
Package ‘CDatanet’
November 9, 2025

Type Package

Title Econometrics of Network Data

Version 2.2.2

Date 2025-12-01

Description Simulating and estimating peer effect models and network formation mod-
els. The class of peer effect models includes linear-in-means mod-
els (Lee, 2004; <doi:10.1111/j.1468-0262.2004.00558.x>), Tobit mod-
els (Xu and Lee, 2015; <doi:10.1016/j.jeconom.2015.05.004>), and discrete numeri-
cal data models (Houndetoungan, 2025; <doi:10.48550/arXiv.2405.17290>). The network for-
mation models include pair-wise regressions with degree heterogeneity (Gra-
ham, 2017; <doi:10.3982/ECTA12679>) and exponential random graph mod-
els (Mele, 2017; <doi:10.3982/ECTA10400>).

License GPL-3

Language en-US

Encoding UTF-8

BugReports https://github.com/ahoundetoungan/CDatanet/issues

URL https://github.com/ahoundetoungan/CDatanet

Depends R (>= 3.5.0)

Imports Rcpp (>= 1.0.0), Formula, formula.tools, Matrix, matrixcalc,
foreach, doRNG, doParallel, parallel

LinkingTo Rcpp, RcppArmadillo, RcppProgress, RcppDist, RcppNumerical,
RcppEigen

RoxygenNote 7.3.2

Suggests ggplot2, MASS, knitr, rmarkdown

NeedsCompilation yes

Author Aristide Houndetoungan [cre, aut]

Maintainer Aristide Houndetoungan <ahoundetoungan@ecn.ulaval.ca>

Repository CRAN

Date/Publication 2025-11-09 20:10:06 UTC

1

https://doi.org/10.1111/j.1468-0262.2004.00558.x
https://doi.org/10.1016/j.jeconom.2015.05.004
https://doi.org/10.48550/arXiv.2405.17290
https://doi.org/10.3982/ECTA12679
https://doi.org/10.3982/ECTA10400
https://github.com/ahoundetoungan/CDatanet/issues
https://github.com/ahoundetoungan/CDatanet

2 CDatanet-package

Contents
CDatanet-package . 2
cdnet . 3
homophili.data . 7
homophily.fe . 8
homophily.re . 11
meffects . 14
norm.network . 18
peer.avg . 19
print.simcdEy . 20
remove.ids . 21
sar . 22
sart . 25
simcdEy . 28
simcdnet . 29
simnetwork . 33
simsar . 34
simsart . 36
summary.cdnet . 38
summary.sar . 40
summary.sart . 40

Index 42

CDatanet-package The CDatanet Package

Description

The CDatanet package simulates and estimates peer effect models and network formation models.
The peer effect models include linear-in-means models (Lee, 2004; Lee et al., 2010), Tobit models
(Xu and Lee, 2015), and discrete numerical data models (Houndetoungan, 2024). The network
formation models include pairwise regressions with degree heterogeneity (Graham, 2017; Yan et
al., 2019) and exponential random graph models (Mele, 2017). To enhance computation speed,
CDatanet uses C++ via the Rcpp package (Eddelbuettel et al., 2011).

Author(s)

Maintainer: Aristide Houndetoungan <ahoundetoungan@ecn.ulaval.ca>

References

Eddelbuettel, D., & Francois, R. (2011). Rcpp: Seamless R and C++ integration. Journal of Statis-
tical Software, 40(8), 1-18, doi:10.18637/jss.v040.i08.

Houndetoungan, E. A. (2025). Count Data Models with Heterogeneous Peer Effects. Available at
arXiv:2405.17290, doi:10.48550/arXiv.2405.17290.

https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.48550/arXiv.2405.17290

cdnet 3

Lee, L. F. (2004). Asymptotic distributions of quasi-maximum likelihood estimators for spatial
autoregressive models. Econometrica, 72(6), 1899-1925, doi:10.1111/j.14680262.2004.00558.x.

Lee, L. F., Liu, X., & Lin, X. (2010). Specification and estimation of social interaction models with
network structures. The Econometrics Journal, 13(2), 145-176, doi:10.1111/j.1368423X.2010.00310.x

Xu, X., & Lee, L. F. (2015). Maximum likelihood estimation of a spatial autoregressive Tobit
model. Journal of Econometrics, 188(1), 264-280, doi:10.1016/j.jeconom.2015.05.004.

Graham, B. S. (2017). An econometric model of network formation with degree heterogeneity.
Econometrica, 85(4), 1033-1063, doi:10.3982/ECTA12679.

Mele, A. (2017). A structural model of dense network formation. Econometrica, 85(3), 825-850,
doi:10.3982/ECTA10400.

Yan, T., Jiang, B., Fienberg, S. E., & Leng, C. (2019). Statistical inference in a directed net-
work model with covariates. Journal of the American Statistical Association, 114(526), 857-868,
doi:10.1080/01621459.2018.1448829.

See Also

Useful links:

• https://github.com/ahoundetoungan/CDatanet

• Report bugs at https://github.com/ahoundetoungan/CDatanet/issues

cdnet Estimating Count Data Models with Social Interactions under Ratio-
nal Expectations Using the NPL Method

Description

cdnet estimates count data models with social interactions under rational expectations using the
NPL algorithm (see Houndetoungan, 2024).

Usage

cdnet(
formula,
Glist,
group,
Rmax,
Rbar,
starting = list(lambda = NULL, Gamma = NULL, delta = NULL),
Ey0 = NULL,
ubslambda = 1L,
optimizer = "fastlbfgs",
npl.ctr = list(),
opt.ctr = list(),
cov = TRUE,
data

)

https://doi.org/10.1111/j.1468-0262.2004.00558.x
https://doi.org/10.1111/j.1368-423X.2010.00310.x
https://doi.org/10.1016/j.jeconom.2015.05.004
https://doi.org/10.3982/ECTA12679
https://doi.org/10.3982/ECTA10400
https://doi.org/10.1080/01621459.2018.1448829
https://github.com/ahoundetoungan/CDatanet
https://github.com/ahoundetoungan/CDatanet/issues

4 cdnet

Arguments

formula a class object formula: a symbolic description of the model. The formula must
be, for example, y ~ x1 + x2 + gx1 + gx2, where y is the endogenous vector, and
x1, x2, gx1, and gx2 are control variables, which may include contextual vari-
ables (i.e., averages among the peers). Peer averages can be computed using the
function peer.avg.

Glist adjacency matrix. For networks consisting of multiple subnets (e.g., schools),
Glist can be a list of subnets, with the m-th element being an nm × nm ad-
jacency matrix, where nm is the number of nodes in the m-th subnet. For het-
erogeneous peer effects (i.e., when length(unique(group)) = h > 1), the m-th
element must be a list of h2 nm × nm adjacency matrices corresponding to the
different network specifications (see Houndetoungan, 2024, Section 2.1). For
heterogeneous peer effects in the case of a single large network (a single school),
Glist must be a one-item list (since there is one school). This item must be a
list of h2 network specifications. The order in which the networks are specified
is important and must match the order of the groups in sort(unique(group))
(see argument group and examples).

group a vector indicating the individual groups. The default assumes a common group.
For two groups, i.e., length(unique(group)) = 2 (e.g., A and B), four types of
peer effects are defined: peer effects of A on A, of A on B, of B on A, and of B
on B. In this case, in the argument Glist, the networks must be defined in this
order: AA, AB, BA, BB.

Rmax an integer indicating the theoretical upper bound of y (see model specification
in detail).

Rbar an L-vector, where L is the number of groups. For large Rmax, the cost function
is assumed to be semi-parametric (i.e., nonparametric from 0 to R̄ and quadratic
beyond R̄).

starting (optional) a starting value for θ = (λ,Γ′, δ′), where λ, Γ, and δ are the parame-
ters to be estimated (see details).

Ey0 (optional) a starting value for E(y).

ubslambda a positive value indicating the upper bound of
∑S

s=1 λs > 0.

optimizer specifies the optimization method, which can be one of: fastlbfgs (L-BFGS
optimization method from the RcppNumerical package), nlm (from the func-
tion nlm), or optim (from the function optim). Arguments for these functions,
such as control and method, can be set via the argument opt.ctr.

npl.ctr a list of controls for the NPL method (see details).

opt.ctr a list of arguments to be passed to optim_lbfgs from the RcppNumerical pack-
age, or to nlm or optim (the solver specified in optimizer), such as maxit,
eps_f, eps_g, control, method, etc.

cov a Boolean indicating whether the covariance should be computed.

data an optional data frame, list, or environment (or an object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which cdnet is called.

cdnet 5

Details

Model:
The count variable yi takes the value r with probability.

