
Package ‘OmicNavigator’
December 17, 2025

Type Package

Title Open-Source Software for 'Omic' Data Analysis and Visualization

Description A tool for interactive exploration of the results from 'omics'
experiments to facilitate novel discoveries from high-throughput biology. The
software includes R functions for the 'bioinformatician' to deposit study
metadata and the outputs from statistical analyses (e.g. differential
expression, enrichment). These results are then exported to an interactive
JavaScript dashboard that can be interrogated on the user's local machine or
deployed online to be explored by collaborators. The dashboard includes
'sortable' tables, interactive plots including network visualization, and
fine-grained filtering based on statistical significance.

Version 1.19.0

URL https://github.com/abbvie-external/OmicNavigator

BugReports https://github.com/abbvie-external/OmicNavigator/issues

License MIT + file LICENSE

License_restricts_use no

License_is_FOSS yes

Encoding UTF-8

LazyData true

Depends R (>= 3.2.0)

Imports data.table (>= 1.12.4), graphics, jsonlite, stats, tools,
utils

Suggests faviconPlease, ggplot2, opencpu, plotly, tinytest (>= 1.2.3),
ttdo (>= 0.0.6), UpSetR

RoxygenNote 7.3.3

NeedsCompilation no

Author Terrence Ernst [aut] (Web application),
John Blischak [aut] (ORCID: <https://orcid.org/0000-0003-2634-9879>),
Paul Nordlund [aut] (Web application),
Justin Moore [aut] (UpSet-related functions and web application),

1

https://github.com/abbvie-external/OmicNavigator
https://github.com/abbvie-external/OmicNavigator/issues
https://orcid.org/0000-0003-2634-9879

2 Contents

Joe Dalen [aut] (Barcode functionality and web application),
Akshay Bhamidipati [aut] (Web application),
Brett Engelmann [aut, cre],
Marco Curado [aut] (Improved plotting capabilities),
Joe LoGrasso [aut] (Support for plotly),
Elyse Geoffroy [ctb],
AbbVie Inc. [cph, fnd]

Maintainer Brett Engelmann <brett.engelmann@abbvie.com>

Repository CRAN

Date/Publication 2025-12-17 07:50:08 UTC

Contents
OmicNavigator-package . 4
addAnnotations . 5
addAssays . 5
addBarcodes . 6
addEnrichments . 7
addEnrichmentsLinkouts . 8
addFeatures . 9
addMapping . 10
addMetaAssays . 11
addMetaFeatures . 11
addMetaFeaturesLinkouts . 12
addModels . 14
addObjects . 15
addOverlaps . 16
addPlots . 16
addReports . 18
addResults . 19
addResultsLinkouts . 20
addSamples . 21
addTests . 22
basal.vs.lp . 23
basal.vs.ml . 24
cam.BasalvsLP . 25
cam.BasalvsML . 26
combineStudies . 27
createStudy . 28
exportStudy . 33
getAnnotations . 34
getAssays . 35
getBarcodeData . 35
getBarcodes . 36
getEnrichments . 37
getEnrichmentsAnnotations . 38
getEnrichmentsIntersection . 39

Contents 3

getEnrichmentsLinkouts . 40
getEnrichmentsModels . 41
getEnrichmentsNetwork . 41
getEnrichmentsStudies . 42
getEnrichmentsTable . 43
getEnrichmentsUpset . 44
getFavicons . 45
getFeatures . 45
getInstalledStudies . 46
getLinkFeatures . 47
getMapping . 47
getMetaAssays . 48
getMetaFeatures . 49
getMetaFeaturesLinkouts . 49
getMetaFeaturesTable . 50
getModels . 51
getNodeFeatures . 52
getObjects . 52
getOverlaps . 53
getPackageVersion . 54
getPlots . 54
getPlottingData . 55
getReportLink . 57
getReports . 58
getResults . 58
getResultsIntersection . 59
getResultsLinkouts . 61
getResultsModels . 61
getResultsStudies . 62
getResultsTable . 63
getResultsTests . 64
getResultsUpset . 64
getSamples . 65
getStudyMeta . 66
getTests . 67
getUpsetCols . 67
group . 68
importStudy . 69
installApp . 69
installStudy . 70
lane . 71
lcpm . 72
Mm.c2 . 72
plotStudy . 73
removeStudy . 74
samplenames . 75
startApp . 76
summary.onStudy . 76

4 OmicNavigator-package

validateStudy . 77

Index 78

OmicNavigator-package OmicNavigator

Description

Package options to control package-wide behavior are described below.

Details

The default prefix for OmicNavigator study packages is "ONstudy". If you would prefer to use a
different prefix, you can change the package option OmicNavigator.prefix. For example, to use
the prefix "OmicNavigatorStudy", you could add the following line to your .Rprofile file.

options(OmicNavigator.prefix = "OmicNavigatorStudy")

Author(s)

Maintainer: Brett Engelmann <brett.engelmann@abbvie.com>

Authors:

• Terrence Ernst (Web application)

• John Blischak <jdblischak@gmail.com> (ORCID)

• Paul Nordlund (Web application)

• Justin Moore (UpSet-related functions and web application)

• Joe Dalen (Barcode functionality and web application)

• Akshay Bhamidipati (Web application)

• Marco Curado (Improved plotting capabilities)

• Joe LoGrasso (Support for plotly)

Other contributors:

• Elyse Geoffroy [contributor]

• AbbVie Inc. [copyright holder, funder]

See Also

Useful links:

• https://github.com/abbvie-external/OmicNavigator

• Report bugs at https://github.com/abbvie-external/OmicNavigator/issues

https://orcid.org/0000-0003-2634-9879
https://github.com/abbvie-external/OmicNavigator
https://github.com/abbvie-external/OmicNavigator/issues

addAnnotations 5

addAnnotations Add annotations

Description

Add annotations

Usage

addAnnotations(study, annotations, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

annotations The annotations used for the enrichment analyses. The input is a nested list.
The top-level list contains one entry per annotation database, e.g. reactome.
The names correspond to the name of each annotation database. Each of these
elements should be a list that contains more information about each annotation
database. Specifically the sublist should contain 1) description, a character
vector that describes the resource, 2) featureID, the name of the column in the
features table that was used for the enrichment analysis, and 3) terms, a list of
annotation terms. The names of terms sublist correspond to the name of the
annotation terms. Each of the annotation terms should be a character vector of
featureIDs.

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

See Also

getAnnotations

addAssays Add assays

Description

Add assays

6 addBarcodes

Usage

addAssays(study, assays, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

assays The assays from the study. The input object is a list of data frames (one per
model). The row names should correspond to the featureIDs (addFeatures).
The column names should correspond to the sampleIDs (addSamples). The
data frame should only contain numeric values. To share a data frame across
multiple models, use the modelID "default".

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

See Also

getAssays

addBarcodes Add barcode plot metadata

Description

The app can display a barcode plot of the enrichment results for a given annotation term. The
metadata in barcodes instructs the app how to create and label the barcode plot.

Usage

addBarcodes(study, barcodes, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

barcodes The metadata variables that describe the barcode plot. The input object is a list of
lists (one per model). Each sublist must contain the element statistic, which
is the column name in the results table to use to construct the barcode plot. Each
sublist may additionally contain any of the following optional elements:

1. absolute - Should the statistic be converted to its absolute value (default
is TRUE).

addEnrichments 7

2. logFoldChange - The column name in the results table that contains the
log fold change values.

3. labelStat - The x-axis label to describe the statistic.
4. labelLow - The left-side label to describe low values of the statistic.
5. labelHigh - The right-side label to describe high values of the statistic.
6. featureDisplay - The feature variable to use to label the barcode plot on

hover. To share metadata across multiple models, use the modelID "de-
fault".

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

See Also

getBarcodes

addEnrichments Add enrichment results

Description

Add enrichment results

Usage

addEnrichments(study, enrichments, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

enrichments The enrichment results from each model. The input is a nested named list. The
names of the list correspond to the model names. Each list element should be
a list of the annotation databases tested (addAnnotations). The names of the
list correspond to the annotation databases. Each list element should be another
list of tests (addTests). The names correspond to the tests performed. Each of
these elements should be a data frame with enrichment results. Each table must
contain the following columns: "termID", "description", "nominal" (the nominal
statistics), and "adjusted" (the statistics after adjusting for multiple testing). Any
additional columns are ignored.

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

8 addEnrichmentsLinkouts

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

See Also

getEnrichments

addEnrichmentsLinkouts

Add linkouts to external resources in the enrichments table

Description

You can provide additional information on the annotation terms in your study by providing linkouts
to external resources. These will be embedded directly in the enrichments table.

Usage

addEnrichmentsLinkouts(study, enrichmentsLinkouts, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

enrichmentsLinkouts

The URL patterns that describe linkouts to external resources (see Details be-
low). The input object is a named list. The names of the list correspond to the
annotation names. Each element of the list is a character vector of linkouts for
that annotationID.

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Details

For each linkout, the URL pattern you provide will be concatenated with the value of the termID
column. As an example, if you used the annotation database AmiGO 2 for your enrichments anal-
ysis, you can provide a linkout for each termID using the following pattern:

go = "https://amigo.geneontology.org/amigo/term/"

As another example, if you used the annotation database Reactome for your enrichments analysis,
you can provide a linkout for each termID using the following pattern:

reactome = "https://reactome.org/content/detail/"

Note that you can provide more than one linkout per termID.

https://amigo.geneontology.org/
https://reactome.org/

addFeatures 9

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

See Also

getEnrichmentsLinkouts, addAnnotations, addEnrichments

Examples

study <- createStudy("example")
enrichmentsLinkouts <- list(

gobp = c("https://amigo.geneontology.org/amigo/term/",
"https://www.ebi.ac.uk/QuickGO/term/"),

reactome = "https://reactome.org/content/detail/"
)
study <- addEnrichmentsLinkouts(study, enrichmentsLinkouts)

addFeatures Add feature metadata

Description

Add feature metadata

Usage

addFeatures(study, features, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

features The metadata variables that describe the features in the study. The input object
is a list of data frames (one per model). The first column of each data frame is
used as the featureID, so it must contain unique values. To share a data frame
across multiple models, use the modelID "default". All columns will be coerced
to character strings.

