRUE ~ BNLR

)
)

ipw_res2 <- ipw_strata(
data.in = clinical_2, formula = indicator ~ BECOG + SEX + BNLR, model = "wri",
indicator.var = "indicator", indicator.next = "indicator_next",
tte = "OS_MONTH", event = "OS_EVENT", trt = "ARM",
class.of.int = list("strata_1" = 1, "strata_2" = 0)
)

km_plot_weight 15

Weighted HRs
ipw_res2$stat

km_plot_weight Weighted KM plot

Description

Weighted KM plot

Usage

km_plot_weight(
data.in,
indicator.var = "indicator",
class.of.int = NULL,
prob.names = NULL,
filename = NULL,
tte = "AVAL",
event = "event",
trt = "trt",
time.unit = "month",
prefix.title = "In strata:"

)

Arguments

data.in input data, patients in rows and variables in columns. This could be an output
from ipw_strata() or ps_match_strata().

indicator.var (string) column name of the strata indicator variable which must be numeric.
Assume arm1 has strata labeling and arm2 does not have strata labeling. pts
without strata labeling should be indicated as -1 (e.g. pts in the arm1, or pts
in arm2 but with missing label). within arm1 (the arm with strata labeling),
subclasss should be indicated as 0,1,2...

class.of.int (list) classes (stratum) of interest. Request to be in list format. It could be
subset of classes in arm1; it could also define combined classes. For example:
class.of.int = list("class1"=0, "class2"=1, "class3"=2, "class2or3"="c(1,2)"). for
"class2or3", Prob(class 2 or 3) will be calculated as Prob(class2) + Prob(class3)

prob.names column names for the probability scores to be used as weights. The order of
probnames should match the order of class.of.int. if probnames is NULL, the
function will assume that the probnames are pred0, pred1, prod2, prod1or2 in
the example in class.of.int.

filename if it is not NULL, a png file will be generated

tte (string) column name of the time to event variable

event (string) column name of the event variable (1: event, 0: censor)

16 ps_match_strata

trt (string) column name of the treatment variable. The variable is expected to
be in factor format and the first level will be considered as reference (control)
arm when calculating summary statistics.

time.unit time unit to be marked in x axis

prefix.title prefix for title

Value

return a list of plots with class of ggsurvplot

Examples

library(dplyr)
clinical_1 <- clinical %>% mutate(

indicator = case_when(
STRATUM == "strata_1" ~ 0,
STRATUM == "strata_2" ~ 1,
is.na(STRATUM) & ARM == "experimental" ~ 1,
TRUE ~ -1

),
ARM = factor(ARM, levels = c("control","experimental")),
BNLR = case_when(

is.na(BNLR) ~ median(BNLR, na.rm = TRUE),
TRUE ~ BNLR

)
)
ipw_res1 <- ipw_strata(

data.in = clinical_1, formula = indicator ~ BECOG + SEX + BNLR,
indicator.var = "indicator", tte = "OS_MONTH", event = "OS_EVENT", trt = "ARM",
class.of.int = list("strata_1" = 1, "strata_2" = 0)
)
km_plot_weight(ipw_res1$data,

indicator.var = "indicator", tte = "OS_MONTH", event = "OS_EVENT",
trt = "ARM", class.of.int = list("strata_2" = 0))

ps_res1 <- ps_match_strata(
data.in = clinical_1, formula = indicator ~ BECOG + SEX + BNLR,
indicator.var = "indicator", tte = "OS_MONTH", event = "OS_EVENT", trt = "ARM",
class.of.int = list("strata_1" = 1, "strata_2" = 0)
)
km_plot_weight(ps_res1$data,
indicator.var = "indicator", tte = "OS_MONTH", event = "OS_EVENT",
trt = "ARM", class.of.int = list("strata_1" = 1, "strata_2" = 0))

ps_match_strata Propensity Score Matching of strata (two or more classes, survival or
binary endpoint)

ps_match_strata 17

Description

This function perfroms propensity score matching of two or more strata.
It could be used when arm1 has 2 or more strata, while strata information is unknown in arm2.
The function will fit a logistic regression (when 2 classes) or multinomial logistic regression (when
> 2 classes) based on strata labels in arm1 (model: label~features), then predict strata labels in both
arm1 and arm2 based on the fitted model. The predicted probability of being stratum X will be
used for propensity score matching. The matching results will then be used to estimate treatment
difference of two arms (Hazard ratio for survival endpoint; response rate difference for binary end-
point). When ties are allowed, weights from the ties will be used to calculate the HR or response
rate difference.