Pir = F (

S∑
s=1

λsȳ
e,s
i + z′iΓ− ah(i),r)− F (

S∑
s=1

λsȳ
e,s
i + z′iΓ− ah(i),r+1).

In this equation, zi is a vector of control variables; F is the distribution function of the standard
normal distribution; ȳe,si is the average of E(y) among peers using the s-th network definition;
ah(i),r is the r-th cut-point in the cost group h(i).

The following identification conditions have been introduced:
∑S

s=1 λs > 0, ah(i),0 = −∞,
ah(i),1 = 0, and ah(i),r = ∞ for any r ≥ Rmax + 1. The last condition implies that Pir = 0 for
any r ≥ Rmax + 1. For any r ≥ 1, the distance between two cut-points is ah(i),r+1 − ah(i),r =

δh(i),r +
∑S

s=1 λs. As the number of cut-points can be large, a quadratic cost function is con-
sidered for r ≥ R̄h(i), where R̄ = (R̄1, ..., R̄L). With the semi-parametric cost function,
ah(i),r+1 − ah(i),r = δ̄h(i) +

∑S
s=1 λs.

The model parameters are: λ = (λ1, ..., λS)
′, Γ, and δ = (δ′1, ..., δ

′
L)

′, where δl = (δl,2, ..., δl,R̄l
, δ̄l)

′

for l = 1, ..., L. The number of single parameters in δl depends on Rmax and R̄l. The components
δl,2, ..., δl,R̄l

or/and δ̄l must be removed in certain cases.
If Rmax = R̄l ≥ 2, then δl = (δl,2, ..., δl,R̄l

)′.
If Rmax = R̄l = 1 (binary models), then δl must be empty.
If Rmax > R̄l = 1, then δl = δ̄l.

npl.ctr:
The model parameters are estimated using the Nested Partial Likelihood (NPL) method. This
approach begins with an initial guess for θ and E(y) and iteratively refines them. The solution
converges when the ℓ1-distance between two consecutive estimates of θ and E(y) is smaller than
a specified tolerance.
The argument npl.ctr must include the following parameters:

tol the tolerance level for the NPL algorithm (default is 1e-4).
maxit the maximum number of iterations allowed (default is 500).
print a boolean value indicating whether the estimates should be printed at each step.
S the number of simulations performed to compute the integral in the covariance using impor-

tance sampling.

Value

A list consisting of:

info a list containing general information about the model.

estimate the NPL estimator.

Ey E(y), the expectation of y.

GEy the average of E(y) across peers.

6 cdnet

cov a list that includes (if cov == TRUE): parms, the covariance matrix, and another
list, var.comp, which contains Sigma (Σ) and Omega (Ω), the matrices used to
compute the covariance matrix.

details step-by-step output returned by the optimizer.

References

Houndetoungan, A. (2024). Count Data Models with Heterogeneous Peer Effects. Available at
SSRN 3721250, doi:10.2139/ssrn.3721250.

See Also

sart, sar, simcdnet.

Examples

set.seed(123)
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 200))
n <- sum(nvec)

Adjacency matrix
A <- list()
for (m in 1:M) {

nm <- nvec[m]
Am <- matrix(0, nm, nm)
max_d <- 30 #maximum number of friends
for (i in 1:nm) {
tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
Am[i, tmp] <- 1

}
A[[m]] <- Am

}
Anorm <- norm.network(A) #Row-normalization

X
X <- cbind(rnorm(n, 1, 3), rexp(n, 0.4))

Two group:
group <- 1*(X[,1] > 0.95)

Networks
length(group) = 2 and unique(sort(group)) = c(0, 1)
The networks must be defined as to capture:
peer effects of `0` on `0`, peer effects of `1` on `0`
peer effects of `0` on `1`, and peer effects of `1` on `1`
G <- list()
cums <- c(0, cumsum(nvec))
for (m in 1:M) {

tp <- group[(cums[m] + 1):(cums[m + 1])]
Am <- A[[m]]
G[[m]] <- norm.network(list(Am * ((1 - tp) %*% t(1 - tp)),

https://doi.org/10.2139/ssrn.3721250

homophili.data 7

Am * ((1 - tp) %*% t(tp)),
Am * (tp %*% t(1 - tp)),
Am * (tp %*% t(tp))))

}

Parameters
lambda <- c(0.2, 0.3, -0.15, 0.25)
Gamma <- c(4.5, 2.2, -0.9, 1.5, -1.2)
delta <- rep(c(2.6, 1.47, 0.85, 0.7, 0.5), 2)

Data
data <- data.frame(X, peer.avg(Anorm, cbind(x1 = X[,1], x2 = X[,2])))
colnames(data) = c("x1", "x2", "gx1", "gx2")

ytmp <- simcdnet(formula = ~ x1 + x2 + gx1 + gx2, Glist = G, Rbar = rep(5, 2),
lambda = lambda, Gamma = Gamma, delta = delta, group = group,
data = data)

y <- ytmp$y
hist(y, breaks = max(y) + 1)
table(y)

Estimation
est <- cdnet(formula = y ~ x1 + x2 + gx1 + gx2, Glist = G, Rbar = rep(5, 2), group = group,

optimizer = "fastlbfgs", data = data,
opt.ctr = list(maxit = 5e3, eps_f = 1e-11, eps_g = 1e-11))

summary(est)

homophili.data Converting Data between Directed Network Models and Symmetric
Network Models.

Description

homophili.data converts the matrix of explanatory variables between directed network models
and symmetric network models.

Usage

homophili.data(data, nvec, to = c("lower", "upper", "symmetric"))

Arguments

data A matrix or data.frame of the explanatory variables of the network formation
model. This corresponds to the X matrix in homophily.fe or homophily.re.

nvec A vector of the number of individuals in the networks.

to Indicates the direction of the conversion. For a matrix of explanatory variables
X (n*(n-1) rows), one can select lower triangular entries (to = "lower") or up-
per triangular entries (to = "upper"). For a triangular X (n*(n-1)/2 rows),

8 homophily.fe

one can convert to a full matrix of n*(n-1) rows by using symmetry (to =
"symmetric").

Value

The transformed data.frame.

homophily.fe Estimating Network Formation Models with Degree Heterogeneity:
the Fixed Effect Approach

Description

homophily.fe implements a Logit estimator for a network formation model with homophily. The
model includes degree heterogeneity using fixed effects (see details).

Usage

homophily.fe(
network,
formula,
data,
symmetry = FALSE,
fe.way = 1,
init = NULL,
method = c("L-BFGS", "Block-NRaphson", "Mix"),
ctr = list(maxit.opt = 10000, maxit.nr = 50, eps_f = 1e-09, eps_g = 1e-09, tol = 1e-04),
print = TRUE

)

Arguments

network A matrix or list of sub-matrices of social interactions containing 0 and 1, where
links are represented by 1.

formula An object of class formula: a symbolic description of the model. The formula
should be, for example, ~ x1 + x2, where x1 and x2 are explanatory variables
for link formation. If missing, the model is estimated with fixed effects only.

data An optional data frame, list, or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which homophily is called.

symmetry Indicates whether the network model is symmetric (see details).

fe.way Indicates whether it is a one-way or two-way fixed effect model. The expected
value is 1 or 2 (see details).

homophily.fe 9

init (optional) Either a list of starting values containing beta, a K-dimensional vec-
tor of the explanatory variables’ parameters, mu, an n-dimensional vector, and
nu, an n-dimensional vector, where K is the number of explanatory variables
and n is the number of individuals; or a vector of starting values for c(beta,
mu, nu).

method A character string specifying the optimization method. Expected values are
"L-BFGS", "Block-NRaphson", or "Mix". "Block-NRaphson" refers to the
Newton-Raphson method applied to each subnetwork, and "Mix" combines the
Newton-Raphson method for beta with the L-BFGS method for the fixed effects.

ctr (optional) A list containing control parameters for the solver. For the optim_lbfgs
method from the RcppNumerical package, the list should include maxit.opt
(corresponding to maxit for the L-BFGS method), eps_f, and eps_g. For the
Block-NRaphson method, the list should include maxit.nr (corresponding to
maxit for the Newton-Raphson method) and tol.

print A boolean indicating if the estimation progression should be printed.

