Package ‘Bessel’

January 11, 2026

Title Computations and Approximations for Bessel Functions

Version 0.7-0

VersionNote Last CRAN: 0.6-1, 2024-07-29; and 0.6-0, packaged
2019-04-25, published 2019-05-02

Date 2026-01-07

Description Computations for Bessel function for complex, real and partly
'mpfr' (arbitrary precision) numbers; notably interfacing TOMS 644;
approximations for large arguments, experiments, etc.

Maintainer Martin Maechler <maechler@stat.math.ethz.ch>

Imports methods, Rmpfr

Suggests gsl, sfsmisc

SuggestsNote 'gsl' may be used in code; 'sfsmisc' is for examples &

vignettes

Depends R (>=3.1.0)

License GPL (>=2)
Encoding UTF-8

URL https://specfun.r-forge.r-project.org/

NeedsCompilation yes

Author Martin Maechler [aut, cre] (ORCID:
<https://orcid.org/0000-0002-8685-9910>)

Repository CRAN

Date/Publication 2026-01-11 06:12:36 UTC

Contents

BesselH . .

bessell.NUASYM

bessellasym

https://specfun.r-forge.r-project.org/
https://orcid.org/0000-0002-8685-9910

bessells 10
bessIsmINu 12
5 13
Index 16
Airy Airy Functions (and Their First Derivative)
Description

Compute the Airy functions Ai or Bi or their first derivatives, - Ai(z) and - Bi(z).
The Airy functions are solutions of the differential equation

w” = zw

for w(z), and are related to each other and to the (modified) Bessel functions via (many identities,
see https://dlmf.nist.gov/9.6), e.g., if := %z\/g = %z%,

Ai(z) = 7 VB 5(O) = 52 (Layal€) = 1ys(0))

and
Bi(z) = \/2/3 (I_1,3(¢) + I13(¢)) -

Usage

AiryA(z, deriv = 0@, expon.scaled = FALSE, verbose = 0)

AiryB(z, deriv = @, expon.scaled = FALSE, verbose = 0)
Arguments

z complex or numeric vector.

deriv order of derivative; must be O or 1.

expon.scaled logical indicating if the result should be scaled by an exponential factor (typi-
cally to avoid under- or over-flow).

verbose integer defaulting to 0, indicating the level of verbosity notably from C code.

Details

By default, when expon.scaled is false, AiryA() computes the complex Airy function Ai(z) or
its derivative d%Ai(z) on deriv=0 or deriv=1 respectively.

When expon.scaled is true, it returns exp(¢)Ai(z) or exp(()d%Ai(z), effectively removing the
exponential decay in —7/3 < arg(z) < /3 and the exponential growth in 7/3 < |arg(z)| < ,
where ¢ = 22y/z, and arg(z) =Arg(z).

While the Airy functions Ai(z) and d/dz Ai(z) are analytic in the whole z plane, the corresponding
scaled functions (for expon.scaled=TRUE) have a cut along the negative real axis.

https://dlmf.nist.gov/9.6

Airy 3

By default, when expon.scaled is false, AiryB() computes the complex Airy function Bi(z) or
its derivative d%Bi(z) on deriv=0 or deriv=1 respectively.

When expon. scaled is true, it returns exp(— |R(¢)[)Bi(z) or ezp(— [R(¢)|)-L Bi
the exponential behavior in both the left and right half planes where, as above, { =

—~

z), to remove

wN

Value

a complex or numeric vector of the same length (and class) as z.

Author(s)

Donald E. Amos, Sandia National Laboratories, wrote the original fortran code. Martin Maechler
did the R interface.

References

see BesselJ; notably for many results the

Digital Library of Mathematical Functions (DLMF), Chapter 9 Airy and Related Functions at
https://dlmf.nist.gov/9.

See Also

Bessell etc; the Hankel functions Hankel.

The CRAN package Rmpfr has Ai(x) for arbitrary precise "mpfr"-numbers x.