Usage

ps_match_strata(
data.in,
formula,
indicator.var = "indicator",
ties = TRUE,
class.of.int = NULL,
tte = "AVAL",
event = "event",
trt = "trt",
response = NULL,
caliper = NULL,
model = "plain",
weights = NULL,
multinom.maxit = 100,
return.data = TRUE

)

Arguments

data.in (data.frame) input data

formula (formula) to input to the logistic or multinomial logistic model (in the form of
strata~features)

indicator.var (string) column name of the strata indicator variable which must be numeric.
Assume arm1 has strata labeling and arm2 does not have strata labeling. pts
without strata labeling should be indicated as -1 (e.g. pts in the arm1, or pts
in arm2 but with missing label). within arm1 (the arm with strata labeling),
subclasss should be indicated as 0,1,2...

ties (logical) TRUE allows for ties.

ties is TRUE, all samples in the tie will be included. When calculating summary
statistics, samples in ties will be assigned a smaller weight. for example, if
two samples ties, these two samples will both be included in the summary
statistics calculation with weight 0.5.

18 ps_match_strata

ties is FALSE, one random sample will be draw from the tied samples when
calculating summary statistics. In this case, it is recommended to run
ps_match_strata multiple times with different seeds and take the aver-
age or median summary statistics from multiple runs. Note when ties is
FALSE, codes were tested less thoroughly and extra caution may be needed.

class.of.int (list) classes (stratum) of interest. Request to be in list format. It could be
subset of classes in arm1; it could also define combined classes. For example:
class.of.int = list("class1"=0, "class2"=1, "class3"=2, "class2or3"="c(1,2)"). for
"class2or3", Prob(class 2 or 3) will be calculated as Prob(class2) + Prob(class3)

tte (string) column name of the time to event variable

event (string) column name of the event variable (1: event, 0: censor)

trt (string) column name of the treatment variable. The variable is expected to
be in factor format and the first level will be considered as reference (control)
arm when calculating summary statistics.

response (string) column name of the response variable. 1 indicates responder and 0
indicates non responder. if response is not NULL, tte and event will be ignored
and the function will assume binary outcome.

caliper A scalar or vector denoting the caliper(s) which should be used when matching.
A caliper is the distance which is acceptable for any match. Observations which
are outside of the caliper are dropped. If a scalar caliper is provided, this caliper
is used for all covariates in X. If a vector of calipers is provided, a caliper value
should be provided for each covariate in X. The caliper is interpreted to be in
standardized units. For example, caliper=.25 means that all matches not equal
to or within .25 standard deviations of each covariate in X are dropped. Note that
dropping observations generally changes the quantity being estimated.

model (string) one of (plain, dwc, wri).

"plain" when 2 levels are specified in indicator variable, a binomial glm will
be fitted; when more than 2 levels are specified, a multinomial glm will be
fitted;

"dwc" Doubly weighted control: Two separated models will be fitted: one is
binomial glm of 2 vs. (1, 0), the other one is bionomial glm of 1 vs 0. The
probability of being each class is then calculated by aggregating these two
models. Note this is similar to the plain method but with different (less
rigid) covariance assumptions.

"wri" Weight regression imputation: the current status is going to be learned
from the next status. Indicator of the next status should be specified using
indicator.next. Currently "wri" only support the case where there are only
two non-missing strata. In indicator variable, the two nonmissing strata
should be coded as 0 and 1, the missing group should be coded as 2.

weights (numeric) weights of each subject. If not NULL, the estimated probabilities will
be reweightsed to ensure sum(probability) of a subject = the subject’s weights.
If weights is not NULL, quasibinomial model will be used.

multinom.maxit see parameter maxit in nnet::multinom, default is 100

return.data (logical) whether to return data with estimated probabilities.

ps_match_strata 19

Value

return a list containing the following components:

• stat a matrix with rows as strata and columns as Estimate and CIs.