Details

Let pij be the probability for a link to go from individual i to individual j. This probability is
specified for two-way effect models (fe.way = 2) as

pij = F (x′
ijβ + µi + νj),

where F is the cumulative distribution function of the standard logistic distribution. Unobserved
degree heterogeneity is captured by µi and νj . These are treated as fixed effects (see homophily.re
for random effect models). As shown by Yan et al. (2019), the estimator of the parameter β is bi-
ased. A bias correction is necessary but not implemented in this version. However, the estimators
of µi and νj are consistent.

For one-way fixed effect models (fe.way = 1), νj = µj . For symmetric models, the network is not
directed, and the fixed effects need to be one-way.

Value

A list consisting of:

model.info A list of model information, such as the type of fixed effects, whether the model
is symmetric, the number of observations, etc.

estimate The maximizer of the log-likelihood.

loglike The maximized log-likelihood.

optim The returned value from the optimization solver, which contains details of the
optimization. The solver used is optim_lbfgs from the RcppNumerical pack-
age.

init The returned list of starting values.

loglike.init The log-likelihood at the starting values.

10 homophily.fe

References

Yan, T., Jiang, B., Fienberg, S. E., & Leng, C. (2019). Statistical inference in a directed net-
work model with covariates. Journal of the American Statistical Association, 114(526), 857-868,
doi:10.1080/01621459.2018.1448829.

See Also

homophily.re.

Examples

set.seed(1234)
M <- 2 # Number of sub-groups
nvec <- round(runif(M, 20, 50))
beta <- c(.1, -.1)
Glist <- list()
dX <- matrix(0, 0, 2)
mu <- list()
nu <- list()
Emunu <- runif(M, -1.5, 0) # Expectation of mu + nu
smu2 <- 0.2
snu2 <- 0.2
for (m in 1:M) {

n <- nvec[m]
mum <- rnorm(n, 0.7*Emunu[m], smu2)
num <- rnorm(n, 0.3*Emunu[m], snu2)
X1 <- rnorm(n, 0, 1)
X2 <- rbinom(n, 1, 0.2)
Z1 <- matrix(0, n, n)
Z2 <- matrix(0, n, n)

for (i in 1:n) {
for (j in 1:n) {

Z1[i, j] <- abs(X1[i] - X1[j])
Z2[i, j] <- 1*(X2[i] == X2[j])

}
}

Gm <- 1*((Z1*beta[1] + Z2*beta[2] +
kronecker(mum, t(num), "+") + rlogis(n^2)) > 0)

diag(Gm) <- 0
diag(Z1) <- NA
diag(Z2) <- NA
Z1 <- Z1[!is.na(Z1)]
Z2 <- Z2[!is.na(Z2)]

dX <- rbind(dX, cbind(Z1, Z2))
Glist[[m]] <- Gm
mu[[m]] <- mum
nu[[m]] <- num

}

https://doi.org/10.1080/01621459.2018.1448829

homophily.re 11

mu <- unlist(mu)
nu <- unlist(nu)

out <- homophily.fe(network = Glist, formula = ~ -1 + dX, fe.way = 2)
muhat <- out$estimate$mu
nuhat <- out$estimate$nu
plot(mu, muhat)
plot(nu, nuhat)

homophily.re Estimating Network Formation Models with Degree Heterogeneity:
the Bayesian Random Effect Approach

Description

homophily.re implements a Bayesian Probit estimator for network formation model with ho-
mophily. The model includes degree heterogeneity using random effects (see details).

Usage

homophily.re(
network,
formula,
data,
symmetry = FALSE,
group.fe = FALSE,
re.way = 1,
init = list(),
iteration = 1000,
print = TRUE

)

Arguments

network matrix or list of sub-matrix of social interactions containing 0 and 1, where links
are represented by 1.

formula an object of class formula: a symbolic description of the model. The formula
should be as for example ~ x1 + x2 where x1, x2 are explanatory variables for
links formation.

data an optional data frame, list, or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which homophily is called.

symmetry indicates whether the network model is symmetric (see details).

group.fe indicates whether the model includes group fixed effects.

12 homophily.re

re.way indicates whether it is a one-way or two-way random effect model. The expected
value is 1 or 2 (see details).

init (optional) list of starting values containing beta, a K-dimensional vector of
the explanatory variables parameter, mu, an n-dimensional vector, and nu, an n-
dimensional vector, smu2 the variance of mu, and snu2 the variance of nu, where
K is the number of explanatory variables and n is the number of individuals.

iteration the number of iterations to be performed.

print boolean indicating if the estimation progression should be printed.

Details

Let pij be a probability for a link to go from the individual i to the individual j. This probability is
specified for two-way effect models (re.way = 2) as

pij = F (x′
ijβ + µi + νj),

where F is the cumulative of the standard normal distribution. Unobserved degree heterogeneity is
captured by µi and νj . The latter are treated as random effects (see homophily.fe for fixed effect
models).
For one-way random effect models (re.way = 1), νj = µj . For symmetric models, the network is
not directed and the random effects need to be one way.

Value

A list consisting of:

model.info list of model information, such as the type of random effects, whether the model
is symmetric, number of observations, etc.

posterior list of simulations from the posterior distribution.

init returned list of starting values.

See Also

homophily.fe.

Examples

set.seed(1234)
library(MASS)
M <- 4 # Number of sub-groups
nvec <- round(runif(M, 100, 500))
beta <- c(.1, -.1)
Glist <- list()
dX <- matrix(0, 0, 2)
mu <- list()
nu <- list()
cst <- runif(M, -1.5, 0)
smu2 <- 0.2
snu2 <- 0.2
rho <- 0.8

homophily.re 13

Smunu <- matrix(c(smu2, rho*sqrt(smu2*snu2), rho*sqrt(smu2*snu2), snu2), 2)
for (m in 1:M) {

n <- nvec[m]
tmp <- mvrnorm(n, c(0, 0), Smunu)
mum <- tmp[,1] - mean(tmp[,1])
num <- tmp[,2] - mean(tmp[,2])
X1 <- rnorm(n, 0, 1)
X2 <- rbinom(n, 1, 0.2)
Z1 <- matrix(0, n, n)
Z2 <- matrix(0, n, n)

for (i in 1:n) {
for (j in 1:n) {

Z1[i, j] <- abs(X1[i] - X1[j])
Z2[i, j] <- 1*(X2[i] == X2[j])

}
}

Gm <- 1*((cst[m] + Z1*beta[1] + Z2*beta[2] +
kronecker(mum, t(num), "+") + rnorm(n^2)) > 0)

diag(Gm) <- 0
diag(Z1) <- NA
diag(Z2) <- NA
Z1 <- Z1[!is.na(Z1)]
Z2 <- Z2[!is.na(Z2)]

dX <- rbind(dX, cbind(Z1, Z2))
Glist[[m]] <- Gm
mu[[m]] <- mum
nu[[m]] <- num

}

mu <- unlist(mu)
nu <- unlist(nu)

out <- homophily.re(network = Glist, formula = ~ dX, group.fe = TRUE,
re.way = 2, iteration = 1e3)

plot simulations
plot(out$posterior$beta[,1], type = "l")
abline(h = cst[1], col = "red")
plot(out$posterior$beta[,2], type = "l")
abline(h = cst[2], col = "red")
plot(out$posterior$beta[,3], type = "l")
abline(h = cst[3], col = "red")
plot(out$posterior$beta[,4], type = "l")
abline(h = cst[4], col = "red")

plot(out$posterior$beta[,5], type = "l")
abline(h = beta[1], col = "red")
plot(out$posterior$beta[,6], type = "l")
abline(h = beta[2], col = "red")

14 meffects

plot(out$posterior$sigma2_mu, type = "l")
abline(h = smu2, col = "red")
plot(out$posterior$sigma2_nu, type = "l")
abline(h = snu2, col = "red")
plot(out$posterior$rho, type = "l")
abline(h = rho, col = "red")

i <- 10
plot(out$posterior$mu[,i], type = "l")
abline(h = mu[i], col = "red")
plot(out$posterior$nu[,i], type = "l")
abline(h = nu[i], col = "red")

meffects Marginal Effects for Count Data Models and Tobit Models with Social
Interactions

Description

meffects computes marginal effects for count data and Tobit models with social interactions. It is
a generic function which means that new printing methods can be easily added for new classes.

Usage

meffects(model, ...)

S3 method for class 'cdnet'
meffects(
model,
Glist,
cont.var,
bin.var,
type.var,
Glist.contextual,
data,
tol = 1e-10,
maxit = 500,
boot = 1000,
progress = TRUE,
ncores = 1,
...

