## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(HaDeX2) ## ----echo = FALSE------------------------------------------------------------- colnames <- c("Protein", "Start", "End", "Sequence", "Modification", "Fragment", "MaxUptake", "MHP", "State", "Exposure", "File", "z", "RT", "Inten", "Center") print(colnames) ## ----echo = FALSE------------------------------------------------------------- colnames <- c("Protein", "Start", "End", "Sequence", "Modification", "Fragment", "MaxUptake", "MHP", "State", "Exposure", "Center", "Center SD", "Uptake", "Uptake SD", "RT", "RT SD") print(colnames) ## ----eval = FALSE------------------------------------------------------------- # # dat <- read.csv(datafile) # # dat %>% # # mock columns # mutate(z = 1, # Inten = 1, # File = "") # # exclude unused columns # select(-Uptake, -`Uptake SD`, -`Center SD`, -`RT SD`) # ## ----eval = FALSE------------------------------------------------------------- # # kin_dat <- dat %>% # # select only one state # # exclude measurement without calculated uptake # filter(State == state, # !is.na(Uptake)) %>% # # rename to used convention # rename(deut_uptake = Uptake, # err_deut_uptake = `Uptake SD`) %>% # # exclude unused columns # select(-Center, -`Center SD`, -RT, -`RT SD`, -Fragment) # ## ----eval = FALSE------------------------------------------------------------- # # # select FD based on Exposure in time_100 # fd_dat <- filter(kin_dat, Exposure == time_100) %>% # arrange(Start, End) %>% # mutate(ID = 1:nrow(.)) # # # normalize the uptake data and calculate uncertainty # kin_dat <- merge(kin_dat, fd_dat, # by = c("Protein", "Start", "End", "Sequence", "Modification", "MaxUptake", "MHP", "State"), # suffixes = c("", "_fd")) %>% # mutate(frac_deut_uptake = deut_uptake/deut_uptake_fd, # err_frac_deut_uptake = sqrt((err_deut_uptake/deut_uptake_fd)^2 + (deut_uptake*err_deut_uptake_fd/deut_uptake_fd^2)^2)) %>% # select(-Exposure_fd, -deut_uptake_fd, -err_deut_uptake_fd) %>% # filter(Exposure > time_0) %>% # arrange(Start, End, State, Exposure) %>% # select(ID, everything()) # # attr(kin_dat, "time_100")= time_100 # ## ----echo= FALSE-------------------------------------------------------------- colnames <- c("Protein State", "Deut Time", "Experiment", "Start", "End", "Sequence", "Charge", "Search RT", "Actual RT", "# Spectra", "Peak Width", "m/z Shift", "Max Inty", "Exp Cent", "Theor Cent", "Score", "Cent Diff", "# Deut", "Deut %", "Confidence") colnames ## ----echo = FALSE------------------------------------------------------------- colnames <- c("Protein State", "Protein", "Start"," End", "Sequence", "Peptide Mass", "RT (min)", "Deut Time (sec)", "maxD", "Theor #D", "#D", "%D", "Conf Interval (#D)", "#Rep", "Confidence", "Stddev", "p") colnames ## ----eval = FALSE------------------------------------------------------------- # # select only necessary columns # dat <- dat[c(1:6, 8:12)] # # adjust column names # colnames(dat) <- c("State", "Protein", "Start", "End", "Sequence", "MHP", "Exposure", "MaxUptake", "theo_deut_uptake", "deut_uptake", "frac_deut_uptake") # # change units # dat["Exposure"] <- dat["Exposure"]/60 # dat["frac_deut_uptake"] <- dat["frac_deut_uptake"]/100 # # # add ID # peptide_list <- select(dat, Sequence, Start, End) %>% # arrange(Start, End) %>% # unique() %>% # mutate(ID = 1:nrow(.)) # # kin_dat <- merge(dat, peptide_list, by = c("Sequence", "Start", "End")) %>% # arrange(Start, End) # # # mock uncertainty for plots # kin_dat["err_frac_deut_uptake"] <- 0 # kin_dat["err_deut_uptake"] <- 0 # ## ----eval = FALSE------------------------------------------------------------- # # select one state for classification # kin_dat <- filter(kin_dat, State == unique(kin_dat[["State"]])[1] ) # # # show uptake dat in form of chiclet plot # plot_chiclet(kin_dat, fractional = FALSE) #