Examples

The AiryA() := Ai() function -------------

curve(AiryA, -20, 100, n=1001)
curve(AiryA, -1, 100, n=1011, log="y") -> Aix
curve(AiryA(x, expon.scaled=TRUE), -1, 50, n=1001)
Numerically "proving” the 1st identity above :
z <= Aix$x; i <- z > 0; head(z <- z[i <- z > 0])
Aix <- Aix$y[il; zeta <- 2/3*zxsqrt(z)
stopifnot(all.equal(Aix, 1/pi * sqrt(z/3)* BesselK(zeta, nu = 1/3),
tol = 4e-15)) # 64b Lnx: 7.9e-16; 32b Win: 1.8e-15

This gives many warnings (248 on nb-mm4, F24) about lost accuracy, but on Windows takes ~ 4 sec:
curve(AiryA(x, expon.scaled=TRUE), 1, 10000, n=1001, log="xy")

The AiryB() := Bi() function -------------

curve(AiryB, -20, 2, n=1001); abline(h=0,v=0, col="gray",6lty=2)
curve(AiryB, -1, 20, n=1001, log = "y") # exponential growth (x > @)

curve(AiryB(x,expon.scaled=TRUE), -1, 20, n=1001)
curve(AiryB(x,expon.scaled=TRUE), 1, 10000, n=1001, log="x")

https://dlmf.nist.gov/9
https://CRAN.R-project.org/package=Rmpfr

4 Bessel

Bessel Bessel Functions of Complex Arguments I(), J(), K(), and Y()

Description

Compute the Bessel functions 1(), J(), K(), and Y(), of complex arguments z and real nu,

Usage
Bessell(z, nu, expon.scaled = FALSE, nSeq = 1, verbose = 0)
BesselJ(z, nu, expon.scaled = FALSE, nSeq = 1, verbose = 0)
BesselK(z, nu, expon.scaled = FALSE, nSeq = 1, verbose = @)
BesselY(z, nu, expon.scaled = FALSE, nSeq = 1, verbose = @)
Arguments
z complex or numeric vector.
nu numeric (scalar).

expon.scaled logical indicating if the result should be scaled by an exponential factor, typi-
cally to avoid under- or over-flow. See the ‘Details’ about the specific scaling.

nSeq positive integer; if > 1, computes the result for a whole sequence of nu values;
if nu>=0,nu, nu+l, ..., nu+nSeqg-1,
if nu<@, nu, nu-1, ..., nu-nSeqg+1.
verbose integer defaulting to 0, indicating the level of verbosity notably from C code.
Details

The case nu <0 is handled by using simple formula from Abramowitz and Stegun, see details in
besselI().

The scaling activated by expon.scaled = TRUE depends on the function and the scaled versions are

JO: BesselJ(z, nu, expo=TRUE):= exp(— | (z)])J,(2)

Y(): BesselY(z, nu, expo=TRUE):= exp(— |¥(z)|)Y.(2)
I(): BesselI(z, nu, expo=TRUE):= exp(— |R(2)|)1.(2)
K(): BesselK(z, nu, expo=TRUE):= exp(z)K,(2)

Value

a complex or numeric vector (or matrix with nSeq columns if nSeq > 1) of the same length (or
nrow when nSeq > 1) and mode as z.

Author(s)

Donald E. Amos, Sandia National Laboratories, wrote the original fortran code. Martin Maechler
did the translation to C, and partial cleanup (replacing goto’s), in addition to the R interface.

BesselH 5

References

Abramowitz, M., and Stegun, 1. A. (1964, etc). Handbook of mathematical functions (NBS AMS
series 55, U.S. Dept. of Commerce), https://personal.math.ubc.ca/~cbm/aands/

Wikipedia (20nn). Bessel Function, https://en.wikipedia.org/wiki/Bessel_function

D. E. Amos (1986) Algorithm 644: A portable package for Bessel functions of a complex argument
and nonnegative order; ACM Trans. Math. Software 12, 3, 265-273.

D. E. Amos (1983) Computation of Bessel Functions of Complex Argument; Sand83-0083.

D. E. Amos (1983) Computation of Bessel Functions of Complex Argument and Large Order;
Sand83-0643.

D. E. Amos (1985) A subroutine package for Bessel functions of a complex argument and nonneg-
ative order; Sand85-1018.

Olver, EW.J. (1974). Asymptotics and Special Functions; Academic Press, N.Y., p.420

See Also

The base R functions besselI(), besselK(), etc.
The Hankel functions (of first and second kind), H." (z) and H, @ (2): Hankel.
The Airy functions Ai() and Bi() and their first derivatives, Airy.

For large x and/or nu arguments, algorithm AS~644 is not good enough, and the results may over-
flow to Inf or underflow to zero, such that direct computation of log ([, (x)) and log(K, (z)) are de-
sirable. For this, we provide besselI.nuAsym(), besselIasym() and besselK.nuAsym(*, log=
*), based on asymptotic expansions.