)

S3 method for class 'summary.cdnet'
meffects(
model,
Glist,

meffects 15

cont.var,
bin.var,
type.var,
Glist.contextual,
data,
tol = 1e-10,
maxit = 500,
boot = 1000,
progress = TRUE,
ncores = 1,
...

)

S3 method for class 'sart'
meffects(
model,
Glist,
cont.var,
bin.var,
type.var,
Glist.contextual,
data,
tol = 1e-10,
maxit = 500,
boot = 1000,
progress = TRUE,
ncores = 1,
...

)

S3 method for class 'summary.sart'
meffects(
model,
Glist,
cont.var,
bin.var,
type.var,
Glist.contextual,
data,
tol = 1e-10,
maxit = 500,
boot = 1000,
progress = TRUE,
ncores = 1,
...

)

16 meffects

Arguments

model an object of class cdnet (summary.cdnet) or sart (summary.sart), output of
the function cdnet or sart, respectively.

... Additional arguments passed to methods.

Glist The network matrix used to obtain model. Typically, this is the Glist argument
supplied to the function cdnet or sart.

cont.var A character vector of continuous variable names for which the marginal effects
should be computed.

bin.var A character vector of binary variable names for which the marginal effects
should be computed.

type.var A list indicating "own" and contextual variables that appear in the cont.var
and bin.var arguments. The list contains pairs of variable names, with the first
element being the "own" variable and the second being the contextual variable.
When a variable has no associated contextual variable, only the variable name is
included. For example, type.var = list(c("x1", "gx1"), c("x2", "gx2"),
"x3") means that gx1 is the contextual variable for x1, gx2 is the contextual
variable for x2, and x3 has no contextual variable. This information is used to
compute the indirect and total marginal effects for x1, x2, and x3.

Glist.contextual

The network matrix used to compute contextual variables, if any are specified
in the type.var argument. For networks consisting of multiple subnets, Glist
can be a list of subnets, where the m-th element is an ns*ns adjacency matrix,
with ns denoting the number of nodes in the m-th subnet.

data An optional data frame, list, or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data, the
variables are taken from environment(model), typically the environment from
which meffects is called.

tol The tolerance value used in the fixed-point iteration method to compute y. The
process stops if the ℓ1-distance between two consecutive values of y is less than
tol.

maxit The maximum number of iterations in the fixed-point iteration method.

boot The number of bootstrap simulations to compute standard errors and confidence
intervals.

progress A logical value indicating whether the progress of the bootstrap simulations
should be printed to the console.

ncores Number of CPU cores (threads) used to run the bootstrap process in parallel.

Value

A list containing:

info General information about the model.

estimate The Maximum Likelihood (ML) estimates of the parameters.

Ey E(y), the expected values of the endogenous variable.

meffects 17

GEy The average of E(y) among peers.

cov A list containing covariance matrices (if cov = TRUE).

details Additional outputs returned by the optimizer.

meffects A list containing the marginal effects.

Examples

#' set.seed(123)
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 200))
n <- sum(nvec)

Adjacency matrix
A <- list()
for (m in 1:M) {

nm <- nvec[m]
Am <- matrix(0, nm, nm)
max_d <- 30 #maximum number of friends
for (i in 1:nm) {
tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
Am[i, tmp] <- 1

}
A[[m]] <- Am

}
Anorm <- norm.network(A) #Row-normalization

X
X <- cbind(rnorm(n, 1, 3), rexp(n, 0.4))

Two group:
group <- 1*(X[,1] > 0.95)

Networks
length(group) = 2 and unique(sort(group)) = c(0, 1)
The networks must be defined as to capture:
peer effects of `0` on `0`, peer effects of `1` on `0`
peer effects of `0` on `1`, and peer effects of `1` on `1`
G <- list()
cums <- c(0, cumsum(nvec))
for (m in 1:M) {

tp <- group[(cums[m] + 1):(cums[m + 1])]
Am <- A[[m]]
G[[m]] <- norm.network(list(Am * ((1 - tp) %*% t(1 - tp)),

Am * ((1 - tp) %*% t(tp)),
Am * (tp %*% t(1 - tp)),
Am * (tp %*% t(tp))))

}

Parameters
lambda <- c(0.2, 0.3, -0.15, 0.25)
Gamma <- c(4.5, 2.2, -0.9, 1.5, -1.2)
delta <- rep(c(2.6, 1.47, 0.85, 0.7, 0.5), 2)

18 norm.network

Data
data <- data.frame(X, peer.avg(Anorm, cbind(x1 = X[,1], x2 = X[,2])))
colnames(data) = c("x1", "x2", "gx1", "gx2")

ytmp <- simcdnet(formula = ~ x1 + x2 + gx1 + gx2, Glist = G, Rbar = rep(5, 2),
lambda = lambda, Gamma = Gamma, delta = delta, group = group,
data = data)

y <- ytmp$y
hist(y, breaks = max(y) + 1)
table(y)

Estimation
est <- cdnet(formula = y ~ x1 + x2 + gx1 + gx2, Glist = G, Rbar = rep(5, 2), group = group,

optimizer = "fastlbfgs", data = data,
opt.ctr = list(maxit = 5e3, eps_f = 1e-11, eps_g = 1e-11))

meffects(est, Glist = G, data = data, cont.var = c("x1", "x2", "gx1", "gx2"),
type.var = list(c("x1", "gx1"), c("x2", "gx2")), Glist.contextual = Anorm,
boot = 100, ncores = 2)

norm.network Creating Objects for Network Models

Description

The vec.to.mat function creates a list of square matrices from a given vector. Elements of the
generated matrices are taken from the vector and placed column-wise or row-wise, progressing
from the first matrix in the list to the last. The diagonals of the generated matrices are set to zeros.
The mat.to.vec function creates a vector from a given list of square matrices. Elements of the
generated vector are taken column-wise or row-wise, starting from the first matrix in the list to the
last, excluding diagonal entries.
The norm.network function row-normalizes matrices in a given list.

Usage

norm.network(W)

vec.to.mat(u, N, normalise = FALSE, byrow = FALSE)

mat.to.vec(W, ceiled = FALSE, byrow = FALSE)

Arguments

W A matrix or list of matrices to convert.

u A numeric vector to convert.

N A vector of sub-network sizes such that length(u) == sum(N * (N - 1)).

peer.avg 19

normalise A boolean indicating whether the returned matrices should be row-normalized
(TRUE) or not (FALSE).

byrow A boolean indicating whether entries in the matrices should be taken by row
(TRUE) or by column (FALSE).

ceiled A boolean indicating whether the given matrices should be ceiled before con-
version (TRUE) or not (FALSE).

Value

A vector of size sum(N * (N - 1)) or a list of length(N) square matrices, with matrix sizes deter-
mined by N[1], N[2],

See Also

simnetwork, peer.avg.

Examples

Generate a list of adjacency matrices
Sub-network sizes
N <- c(250, 370, 120)
Rate of friendship
p <- c(0.2, 0.15, 0.18)
Network data
u <- unlist(lapply(1:3, function(x) rbinom(N[x] * (N[x] - 1), 1, p[x])))
W <- vec.to.mat(u, N)

Convert W into a list of row-normalized matrices
G <- norm.network(W)

Recover u
v <- mat.to.vec(G, ceiled = TRUE)
all.equal(u, v)

peer.avg Computing Peer Averages

Description

The peer.avg function computes peer average values using network data (provided as a list of
adjacency matrices) and observable characteristics.

Usage

peer.avg(Glist, V, export.as.list = FALSE)

20 print.simcdEy

Arguments

Glist An adjacency matrix or a list of sub-adjacency matrices representing the network
structure.

V A vector or matrix of observable characteristics.

export.as.list (optional) A boolean indicating whether the output should be a list of matrices
(TRUE) or a single matrix (FALSE).

Value

The matrix product diag(Glist[[1]], Glist[[2]], ...) %*% V, where diag() represents the
block diagonal operator.

See Also

simnetwork, vec.to.mat

Examples

Generate a list of adjacency matrices
Sub-network sizes
N <- c(250, 370, 120)
Rate of friendship
p <- c(0.2, 0.15, 0.18)
Network data
u <- unlist(lapply(1:3, function(x) rbinom(N[x] * (N[x] - 1), 1, p[x])))
G <- vec.to.mat(u, N, normalise = TRUE)

Generate a vector y
y <- rnorm(sum(N))

Compute G %*% y
Gy <- peer.avg(Glist = G, V = y)

print.simcdEy Printing the Average Expected Outcomes for Count Data Models with
Social Interactions

Description

Summary and print methods for the class simcdEy as returned by the function simcdEy.