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

10 addMapping

See Also

getFeatures

addMapping Add mapping object

Description

Add mapping object

Usage

addMapping(study, mapping, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

mapping Feature IDs from models. The input object is a list of named data frames. For
each data frame, column names indicate model names while rows indicate fea-
tureIDs per model. Features with same index position across columns are treated
as mapped across models. For each model, feature IDs must match feature IDs
available in the results object of the respective model. 1:N relationships are
allowed.
Mapping list elements are required to be named as ’default’ or after a model
name as provided in addModels(). If a single data frame is provided, this list
element is recommended to be named ’default’. For multiple list elements, each
with its own data frame, list elements should be named after model name(s) (a
single element may still be named ’default’). In that case, when navigating in
ON front-end (FE), mapping element related to the selected model in the FE
will be used in multimodel plots. If a selected model in FE does not have a
corresponding mapping list element, it may still use the mapping list element
called ’default’ if this is available.
E.g., if in a study there are models "transcriptomics" and "proteomics" and the
user wants to create a plot based on data from both, a mapping list should be
provided with addMapping(). In this case, the mapping list element may be
named ’default’. This should contain a data frame with column names ’tran-
scriptomics’ and ’proteomics’, where feature IDs that map across models are
found in the same row.

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

addMetaAssays 11

See Also

getMapping, getPlottingData, plotStudy

addMetaAssays Add metaAssays

Description

Experimental. Add metaAssay measurements that map to the metaFeatureIDs in the metaFeatures
table.

Usage

addMetaAssays(study, metaAssays, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

metaAssays The metaAssays from the study. The input object is a list of data frames (one
per model). The row names should correspond to the metaFeatureIDs (second
column of data frame added via addMetaFeatures). The column names should
correspond to the sampleIDs (addSamples). The data frame should only contain
numeric values. To share a data frame across multiple models, use the modelID
"default".

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

See Also

getMetaAssays, addAssays, addMetaFeatures

addMetaFeatures Add meta-feature metadata

Description

The meta-features table is useful anytime there are metadata variables that cannot be mapped 1:1 to
your features. For example, a peptide may be associated with multiple proteins.

Usage

addMetaFeatures(study, metaFeatures, reset = FALSE)

12 addMetaFeaturesLinkouts

Arguments

study An OmicNavigator study created with createStudy

metaFeatures The metadata variables that describe the meta-features in the study. The input
object is a list of data frames (one per model). The first column of each data
frame is used as the featureID, so it must contain the same IDs as the corre-
sponding features data frame (addFeatures). The second column of each data
frame is used as the metaFeatureID, and thus should match the row names of
any metaAssays added via addMetaAssays. To share a data frame across multi-
ple models, use the modelID "default". All columns will be coerced to character
strings.

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

See Also

getMetaFeatures

addMetaFeaturesLinkouts

Add linkouts to external resources in the metaFeatures table

Description

You can provide additional information on the metaFeatures in your study by providing linkouts to
external resources. These will be embedded directly in the metaFeatures table.

Usage

addMetaFeaturesLinkouts(study, metaFeaturesLinkouts, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

metaFeaturesLinkouts

The URL patterns that describe linkouts to external resources (see Details be-
low). The input object is a nested named list. The names of the list correspond
to the model names. Each element of the list is a named list of character vectors.
The names of this nested list must correspond to the column names of the match-
ing metaFeatures table (addMetaFeatures). To share linkouts across multiple
models, use the modelID "default".

addMetaFeaturesLinkouts 13

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Details

For each linkout, the URL pattern you provide will be concatenated with the value of that column
for each row. As an example, if your metaFeatures table included a column named "ensembl" that
contained the Ensembl Gene ID for each feature, you could create a linkout to Ensembl using the
following pattern:

ensembl = "https://ensembl.org/Homo_sapiens/Gene/Summary?g="

As another example, if you had a column named "entrez" that contained the Entrez Gene ID for
each feature, you could create a linkout to Entrez using the following pattern:

entrez = "https://www.ncbi.nlm.nih.gov/gene/"

Note that you can provide more than one linkout per column.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

See Also

getMetaFeaturesLinkouts, addMetaFeatures

Examples

study <- createStudy("example")
metaFeaturesLinkouts <- list(

default = list(
ensembl = c("https://ensembl.org/Homo_sapiens/Gene/Summary?g=",

"https://www.genome.ucsc.edu/cgi-bin/hgGene?hgg_gene="),
entrez = "https://www.ncbi.nlm.nih.gov/gene/"

)
)
study <- addMetaFeaturesLinkouts(study, metaFeaturesLinkouts)

14 addModels

addModels Add models

Description

Add models

Usage

addModels(study, models, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

models The models analyzed in the study. The input is a named list. The names corre-
spond to the names of the models. The elements correspond to the descriptions
of the models. Alternatively, instead of a single character string, you can pro-
vide a list of metadata fields about each model. The field "description" will be
used to derive the tooltip displayed in the app.

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

See Also

getModels

Examples

study <- createStudy("example")
models <- list(

model_01 = "Name of first model",
model_02 = "Name of second model"

)
study <- addModels(study, models)

Alternative: provide additional metadata about each model
models <- list(

model_01 = list(
description = "Name of first model",
data_type = "transcriptomics"

),
model_02 = list(

addObjects 15

description = "Name of second model",
data_type = "proteomics"

)
)

addObjects Add objects

Description

Experimental. Add arbitrary R objects to a study. These will be exported via saveRDS and imported
via readRDS. This allows preserving the exact structure of complex R objects.

Usage

addObjects(study, objects, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

objects Any arbitrary R objects from the study. The input object is a list of objects
(one per model). To share an object across multiple models, use the modelID
"default".

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Details

The main purpose of adding a custom object to your study package is to use it in custom plots in
the app. If available, they will be returned by getPlottingData. If the custom package requires
additional R packages to be available to use, make sure to list these packages in the field packages
when adding the custom plotting function via addPlots.

See Also

getObjects, saveRDS, readRDS

16 addPlots

addOverlaps Add overlaps between annotation gene sets

Description

The app’s network view of the enrichments results requires pairwise overlap metrics between all
the terms of each annotation in order to draw the edges between the nodes/terms. These overlaps
are calculated automatically when installing or exporting an OmicNavigator study. If you’d like,
you can manually calculate these pairwise overlaps by calling addOverlaps prior to installing or
exporting your study.

Usage

addOverlaps(study, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

See Also

getOverlaps

addPlots Add custom plotting functions

Description

addPlots() adds custom plotting functions and plot metadata to an OmicNavigator study.

Usage

addPlots(study, plots, reset = FALSE)

addPlots 17

Arguments

study An OmicNavigator study created with createStudy

plots A nested list containing custom plotting functions and plot metadata. The input
object is a 3-level nested list. The first, or top-level list element name(s) must
match the study modelID(s). The second, or mid-level list element name(s)
must match the names of the plotting function(s) defined in the current R ses-
sion (see Details below for function construction requirements). The third, or
bottom-level list provides metadata to categorize, display, and support each plot.
The accepted fields are displayName, description, plotType, models, and
packages. displayName sets the plot name in the app and the description
field will display as a tool tip when hovering over plotting dropdown menus.
The plotType field is a character vector that categorizes the plot by 1) the num-
ber of features it supports (“singleFeature” or “multiFeature”), 2) the num-
ber of test results used by the plotting function (“singleTest”, “multiTest”),
3) if data from one or more models is used (add “multiModel” to specify that
data from two or more models are used in the plot; otherwise the plot is as-
sumed to reference only data within the model specified by the top-level list
element name), and 4) if the plot is interactive (add “plotly” to specify in-
teractive plots built using the plotly package; otherwise the plot is assumed to
be static). e.g., plotType = c("multiFeature", "multiTest", "plotly"). If
you do not specify the plotType, the plot will be designated as plotType =
c("singleFeature", "singleTest"). The models field is an optional charac-
ter vector that specifies the models that should be used by the app when invoking
your custom plotting function. This field is set to ‘all’ by default and is only used
when plotType includes “multiModel”. If this field is not included the app will
assume all models in the study should be used with your plotting function. If the
plotting function requires additional packages beyond those attached by default
to a fresh R session, these must be defined in the element packages. To share a
plotting functions across multiple models, use the modelID "default". Alterna-
tively, to share a plot across a specific subset of models, you can explicitly add
the same plotting function to each model (option available as of OmicNavigator
1.16.0).

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Details

Custom plotting functions must be constructed to accept as the first argument the value returned
from getPlottingData(). Custom plotting functions can have additional arguments, but these
must be provided with default values. The end-user should call getPlottingData() when test-
ing their custom plotting function. The end-user should consider the nature of the plot, i.e. the
plotType and (rarely) models values (see getPlottingData()). For example, a custom plotting
function meant to produce a multiTest plot should accept the output of a getPlottingData() call
with multiple testIDs assigned to the testID argument. See the details section of plotStudy()
for a description of how plotType dictates the way a custom plotting function is invoked by the
app.

18 addReports

Note that any ggplot2 plots will require extra care. This is because the plotting code will be inserted
into a study package, and thus must follow the best practices for using ggplot2 within packages.
Specifically, when you refer to columns of the data frame, e.g. aes(x = group), you need to prefix
it with .data$, so that it becomes aes(x = .data$group). Fortunately this latter code will also run
fine as you interactively develop the function.

Note that the plotting functions are written to the R package when the study is exported via exportStudy
or installed via installStudy, not when addPlots is invoked. In other words, if you add a custom
plotting function to your study object via addPlots, but then subsequently update the function in
the global environment prior to installing the study, this latest version will be saved in the R package
and executed when run in the app.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

See Also

getPlots, getPlottingData, plotStudy

addReports Add reports

Description

You can include reports of the analyses you performed to generate the results.