Examples

For real small arguments, BesselI() gives the same as base::besselI() :
set.seed(47); x <- sort(round(rlnorm(20), 2))

M <- cbind(x, b = besselI(x, 3), B = BesselI(x, 3))

stopifnot(all.equal (M[,"b"]1, M[,"B"], tol = 2e-15)) # ~4e-16 even

M

and this is true also for the 'exponentially scaled' version:
Mx <- cbind(x, b = besselI(x, 3, expon.scaled=TRUE),

B = BesselI(x, 3, expon.scaled=TRUE))
stopifnot(all.equal (Mx[,"b"], Mx[,"B"], tol = 2e-15)) # ~4e-16 even

BesselH Hankel (H-Bessel) Function (of Complex Argument)

https://personal.math.ubc.ca/~cbm/aands/
https://en.wikipedia.org/wiki/Bessel_function

6 BesselH

Description

Compute the Hankel functions H(1,*) and H (2, *), also called ‘H-Bessel’ function (of the third
kind), of complex arguments. They are defined as

H(1,v,2) :== HV (2) = J,(2) + iV, (2),
H(2,v,2) = H?(2) = J,(2) — i¥, (2),

where J,,(z) and Y,,(z) are the Bessel functions of the first and second kind, see BesselJ, etc.

Usage

BesselH(m, z, nu, expon.scaled = FALSE, nSeq = 1, verbose = 0)

Arguments
m integer, either 1 or 2, indicating the kind of Hankel function.
z complex or numeric vector of values different from 0.
nu numeric, must currently be non-negative.

expon.scaled logical indicating if the result should be scaled by an exponential factor (typi-
cally to avoid under- or over-flow).

nSeq positive integer; if > 1, computes the result for a whole sequence of nu values
of length nSeq, see ‘Details’ below.
verbose integer defaulting to 0, indicating the level of verbosity notably from C code.
Details

By default (when expon. scaled is false), the resulting sequence (of length nSeq) is form = 1, 2,
Y; = H(m,V+j - 1>Z)a

computed for j = 1,...,nSeq.

If expon.scaled is true, the sequence is for m = 1,2
y; = exp(—mzi) - H(m,v +j —1,2),
where m = 3 — 2m (and 12 = —1),for j = 1,...,nSeq.

Value

a complex or numeric vector (or matrix if nSeq > 1) of the same length and mode as z.

Author(s)

Donald E. Amos, Sandia National Laboratories, wrote the original fortran code. Martin Maechler
did the R interface.

References

see Bessell.

bessell.nuAsym

See Also

Bessell etc; the Airy function Airy.

Examples

nus <- ¢(1,2,5,10)
for(i in seqg_along(nus))
curve(BesselH(1, x, nu=nus[i]), -10, 10, add= i > 1, col=i, n=1000)

legend("topleft”, paste("nu =

nu = 10 looks
curve(BesselH(1,

n

, format(nus)), col = seq_along(nus), lty=1)

a bit "special” ... hmm. . .
X, nu=10), -.3, .3, col=4,

ylim = ¢(-10,10), n=1000)

=== H(2, *) --mmmmmmmmmmme-

for(i in seqg_along(nus))
curve(BesselH(2, x, nu=nus[i]), -10, 10, add= i > 1, col=i, n=1000)

legend("bottomright”, paste("nu =

the same nu =

n

, format(nus)), col = seqg_along(nus), lty=1)
10 behavior ..

bessell.nuAsym

Asymptotic Expansion of Bessel I(x,nu) and K(x,nu) for Large nu (and
x)

Description

Compute Bessel functions I,,(x) and K, (z) for large v and possibly large x, using asymptotic
expansions in Debye polynomials.

Usage

bessell.nuAsym(x, nu, k.max, expon.scaled
besselK.nuAsym(x, nu, k.max, expon.scaled

Arguments
X
nu
k. max

expon.scaled

log

FALSE)
FALSE)

FALSE, log
FALSE, log

numeric or complex, with real part > 0.
numeric; The order (maybe fractional!) of the corresponding Bessel function.
integer number of terms in the expansion. Must be in @: 5, currently.

logical; if TRUE, the results are exponentially scaled, the same as in the corre-
sponding BesselI() and BesselK() functions in order to avoid overflow (I,,)
or underflow (K,), respectively.

logical; if TRUE, log(f(.)) is returned instead of f.