Usage

S3 method for class 'simcdEy'
print(x, ...)

S3 method for class 'simcdEy'
summary(object, ...)

remove.ids 21

S3 method for class 'summary.simcdEy'
print(x, ...)

Arguments

x an object of class summary.simcdEy, output of the function summary.simcdEy
or class simcdEy, output of the function simcdEy.

... further arguments passed to or from other methods.

object an object of class simcdEy, output of the function simcdEy.

Value

A list of the same objects in object.

remove.ids Removing Identifiers with NA from Adjacency Matrices Optimally

Description

The remove.ids function removes identifiers with missing values (NA) from adjacency matrices in
an optimal way. Multiple combinations of rows and columns can be deleted to eliminate NAs, but
this function ensures that the smallest number of rows and columns are removed to retain as much
data as possible.

Usage

remove.ids(network, ncores = 1L)

Arguments

network A list of adjacency matrices to process.

ncores The number of cores to use for parallel computation.

Value

A list containing:

network A list of adjacency matrices without missing values.

id A list of vectors indicating the indices of retained rows and columns for each matrix.

22 sar

Examples

Example 1: Small adjacency matrix
A <- matrix(1:25, 5)
A[1, 1] <- NA
A[4, 2] <- NA
remove.ids(A)

Example 2: Larger adjacency matrix with multiple NAs
B <- matrix(1:100, 10)
B[1, 1] <- NA
B[4, 2] <- NA
B[2, 4] <- NA
B[, 8] <- NA
remove.ids(B)

sar Estimating Linear-in-mean Models with Social Interactions

Description

sar computes quasi-maximum likelihood estimators for linear-in-mean models with social interac-
tions (see Lee, 2004 and Lee et al., 2010).

Usage

sar(
formula,
Glist,
lambda0 = NULL,
fixed.effects = FALSE,
optimizer = "optim",
opt.ctr = list(),
print = TRUE,
cov = TRUE,
cinfo = TRUE,
data

)

Arguments

formula a class object formula: a symbolic description of the model. formula must
be as, for example, y ~ x1 + x2 + gx1 + gx2 where y is the endogenous vector
and x1, x2, gx1 and gx2 are control variables, which can include contextual
variables, i.e. averages among the peers. Peer averages can be computed using
the function peer.avg.

Glist The network matrix. For networks consisting of multiple subnets, Glist can be
a list of subnets with the m-th element being an ns*ns adjacency matrix, where
ns is the number of nodes in the m-th subnet.

sar 23

lambda0 an optional starting value of λ.

fixed.effects a Boolean indicating whether group heterogeneity must be included as fixed
effects.

optimizer is either nlm (referring to the function nlm) or optim (referring to the function
optim). Arguments for these functions such as, control and method can be set
via the argument opt.ctr.

opt.ctr list of arguments of nlm or optim (the one set in optimizer) such as control,
method, etc.

print a Boolean indicating if the estimate should be printed at each step.

cov a Boolean indicating if the covariance should be computed.

cinfo a Boolean indicating whether information is complete (cinfo = TRUE) or incom-
plete (cinfo = FALSE). In the case of incomplete information, the model is de-
fined under rational expectations.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which sar is called.

Details

In the complete information model, the outcome yi for individual i is defined as:

yi = λȳi + z′iΓ + ϵi,

where ȳi represents the average outcome y among individual i’s peers, zi is a vector of control
variables, and ϵi ∼ N(0, σ2) is the error term. In the case of incomplete information models with
rational expectations, the outcome yi is defined as:

yi = λE(ȳi) + z′iΓ + ϵi,

where E(ȳi) is the expected average outcome of i’s peers, as perceived by individual i.

Value

A list consisting of:

info list of general information on the model.

estimate Maximum Likelihood (ML) estimator.

cov covariance matrix of the estimate.

details outputs as returned by the optimizer.

References

Lee, L. F. (2004). Asymptotic distributions of quasi-maximum likelihood estimators for spatial
autoregressive models. Econometrica, 72(6), 1899-1925, doi:10.1111/j.14680262.2004.00558.x.

Lee, L. F., Liu, X., & Lin, X. (2010). Specification and estimation of social interaction models with
network structures. The Econometrics Journal, 13(2), 145-176, doi:10.1111/j.1368423X.2010.00310.x

https://doi.org/10.1111/j.1468-0262.2004.00558.x
https://doi.org/10.1111/j.1368-423X.2010.00310.x

24 sar

See Also

sart, cdnet, simsar.

Examples

Groups' size
set.seed(123)
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 1000))
n <- sum(nvec)

Parameters
lambda <- 0.4
Gamma <- c(2, -1.9, 0.8, 1.5, -1.2)
sigma <- 1.5
theta <- c(lambda, Gamma, sigma)

X
X <- cbind(rnorm(n, 1, 1), rexp(n, 0.4))

Network
G <- list()

for (m in 1:M) {
nm <- nvec[m]
Gm <- matrix(0, nm, nm)
max_d <- 30
for (i in 1:nm) {
tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
Gm[i, tmp] <- 1

}
rs <- rowSums(Gm); rs[rs == 0] <- 1
Gm <- Gm/rs
G[[m]] <- Gm

}

data
data <- data.frame(X, peer.avg(G, cbind(x1 = X[,1], x2 = X[,2])))
colnames(data) <- c("x1", "x2", "gx1", "gx2")

ytmp <- simsar(formula = ~ x1 + x2 + gx1 + gx2, Glist = G,
theta = theta, data = data)

data$y <- ytmp$y

out <- sar(formula = y ~ x1 + x2 + gx1 + gx2, Glist = G,
optimizer = "optim", data = data)

summary(out)

sart 25

sart Estimating Tobit Models with Social Interactions

Description

sart estimates Tobit models with social interactions based on the framework of Xu and Lee (2015).
The method allows for modeling both complete and incomplete information scenarios in networks,
incorporating rational expectations in the latter case.

Usage

sart(
formula,
Glist,
starting = NULL,
Ey0 = NULL,
optimizer = "fastlbfgs",
npl.ctr = list(),
opt.ctr = list(),
cov = TRUE,
cinfo = TRUE,
data

)

Arguments

formula An object of class formula: a symbolic description of the model. The formula
must follow the structure, e.g., y ~ x1 + x2 + gx1 + gx2, where y is the endoge-
nous variable, and x1, x2, gx1, and gx2 are control variables. Control variables
may include contextual variables, such as peer averages, which can be computed
using peer.avg.

Glist The network matrix. For networks consisting of multiple subnets, Glist can be
a list, where the m-th element is an ns*ns adjacency matrix representing the m-th
subnet, with ns being the number of nodes in that subnet.

starting (Optional) A vector of starting values for θ = (λ,Γ, σ), where:

• λ is the peer effect coefficient,
• Γ is the vector of control variable coefficients,
• σ is the standard deviation of the error term.

Ey0 (Optional) A starting value for E(y).

optimizer The optimization method to be used. Choices are:

• "fastlbfgs": L-BFGS optimization method from the RcppNumerical
package,

• "nlm": Refers to the nlm function,
• "optim": Refers to the optim function.

26 sart

Additional arguments for these functions, such as control and method, can be
specified through the opt.ctr argument.

npl.ctr A list of controls for the NPL (Nested Pseudo-Likelihood) method (refer to the
details in cdnet).

opt.ctr A list of arguments to be passed to the chosen solver (fastlbfgs, nlm, or op-
tim), such as maxit, eps_f, eps_g, control, method, etc.

cov A Boolean indicating whether to compute the covariance matrix (TRUE or FALSE).

cinfo A Boolean indicating whether the information structure is complete (TRUE) or
incomplete (FALSE). Under incomplete information, the model is defined with
rational expectations.

data An optional data frame, list, or environment (or object coercible by as.data.frame)
containing the variables in the model. If not found in data, the variables are
taken from environment(formula), typically the environment from which sart
is called.

Details

For a complete information model, the outcome yi is defined as:{
y∗i = λȳi + z′iΓ + ϵi,

yi = max(0, y∗i),

where ȳi is the average of y among peers, zi is a vector of control variables, and ϵi ∼ N(0, σ2).

In the case of incomplete information models with rational expectations, yi is defined as:{
y∗i = λE(ȳi) + z′iΓ + ϵi,

yi = max(0, y∗i).

Value

A list containing:

info General information about the model.

estimate The Maximum Likelihood (ML) estimates of the parameters.