Usage

addReports(study, reports, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

reports The analysis report(s) that explain how the study results were generated. The
input object is a list of character vectors (one per model). Each element should
be either a URL or a path to a file on your computer. If it is a path to a file,
this file will be included in the exported study package. To share a report across
multiple models, use the modelID "default".

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

https://ggplot2.tidyverse.org/articles/ggplot2-in-packages.html#using-aes-and-vars-in-a-package-function-1

addResults 19

See Also

getReports

addResults Add inference results

Description

Add inference results

Usage

addResults(study, results, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

results The inference results from each model. The input is a nested named list. The
names of the list correspond to the model names. Each element in the list should
be a list of data frames with inference results, one for each test. In each data
frame, the featureID must be in the first column, and all other columns must be
numeric.

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

See Also

getResults

20 addResultsLinkouts

addResultsLinkouts Add linkouts to external resources in the results table

Description

You can provide additional information on the features in your study by providing linkouts to ex-
ternal resources. These will be embedded directly in the results table.

Usage

addResultsLinkouts(study, resultsLinkouts, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

resultsLinkouts

The URL patterns that describe linkouts to external resources (see Details be-
low). The input object is a nested named list. The names of the list correspond
to the model names. Each element of the list is a named list of character vectors.
The names of this nested list must correspond to the column names of the match-
ing features table. To share linkouts across multiple models, use the modelID
"default".

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Details

For each linkout, the URL pattern you provide will be concatenated with the value of that column
for each row. As an example, if your features table included a column named "ensembl" that
contained the Ensembl Gene ID for each feature, you could create a linkout to Ensembl using the
following pattern:

ensembl = "https://ensembl.org/Homo_sapiens/Gene/Summary?g="

As another example, if you had a column named "entrez" that contained the Entrez Gene ID for
each feature, you could create a linkout to Entrez using the following pattern:

entrez = "https://www.ncbi.nlm.nih.gov/gene/"

Note that you can provide more than one linkout per column.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

addSamples 21

See Also

getResultsLinkouts, addFeatures

Examples

study <- createStudy("example")
resultsLinkouts <- list(

default = list(
ensembl = c("https://ensembl.org/Homo_sapiens/Gene/Summary?g=",

"https://www.genome.ucsc.edu/cgi-bin/hgGene?hgg_gene="),
entrez = "https://www.ncbi.nlm.nih.gov/gene/"

)
)
study <- addResultsLinkouts(study, resultsLinkouts)

addSamples Add sample metadata

Description

Add sample metadata

Usage

addSamples(study, samples, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

samples The metadata variables that describe the samples in the study. The input object
is a named list of data frames (one per model). The first column of each data
frame is used as the sampleID, so it must contain unique values. To share a data
frame across multiple models, use the modelID "default".

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

See Also

getSamples

22 addTests

addTests Add tests

Description

Add tests

Usage

addTests(study, tests, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

tests The tests from the study. The input object is a list of lists. Each element of
the top-level list is a model. The names should be the modelIDs. For each
modelID, each element of the nested list is a test. The names should be the
testIDs. The value should be a single character string describing the testID.
To share tests across multiple models, use the modelID "default". Instead of
a single character string, you can provide a list of metadata fields about each
test. The field "description" will be used to derive the tooltip displayed in the
app. Furthermore, any fields that match the column names in the results table
(added via addFeatures or addResults) will be used to derive tooltips for those
columns.

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

See Also

getTests

Examples

study <- createStudy("example")
tests <- list(

default = list(
test_01 = "Name of first test",
test_02 = "Name of second test"

)
)
study <- addTests(study, tests)

basal.vs.lp 23

Alternative: provide additional metadata about each test
tests <- list(

default = list(
test_01 = list(

description = "Name of first test",
comparison_type = "treatment vs control",
effect_size = "beta"

),
test_02 = list(

description = "Name of second test",
comparison_type = "treatment vs control",
effect_size = "logFC"

)
)

)

basal.vs.lp basal.vs.lp from Bioconductor workflow RNAseq123

Description

A subset of the object basal.vs.lp from Bioconductor workflow RNAseq123.

Usage

basal.vs.lp

Format

A data frame with 24 rows and 8 columns:

ENTREZID Entrez ID of mouse gene

SYMBOL Symbol of mouse gene

TXCHROM Chromosome location of mouse gene

logFC Log fold change

AveExpr Average expression level of the gene across all samples

t Moderated t-statistic

P.Value p-value

adj.P.Val Adjusted p-value

Source

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/
limmaWorkflow.html

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html

24 basal.vs.ml

References

Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME. RNA-seq analysis is
easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]. F1000Research
2018, 5:1408 doi:10.12688/f1000research.9005.3

Sheridan, J.M., Ritchie, M.E., Best, S.A. et al. A pooled shRNA screen for regulators of primary
mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 2015,
15:221 doi:10.1186/s128850151187z

Examples

head(basal.vs.lp)
str(basal.vs.lp)

basal.vs.ml basal.vs.ml from Bioconductor workflow RNAseq123

Description

A subset of the object basal.vs.ml from Bioconductor workflow RNAseq123.

Usage

basal.vs.ml

Format

A data frame with 24 rows and 8 columns:

ENTREZID Entrez ID of mouse gene

SYMBOL Symbol of mouse gene

TXCHROM Chromosome location of mouse gene

logFC Log fold change

AveExpr Average expression level of the gene across all samples

t Moderated t-statistic

P.Value p-value

adj.P.Val Adjusted p-value

Source

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/
limmaWorkflow.html

https://f1000research.com/articles/5-1408/v3
https://f1000research.com/articles/5-1408/v3
https://doi.org/10.12688/f1000research.9005.3
https://doi.org/10.1186/s12885-015-1187-z
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html

cam.BasalvsLP 25

References

Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME. RNA-seq analysis is
easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]. F1000Research
2018, 5:1408 doi:10.12688/f1000research.9005.3

Sheridan, J.M., Ritchie, M.E., Best, S.A. et al. A pooled shRNA screen for regulators of primary
mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 2015,
15:221 doi:10.1186/s128850151187z

Examples

head(basal.vs.ml)
str(basal.vs.ml)

cam.BasalvsLP cam.BasalvsLP from Bioconductor workflow RNAseq123

Description

A subset of the object cam.BasalvsLP from Bioconductor workflow RNAseq123.

Usage

cam.BasalvsLP

Format

A data frame with 4 rows and 4 columns:

NGenes Number of genes in each term

Direction Direction of the enrichment

PValue Nominal p-value

FDR Multiple-testing adjusted p-value

Source

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/
limmaWorkflow.html

References

Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME. RNA-seq analysis is
easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]. F1000Research
2018, 5:1408 doi:10.12688/f1000research.9005.3

Sheridan, J.M., Ritchie, M.E., Best, S.A. et al. A pooled shRNA screen for regulators of primary
mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 2015,
15:221 doi:10.1186/s128850151187z

https://f1000research.com/articles/5-1408/v3
https://f1000research.com/articles/5-1408/v3
https://doi.org/10.12688/f1000research.9005.3
https://doi.org/10.1186/s12885-015-1187-z
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://f1000research.com/articles/5-1408/v3
https://f1000research.com/articles/5-1408/v3
https://doi.org/10.12688/f1000research.9005.3
https://doi.org/10.1186/s12885-015-1187-z

26 cam.BasalvsML

Examples

head(cam.BasalvsLP)
str(cam.BasalvsLP)

cam.BasalvsML cam.BasalvsML from Bioconductor workflow RNAseq123

Description

A subset of the object cam.BasalvsML from Bioconductor workflow RNAseq123.

Usage

cam.BasalvsML

Format

A data frame with 4 rows and 4 columns:

NGenes Number of genes in each term

Direction Direction of the enrichment

PValue Nominal p-value

FDR Multiple-testing adjusted p-value

Source

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/
limmaWorkflow.html

References

Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME. RNA-seq analysis is
easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]. F1000Research
2018, 5:1408 doi:10.12688/f1000research.9005.3

Sheridan, J.M., Ritchie, M.E., Best, S.A. et al. A pooled shRNA screen for regulators of primary
mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 2015,
15:221 doi:10.1186/s128850151187z

Examples

head(cam.BasalvsML)
str(cam.BasalvsML)

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://f1000research.com/articles/5-1408/v3
https://f1000research.com/articles/5-1408/v3
https://doi.org/10.12688/f1000research.9005.3
https://doi.org/10.1186/s12885-015-1187-z

combineStudies 27

combineStudies Combine two or more studies

Description

Create a new OmicNavigator study by combining two or more existing study objects.

Usage

combineStudies(...)

Arguments

... Two or more objects of class onStudy

Details

This is a convenience function to quickly and conveniently combine studies. However, it is naive,
and you will likely need to edit the new study after combining. When there are conflicting elements
(e.g. different study names or different maintainers), then the value for the latter study is kept. As a
concrete example, if you combined 5 studies, the name of the combined study would be the name
of the 5th study.

The behavior is more complex for study elements that are nested lists of data frames (e.g. results). If
the 5 studies included a results table for the same modelID/testID combination, then only the results
from the 5th study would be retained. However, if they each defined a different modelID, then the
results for all 5 modelIDs would be included in the combined study. Please note that you should be
extra cautious in the situation where the studies have the same modelID/testID combination. Ideally
they should all have the same column names. Since a data frame is technically a list, the workhorse
function modifyList will retain any uniquely named columns from earlier studies along with the
columns from the final study.

Note that as a shortcut you can also combine studies using the S3 method c.

If a study you would like to combine is already installed, you can convert it to a study object by
importing it with importStudy.