8 bessellasym

Details

Abramowitz & Stegun , page 378, has formula 9.7.7 and 9.7.8 for the asymptotic expansions of
I, (x) and K, (z), respectively, also saying When v — +o0, these expansions (of I, (vz) and
K, (vz)) hold uniformly with respect to z in the sector |argz| < %7‘(— €, where ¢ is an arbitrary
positive number. and for this reason, we require R(x) > 0.

The Debye polynomials u () are defined in 9.3.9 and 9.3.10 (page 366).

Value
a numeric vector of the same length as the long of x and nu. (usual argument recycling is applied
implicitly.)

Author(s)

Martin Maechler

References

Abramowitz, M., and Stegun, 1. A. (1964, etc). Handbook of mathematical functions, pp. 366, 378.

See Also

From this package Bessel: BesselI(); further, besselIasym() for the case when z is large and v
is small or moderate (using A.&S. (9.7.1) and (9.7.2)).

Further, from base: bessell, etc.

Examples

x <- ¢(1:10, 20, 50, 100, 100000)
nu <- c(1, 10, 20, 50, 10%(2:10))

sapply(0:4, function(k.)
sapply(nu, function(n.)

bessell.nuAsym(x, nu=n., k.max = k., log = TRUE)))
sapply(@:4, function(k.)
sapply(nu, function(n.)
besselK.nuAsym(x, nu=n., k.max = k., log = TRUE)))

bessellasym Asymptotic Expansion of Bessel I(x,nu) and K(x,nu) For Large x

bessellasym 9

Description

Compute Bessel function 7, (x) and K, (z) for large x and small or moderate v, using the asymp-
totic expansions (9.7.1) and (9.7.2), p.377-8 of Abramowitz & Stegun, for z — oo, even valid for

complex x,
Ia(x) :exp(x)/v 27rac-f(x,a)7
where L 1(0)
_ M p— L) —
f@a)=1-=g=+ gy

and p = 4a? and |arg(z)| < 7/2.

Whereas besselIasym(x,a) computes a possibly exponentially scaled and/or logged version of
I,(x), bessell.ftrms returns the corresponding ferms in the series expansion of f(x, a) above.

Usage
bessellasym (x, nu, k.max = 10, expon.scaled = FALSE, log = FALSE)
besselKasym (x, nu, k.max = 10, expon.scaled = FALSE, log = FALSE)
besselI.ftrms(x, nu, K = 20)

Arguments
X numeric or complex (with real part) > 0.
nu numeric; the order (maybe fractional!) of the corresponding Bessel function.
k.max, K integer number of terms in the expansion.

expon.scaled logical; if TRUE, the results are exponentially scaled in order to avoid overflow.
log logical; if TRUE, log(f(.)) is returned instead of f.

Details
Even though the reference (A. & S.) requires | arg z| < 7/2 for I() and | arg z| < 3m/2 for K(),
where arg(z) :=Arg(z), the zero-th order term seems correct also for negative (real) numbers.
Value

a numeric (or complex) vector of the same length as x.

Author(s)

Martin Maechler

References
Abramowitz, M., and Stegun, 1. A. (1964, etc). Handbook of mathematical functions (NBS AMS
series 55, U.S. Dept. of Commerce).

See Also

From this package Bessel() BesselI(); further, bessell.nuAsym() which is useful when v is large
as well, using A.&S. (9.7.7) and (9.7.8); further base bessell, etc.

10 bessells

Examples

x <= c(1:10, 20, 50, 100"(2:10))
nu <- c(1, 10, 20, 50, 100)
r <- lapply(c(0:4,10,20), function(k.)
sapply(nu, function(n.)
besselIasym(x, nu=n., k.max = k., log = TRUE)))
warnings()

try(# needs improvement in R [or a local workaround]
besselIasym(10000x(1+1i), nu=200, k.max=20, log=TRUE)
) # Error in loglp(-d) : unimplemented complex function

besselJs Bessel J() function Simple Series Representation

Description

Computes the modified Bessel J function, using one of its basic definitions as an infinite series, e.g.
A. & S., p.360, (9.1.10). The implementation is pure R, working for numeric, complex, but also
e.g., for objects of class "mpfr" from package Rmpfr.

