## ----setup, echo=FALSE-------------------------------------------------------- knitr::opts_chunk$set(echo = TRUE, warning = FALSE, collapse = TRUE, dpi=300) ## ----eval = FALSE------------------------------------------------------------- # library(EvoPhylo) ## ----include=FALSE------------------------------------------------------------ devtools::load_all(".") ## ----eval = FALSE------------------------------------------------------------- # #Load a character data matrix from your local directory to produce a Gower distance matrix # dist_matrix <- get_gower_dist("DataMatrix.nex", numeric = FALSE) # ## OR # #Load an example data matrix 'DataMatrix.nex' that accompanies `EvoPhylo`. # DataMatrix <- system.file("extdata", "DataMatrix.nex", package = "EvoPhylo") # dist_matrix <- get_gower_dist(DataMatrix, numeric = FALSE) ## ----------------------------------------------------------------------------- data(characters) dist_matrix <- get_gower_dist(characters, numeric = FALSE) ## ----fig.width=6, fig.height=4, fig.align = "center", out.width = "70%"------- ## Estimate and plot number of cluster against silhouette width sw <- get_sil_widths(dist_matrix, max.k = 10) plot(sw, color = "blue", size = 1) ## ----fig.width=8, fig.height=5, fig.align = "center", out.width = "70%"------- ## Generate and vizualize clusters with PAM under chosen k value. clusters <- make_clusters(dist_matrix, k = 3) plot(clusters) ## ----eval = FALSE------------------------------------------------------------- # ## Write clusters to Nexus file for Mr. Bayes # cluster_to_nexus(clusters, file = "Clusters_MB.txt") # # ## Write partitioned alignments to separate Nexus files for BEAUTi # # Make reference to your original character data matrix in your local directory # write_partitioned_alignments("DataMatrix.nex", clusters, file = "Clusters_BEAUTi.nex") ## ----fig.width=10, fig.height=7, fig.align = "center", out.width = "100%"----- #User may also generate clusters with PAM and produce a graphic clustering (tSNEs) clusters <- make_clusters(dist_matrix, k = 3, tsne = TRUE, tsne_dim = 3) plot(clusters, nrow = 2, max.overlaps = 5) ## ----eval = FALSE------------------------------------------------------------- # ## Write clusters to Nexus file for Mr. Bayes # cluster_to_nexus(clusters, file = "Clusters_MB.txt") # # ## Write partitioned alignments to separate Nexus files for BEAUTi # # Make reference to your original character data matrix in your local directory # write_partitioned_alignments("DataMatrix.nex", clusters, file = "Clusters_BEAUTi.nex") ## ----eval = FALSE------------------------------------------------------------- # #Load a character data matrix from your local directory to produce a Gower distance matrix # dist_matrix <- get_gower_dist("Penguins_Morpho(VarCh)_Extant.nex", numeric = FALSE) ## ----------------------------------------------------------------------------- DataMatrix <- system.file("extdata", "Penguins_Morpho(VarCh)_Extant.nex", package = "EvoPhylo") dist_matrix <- get_gower_dist(DataMatrix, numeric = FALSE) ## ----fig.width=6, fig.height=4, fig.align = "center", out.width = "70%"------- ## Estimate and plot number of cluster against silhouette width sw <- get_sil_widths(dist_matrix, max.k = 10) plot(sw, color = "blue", size = 1) ## ----fig.width=10, fig.height=7, fig.align = "center", out.width = "100%"----- #User may also generate clusters with PAM and produce a graphic clustering (tSNEs) clusters <- make_clusters(dist_matrix, k = 3, tsne = TRUE, tsne_dim = 3) plot(clusters, nrow = 2, max.overlaps = 5) ## ----eval = FALSE------------------------------------------------------------- # ## Write partitioned alignments to separate Nexus files for BEAUTi # # Make reference to your original character data matrix in your local directory # write_partitioned_alignments("Penguins_Morpho(VarCha).nex", clusters, file = "Penguins_Morpho_3p.nex")