Value

Returns a new combined OmicNavigator study object, which is a named nested list with class
onStudy

See Also

createStudy, importStudy

28 createStudy

Examples

Define threee study objects
studyOne <- createStudy(name = "One",

description = "First study",
studyMeta = list(metafield1 = "metavalue1"))

studyTwo <- createStudy(name = "Two",
description = "Second study",
maintainer = "The Maintainer",
studyMeta = list(metafield2 = "metavalue2"))

studyThree <- createStudy(name = "Three",
description = "Third study",
studyMeta = list(metafield3 = "metavalue3"))

Combine the three studies
combineStudies(studyOne, studyTwo, studyThree)

Equivalently, can use c()
c(studyOne, studyTwo, studyThree)

createStudy Create a study

Description

Create a new OmicNavigator study.

Usage

createStudy(
name,
description = name,
samples = list(),
features = list(),
models = list(),
assays = list(),
tests = list(),
annotations = list(),
results = list(),
enrichments = list(),
metaFeatures = list(),
plots = list(),
mapping = list(),
barcodes = list(),
reports = list(),
resultsLinkouts = list(),

createStudy 29

enrichmentsLinkouts = list(),
metaFeaturesLinkouts = list(),
metaAssays = list(),
objects = list(),
version = NULL,
maintainer = NULL,
maintainerEmail = NULL,
studyMeta = list()

)

Arguments

name Name of the study

description Description of the study

samples The metadata variables that describe the samples in the study. The input object
is a named list of data frames (one per model). The first column of each data
frame is used as the sampleID, so it must contain unique values. To share a data
frame across multiple models, use the modelID "default".

features The metadata variables that describe the features in the study. The input object
is a list of data frames (one per model). The first column of each data frame is
used as the featureID, so it must contain unique values. To share a data frame
across multiple models, use the modelID "default". All columns will be coerced
to character strings.

models The models analyzed in the study. The input is a named list. The names corre-
spond to the names of the models. The elements correspond to the descriptions
of the models. Alternatively, instead of a single character string, you can pro-
vide a list of metadata fields about each model. The field "description" will be
used to derive the tooltip displayed in the app.

assays The assays from the study. The input object is a list of data frames (one per
model). The row names should correspond to the featureIDs (addFeatures).
The column names should correspond to the sampleIDs (addSamples). The
data frame should only contain numeric values. To share a data frame across
multiple models, use the modelID "default".

tests The tests from the study. The input object is a list of lists. Each element of
the top-level list is a model. The names should be the modelIDs. For each
modelID, each element of the nested list is a test. The names should be the
testIDs. The value should be a single character string describing the testID.
To share tests across multiple models, use the modelID "default". Instead of
a single character string, you can provide a list of metadata fields about each
test. The field "description" will be used to derive the tooltip displayed in the
app. Furthermore, any fields that match the column names in the results table
(added via addFeatures or addResults) will be used to derive tooltips for those
columns.

annotations The annotations used for the enrichment analyses. The input is a nested list.
The top-level list contains one entry per annotation database, e.g. reactome.
The names correspond to the name of each annotation database. Each of these
elements should be a list that contains more information about each annotation

30 createStudy

database. Specifically the sublist should contain 1) description, a character
vector that describes the resource, 2) featureID, the name of the column in the
features table that was used for the enrichment analysis, and 3) terms, a list of
annotation terms. The names of terms sublist correspond to the name of the
annotation terms. Each of the annotation terms should be a character vector of
featureIDs.

results The inference results from each model. The input is a nested named list. The
names of the list correspond to the model names. Each element in the list should
be a list of data frames with inference results, one for each test. In each data
frame, the featureID must be in the first column, and all other columns must be
numeric.

enrichments The enrichment results from each model. The input is a nested named list. The
names of the list correspond to the model names. Each list element should be
a list of the annotation databases tested (addAnnotations). The names of the
list correspond to the annotation databases. Each list element should be another
list of tests (addTests). The names correspond to the tests performed. Each of
these elements should be a data frame with enrichment results. Each table must
contain the following columns: "termID", "description", "nominal" (the nominal
statistics), and "adjusted" (the statistics after adjusting for multiple testing). Any
additional columns are ignored.

metaFeatures The metadata variables that describe the meta-features in the study. The input
object is a list of data frames (one per model). The first column of each data
frame is used as the featureID, so it must contain the same IDs as the corre-
sponding features data frame (addFeatures). The second column of each data
frame is used as the metaFeatureID, and thus should match the row names of
any metaAssays added via addMetaAssays. To share a data frame across multi-
ple models, use the modelID "default". All columns will be coerced to character
strings.

plots A nested list containing custom plotting functions and plot metadata. The input
object is a 3-level nested list. The first, or top-level list element name(s) must
match the study modelID(s). The second, or mid-level list element name(s)
must match the names of the plotting function(s) defined in the current R ses-
sion (see Details below for function construction requirements). The third, or
bottom-level list provides metadata to categorize, display, and support each plot.
The accepted fields are displayName, description, plotType, models, and
packages. displayName sets the plot name in the app and the description
field will display as a tool tip when hovering over plotting dropdown menus.
The plotType field is a character vector that categorizes the plot by 1) the num-
ber of features it supports (“singleFeature” or “multiFeature”), 2) the num-
ber of test results used by the plotting function (“singleTest”, “multiTest”),
3) if data from one or more models is used (add “multiModel” to specify that
data from two or more models are used in the plot; otherwise the plot is as-
sumed to reference only data within the model specified by the top-level list
element name), and 4) if the plot is interactive (add “plotly” to specify in-
teractive plots built using the plotly package; otherwise the plot is assumed to
be static). e.g., plotType = c("multiFeature", "multiTest", "plotly"). If
you do not specify the plotType, the plot will be designated as plotType =

createStudy 31

c("singleFeature", "singleTest"). The models field is an optional charac-
ter vector that specifies the models that should be used by the app when invoking
your custom plotting function. This field is set to ‘all’ by default and is only used
when plotType includes “multiModel”. If this field is not included the app will
assume all models in the study should be used with your plotting function. If the
plotting function requires additional packages beyond those attached by default
to a fresh R session, these must be defined in the element packages. To share a
plotting functions across multiple models, use the modelID "default". Alterna-
tively, to share a plot across a specific subset of models, you can explicitly add
the same plotting function to each model (option available as of OmicNavigator
1.16.0).

mapping Feature IDs from models. The input object is a list of named data frames. For
each data frame, column names indicate model names while rows indicate fea-
tureIDs per model. Features with same index position across columns are treated
as mapped across models. For each model, feature IDs must match feature IDs
available in the results object of the respective model. 1:N relationships are
allowed.
Mapping list elements are required to be named as ’default’ or after a model
name as provided in addModels(). If a single data frame is provided, this list
element is recommended to be named ’default’. For multiple list elements, each
with its own data frame, list elements should be named after model name(s) (a
single element may still be named ’default’). In that case, when navigating in
ON front-end (FE), mapping element related to the selected model in the FE
will be used in multimodel plots. If a selected model in FE does not have a
corresponding mapping list element, it may still use the mapping list element
called ’default’ if this is available.
E.g., if in a study there are models "transcriptomics" and "proteomics" and the
user wants to create a plot based on data from both, a mapping list should be
provided with addMapping(). In this case, the mapping list element may be
named ’default’. This should contain a data frame with column names ’tran-
scriptomics’ and ’proteomics’, where feature IDs that map across models are
found in the same row.

barcodes The metadata variables that describe the barcode plot. The input object is a list of
lists (one per model). Each sublist must contain the element statistic, which
is the column name in the results table to use to construct the barcode plot. Each
sublist may additionally contain any of the following optional elements:

1. absolute - Should the statistic be converted to its absolute value (default
is TRUE).

2. logFoldChange - The column name in the results table that contains the
log fold change values.

3. labelStat - The x-axis label to describe the statistic.
4. labelLow - The left-side label to describe low values of the statistic.
5. labelHigh - The right-side label to describe high values of the statistic.
6. featureDisplay - The feature variable to use to label the barcode plot on

hover. To share metadata across multiple models, use the modelID "de-
fault".

32 createStudy

reports The analysis report(s) that explain how the study results were generated. The
input object is a list of character vectors (one per model). Each element should
be either a URL or a path to a file on your computer. If it is a path to a file,
this file will be included in the exported study package. To share a report across
multiple models, use the modelID "default".

resultsLinkouts

The URL patterns that describe linkouts to external resources (see Details be-
low). The input object is a nested named list. The names of the list correspond
to the model names. Each element of the list is a named list of character vectors.
The names of this nested list must correspond to the column names of the match-
ing features table. To share linkouts across multiple models, use the modelID
"default".

enrichmentsLinkouts

The URL patterns that describe linkouts to external resources (see Details be-
low). The input object is a named list. The names of the list correspond to the
annotation names. Each element of the list is a character vector of linkouts for
that annotationID.

metaFeaturesLinkouts

The URL patterns that describe linkouts to external resources (see Details be-
low). The input object is a nested named list. The names of the list correspond
to the model names. Each element of the list is a named list of character vectors.
The names of this nested list must correspond to the column names of the match-
ing metaFeatures table (addMetaFeatures). To share linkouts across multiple
models, use the modelID "default".

metaAssays The metaAssays from the study. The input object is a list of data frames (one
per model). The row names should correspond to the metaFeatureIDs (second
column of data frame added via addMetaFeatures). The column names should
correspond to the sampleIDs (addSamples). The data frame should only contain
numeric values. To share a data frame across multiple models, use the modelID
"default".

objects Any arbitrary R objects from the study. The input object is a list of objects
(one per model). To share an object across multiple models, use the modelID
"default".

version (Optional) Include a version number to track the updates to your study package.
If you export the study to a package, the version is used as the package version.

maintainer (Optional) Include the name of the study package’s maintainer
maintainerEmail

(Optional) Include the email of the study package’s maintainer

studyMeta (Optional) Define metadata about your study. The input is a list of key:value
pairs. See below for more details.