Usage

besselJs(x, nu, nterm = 800, log = FALSE,
use.log = log || any(nu * log(x/2) > .Machine$double.max.exp * log(2)),
Ceps = if(isNum) 8e-16 else 2*(- x.@.Data[[1]]@prec))

Arguments
X numeric or complex vector, or of another class for which arithmetic methods
are defined, notably objects of class mpfr.
nu non-negative numeric (scalar).
nterm integer indicating the number of terms to be used. Should be in the order of
abs(x), but can be smaller for large X. A warning is given, when nterm was
possibly too small. (Currently, many of these warnings are wrong, as
log logical indicating if the logarithm log J.() is required.
use.log logical indicating if the logarithm should work in logarithmic scale notably even
when log = FALSE. Its smart default, makes besselJs(4, 1e10) to work, cor-
rectly giving @, where it gave NaN previously.
Ceps a relative error tolerance for checking if nterm has been sufficient. The default
is “correct” for double precision and also for multiprecision objects.
Value

a “numeric” (or complex or "mpfr") vector of the same class and length as x.

bessells 11

Author(s)

Martin Maechler

References

Abramowitz, M., and Stegun, 1. A. (1964-1972). Handbook of mathematical functions NBS AMS
series 55, U.S. Dept. of Commerce). https://personal.math.ubc.ca/~cbm/aands/page_360.
htm

See Also

This package BesselJ (), base besselJ(), etc

Examples

stopifnot(all.equal(besselJs(1:10, 1), # our R code --> 4 warnings, for x = 4:7
bessel] (1:10, 1)))# internal C code w/ different algorithm

Large 'nu
X <- (0:20)/4
if(interactive()) op <- options(nwarnings = 999)
(bx <- besselJ(x, nu=200))# base R's -- gives 19 (mostly wrong) warnings about precision lost
Visualize:
bj <- curve(besselJ(1, x), .001, 2*10, log="xy", n=1001,
main=quote(J[nul(1)), xlab = quote(nu), xaxt="n", yaxt="n") # 50+ warnings

eaxis <- if(!requireNamespace("sfsmisc”)) axis else sfsmisc::eaxis
eaxis(1, sub10 = c(-2,3)); eaxis(2)
abline(h = (J01 <- besselJ(1, 0)), col=adjustcolor(2, 1/2))
axis(4, at=J01, quote(J[0I(1)), las=2, col=2, col.axis=2, line = -1)
bj6 <- curve(besselJ(6, x), add=TRUE, n=1001, col=adjustcolor(2, 1/2), lwd=2)
plot(y~x, as.data.frame(bj6), log="x", type="1", col=2, lwd=2,

main = quote(J[nul(6)), xlab = quote(nu), xaxt="n")
eaxis(1, sub10=3); abline(h=0, lty=3)

large nu (non-log case) -- gave NaN wrongly (typically when it should have given 0):
stopifnot(exprs = {

besselJs(c(.1, 1:10), 999) ==

besselJs(c(.1, 1:10), 9999) == 0

besselJs(c(.1, 1:1000), 1e10) ==
besselJs(c(.1, 1:10), 1e20) == @ -- another *BUG*: Error ... lssum found non-positive sums

b

if(require("Rmpfr")) { ## Use high precision, notably large exponent range, numbers:
Bx <- besselJs(mpfr(x, 64), nu=200)
all.equal(Bx, bx, tol = 1e-15)# TRUE -- warnings were mostly wrong; specifically:
cbind(bx, Bx)
signif(asNumeric(1 - (bx/Bx)[19:21]), 4) # only [19] had lost accuracy

Withxout* mpfr numbers -- using log -- is accurate (here)
1lbx <- besselJs(X, nu=200, log=TRUE)
1Bx <- besselJs(mpfr(x, 64), nu=200, log=TRUE)

https://personal.math.ubc.ca/~cbm/aands/page_360.htm
https://personal.math.ubc.ca/~cbm/aands/page_360.htm

12 bessJsmINu

cbind(x, lbx, 1Bx)
stopifnot(all.equal(asNumeric(log(Bx)), lbx, tol=1e-15),
all.equal(1Bx, lbx, tol=4e-16))
3} # Rmpfr
if(interactive()) options(op) # reset 'nwarnings'

bessJIsmlNu Bessel J_v(x) for Very Small Order v

Description

Use a few terms Taylor approximation for Bessel’s J,, () for fixed « and v — 0.