• converged logical to indicate whether model converges.

• any_warning_glm logical to indicate whether there’s warning from glm model.

• warning.msg a list to capture any warning message from the modeling process.

• models a list to capture the glm model results.

• roc.list a list to capture information about Area under the curve from glm model.

• data a data.frame which is the original input data plus predicted probabilities.

Note

Different from the original version, iter is no longer a parameter if tie = FALSE is specified, user
need to run for loops of sapply outside of this function to get results from multiple seeds. Three
elements in the output list - the data element is a data frame that contains input data and estimated
probabilities. The stat element contains estimated treatment difference between 2 arms, in each of
the strata of interest. The converge element indicates whether the model converged (taking from
$converged from glm and $convergency from multinom) if return.data is FALSE, data won’t be
returned. model = "wri" is not supported in ps_match_strata

Examples

library(dplyr)
example 1: Impute NA as one stratum in experimental arm; default model

clinical_1 <- clinical %>% mutate(
indicator = case_when(
STRATUM == "strata_1" ~ 0,
STRATUM == "strata_2" ~ 1,
is.na(STRATUM) & ARM == "experimental" ~ 1,
TRUE ~ -1

),
ARM = factor(ARM, levels = c("control","experimental")),
BNLR = case_when(

is.na(BNLR) ~ median(BNLR, na.rm = TRUE),
TRUE ~ BNLR

)
)
ps_res1 <- ps_match_strata(

data.in = clinical_1, formula = indicator ~ BECOG + SEX + BNLR,
indicator.var = "indicator", tte = "OS_MONTH", event = "OS_EVENT", trt = "ARM",
class.of.int = list("strata_1" = 1, "strata_2" = 0)
)
Weighted HRs
ps_res1$stat

example 2: "doubly weighted control" model
clinical_2 <- clinical %>% mutate(

20 std_diff

indicator = case_when(
STRATUM == "strata_1" ~ 0,
STRATUM == "strata_2" ~ 1,
is.na(STRATUM) & ARM == "experimental" ~ 2,
TRUE ~ -1

),
ARM = factor(ARM, levels = c("control","experimental")),
BNLR = case_when(

is.na(BNLR) ~ median(BNLR, na.rm = TRUE),
TRUE ~ BNLR

)
)

ps_res2 <- ps_match_strata(
data.in = clinical_2, formula = indicator ~ BECOG + SEX + BNLR, model = "dwc",
indicator.var = "indicator", tte = "OS_MONTH", event = "OS_EVENT", trt = "ARM",
class.of.int = list("strata_1" = 0, "strata_2" = 1, "missing" = 2)
)
ps_res2$stat
ps_res2$converged

std_diff Compare weighted and unweighted (naive analysis) standardized dif-
ference

Description

Compare weighted and unweighted (naive analysis) standardized difference

Usage

std_diff(
data.in,
data.in.unadj = NULL,
trt,
vars,
indicator.var = "indicator",
class.of.int = NULL,
prob.names = NULL,
return.levels = FALSE,
subj.aggr = TRUE,
usubjid.var = "USUBJID"

)

std_diff 21

Arguments

data.in input data, patients in rows and variables in columns. This could be an output
from ipw_strata() or ps_match_strata().

data.in.unadj data set to use for the unadjusted analysis. For example, if PSM is used, the
adjusted analysis should be done on the matched population but the unadjusted
analysis should be done on the original population

trt (string) column name of the treatment variable. The variable is expected to
be in factor format and the first level will be considered as reference (control)
arm when calculating summary statistics.

vars variables of interest. standardized difference of each variable
listed here will be calculated.

indicator.var (string) column name of the strata indicator variable which must be numeric.
Assume arm1 has strata labeling and arm2 does not have strata labeling. pts
without strata labeling should be indicated as -1 (e.g. pts in the arm1, or pts
in arm2 but with missing label). within arm1 (the arm with strata labeling),
subclasss should be indicated as 0,1,2...

class.of.int (list) classes (stratum) of interest. Request to be in list format. It could be
subset of classes in arm1; it could also define combined classes. For example:
class.of.int = list("class1"=0, "class2"=1, "class3"=2, "class2or3"="c(1,2)"). for
"class2or3", Prob(class 2 or 3) will be calculated as Prob(class2) + Prob(class3)

prob.names column names for the probability scores to be used as weights. The order of
probnames should match the order of class.of.int. if probnames is NULL, the
function will assume that the probnames are pred0, pred1, prod2, prod1or2 in
the example in class.of.int.

return.levels whether to return levels of each factor within each class.

subj.aggr whether aggregate multiple entries from the same patients to one record

usubjid.var column name indiacts subjuect id

Value

return a list, each list element is a data.frame containing absolute standardized difference for
each variable.