Details

You can add metadata to describe your study by passing a named list to to the argument studyMeta.
The names of the list cannot contain spaces or colons, and they can’t start with # or -. The values of
each list should be a single value. Also, your metadata fields cannot use any of the reserved fields
for R’s DESCRIPTION file.

https://gist.github.com/jdblischak/f9d946327c9991fb57dde1e6f2bff1c2
https://gist.github.com/jdblischak/f9d946327c9991fb57dde1e6f2bff1c2

exportStudy 33

Value

Returns a new OmicNavigator study object, which is a named nested list with class onStudy

See Also

addSamples, addFeatures, addModels, addAssays, addTests, addAnnotations, addResults,
addEnrichments, addMetaFeatures, addPlots, addMapping, addBarcodes, addReports, addResultsLinkouts,
addEnrichmentsLinkouts, addMetaFeaturesLinkouts, addMetaAssays, addObjects, exportStudy,
installStudy

Examples

study <- createStudy(name = "ABC",
description = "An analysis of ABC")

Define a version and study metadata
study <- createStudy(name = "ABC",

description = "An analysis of ABC",
version = "0.1.0",
maintainer = "My Name",
maintainerEmail = "me@email.com",
studyMeta = list(department = "immunology",

organism = "Mus musculus"))

exportStudy Export a study

Description

Export a study

Usage

exportStudy(
study,
type = c("tarball", "package"),
path = NULL,
requireValid = TRUE

)

Arguments

study An OmicNavigator study

type Export study as a package tarball ("tarball") or as a package directory ("pack-
age")

path Optional file path to save the object

requireValid Require that study is valid before exporting (via validateStudy)

34 getAnnotations

Value

Invisibly returns the name of the tarball file ("tarball") or the path to the package directory ("pack-
age")

See Also

validateStudy

getAnnotations Get annotations from a study

Description

Get annotations from a study

Usage

getAnnotations(study, annotationID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

annotationID Filter by annotationID

quiet Suppress messages (default: FALSE)

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

See Also

addAnnotations

getAssays 35

getAssays Get assays from a study

Description

Get assays from a study

Usage

getAssays(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

quiet Suppress messages (default: FALSE)

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

See Also

addAssays

getBarcodeData Get data for barcode and violin plots

Description

Get data for barcode and violin plots

Usage

getBarcodeData(study, modelID, testID, annotationID, termID, libraries = NULL)

36 getBarcodes

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID
testID Filter by testID
annotationID Filter by annotationID
termID Filter by termID
libraries Character vector of library directories to search for study packages. If NULL,

uses .libPaths.

Value

A list with the following components:

data Data frame with the differential statistics to plot
highest (numeric) The largest differential statistic, rounded up to the next integer
lowest (numeric) The lowest differential statistic, rounded down to the next integer
labelStat (character) The x-axis label to describe the differential statistic
labelLow (character) The vertical axis label on the left to describe smaller values (default

is "Low")
labelHigh (character) The vertical axis label on the right to describe larger values (default

is "High")

See Also

addBarcodes, getBarcodes

getBarcodes Get barcodes from a study

Description

Get barcodes from a study

Usage

getBarcodes(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID
quiet Suppress messages (default: FALSE)
libraries Character vector of library directories to search for study packages. If NULL,

uses .libPaths.

getEnrichments 37

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

See Also

addBarcodes

getEnrichments Get enrichments from a study

Description

Get enrichments from a study

Usage

getEnrichments(
study,
modelID = NULL,
annotationID = NULL,
testID = NULL,
quiet = FALSE,
libraries = NULL

)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

annotationID Filter by annotationID

testID Filter by testID

quiet Suppress messages (default: FALSE)

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

38 getEnrichmentsAnnotations

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

See Also

addEnrichments

getEnrichmentsAnnotations

Get the annotations for the enrichments of an installed OmicNavigator
study

Description

This is the API endpoint the app uses to populate the dropdown menu in the Enrichment Analysis
tab with the list of available annotations for the selected model and study.

Usage

getEnrichmentsAnnotations(study, modelID, libraries = NULL)

Arguments

study An OmicNavigator study. Only accepts name of installed study package.

modelID The modelID selected by the user in the app

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Details

The annotations correspond to those used when adding the enrichments with addEnrichments.
Any optional tooltips correspond to the descriptions added with addAnnotations.

Value

A named list. The names are the identifiers to be displayed in the dropdown menu, and each list
element is a single character vector with the description to be used as a tooltip in the app. If no
custom description was provided by the user, the tooltip text is simply the identifier.

See Also

getEnrichmentsStudies, getEnrichmentsModels, addEnrichments, addAnnotations

getEnrichmentsIntersection 39

getEnrichmentsIntersection

getEnrichmentsIntersection

Description

getEnrichmentsIntersection

Usage

getEnrichmentsIntersection(
study,
modelID,
annotationID,
mustTests,
notTests,
sigValue,
operator,
type,
libraries = NULL

)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

annotationID Filter by annotationID

mustTests The testIDs for which a featureID (or termID for enrichment) must pass the
filters

notTests The testIDs for which a featureID (or termID for enrichment) must not pass the
filters. In other words, if a featureID passes the filter for a testID specified in
notTests, that featureID is removed from the output

sigValue The numeric significance value to use as a cutoff for each column

operator The comparison operators for each column, e.g. "<"

type Type of p-value: ("nominal" or "adjusted")

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

Returns a data frame with the enrichments, similar to getEnrichmentsTable. Only rows that pass
all the filters are included.

40 getEnrichmentsLinkouts

See Also

getEnrichmentsTable

getEnrichmentsLinkouts

Get enrichments table linkouts from a study

Description

Get enrichments table linkouts from a study

Usage

getEnrichmentsLinkouts(
study,
annotationID = NULL,
quiet = FALSE,
libraries = NULL

)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

annotationID Filter by annotationID

quiet Suppress messages (default: FALSE)

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

See Also

addEnrichmentsLinkouts

getEnrichmentsModels 41

getEnrichmentsModels Get the models for the enrichments of an installed OmicNavigator
study

Description

This is the API endpoint the app uses to populate the dropdown menu in the Enrichment Analysis
tab with the list of available models for the selected study.

Usage

getEnrichmentsModels(study, libraries = NULL)

Arguments

study An OmicNavigator study. Only accepts name of installed study package.

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Details

The models correspond to those used when adding the results with addEnrichments. Any optional
tooltips correspond to the descriptions added with addModels.

Value

A named list. The names are the identifiers to be displayed in the dropdown menu, and each list
element is a single character vector with the description to be used as a tooltip in the app. If no
custom description was provided by the user, the tooltip text is simply the identifier.

See Also

getEnrichmentsStudies, getResultsModels, addEnrichments, addModels

getEnrichmentsNetwork Get enrichments network from a study

Description

Get enrichments network from a study

Usage

getEnrichmentsNetwork(study, modelID, annotationID, libraries = NULL)

42 getEnrichmentsStudies

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

annotationID Filter by annotationID

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

Returns a list with the following components:

tests (character) Vector of testIDs

nodes (data frame) The description of each annotation term (i.e. node). The nominal
and adjusted p-values are in list-columns.

links (list) The statistics for each pairwise overlap between the annotation terms (i.e.
nodes)

getEnrichmentsStudies Get installed OmicNavigator studies that have enrichments

Description

This is the API endpoint the app uses to populate the dropdown menu in the Enrichment Analysis
tab with the list of available studies with enrichments data.

Usage

getEnrichmentsStudies(libraries = NULL)

Arguments

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Details

Internally, getEnrichmentsStudies calls getInstalledStudies with hasElements = "enrichments".

Value

Returns a character vector of the installed OmicNavigator study packages

See Also

getInstalledStudies, getResultsStudies

getEnrichmentsTable 43

getEnrichmentsTable Get enrichments table from a study

Description

Get enrichments table from a study

Usage

getEnrichmentsTable(
study,
modelID,
annotationID,
type = "nominal",
libraries = NULL

)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

annotationID Filter by annotationID

type Type of p-value: ("nominal" or "adjusted")

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

A data frame of enrichments with the following columns:

termID The unique ID for the annotation term

description The description of the annotation term

... One column for each of the enrichments

44 getEnrichmentsUpset

getEnrichmentsUpset getEnrichmentsUpset

Description

getEnrichmentsUpset

Usage

getEnrichmentsUpset(
study,
modelID,
annotationID,
sigValue,
operator,
type,
tests = NULL,
libraries = NULL

)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

annotationID Filter by annotationID

sigValue The numeric significance value to use as a cutoff for each column

operator The comparison operators for each column, e.g. "<"

type Type of p-value: ("nominal" or "adjusted")

tests Restrict UpSet plot to only include these tests

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

No return value. This function is called for the side effect of creating an UpSet plot.

getFavicons 45

getFavicons Get favicon URLs for table linkouts

Description

To enhance the display of the linkouts in the app’s tables, it can fetch the favicon URL for each
website.

Usage

getFavicons(linkouts)

Arguments

linkouts Character vector or (potentially nested) list of character vectors containing the
URLs for the table linkouts.

Value

The URLs to the favicons for each linkout. The output returned will always be the same class and
structure as the input.

See Also

getResultsLinkouts, getEnrichmentsLinkouts

getFeatures Get features from a study

Description

Get features from a study

Usage

getFeatures(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

quiet Suppress messages (default: FALSE)

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

46 getInstalledStudies

Value

A data frame (if modelID is specified) or a list of data frames. All the columns will be character
strings, even if the values appear numeric.

See Also

addFeatures

getInstalledStudies Get installed OmicNavigator studies

Description

Get installed OmicNavigator studies

Usage

getInstalledStudies(hasElements = NULL, libraries = NULL)

Arguments

hasElements Character vector of elements that must be present in the study packages. Valid
elements are ’metaFeatures’, ’results’, ’enrichments’, ’reports’, ’plots’, ’assays’,
’samples’, ’features’, ’resultsLinkouts’, and ’metaAssays’. If NULL (default),
then all installed OmicNavigator studies are returned, regardless of their con-
tents.

