## ----setup, echo=FALSE-------------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----eval = FALSE------------------------------------------------------------- # library(EvoPhylo) ## ----include=FALSE------------------------------------------------------------ devtools::load_all(".") ## ----eval=FALSE--------------------------------------------------------------- # ## Import all log (.p) files from all runs and combine them, with burn-in = 25% # ## and downsampling to 2.5k trees in each log file # posterior3p <- combine_log("LogFiles3p", burnin = 0.25, downsample = 1000) ## ----results='hide'----------------------------------------------------------- data(posterior3p) ## Show first 5 lines of combined log file head(posterior3p, 5) ## ----------------------------------------------------------------------------- ## Reshape imported combined log file from wide to long with FBD_reshape posterior3p_long <- FBD_reshape(posterior3p, variables = NULL, log.type = "MrBayes") ## ----eval = FALSE------------------------------------------------------------- # ## Summarize parameters by time bin and analysis # t3.1 <- FBD_summary(posterior3p_long) # t3.1 ## ----echo = FALSE------------------------------------------------------------- t3.1 <- FBD_summary(posterior3p_long, digits = 2) kableExtra::kbl(t3.1, caption = "FBD parameters by time bin") |> kableExtra::kable_styling(font_size = 15, full_width = FALSE, bootstrap_options = "striped", "condensed") ## ----eval=FALSE--------------------------------------------------------------- # ## Export the table # write.csv(t3.1, file = "FBD_summary.csv") ## ----fig.width=8, fig.height=5, fig.align = "center", out.width = "70%"------- ## Plot distribution of the desired FBD parameter by time bin with ## kernel density plot FBD_dens_plot(posterior3p_long, parameter = "net_speciation", type = "density", stack = FALSE) ## ----fig.width=8, fig.height=5, fig.align = "center", out.width = "70%"------- ## Plot distribution of the desired FBD parameter by time bin with ## stacked kernel density plot FBD_dens_plot(posterior3p_long, parameter = "net_speciation", type = "density", stack = TRUE) ## ----fig.width=4, fig.height=4, fig.align = "center", out.width = "50%"------- ## Plot distribution of the desired FBD parameter by time bin with ## a violin plot FBD_dens_plot(posterior3p_long, parameter = "net_speciation", type = "violin", stack = FALSE, color = "red") ## ----fig.width=12, fig.height=4, fig.align = "center", out.width = "100%", warning=FALSE---- ## Plot distribution of all FBD parameter by time bin with a violin plot p1 <- FBD_dens_plot(posterior3p_long, parameter = "net_speciation", type = "violin", stack = FALSE, color = "red") p2 <- FBD_dens_plot(posterior3p_long, parameter = "relative_extinction", type = "violin", stack = FALSE, color = "cyan3") p3 <- FBD_dens_plot(posterior3p_long, parameter = "relative_fossilization", type = "violin", stack = FALSE, color = "green3") library(patchwork) p1 + p2 + p3 + plot_layout(nrow = 1) ## ----eval = FALSE------------------------------------------------------------- # ## Save your plot to your working directory as a PDF # ggplot2::ggsave("Plot_regs.pdf", width = 12, height = 4) ## ----------------------------------------------------------------------------- ##### Tests for normality and homoscedasticity for each FBD parameter for all time bins t3.2 <- FBD_tests1(posterior3p_long) ## ----eval = FALSE------------------------------------------------------------- # ### Export the output table for all tests # write.csv(t3.2, file = "FBD_Tests1_Assum.csv") ## ----eval = FALSE------------------------------------------------------------- # # Output as separate tables # t3.2$shapiro ## ----echo = FALSE------------------------------------------------------------- kableExtra::kbl(t3.2$shapiro, digits = 4, align = c('c','c','c','c'), caption = "Shapiro-Wilk normality test ") |> kableExtra::kable_styling(font_size = 12, full_width = FALSE, bootstrap_options = "striped", "condensed") ## ----------------------------------------------------------------------------- # OR as single merged table t3.2$shapiro$net_speciation$bin <- row.names(t3.2$shapiro$net_speciation) t3.2$shapiro$relative_extinction$bin <- row.names(t3.2$shapiro$relative_extinction) t3.2$shapiro$relative_fossilization$bin <- row.names(t3.2$shapiro$relative_fossilization) k1all <- rbind(t3.2$shapiro$net_speciation, t3.2$shapiro$relative_extinction, t3.2$shapiro$relative_fossilization, make.row.names = FALSE) ## ----eval = FALSE------------------------------------------------------------- # k1all ## ----echo=FALSE--------------------------------------------------------------- kableExtra::kbl(k1all, digits = 4, caption = "Shapiro-Wilk normality test ") |> kableExtra::kable_styling(font_size = 12, full_width = FALSE, bootstrap_options = "striped", "condensed") ## ----eval = FALSE------------------------------------------------------------- # ## Bartlett's test for homogeneity of variance # t3.2$bartlett ## ----echo=FALSE--------------------------------------------------------------- kableExtra::kbl(t3.2$bartlett, caption = "Bartlett's test") |> kableExtra::kable_styling(font_size = 12, full_width = FALSE, bootstrap_options = "striped", "condensed") ## ----eval = FALSE------------------------------------------------------------- # ## Fligner-Killeen test for homogeneity of variance # t3.2$fligner ## ----echo=FALSE--------------------------------------------------------------- kableExtra::kbl(t3.2$fligner, caption = "Fligner-Killeen test") |> kableExtra::kable_styling(font_size = 12, full_width = FALSE, bootstrap_options = "striped", "condensed") ## ----fig.width=8, fig.height=6, fig.align = "center", out.width = "100%"------ ## Visualize deviations from normality and similarity of variances FBD_normality_plot(posterior3p_long) ## ----eval=FALSE--------------------------------------------------------------- # ## Save your plot to your working directory as a PDF # ggplot2::ggsave("Plot_normTests.pdf", width = 8, height = 6) ## ----------------------------------------------------------------------------- ##### Test for significant differences between each time bin for each FBD parameter t3.3 <- FBD_tests2(posterior3p_long) ## ----eval=FALSE--------------------------------------------------------------- # ### Export the output table for all tests # write.csv(t3.3, file = "FBD_Tests2_Sign.csv") # # ## Pairwise t-tests # # Output as separate tables # t3.3$t_tests ## ----echo=FALSE--------------------------------------------------------------- kableExtra::kbl(t3.3$t_tests, digits = 4, align = c('c','c','c','c'), caption = "Significant tests ") |> kableExtra::kable_styling(font_size = 10, full_width = FALSE, bootstrap_options = "striped", "condensed") ## ----------------------------------------------------------------------------- # OR as single merged table k3.3a <- rbind(t3.3$t_tests$net_speciation, t3.3$t_tests$relative_extinction, t3.3$t_tests$relative_fossilization, make.row.names = FALSE) ## ----eval=FALSE--------------------------------------------------------------- # k3.3a ## ----echo = FALSE------------------------------------------------------------- kableExtra::kbl(k3.3a, digits = 4, align = c('c','c','c','c'), caption = "Pairwise t-tests") |> kableExtra::kable_styling(font_size = 12, full_width = FALSE, bootstrap_options = "striped", "condensed") ## ----eval=FALSE--------------------------------------------------------------- # ## Mann-Whitney tests (use if Tests in step #4 fail assumptions) # # Output as separate tables # t3.3$mwu_tests ## ----echo=FALSE--------------------------------------------------------------- kableExtra::kbl(t3.3$mwu_tests, digits = 4, align = c('c','c','c','c'), caption = "Mann-Whitney tests") |> kableExtra::kable_styling(font_size = 10, full_width = FALSE, bootstrap_options = "striped", "condensed") ## ----------------------------------------------------------------------------- # OR as single merged table k3.3b <- rbind(t3.3$mwu_tests$net_speciation, t3.3$mwu_tests$relative_extinction, t3.3$mwu_tests$relative_fossilization, make.row.names = FALSE) ## ----eval=FALSE--------------------------------------------------------------- # k3.3b ## ----echo = FALSE------------------------------------------------------------- kableExtra::kbl(k3.3b, digits=4, align=c('c','c','c','c'), caption = "Mann-Whitney tests") |> kableExtra::kable_styling(font_size = 12, full_width = FALSE, bootstrap_options = "striped", "condensed") ## ----results='hide'----------------------------------------------------------- posterior <- system.file("extdata", "Penguins_log.log", package = "EvoPhylo") posterior <- read.table(posterior, header = TRUE) ## Show first 10 lines of combined log file head(posterior, 5) ## ----------------------------------------------------------------------------- ## Reshape imported combined log file from wide to long with FBD_reshape posterior_long <- FBD_reshape(posterior, variables = NULL, log.type = "BEAST2") ## ----eval = FALSE------------------------------------------------------------- # ## Summarize parameters by time bin and analysis # t3.1 <- FBD_summary(posterior_long) # t3.1 ## ----echo = FALSE------------------------------------------------------------- t3.1 <- FBD_summary(posterior_long, digits = 2) kableExtra::kbl(t3.1, caption = "FBD parameters by time bin") |> kableExtra::kable_styling(font_size = 15, full_width = FALSE, bootstrap_options = "striped", "condensed") ## ----eval=FALSE--------------------------------------------------------------- # ## Export the table # write.csv(t3.1, file = "FBD_summary_BEAST2.csv") ## ----fig.width=8, fig.height=5, fig.align = "center", out.width = "70%"------- ## Plot distribution of the desired FBD parameter by time bin with ## kernel density plot FBD_dens_plot(posterior_long, parameter = "diversificationRateFBD", type = "density", stack = FALSE) ## ----fig.width=4, fig.height=4, fig.align = "center", out.width = "50%"------- ## Plot distribution of the desired FBD parameter by time bin with ## a violin plot FBD_dens_plot(posterior_long, parameter = "diversificationRateFBD", type = "violin", stack = FALSE, color = "red") ## ----fig.width=12, fig.height=4, fig.align = "center", out.width = "100%", warning=FALSE---- ## Plot distribution of all FBD parameter by time bin with a violin plot p1 <- FBD_dens_plot(posterior_long, parameter = "diversificationRateFBD", type = "violin", stack = FALSE, color = "red") p2 <- FBD_dens_plot(posterior_long, parameter = "turnoverFBD", type = "violin", stack = FALSE, color = "cyan3") p3 <- FBD_dens_plot(posterior_long, parameter = "samplingProportionFBD", type = "violin", stack = FALSE, color = "green3") library(patchwork) p1 + p2 + p3 + plot_layout(nrow = 1) ## ----eval = FALSE------------------------------------------------------------- # ## Save your plot to your working directory as a PDF # ggplot2::ggsave("Plot_regs.pdf", width = 12, height = 4)