Note

Calculation from Austin and Stuart (2015)

Examples

library(dplyr)
clinical_1 <- clinical %>% mutate(

indicator = case_when(
STRATUM == "strata_1" ~ 0,
STRATUM == "strata_2" ~ 1,
is.na(STRATUM) & ARM == "experimental" ~ 1,
TRUE ~ -1

22 std_diff_plot

),
ARM = factor(ARM, levels = c("control","experimental")),
BNLR = case_when(

is.na(BNLR) ~ median(BNLR, na.rm = TRUE),
TRUE ~ BNLR

)
)
ipw_res1 <- ipw_strata(

data.in = clinical_1, formula = indicator ~ BECOG + SEX + BNLR,
indicator.var = "indicator", tte = "OS_MONTH", event = "OS_EVENT", trt = "ARM",
class.of.int = list("strata_1" = 1, "strata_2" = 0)
)
std_diff(
data.in = ipw_res1$data, vars = c("BECOG", "SEX", "BNLR"),
indicator.var = "indicator", trt = "ARM",
class.of.int = list("strata_1" = 1, "strata_2" = 0),
usubjid.var = "SUBJID"

)

std_diff_plot Compare weighted and unweighted (naive analysis) standardized dif-
ference in plot

Description

Compare weighted and unweighted (naive analysis) standardized difference in plot

Usage

std_diff_plot(
diff.list,
legend.pos = "right",
prefix.title = "In strata:",
xlim.low = 0,
xlim.high = 1

)

Arguments

diff.list data list returned by function std_diff.

legend.pos legend position: "left", "top", "right", "bottom".

prefix.title prefix for title

xlim.low (numeric) lower bound of xlim

xlim.high (numeric) upper bound of xlim

std_diff_plot 23

Examples

Not run:
library(dplyr)
clinical_1 <- clinical %>% mutate(

indicator = case_when(
STRATUM == "strata_1" ~ 0,
STRATUM == "strata_2" ~ 1,
is.na(STRATUM) & ARM == "experimental" ~ 1,
TRUE ~ -1

),
ARM = factor(ARM, levels = c("control","experimental")),
BNLR = case_when(

is.na(BNLR) ~ median(BNLR, na.rm = TRUE),
TRUE ~ BNLR

)
)
ipw_res1 <- ipw_strata(

data.in = clinical_1, formula = indicator ~ BECOG + SEX + BNLR,
indicator.var = "indicator", tte = "OS_MONTH", event = "OS_EVENT", trt = "ARM",
class.of.int = list("strata_1" = 1, "strata_2" = 0)
)

ipw_diff <- std_diff(
data.in = ipw_res1$data, vars = c("BECOG", "SEX", "BNLR"),
indicator.var = "indicator", trt = "ARM",
class.of.int = list("strata_1" = 1, "strata_2" = 0),
usubjid.var = "SUBJID"

)
std_diff_plot(ipw_diff)

End(Not run)

Index

∗ datasets
biomarker, 2
clinical, 7

biomarker, 2
bootstrap_propen, 2

calc_std_diff, 6
clinical, 7

expected_feature_diff, 8

forest_bygroup, 9

ipw_strata, 11

km_plot_weight, 15

model.matrix, 6, 7

nnet::multinom, 4, 13, 18

ps_match_strata, 16

stats::glm, 13
std_diff, 20, 22
std_diff_plot, 22

24

	biomarker
	bootstrap_propen
	calc_std_diff
	clinical
	expected_feature_diff
	forest_bygroup
	ipw_strata
	km_plot_weight
	ps_match_strata
	std_diff
	std_diff_plot
	Index