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

Returns a character vector of the installed OmicNavigator study packages

See Also

getResultsStudies, getEnrichmentsStudies

getLinkFeatures 47

getLinkFeatures Get the shared features in a network link

Description

Get the shared features in a network link

Usage

getLinkFeatures(study, annotationID, termID1, termID2, libraries = NULL)

Arguments

study An OmicNavigator study. Only accepts name of installed study package.
annotationID Filter by annotationID
termID1, termID2

Linked terms to find overlapping features
libraries Character vector of library directories to search for study packages. If NULL,

uses .libPaths.

Value

Returns a character vector with the features included in both termIDs (i.e. the intersection)

See Also

getNodeFeatures

getMapping Get mapping object from a study

Description

Get mapping object from a study

Usage

getMapping(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID
quiet Suppress messages (default: FALSE)
libraries Character vector of library directories to search for study packages. If NULL,

uses .libPaths.

48 getMetaAssays

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

See Also

addMapping

getMetaAssays Get metaAssays from a study

Description

Get metaAssays from a study

Usage

getMetaAssays(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

quiet Suppress messages (default: FALSE)

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

See Also

addMetaAssays

getMetaFeatures 49

getMetaFeatures Get metaFeatures from a study

Description

Get metaFeatures from a study

Usage

getMetaFeatures(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

quiet Suppress messages (default: FALSE)

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

See Also

addMetaFeatures

getMetaFeaturesLinkouts

Get metaFeatures table linkouts from a study

Description

Get metaFeatures table linkouts from a study

Usage

getMetaFeaturesLinkouts(study, modelID = NULL, quiet = FALSE, libraries = NULL)

50 getMetaFeaturesTable

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

quiet Suppress messages (default: FALSE)

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

See Also

addMetaFeaturesLinkouts

getMetaFeaturesTable Get metaFeatures for a given feature

Description

Get metaFeatures for a given feature

Usage

getMetaFeaturesTable(study, modelID, featureID, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

featureID Filter by featureID

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

Returns a data frame with the metaFeatures for the provided featureID. If the featureID is not found
in the metaFeatures table, the data frame will have zero rows.

getModels 51

See Also

addMetaFeatures, getMetaFeatures

getModels Get models from a study

Description

Get models from a study

Usage

getModels(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

quiet Suppress messages (default: FALSE)

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

See Also

addModels

52 getObjects

getNodeFeatures Get the features in a network node

Description

Get the features in a network node

Usage

getNodeFeatures(study, annotationID, termID, libraries = NULL)

Arguments

study An OmicNavigator study. Only accepts name of installed study package.
annotationID Filter by annotationID
termID Filter by termID
libraries Character vector of library directories to search for study packages. If NULL,

uses .libPaths.

Value

Returns a character vector with the features in the termID

See Also

getLinkFeatures

getObjects Get objects from a study

Description

Get objects from a study

Usage

getObjects(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID
quiet Suppress messages (default: FALSE)
libraries Character vector of library directories to search for study packages. If NULL,

uses .libPaths.

getOverlaps 53

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

See Also

addObjects

getOverlaps Get overlaps from a study

Description

Get overlaps from a study

Usage

getOverlaps(study, annotationID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

annotationID Filter by annotationID

quiet Suppress messages (default: FALSE)

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

See Also

addOverlaps

54 getPlots

getPackageVersion Get version of OmicNavigator package

Description

This is a convenience function for the app. It is easier to always call the OmicNavigator package
functions via OpenCPU than to call the utils package for this one endpoint.

Usage

getPackageVersion(libraries = NULL)

Arguments

libraries Directory path(s) to R package library(ies). Passed to the argument lib.loc of
packageVersion.

Value

Returns a one-element character vector with the version of the currently installed OmicNavigator R
package

See Also

packageVersion

getPlots Get plots from a study

Description

Get plots from a study

Usage

getPlots(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

quiet Suppress messages (default: FALSE)

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

getPlottingData 55

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

See Also

addPlots

getPlottingData Get plotting data from an OmicNavigator study

Description

Returns assays, samples, and features data that may be used for plotting. This function is
called by plotStudy() and the output is passed to custom plotting functions. It should be used
directly when interactively creating custom plotting functions. Optionally, it can also return data
for results, metaFeatures, metaAssays.

Usage

getPlottingData(study, modelID, featureID, testID = NULL, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

featureID Filter by featureID

testID Filter by testID

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Details

The end-user should call this function and populate the first argument of their custom plotting
function with the output. When building functions, the end-user should understand the category of
plotting function they are creating (e.g. singleFeature or multiFeature, see addPlots()) and
call getPlottingData() accordingly.

Custom plots that accept data from multiple models and a single test (plotType = c(‘multiModel’, ‘singleTest’);
see addPlots()) should be built to accept output from getPlottingData() where modelID is vec-
tor of length n and testID is a vector of length n, where n is the number of models. Custom plots

56 getPlottingData

that accept data from multiple models and multiple tests (plotType = c(‘multiModel’, ‘multiTest’))
should be built to accept output from getPlottingData() where modelID and testID vectors are
length m, where m is the total number of tests considered across all models (note that testIDs must
be repeated across models for the plotting function to work in the app). The index positions of these
two vectors should correspond. That is, testID position 1 should be found in the model specified
by modelID position 1, etc. See addPlots() for information about the assignment of plotTypes
for your custom plots.

Value

Returns a list of at least 3 elements:

assays A data frame that contains the assay measurements, filtered to only include the
row(s) corresponding to the input featureID(s) (see getAssays). If multiple
featureIDs are requested, the rows are reordered to match the order of this input.
The column order is unchanged.

samples A data frame that contains the sample metadata for the given modelID (see
getSamples). The rows are reordered to match the columns of the assays data
frame.

features A data frame that contains the feature metadata, filtered to only include the
row(s) corresponding to the input featureID(s) (see getFeatures). If multiple
featureIDs are requested, the rows are reordered to match the order of this input
(and thus match the order of the assays data frame).

If a testID is passed, the data frame results is also returned (by default the app will always pass
the currently selected testID):

results A data frame that contains the test results, filtered to only include the row(s)
corresponding to the input featureID(s). If multiple featureIDs are requested,
the rows are reordered to match the order of this input. The column order is
unchanged. If multiple testIDs are provided, they are stored in a list object.

If the study has metaAssays available that map to the input featureID(s), then metaFeatures and
metaAssays are returned:

metaFeatures A data frame that contains the metaFeature metadata, filtered to only include
the row(s) corresponding to the input featureID(s) (see getMetaFeatures). If
multiple featureIDs are requested, the rows are reordered to match the order of
this input (and thus match the order of the metaAssays data frame).

metaAssays A data frame that contains the metaAssay measurements, filtered to only in-
clude the row(s) corresponding to the input featureID(s) (see getMetaAssays).
If multiple featureIDs are requested, the rows are reordered to match the order
of this input. The column order is unchanged.

If the study has objects available that map to the input modelID(s), then objects is returned. It is
not possible to filter by featureID(s) since the structure of the custom object is unknown (and thus
will need to be filtered by the plotting function code).

objects A custom object that was added to the modelID (addObjects)

getReportLink 57

If multiple models are passed, then the top-level elements correspond to the names of the modelIDs,
and the above elements are each nested within their respective modelID. Furthermore, an additional
top-level element mapping is returned:

mapping A data frame that contains the featureID(s) from each model. This is the filtered
mapping object.

See Also

addPlots, plotStudy

getReportLink Get link to report

Description

Get link to report

Usage

getReportLink(study, modelID, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

Returns a one-element character vector with either a path to a report file or a URL to a report web
page. If no report is available for the modelID, an empty character vector is returned.

58 getResults

getReports Get reports from a study

Description

Get reports from a study

Usage

getReports(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

quiet Suppress messages (default: FALSE)

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

See Also

addReports

getResults Get results from a study

Description

Get results from a study

getResultsIntersection 59

Usage

getResults(
study,
modelID = NULL,
testID = NULL,
quiet = FALSE,
libraries = NULL

)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

testID Filter by testID

quiet Suppress messages (default: FALSE)

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

See Also

addResults

getResultsIntersection

getResultsIntersection

Description

getResultsIntersection

60 getResultsIntersection

Usage

getResultsIntersection(
study,
modelID,
anchor,
mustTests,
notTests,
sigValue,
operator,
column,
libraries = NULL

)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

anchor The primary testID to filter the results

mustTests The testIDs for which a featureID (or termID for enrichment) must pass the
filters

notTests The testIDs for which a featureID (or termID for enrichment) must not pass the
filters. In other words, if a featureID passes the filter for a testID specified in
notTests, that featureID is removed from the output

sigValue The numeric significance value to use as a cutoff for each column

operator The comparison operators for each column, e.g. "<"

column The columns to apply the filters

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

Returns a data frame with the results, similar to getResultsTable. Only rows that pass all the
filters are included. The new column Set_Membership is a comma-separated field that includes the
testIDs in which the featureID passed the filters.

See Also

getResultsTable

getResultsLinkouts 61

getResultsLinkouts Get results table linkouts from a study

Description

Get results table linkouts from a study

Usage

getResultsLinkouts(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

quiet Suppress messages (default: FALSE)

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

See Also

addResultsLinkouts

getResultsModels Get the models for the results of an installed OmicNavigator study

Description

This is the API endpoint the app uses to populate the dropdown menu in the Differential Analysis
tab with the list of available models for the selected study.

Usage

getResultsModels(study, libraries = NULL)

62 getResultsStudies

Arguments

study An OmicNavigator study. Only accepts name of installed study package.

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Details

The models correspond to those used when adding the results with addResults. Any optional
tooltips correspond to the descriptions added with addModels.

Value

A named list. The names are the identifiers to be displayed in the dropdown menu, and each list
element is a single character vector with the description to be used as a tooltip in the app. If no
custom description was provided by the user, the tooltip text is simply the identifier.