Usage

bessIsmlNu(x, nu, nTrms, m.max)

Arguments
X, Nu numeric Bessel J() arguments, see e.g., bessel]J.
nTrms integer, one of 0, 1, or 2, denoting the number of Taylor series terms to be used,
nTrms = @ simply returning BesselJ(x, 0).
m.max positive integer specifying the Taylor series order used.
Details

A. & S. (9.1.10) p. 360 (Ascending Series) (9.1.64) p. 362 (derivative wrt order)

............ show derivation?

Value
The function explicitly calls Vectorize(<fn>, c("x", "nu")), hence a numeric vector conform-
ing to (e.g.,) x + nu.

Author(s)

Martin Maechler

References

Abramowitz, M., and Stegun, I. A. (1964-1972). Handbook of mathematical functions (NBS AMS
series 55, U.S. Dept. of Commerce). https://personal.math.ubc.ca/~cbm/aands/page_360.
htm

See Also

This package’s BesselJ, base R’s besselJ

https://personal.math.ubc.ca/~cbm/aands/page_360.htm
https://personal.math.ubc.ca/~cbm/aands/page_360.htm

bl

Examples

(nuSml <- 2*-c(seq(30, 53, by=1/2), 75, 100, 300, 800, 1022, 1074, Inf))

9.3e-10 6.6e-10 ... 1.7e-16 ..
bug in R (at least up to Jan. 1 2026) :
options(digits = 14) # show more digits
Jsml <- sapply(nuSml, function(nu) besselJ(pi/2, nu)
tail(cbind(nuSml, Jsml), 20) # complete "divergence”
Jsm.nT.1 <- bessJsmlNu(pi/2, nuSml, nTrms = 1, m.max
Jsm.nT.2 <- bessJsmlNu(pi/2, nuSml, nTrms = 2, m.max
cbind(nuSml, Jsml, Jsm.nT.1, Jsm.nT.2)
table(Jsm.nT.2 == Jsm.nT.1) # all TRUE (really ???)
all.equal(Jsm.nT.2, Jsm.nT.1, tolerance =
stopifnot(all.equal(Jsm.nT.2, Jsm.nT.1, tolerance =

second example; nu
X, <= 2
nu2 <- 2*-seq(1, 30, by = 1/8)

not very small

Jsm2.1 <- bessJsmlNu(x., nu2, nTrms = 1, m.max = 40)
Jsm2.2 <- bessJsmlNu(x., nu2, nTrms = 2, m.max = 40)
table(Jsm2.2 == Jsm2.1) # now they *dox differ
bessJ2 <- besselJ(x., nu2)

BessJ2 <- sapply(nu2, function(nu) BesselJ(x., nu))

J() function values: ------------------——-

matplot(nu2, cbind(bessJ2, BessJ2, Jsm2.1, Jsm2.2),

sum(i <- nu2 < le-4)

stopifnot(all.equal(BessJ2[i], Jsm2.2[i], tolerance
all.equal(BessJ2[i], Jsm2.1[i], tolerance

)
.f.‘

0

)

2.22e-308 4.94e-324 0.0

or
30)
30)

hu <~ 10%-{16}

show

4e-16))

log = "x",

n

nyn

type - Illll)

4e-14),
4e-9))

n

n ’

|error| wrt BesselJ() ---—-—--—---—-—-

matplot(nu2, abs(cbind(bessJ2, Jsm2.1, Jsm2.2) - BessJ2), log = "xy",
type = "1", ylim = c(5e-17, 1e-10),
xlab = quote(”"nu” == nu), xaxt = "n", yaxt =

main = substitute(list(abs("<bess J>"(x, nu) - BesselJ(x, nu)), x == XX),

list(XX = formatC(x.))))

eaxis <- if(!requireNamespace("sfsmisc”)) axis else sfsmisc::eaxis

eaxis(1, sub10 = c(-2,0)); eaxis(2)

legend("topleft”, 1ty = 1:5, lwd = 2, col = 1:6, bty = "n",

legend = paste@(c("besselJ(”, paste@("bessIsmlNu(*, nTrms =

”71:2))7

")

13

bI

Bessel I() function Simple Series Representation

Description

Computes the modified Bessel I function, using one of its basic definitions as an infinite series. The
implementation is pure R, working for numeric, complex, but also e.g., for objects of class "mpfr”

from package Rmpfr.