Ey E(y), the expected values of the endogenous variable.

GEy The average of E(y) among peers.

cov A list including covariance matrices (if cov = TRUE).

details Additional outputs returned by the optimizer.

References

Xu, X., & Lee, L. F. (2015). Maximum likelihood estimation of a spatial autoregressive Tobit
model. Journal of Econometrics, 188(1), 264-280, doi:10.1016/j.jeconom.2015.05.004.

https://doi.org/10.1016/j.jeconom.2015.05.004

sart 27

See Also

sar, cdnet, simsart.

Examples

Group sizes
set.seed(123)
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 200))
n <- sum(nvec)

Parameters
lambda <- 0.4
Gamma <- c(2, -1.9, 0.8, 1.5, -1.2)
sigma <- 1.5
theta <- c(lambda, Gamma, sigma)

Covariates (X)
X <- cbind(rnorm(n, 1, 1), rexp(n, 0.4))

Network creation
G <- list()

for (m in 1:M) {
nm <- nvec[m]
Gm <- matrix(0, nm, nm)
max_d <- 30
for (i in 1:nm) {
tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
Gm[i, tmp] <- 1

}
rs <- rowSums(Gm); rs[rs == 0] <- 1
Gm <- Gm / rs
G[[m]] <- Gm

}

Data creation
data <- data.frame(X, peer.avg(G, cbind(x1 = X[, 1], x2 = X[, 2])))
colnames(data) <- c("x1", "x2", "gx1", "gx2")

Complete information game
ytmp <- simsart(formula = ~ x1 + x2 + gx1 + gx2, Glist = G, theta = theta,

data = data, cinfo = TRUE)
data$yc <- ytmp$y

Incomplete information game
ytmp <- simsart(formula = ~ x1 + x2 + gx1 + gx2, Glist = G, theta = theta,

data = data, cinfo = FALSE)
data$yi <- ytmp$y

Complete information estimation for yc
outc1 <- sart(formula = yc ~ x1 + x2 + gx1 + gx2, optimizer = "nlm",

28 simcdEy

Glist = G, data = data, cinfo = TRUE)
summary(outc1)

Complete information estimation for yi
outc1 <- sart(formula = yi ~ x1 + x2 + gx1 + gx2, optimizer = "nlm",

Glist = G, data = data, cinfo = TRUE)
summary(outc1)

Incomplete information estimation for yc
outi1 <- sart(formula = yc ~ x1 + x2 + gx1 + gx2, optimizer = "nlm",

Glist = G, data = data, cinfo = FALSE)
summary(outi1)

Incomplete information estimation for yi
outi1 <- sart(formula = yi ~ x1 + x2 + gx1 + gx2, optimizer = "nlm",

Glist = G, data = data, cinfo = FALSE)
summary(outi1)

simcdEy Counterfactual Analyses with Count Data Models and Social Interac-
tions

Description

simcdpar computes the average expected outcomes for count data models with social interactions
and standard errors using the Delta method. This function can be used to examine the effects of
changes in the network or in the control variables.

Usage

simcdEy(object, Glist, data, group, tol = 1e-10, maxit = 500, S = 1000)

Arguments

object an object of class summary.cdnet, output of the function summary.cdnet or
class cdnet, output of the function cdnet.

Glist adjacency matrix. For networks consisting of multiple subnets, Glist can be a
list of subnets with the m-th element being an ns*ns adjacency matrix, where ns
is the number of nodes in the m-th subnet. For heterogeneous peer effects (e.g.,
boy-boy, boy-girl friendship effects), the m-th element can be a list of many
ns*ns adjacency matrices corresponding to the different network specifications
(see Houndetoungan, 2024). For heterogeneous peer effects in the case of a
single large network, Glist must be a one-item list. This item must be a list of
many specifications of large networks.

data an optional data frame, list, or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which summary.cdnet is called.

simcdnet 29

group the vector indicating the individual groups (see function cdnet). If missing, the
former group saved in object will be used.

tol the tolerance value used in the Fixed Point Iteration Method to compute the
expectancy of y. The process stops if the ℓ1-distance between two consecutive
E(y) is less than tol.

maxit the maximal number of iterations in the Fixed Point Iteration Method.

S number of simulations to be used to compute integral in the covariance by im-
portant sampling.

Value

A list consisting of:

Ey E(y), the expectation of y.

GEy the average of E(y) friends.

aEy the sampling mean of E(y).

se.aEy the standard error of the sampling mean of E(y).

See Also

simcdnet

simcdnet Simulating Count Data Models with Social Interactions Under Ratio-
nal Expectations

Description

simcdnet simulates the count data model with social interactions under rational expectations de-
veloped by Houndetoungan (2024).

Usage

simcdnet(
formula,
group,
Glist,
parms,
lambda,
Gamma,
delta,
Rmax,
Rbar,
cont.var,
bin.var,
tol = 1e-10,

30 simcdnet

maxit = 500,
data

)

Arguments

formula A class object of class formula: a symbolic description of the model. formula
should be specified, for example, as y ~ x1 + x2 + gx1 + gx2, where y is the en-
dogenous vector and x1, x2, gx1, and gx2 are control variables. These control
variables can include contextual variables, such as averages among the peers.
Peer averages can be computed using the function peer.avg.

group A vector indicating the individual groups. By default, this assumes a common
group. If there are 2 groups (i.e., length(unique(group)) = 2, such as A and
B), four types of peer effects are defined: peer effects of A on A, A on B, B on A,
and B on B.

Glist An adjacency matrix or list of adjacency matrices. For networks consisting of
multiple subnets (e.g., schools), Glist can be a list of subnet matrices, where the
m-th element is an nm×nm adjacency matrix, with nm representing the number
of nodes in the m-th subnet. For heterogeneous peer effects (length(unique(group))
= h > 1), the m-th element should be a list of h2 nm × nm adjacency matrices
corresponding to different network specifications (see Houndetoungan, 2024).
For heterogeneous peer effects in a single large network, Glist should be a one-
item list, where the item is a list of h2 network specifications. The order of these
networks is important and must match sort(unique(group)) (see examples).

parms A vector defining the true values of θ = (λ′,Γ′, δ′)′ (see model specification in
the details section). Each parameter λ, Γ, or δ can also be provided separately
to the arguments lambda, Gamma, or delta.

lambda The true value of the vector λ.

Gamma The true value of the vector Γ.

delta The true value of the vector δ.

Rmax An integer indicating the theoretical upper bound of y (see model specification
in detail).

Rbar An L-vector, where L is the number of groups. For large Rmax, the cost func-
tion is assumed to be semi-parametric (i.e., nonparametric from 0 to R̄ and
quadratic beyond R̄). The l-th element of Rbar indicates R̄ for the l-th value
of sort(unique(group)) (see model specification in detail).

cont.var A character vector of continuous variable names for which the marginal effects
should be computed.

bin.var A character vector of binary variable names for which the marginal effects
should be computed.

tol The tolerance value used in the Fixed Point Iteration Method to compute the
expectancy of y. The process stops if the ℓ1-distance between two consecutive
E(y) is less than tol.

maxit The maximum number of iterations in the Fixed Point Iteration Method.

simcdnet 31

data An optional data frame, list, or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which simcdnet is called.

Details

The count variable yi takes the value r with probability.

Pir = F (

S∑
s=1

λsȳ
e,s
i + z′iΓ− ah(i),r)− F (

S∑
s=1

λsȳ
e,s
i + z′iΓ− ah(i),r+1).

In this equation, zi is a vector of control variables; F is the distribution function of the standard
normal distribution; ȳe,si is the average of E(y) among peers using the s-th network definition;
ah(i),r is the r-th cut-point in the cost group h(i).

The following identification conditions have been introduced:
∑S

s=1 λs > 0, ah(i),0 = −∞,
ah(i),1 = 0, and ah(i),r = ∞ for any r ≥ Rmax + 1. The last condition implies that Pir = 0
for any r ≥ Rmax + 1. For any r ≥ 1, the distance between two cut-points is ah(i),r+1 −
ah(i),r = δh(i),r +

∑S
s=1 λs. As the number of cut-points can be large, a quadratic cost func-

tion is considered for r ≥ R̄h(i), where R̄ = (R̄1, ..., R̄L). With the semi-parametric cost function,
ah(i),r+1 − ah(i),r = δ̄h(i) +

∑S
s=1 λs.