See Also

getResultsStudies, getEnrichmentsModels, addResults, addModels

getResultsStudies Get installed OmicNavigator studies that have results

Description

This is the API endpoint the app uses to populate the dropdown menu in the Differential Analysis
tab with the list of available studies with results data.

Usage

getResultsStudies(libraries = NULL)

Arguments

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Details

Internally, getResultsStudies calls getInstalledStudies with hasElements = "results".

Value

Returns a character vector of the installed OmicNavigator study packages

See Also

getInstalledStudies, getEnrichmentsStudies

getResultsTable 63

getResultsTable Get results table from a study

Description

Get results table from a study

Usage

getResultsTable(
study,
modelID,
testID,
annotationID = NULL,
termID = NULL,
libraries = NULL

)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

testID Filter by testID

annotationID Filter by annotationID

termID Filter by termID

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

A data frame which includes the columns from the features table followed by the columns from the
results table. All the columns from the features table will be character strings, even if the values
appear numeric.

If the optional arguments annotationID and termID are provided, the table will be filtered to only
include features in that annotation term.

64 getResultsUpset

getResultsTests Get the tests for the results of an installed OmicNavigator study

Description

This is the API endpoint the app uses to populate the dropdown menu in the Differential Analysis
tab with the list of available tests for the selected model and study.

Usage

getResultsTests(study, modelID, libraries = NULL)

Arguments

study An OmicNavigator study. Only accepts name of installed study package.

modelID The modelID selected by the user in the app

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Details

The tests correspond to those used when adding the results with addResults. Any optional tooltips
correspond to the descriptions added with addTests.

Value

A named list. The names are the identifiers to be displayed in the dropdown menu, and each list
element is a single character vector with the description to be used as a tooltip in the app. If no
custom description was provided by the user, the tooltip text is simply the identifier.

See Also

getResultsStudies, getResultsModels, addResults, addTests

getResultsUpset getResultsUpset

Description

getResultsUpset

getSamples 65

Usage

getResultsUpset(
study,
modelID,
sigValue,
operator,
column,
legacy = FALSE,
libraries = NULL

)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID
sigValue The numeric significance value to use as a cutoff for each column
operator The comparison operators for each column, e.g. "<"
column The columns to apply the filters
legacy Use legacy code (for testing purposes only)
libraries Character vector of library directories to search for study packages. If NULL,

uses .libPaths.

Value

Invisibly returns the output from upset

getSamples Get samples from a study

Description

Get samples from a study

Usage

getSamples(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID
quiet Suppress messages (default: FALSE)
libraries Character vector of library directories to search for study packages. If NULL,

uses .libPaths.

66 getStudyMeta

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

See Also

addSamples

getStudyMeta Get study metadata

Description

Get the study description, version, maintainer, maintainer email, and any extra metadata added via
the argument studyMeta of createStudy.

Usage

getStudyMeta(study, libraries = NULL)

Arguments

study Name of an installed OmicNavigator study

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

Returns a list with the following components:

description (character) Study description

version (character) Study version

maintainer (character) Study maintainer
maintainerEmail

(character) Study maintainer email

studyMeta (list) Additional study metadata added via the argument studyMeta of createStudy)

See Also

createStudy

getTests 67

getTests Get tests from a study

Description

Get tests from a study

Usage

getTests(study, modelID = NULL, testID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

testID Filter by testID

quiet Suppress messages (default: FALSE)

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

See Also

addTests

getUpsetCols getUpsetCols

Description

Determine the common columns across all tests of a model that are available for filtering with
UpSet.

Usage

getUpsetCols(study, modelID, libraries = NULL)

68 group

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID
libraries Character vector of library directories to search for study packages. If NULL,

uses .libPaths.

Value

Returns a character vector with the names of the common columns

group group from Bioconductor workflow RNAseq123

Description

A subset of the object group from Bioconductor workflow RNAseq123.

Usage

group

Format

A factor with 3 levels:

Basal Basal cells
LP Luminal progenitor cells
ML Mature luminal cells

Source

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/
limmaWorkflow.html

References

Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME. RNA-seq analysis is
easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]. F1000Research
2018, 5:1408 doi:10.12688/f1000research.9005.3
Sheridan, J.M., Ritchie, M.E., Best, S.A. et al. A pooled shRNA screen for regulators of primary
mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 2015,
15:221 doi:10.1186/s128850151187z

Examples

table(group)
str(group)

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://f1000research.com/articles/5-1408/v3
https://f1000research.com/articles/5-1408/v3
https://doi.org/10.12688/f1000research.9005.3
https://doi.org/10.1186/s12885-015-1187-z

importStudy 69

importStudy Import a study package

Description

Create an onStudy object by importing an installed study package

Usage

importStudy(study, libraries = NULL)

Arguments

study Name of an installed OmicNavigator study

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

Returns the onStudy object imported from the OmicNavigator study package

installApp Install the OmicNavigator web app

Description

In order to run the OmicNavigator web app on your local machine, the app must be installed in
the www/ subdirectory of the R package. If you installed the release tarball from the GitHub Re-
leases page, then you already have the app installed. If you installed directly from GitHub with
install_github, or if you want to use a different version of the app, you can manually download
and install the app.

Usage

installApp(version = NULL, overwrite = FALSE, lib.loc = NULL, ...)

Arguments

version Version of the web app to install, e.g. "1.0.0"

overwrite Should an existing installation of the app be overwritten?

lib.loc a character vector with path names of R libraries. See ‘Details’ for the meaning
of the default value of NULL.

... Passed to download.file. If the download fails, you may need to adjust the
download settings for your operating system. For example, to download with
wget, pass the argument method = "wget".

70 installStudy

Value

A one-element character vector with the absolute path to the directory in which the app files were
installed

installStudy Install a study as an R package

Description

Install a study as an R package

Usage

installStudy(study, requireValid = TRUE, library = .libPaths()[1])

Arguments

study An OmicNavigator study to install (class onStudy)

requireValid Require that study is valid before installing (passed to exportStudy, which runs
validateStudy)

library Directory to install package. Defaults to first directory returned by .libPaths.

Details

Note that installStudy is only intended for directly installing an OmicNavigator study object
loaded in your current R session. If you have already exported your study to a package tarball via
exportStudy, then you can install it with install.packages, for example:

tarball <- exportStudy(myStudy)
install.packages(tarball, repos = NULL)

Value

Invisibly returns the original onStudy object that was passed to the argument study

lane 71

lane lane from Bioconductor workflow RNAseq123

Description

A subset of the object lane from Bioconductor workflow RNAseq123.

Usage

lane

Format

A factor with 3 levels:

L004 Sample sequenced on lane 4

L006 Sample sequenced on lane 6

L008 Sample sequenced on lane 8

Source

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/
limmaWorkflow.html

References

Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME. RNA-seq analysis is
easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]. F1000Research
2018, 5:1408 doi:10.12688/f1000research.9005.3

Sheridan, J.M., Ritchie, M.E., Best, S.A. et al. A pooled shRNA screen for regulators of primary
mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 2015,
15:221 doi:10.1186/s128850151187z

Examples

table(lane)
str(lane)

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://f1000research.com/articles/5-1408/v3
https://f1000research.com/articles/5-1408/v3
https://doi.org/10.12688/f1000research.9005.3
https://doi.org/10.1186/s12885-015-1187-z

72 Mm.c2

lcpm lcpm from Bioconductor workflow RNAseq123

Description

A subset of the object lcpm from Bioconductor workflow RNAseq123.

Usage

lcpm

Format

A matrix with 24 rows and 9 columns

Source

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/
limmaWorkflow.html

References

Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME. RNA-seq analysis is
easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]. F1000Research
2018, 5:1408 doi:10.12688/f1000research.9005.3

Sheridan, J.M., Ritchie, M.E., Best, S.A. et al. A pooled shRNA screen for regulators of primary
mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 2015,
15:221 doi:10.1186/s128850151187z

Examples

head(lcpm)
str(lcpm)

Mm.c2 Mm.c2 from Bioconductor workflow RNAseq123

Description

A subset of the object Mm.c2 from Bioconductor workflow RNAseq123.

Usage

Mm.c2

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://f1000research.com/articles/5-1408/v3
https://f1000research.com/articles/5-1408/v3
https://doi.org/10.12688/f1000research.9005.3
https://doi.org/10.1186/s12885-015-1187-z

plotStudy 73

Format

A list of 4 character vectors

Source

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/
limmaWorkflow.html

References

Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME. RNA-seq analysis is
easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]. F1000Research
2018, 5:1408 doi:10.12688/f1000research.9005.3

Sheridan, J.M., Ritchie, M.E., Best, S.A. et al. A pooled shRNA screen for regulators of primary
mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 2015,
15:221 doi:10.1186/s128850151187z

Examples

Mm.c2[[1]]
str(Mm.c2)

plotStudy Invoke a custom plotting function

Description

plotStudy() invokes a custom plotting function saved within an OmicNavigator study. This func-
tion is called by the app using the study-model-test selection, feature selections, and plotting func-
tion metadata (see addPlots()) to define arguments.

Usage

plotStudy(study, modelID, featureID, plotID, testID = NULL, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

featureID Filter by featureID

plotID Filter by plotID

testID Filter by testID

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://f1000research.com/articles/5-1408/v3
https://f1000research.com/articles/5-1408/v3
https://doi.org/10.12688/f1000research.9005.3
https://doi.org/10.1186/s12885-015-1187-z

74 removeStudy

Details

The arguments study, modelID, featureID, and testID are passed to the function getPlottingData().
The list returned by getPlottingData() is passed as the first argument to a custom plotting
function. Some custom plotTypes (see addPlots()) require care when being invoked and at-
tention should be paid to how a custom plot will be rendered by the app. Custom plots with
plotType = c(‘multiModel’, ‘singleTest’) accept a modelID vector of length n and a vector
of testIDs length n, where n is the number of models. Custom plots with plotType = c(‘multiModel’, ‘multiTest’)
accept modelID and testID vectors of length m, where m is the total number of tests considered
across all models (note testIDs are often repeated across models). Note that the index positions
of these two vectors should correspond. That is, testID position 1 should be found in the model
specified by modelID position 1, etc.