14 bl

Usage

besselIs(x, nu, nterm = 800, expon.scaled = FALSE, log = FALSE,
Ceps = if (isNum) 8e-16 else 2*(-x@.Datal[[1]]@prec))

Arguments
X numeric or complex vector, or of another class for which arithmetic methods
are defined, notably objects of class mpfr (package Rmpfr).
nu non-negative numeric (scalar).
nterm integer indicating the number of terms to be used. Should be in the order of

abs(x), but can be smaller for large X. A warning is given, when nterm was
chosen too small.

expon.scaled logical indicating if the result should be scaled by exp(—abs(z)).

log logical indicating if the logarithm logI.() is required. This allows even more
precision than expon.scaled=TRUE in some cases.

Ceps a relative error tolerance for checking if nterm has been sufficient. The default
is “correct” for double precision and also for multiprecision objects.

Value

a “numeric” (or complex or "mpfr") vector of the same class and length as x.

Author(s)

Martin Maechler

References

Abramowitz, M., and Stegun, 1. A. (1964,.., 1972). Handbook of mathematical functions (NBS
AMS series 55, U.S. Dept. of Commerce).

See Also

This package Bessell, base bessell, etc

Examples

(nus <- c(outer((0:3)/4, 1:5, “+7)))
stopifnot(
all.equal(bessellIs(1:10, 1), # our R code
bessell (1:10, 1)) # internal C code w/ different algorithm

sapply(nus, function(nu)

all.equal(bessells(1:10, nu, expon.scale=TRUE), # our R code
Bessell (1:1@, nu, expon.scale=TRUE)) # TOMS644 code

)

complex argument [gives warnings 'nterm=800' may be too smalll]
sapply(nus, function(nu)

https://CRAN.R-project.org/package=Rmpfr

bl

15

all.equal(bessells((1:10)*(1+1i), nu, expon.scale=TRUE), # our R code
Bessell ((1:10)*(1+1i), nu, expon.scale=TRUE)) # TOMS644 code
)
)

Large 'nu
X <- (0:20)/4
(bx <- bessell(x, nu=200))# base R's -- gives (mostly wrong) warnings
if(require("Rmpfr”)) { ## Use high precision (notably large exponent range) numbers:
Bx <- besselIs(mpfr(x, 64), nu=200)
all.equal(Bx, bx, tol = 1e-15)# TRUE -- warning were mostly wrong; specifically:
cbind(bx, Bx)
signif(asNumeric(1 - (bx/Bx)[19:21]), 4) # only [19] had lost accuracy

Withxout*x mpfr numbers -- using log -- is accurate (here)
(1bx <- bessellIs(X, nu=200, log=TRUE))
1Bx <- besselIs(mpfr(x, 64), nu=200, log=TRUE)
stopifnot(all.equal(asNumeric(log(Bx)), lbx, tol=1e-15),
all.equal (1Bx, lbx, tol=4e-16))
} # Rmpfr

Index

* math Hankel, 3, 5
Airy,2 Hankel (BesselH), 5
Bessel, 4
BesselH, 5 log, 9

bessell.nuAsym, 7
bessellasym, 8
besselJs, 10
bessJsmlNu, 12
bI, 13

matrix, 4, 6
mode, 4, 6
mpfr, 10, 13, 14

nrow, 4

A 3 numeric, 10, 13

Airy,2,5,7
AiryA (Airy), 2
AiryB (Airy), 2
Arg, 2,9

Vectorize, 12

Bessel, 4

BesselH, 5
Bessell, 3, 6-9, 14

Bessell (Bessel), 4
bessell, 4 5,8, 9, 14
bessell.ftrms (bessellasym), 8
bessell.nuAsym, 5,7, 9
besselIlasym, 5,8, 8

bessells (bI), 13
BessellJ, 3,6, 11, 12

BesselJ (Bessel), 4
bessel], 11, 12

besselJs, 10

BesselK (Bessel), 4
besselkK, 5
besselK.nuAsym, 5
besselK.nuAsym (bessell.nuAsym), 7
besselKasym (besselIasym), 8
BesselY (Bessel), 4
bessJsmlNu, 12

bI, 13

class, 10, 14
complex, 7,9, 10, 13

16

	Airy
	Bessel
	BesselH
	besselI.nuAsym
	besselIasym
	besselJs
	bessJsmlNu
	bI
	Index