The model parameters are: λ = (λ1, ..., λS)
′, Γ, and δ = (δ′1, ..., δ

′
L)

′, where δl = (δl,2, ..., δl,R̄l
, δ̄l)

′

for l = 1, ..., L. The number of single parameters in δl depends on Rmax and R̄l. The components
δl,2, ..., δl,R̄l

or/and δ̄l must be removed in certain cases.
If Rmax = R̄l ≥ 2, then δl = (δl,2, ..., δl,R̄l

)′.
If Rmax = R̄l = 1 (binary models), then δl must be empty.
If Rmax > R̄l = 1, then δl = δ̄l.

Value

A list consisting of:

yst y∗, the latent variable.

y the observed count variable.

Ey E(y), the expectation of y.

GEy the average of E(y) among peers.

meff a list including average and individual marginal effects.

Rmax infinite sums in the marginal effects are approximated by sums up to Rmax.

iteration number of iterations performed by sub-network in the Fixed Point Iteration
Method.

References

Houndetoungan, A. (2024). Count Data Models with Heterogeneous Peer Effects. Available at
SSRN 3721250, doi:10.2139/ssrn.3721250.

https://doi.org/10.2139/ssrn.3721250

32 simcdnet

See Also

cdnet, simsart, simsar.

Examples

set.seed(123)
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 200)) # Random group sizes
n <- sum(nvec) # Total number of individuals

Adjacency matrix for each group
A <- list()
for (m in 1:M) {

nm <- nvec[m] # Size of group m
Am <- matrix(0, nm, nm) # Empty adjacency matrix
max_d <- 30 # Maximum number of friends
for (i in 1:nm) {
tmp <- sample((1:nm)[-i], sample(0:max_d, 1)) # Sample friends
Am[i, tmp] <- 1 # Set friendship links

}
A[[m]] <- Am # Add to the list

}
Anorm <- norm.network(A) # Row-normalization of the adjacency matrices

Covariates (X)
X <- cbind(rnorm(n, 1, 3), rexp(n, 0.4)) # Random covariates

Two groups based on first covariate
group <- 1 * (X[,1] > 0.95) # Assign to groups based on x1

Networks: Define peer effects based on group membership
The networks should capture:
- Peer effects of `0` on `0`
- Peer effects of `1` on `0`
- Peer effects of `0` on `1`
- Peer effects of `1` on `1`
G <- list()
cums <- c(0, cumsum(nvec)) # Cumulative indices for groups
for (m in 1:M) {

tp <- group[(cums[m] + 1):(cums[m + 1])] # Group membership for group m
Am <- A[[m]] # Adjacency matrix for group m
Define networks based on peer effects
G[[m]] <- norm.network(list(Am * ((1 - tp) %*% t(1 - tp)),

Am * ((1 - tp) %*% t(tp)),
Am * (tp %*% t(1 - tp)),
Am * (tp %*% t(tp))))

}

Parameters for the model
lambda <- c(0.2, 0.3, -0.15, 0.25)
Gamma <- c(4.5, 2.2, -0.9, 1.5, -1.2)
delta <- rep(c(2.6, 1.47, 0.85, 0.7, 0.5), 2) # Repeated values for delta

simnetwork 33

Prepare data for the model
data <- data.frame(X, peer.avg(Anorm, cbind(x1 = X[,1], x2 = X[,2])))
colnames(data) = c("x1", "x2", "gx1", "gx2") # Set column names

Simulate outcomes using the `simcdnet` function
ytmp <- simcdnet(formula = ~ x1 + x2 + gx1 + gx2, Glist = G, Rbar = rep(5, 2),

lambda = lambda, Gamma = Gamma, delta = delta, group = group,
data = data)

y <- ytmp$y

Plot histogram of the simulated outcomes
hist(y, breaks = max(y) + 1)

Display frequency table of the simulated outcomes
table(y)

simnetwork Simulating Network Data

Description

simnetwork generates adjacency matrices based on specified probabilities.

Usage

simnetwork(dnetwork, normalise = FALSE)

Arguments

dnetwork A list of sub-network matrices, where the (i, j)-th position of the m-th matrix
represents the probability that individual i is connected to individual j in the
m-th network.

normalise A boolean indicating whether the returned matrices should be row-normalized
(TRUE) or not (FALSE).

Value

A list of (row-normalized) adjacency matrices.

Examples

Generate a list of adjacency matrices
Sub-network sizes
N <- c(250, 370, 120)
Probability distributions
dnetwork <- lapply(N, function(x) matrix(runif(x^2), x))
Generate networks
G <- simnetwork(dnetwork)

34 simsar

simsar Simulating Data from Linear-in-Mean Models with Social Interactions

Description

simsar simulates continuous variables under linear-in-mean models with social interactions, fol-
lowing the specifications described in Lee (2004) and Lee et al. (2010). The model incorporates
peer interactions, where the value of an individual’s outcome depends not only on their own char-
acteristics but also on the average characteristics of their peers in the network.

Usage

simsar(formula, Glist, theta, cinfo = TRUE, data)

Arguments

formula A symbolic description of the model, passed as a class object of type formula.
The formula must specify the endogenous variable and control variables, for
example: y ~ x1 + x2 + gx1 + gx2, where y is the endogenous vector, and x1, x2,
gx1, and gx2 are the control variables, which may include contextual variables
(peer averages). Peer averages can be computed using the function peer.avg.

Glist A list of network adjacency matrices representing multiple subnets. The m-th
element in the list should be an ns * ns matrix, where ns is the number of nodes
in the m-th subnet.

theta A numeric vector defining the true values of the model parameters θ = (λ,Γ, σ).
These parameters are used to define the model specification in the details sec-
tion.

cinfo A Boolean flag indicating whether the information is complete (cinfo = TRUE)
or incomplete (cinfo = FALSE). If information is incomplete, the model operates
under rational expectations.

data An optional data frame, list, or environment (or an object coercible by as.data.frame
to a data frame) containing the variables in the model. If not provided, the vari-
ables are taken from the environment of the function call.

Details

In the complete information model, the outcome yi for individual i is defined as:

yi = λȳi + z′iΓ + ϵi,

where ȳi represents the average outcome y among individual i’s peers, zi is a vector of control
variables, and ϵi ∼ N(0, σ2) is the error term. In the case of incomplete information models with
rational expectations, the outcome yi is defined as:

yi = λE(ȳi) + z′iΓ + ϵi,

where E(ȳi) is the expected average outcome of i’s peers, as perceived by individual i.

simsar 35

Value

A list containing the following elements:

y the observed count data.

Gy the average of y among friends.

References

Lee, L. F. (2004). Asymptotic distributions of quasi-maximum likelihood estimators for spatial
autoregressive models. Econometrica, 72(6), 1899-1925, doi:10.1111/j.14680262.2004.00558.x.

Lee, L. F., Liu, X., & Lin, X. (2010). Specification and estimation of social interaction models with
network structures. The Econometrics Journal, 13(2), 145-176, doi:10.1111/j.1368423X.2010.00310.x

See Also

sar, simsart, simcdnet.

Examples

Groups' size
set.seed(123)
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 1000))
n <- sum(nvec)

Parameters
lambda <- 0.4
Gamma <- c(2, -1.9, 0.8, 1.5, -1.2)
sigma <- 1.5
theta <- c(lambda, Gamma, sigma)

X
X <- cbind(rnorm(n, 1, 1), rexp(n, 0.4))

Network
G <- list()

for (m in 1:M) {
nm <- nvec[m]
Gm <- matrix(0, nm, nm)
max_d <- 30
for (i in 1:nm) {
tmp <- sample((1:nm)[-i], sample(0:max_d, 1))
Gm[i, tmp] <- 1

}
rs <- rowSums(Gm); rs[rs == 0] <- 1
Gm <- Gm/rs
G[[m]] <- Gm

}

data

https://doi.org/10.1111/j.1468-0262.2004.00558.x
https://doi.org/10.1111/j.1368-423X.2010.00310.x

36 simsart

data <- data.frame(X, peer.avg(G, cbind(x1 = X[,1], x2 = X[,2])))
colnames(data) <- c("x1", "x2", "gx1", "gx2")

ytmp <- simsar(formula = ~ x1 + x2 + gx1 + gx2, Glist = G,
theta = theta, data = data)

y <- ytmp$y

simsart Simulating Data from Tobit Models with Social Interactions

Description

simsart simulates censored data with social interactions (see Xu and Lee, 2015).