The app will invoke custom plotting functions via plotStudy() using the current menu selections
and plot metadata (see addPlots()). Plots with plotType = ‘multiTest’ will be invoked with all
testIDs found within the currently selected model. Plots with plotType = c(‘multiModel’,‘singleTest’)
will be invoked with all modelIDs within the study (unless the plot has specified a list of models via
models) and the currently selected testID (an error will result if the currently selected testID is not
present in all relevant models for the plot). Plots with plotType = c(‘multiModel’, ‘multiTest’)
will be invoked with all modelIDs within the study (unless the plot has specified a list of models via
models) and all identical testIDs across models (if there are no matching testIDs across models an
error will result).

Value

This function is called for the side effect of creating a plot. It invisibly returns the result from the
custom plotting function specified by plotID. Previously it invisibly returned the study object. It’s
unlikely you relied on this behavior. For a ggplot2 plot, the return value will be the plotting object
with class "ggplot". For a plotly plot, the return value will be the json schema used for plotting
with class “json”.

See Also

addPlots, getPlottingData

removeStudy Remove an installed study R package

Description

Remove an installed study R package

Usage

removeStudy(study, library = .libPaths()[1])

samplenames 75

Arguments

study The name of the study or an onStudy object. Do not include the prefix of the
installed package, e.g. ONstudy.

library Directory where the study package is installed. Defaults to first directory re-
turned by .libPaths.

Value

Invisibly returns the path of the removed study package

samplenames samplenames from Bioconductor workflow RNAseq123

Description

A subset of the object samplenames from Bioconductor workflow RNAseq123.

Usage

samplenames

Format

A character vector containing the unique sample identifiers

Source

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/
limmaWorkflow.html

References

Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME. RNA-seq analysis is
easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]. F1000Research
2018, 5:1408 doi:10.12688/f1000research.9005.3

Sheridan, J.M., Ritchie, M.E., Best, S.A. et al. A pooled shRNA screen for regulators of primary
mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 2015,
15:221 doi:10.1186/s128850151187z

Examples

head(samplenames)
str(samplenames)

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://f1000research.com/articles/5-1408/v3
https://f1000research.com/articles/5-1408/v3
https://doi.org/10.12688/f1000research.9005.3
https://doi.org/10.1186/s12885-015-1187-z

76 summary.onStudy

startApp Start app on local machine

Description

After you have installed at least one OmicNavigator study package with installStudy, you can
explore the results in the app. The function startApp starts a local instance of the app running
on your current machine. It will automatically open the app in your default browser. For the best
experience, use Google Chrome. From the dropdown menu, you will be able to select from any of
the studies you have installed on your machine. When you are finished, you can stop the web server
by returning to the R console and pressing the Esc key (Windows) or Ctrl-C (Linux, macOS).

Usage

startApp(...)

Arguments

... extra parameters passed to ocpu_start_server

Details

Note that the app can’t be run from within RStudio Server.

The app requires some additional R packages to run. If you receive an error about a missing pack-
age, please install it with install.packages. To ensure you have all the extra packages installed,
you can run the command below:

install.packages(c("faviconPlease", "opencpu", "UpSetR"))

Value

No return value. This function is only called for the side effect of running a local instance of the
app.

summary.onStudy Summarize elements of OmicNavigator study

Description

Displays a tree-like summary of the elements that have been added to an OmicNavigator study.

Usage

S3 method for class 'onStudy'
summary(object, elements = NULL, ...)

validateStudy 77

Arguments

object OmicNavigator study object (class onStudy)

elements Subset the output to only include specific elements of the study, e.g. c("results",
"enrichments")

... Currently unused

Value

Invisibly returns the original onStudy object

validateStudy Validate a study

Description

Validate a study

Usage

validateStudy(study)

Arguments

study An OmicNavigator study object

Value

For a valid study object, the logical value TRUE is invisibly returned. For an invalid study object,
there is no return value because an error is thrown.

Index

∗ datasets
basal.vs.lp, 23
basal.vs.ml, 24
cam.BasalvsLP, 25
cam.BasalvsML, 26
group, 68
lane, 71
lcpm, 72
Mm.c2, 72
samplenames, 75

.libPaths, 70, 75
[[, 34, 35, 37, 38, 40, 48–51, 53, 55, 58, 59,

61, 66, 67

addAnnotations, 5, 7, 9, 30, 33, 34, 38
addAssays, 5, 11, 33, 35
addBarcodes, 6, 33, 36, 37
addEnrichments, 7, 9, 33, 38, 41
addEnrichmentsLinkouts, 8, 33, 40
addFeatures, 6, 9, 12, 21, 22, 29, 30, 33, 46
addMapping, 10, 33, 48
addMetaAssays, 11, 12, 30, 33, 48
addMetaFeatures, 11, 11, 12, 13, 32, 33, 49,

51
addMetaFeaturesLinkouts, 12, 33, 50
addModels, 14, 33, 41, 51, 62
addObjects, 15, 33, 53, 56
addOverlaps, 16, 53
addPlots, 15, 16, 33, 55, 57, 74
addPlots(), 55, 56, 73, 74
addReports, 18, 33, 58
addResults, 19, 22, 29, 33, 59, 62, 64
addResultsLinkouts, 20, 33, 61
addSamples, 6, 11, 21, 29, 32, 33, 66
addTests, 7, 22, 30, 33, 64, 67

basal.vs.lp, 23
basal.vs.ml, 24

c, 27

cam.BasalvsLP, 25
cam.BasalvsML, 26
combineStudies, 27
createStudy, 5–12, 14–22, 27, 28, 66

download.file, 69

exportStudy, 18, 33, 33, 70

getAnnotations, 5, 34
getAssays, 6, 35, 56
getBarcodeData, 35
getBarcodes, 7, 36, 36
getEnrichments, 8, 37
getEnrichmentsAnnotations, 38
getEnrichmentsIntersection, 39
getEnrichmentsLinkouts, 9, 40, 45
getEnrichmentsModels, 38, 41, 62
getEnrichmentsNetwork, 41
getEnrichmentsStudies, 38, 41, 42, 46, 62
getEnrichmentsTable, 39, 40, 43
getEnrichmentsUpset, 44
getFavicons, 45
getFeatures, 10, 45, 56
getInstalledStudies, 42, 46, 62
getLinkFeatures, 47, 52
getMapping, 11, 47
getMetaAssays, 11, 48, 56
getMetaFeatures, 12, 49, 51, 56
getMetaFeaturesLinkouts, 13, 49
getMetaFeaturesTable, 50
getModels, 14, 51
getNodeFeatures, 47, 52
getObjects, 15, 52
getOverlaps, 16, 53
getPackageVersion, 54
getPlots, 18, 54
getPlottingData, 11, 15, 18, 55, 74
getPlottingData(), 17, 74
getReportLink, 57

78

INDEX 79

getReports, 19, 58
getResults, 19, 58
getResultsIntersection, 59
getResultsLinkouts, 21, 45, 61
getResultsModels, 41, 61, 64
getResultsStudies, 42, 46, 62, 62, 64
getResultsTable, 60, 63
getResultsTests, 64
getResultsUpset, 64
getSamples, 21, 56, 65
getStudyMeta, 66
getTests, 22, 67
getUpsetCols, 67
group, 68

importStudy, 27, 69
install.packages, 70, 76
installApp, 69
installStudy, 18, 33, 70, 76

lane, 71
lcpm, 72

Mm.c2, 72
modifyList, 27

ocpu_start_server, 76
OmicNavigator (OmicNavigator-package), 4
OmicNavigator-package, 4

packageVersion, 54
plotStudy, 11, 18, 57, 73
plotStudy(), 17

readRDS, 15
removeStudy, 74

samplenames, 75
saveRDS, 15
startApp, 76
summary.onStudy, 76

upset, 65

validateStudy, 33, 34, 70, 77

	OmicNavigator-package
	addAnnotations
	addAssays
	addBarcodes
	addEnrichments
	addEnrichmentsLinkouts
	addFeatures
	addMapping
	addMetaAssays
	addMetaFeatures
	addMetaFeaturesLinkouts
	addModels
	addObjects
	addOverlaps
	addPlots
	addReports
	addResults
	addResultsLinkouts
	addSamples
	addTests
	basal.vs.lp
	basal.vs.ml
	cam.BasalvsLP
	cam.BasalvsML
	combineStudies
	createStudy
	exportStudy
	getAnnotations
	getAssays
	getBarcodeData
	getBarcodes
	getEnrichments
	getEnrichmentsAnnotations
	getEnrichmentsIntersection
	getEnrichmentsLinkouts
	getEnrichmentsModels
	getEnrichmentsNetwork
	getEnrichmentsStudies
	getEnrichmentsTable
	getEnrichmentsUpset
	getFavicons
	getFeatures
	getInstalledStudies
	getLinkFeatures
	getMapping
	getMetaAssays
	getMetaFeatures
	getMetaFeaturesLinkouts
	getMetaFeaturesTable
	getModels
	getNodeFeatures
	getObjects
	getOverlaps
	getPackageVersion
	getPlots
	getPlottingData
	getReportLink
	getReports
	getResults
	getResultsIntersection
	getResultsLinkouts
	getResultsModels
	getResultsStudies
	getResultsTable
	getResultsTests
	getResultsUpset
	getSamples
	getStudyMeta
	getTests
	getUpsetCols
	group
	importStudy
	installApp
	installStudy
	lane
	lcpm
	Mm.c2
	plotStudy
	removeStudy
	samplenames
	startApp
	summary.onStudy
	validateStudy
	Index