Usage

simsart(
formula,
Glist,
theta,
cont.var,
bin.var,
tol = 1e-15,
maxit = 500,
cinfo = TRUE,
data

)

Arguments

formula a class object formula: a symbolic description of the model. formula must
be, for example, y ~ x1 + x2 + gx1 + gx2, where y is the endogenous vector, and
x1, x2, gx1, and gx2 are control variables. These can include contextual vari-
ables, i.e., averages among the peers. Peer averages can be computed using the
function peer.avg.

Glist The network matrix. For networks consisting of multiple subnets, Glist can be
a list of subnets with the m-th element being an ns*ns adjacency matrix, where
ns is the number of nodes in the m-th subnet.

theta a vector defining the true value of θ = (λ,Γ, σ) (see the model specification in
the details).

cont.var A character vector of continuous variable names for which the marginal effects
should be computed.

bin.var A character vector of binary variable names for which the marginal effects
should be computed.

simsart 37

tol the tolerance value used in the fixed-point iteration method to compute y. The
process stops if the ℓ1-distance between two consecutive values of y is less than
tol.

maxit the maximum number of iterations in the fixed-point iteration method.

cinfo a Boolean indicating whether information is complete (cinfo = TRUE) or incom-
plete (cinfo = FALSE). In the case of incomplete information, the model is de-
fined under rational expectations.

data an optional data frame, list, or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which simsart is called.

Details

For a complete information model, the outcome yi is defined as:{
y∗i = λȳi + z′iΓ + ϵi,

yi = max(0, y∗i),

where ȳi is the average of y among peers, zi is a vector of control variables, and ϵi ∼ N(0, σ2).

In the case of incomplete information models with rational expectations, yi is defined as:{
y∗i = λE(ȳi) + z′iΓ + ϵi,

yi = max(0, y∗i).

Value

A list consisting of:

yst y∗, the latent variable.

y The observed censored variable.

Ey E(y), the expected value of y.

Gy The average of y among peers.

GEy The average of E(y) among peers.

meff A list including average and individual marginal effects.

iteration The number of iterations performed per sub-network in the fixed-point iteration method.

References

Xu, X., & Lee, L. F. (2015). Maximum likelihood estimation of a spatial autoregressive Tobit
model. Journal of Econometrics, 188(1), 264-280, doi:10.1016/j.jeconom.2015.05.004.

See Also

sart, simsar, simcdnet.

https://doi.org/10.1016/j.jeconom.2015.05.004

38 summary.cdnet

Examples

Define group sizes
set.seed(123)
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 200)) # Number of nodes per sub-group
n <- sum(nvec) # Total number of nodes

Define parameters
lambda <- 0.4
Gamma <- c(2, -1.9, 0.8, 1.5, -1.2)
sigma <- 1.5
theta <- c(lambda, Gamma, sigma)

Generate covariates (X)
X <- cbind(rnorm(n, 1, 1), rexp(n, 0.4))

Construct network adjacency matrices
G <- list()
for (m in 1:M) {

nm <- nvec[m] # Nodes in sub-group m
Gm <- matrix(0, nm, nm) # Initialize adjacency matrix
max_d <- 30 # Maximum degree
for (i in 1:nm) {
tmp <- sample((1:nm)[-i], sample(0:max_d, 1)) # Random connections
Gm[i, tmp] <- 1

}
rs <- rowSums(Gm) # Normalize rows
rs[rs == 0] <- 1
Gm <- Gm / rs
G[[m]] <- Gm

}

Prepare data
data <- data.frame(X, peer.avg(G, cbind(x1 = X[, 1], x2 = X[, 2])))
colnames(data) <- c("x1", "x2", "gx1", "gx2") # Add column names

Complete information game simulation
ytmp <- simsart(formula = ~ x1 + x2 + gx1 + gx2,

Glist = G, theta = theta,
data = data, cinfo = TRUE)

data$yc <- ytmp$y # Add simulated outcome to the dataset

Incomplete information game simulation
ytmp <- simsart(formula = ~ x1 + x2 + gx1 + gx2,

Glist = G, theta = theta,
data = data, cinfo = FALSE)

data$yi <- ytmp$y # Add simulated outcome to the dataset

summary.cdnet 39

summary.cdnet Summary for the Estimation of Count Data Models with Social Inter-
actions under Rational Expectations

Description

Summary and print methods for the class cdnet as returned by the function cdnet.

Usage

S3 method for class 'cdnet'
summary(object, Glist, data, S = 1000L, ...)

S3 method for class 'summary.cdnet'
print(x, ...)

S3 method for class 'cdnet'
print(x, ...)

Arguments

object an object of class cdnet, output of the function cdnet.

Glist adjacency matrix. For networks consisting of multiple subnets, Glist can be a
list of subnets with the m-th element being an ns*ns adjacency matrix, where ns
is the number of nodes in the m-th subnet. For heterogeneous peer effects (e.g.,
boy-boy, boy-girl friendship effects), the m-th element can be a list of many
ns*ns adjacency matrices corresponding to the different network specifications
(see Houndetoungan, 2024). For heterogeneous peer effects in the case of a
single large network, Glist must be a one-item list. This item must be a list of
many specifications of large networks.

data an optional data frame, list, or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which summary.cdnet is called.

S number of simulations to be used to compute integral in the covariance by im-
portant sampling.

... further arguments passed to or from other methods.

x an object of class summary.cdnet, output of the function summary.cdnet or
class cdnet, output of the function cdnet.

Value

A list of the same objects in object.

40 summary.sart

summary.sar Summary for the Estimation of Linear-in-mean Models with Social In-
teractions

Description

Summary and print methods for the class sar as returned by the function sar.

Usage

S3 method for class 'sar'
summary(object, ...)

S3 method for class 'summary.sar'
print(x, ...)

S3 method for class 'sar'
print(x, ...)

Arguments

object an object of class sar, output of the function sar.
... further arguments passed to or from other methods.
x an object of class summary.sar, output of the function summary.sar or class

sar, output of the function sar.

Value

A list of the same objects in object.

summary.sart Summary for the Estimation of Tobit Models with Social Interactions

Description

Summary and print methods for the class sart as returned by the function sart.

Usage

S3 method for class 'sart'
summary(object, Glist, data, ...)

S3 method for class 'summary.sart'
print(x, ...)

S3 method for class 'sart'
print(x, ...)

summary.sart 41

Arguments

object an object of class sart, output of the function sart.

Glist adjacency matrix or list sub-adjacency matrix. This is not necessary if the co-
variance method was computed in cdnet.

data dataframe containing the explanatory variables. This is not necessary if the co-
variance method was computed in cdnet.

... further arguments passed to or from other methods.

x an object of class summary.sart, output of the function summary.sart or class
sart, output of the function sart.

Value

A list of the same objects in object.

Index

as.data.frame, 4, 8, 11, 16, 23, 26, 28, 31,
34, 37, 39

CDatanet (CDatanet-package), 2
CDatanet-package, 2
cdnet, 3, 16, 24, 26–29, 32, 39, 41

formula, 4, 8, 11, 22, 25, 30, 34, 36

homophili.data, 7
homophily.fe, 7, 8, 12
homophily.re, 7, 9, 10, 11

mat.to.vec (norm.network), 18
meffects, 14

nlm, 4, 23, 25, 26
norm.network, 18

optim, 4, 23, 25, 26

peer.avg, 4, 19, 19, 22, 25, 30, 34, 36
print.cdnet (summary.cdnet), 39
print.sar (summary.sar), 40
print.sart (summary.sart), 40
print.simcdEy, 20
print.summary.cdnet (summary.cdnet), 39
print.summary.sar (summary.sar), 40
print.summary.sart (summary.sart), 40
print.summary.simcdEy (print.simcdEy),

20

remove.ids, 21

sar, 6, 22, 27, 35, 40
sart, 6, 16, 24, 25, 37, 40, 41
simcdEy, 20, 21, 28
simcdnet, 6, 29, 29, 35, 37
simnetwork, 19, 20, 33
simsar, 24, 32, 34, 37
simsart, 27, 32, 35, 36

summary.cdnet, 28, 38, 39
summary.sar, 40, 40
summary.sart, 40, 41
summary.simcdEy, 21
summary.simcdEy (print.simcdEy), 20

vec.to.mat, 20
vec.to.mat (norm.network), 18

42

	CDatanet-package
	cdnet
	homophili.data
	homophily.fe
	homophily.re
	meffects
	norm.network
	peer.avg
	print.simcdEy
	remove.ids
	sar
	sart
	simcdEy
	simcdnet
	simnetwork
	simsar
	simsart
	summary.cdnet
	summary.sar
	summary.sart
	Index

