## ----opts, echo = FALSE, message = FALSE, warning = FALSE--------------------- knitr::opts_chunk$set(collapse = TRUE, comment = " ", fig.width = 7, fig.height = 7, fig.align = "center") ## ----eval = FALSE------------------------------------------------------------- # install.packages("BDgraph") # # library(BDgraph) ## ----pressure, echo = FALSE, out.width = '85%'-------------------------------- knitr::include_graphics("Figure_1.png") ## ----eval = FALSE------------------------------------------------------------- # bdgraph(data, n = NULL, method = "ggm", algorithm = "bdmcmc", iter = 5000, # burnin = iter / 2, not.cont = NULL, g.prior = 0.5, df.prior = 3, # g.start = "empty", jump = NULL, save = FALSE, # cores = NULL, threshold = 1e-8, verbose = TRUE) ## ----eval = FALSE------------------------------------------------------------- # plinks(bdgraph.obj, round = 2, burnin = NULL) ## ----eval = FALSE------------------------------------------------------------- # select(bdgraph.obj, cut = NULL, vis = FALSE) ## ----eval = FALSE------------------------------------------------------------- # plotcoda(bdgraph.obj, thin = NULL, control = TRUE, main = NULL, # verbose = TRUE, ...) ## ----eval = FALSE------------------------------------------------------------- # traceplot(bdgraph.obj, acf = FALSE, pacf = FALSE, main = NULL, ...) ## ----eval = FALSE------------------------------------------------------------- # compare(pred, actual, main = NULL, vis = FALSE) ## ----eval = FALSE------------------------------------------------------------- # plotroc = function(pred, actual, cut = 20, smooth = FALSE, ...) ## ----eval = FALSE------------------------------------------------------------- # bdgraph.sim(p = 10, graph = "random", n = 0, type = "Gaussian", prob = 0.2, # size = NULL, mean = 0, class = NULL, cut = 4, b = 3, # D = diag(p), K = NULL, sigma = NULL, # q = exp(-1), beta = 1, vis = FALSE, rewire = 0.05, # range.mu = c(3, 5), range.dispersion = c(0.01, 0.1)) ## ----eval = FALSE------------------------------------------------------------- # graph.sim(p = 10, graph = "random", prob = 0.2, size = NULL, class = NULL, # vis = FALSE, rewire = 0.05) ## ----------------------------------------------------------------------------- library(BDgraph) set.seed(5) data.sim <- bdgraph.sim(n = 60, p = 8, graph = "scale-free", type = "Gaussian") round(head(data.sim $ data, 4), 2) ## ----eval = TRUE-------------------------------------------------------------- sample.bdmcmc <- bdgraph(data = data.sim, method = "ggm", algorithm = "bdmcmc", iter = 5000, save = TRUE, verbose = FALSE) ## ----------------------------------------------------------------------------- summary(sample.bdmcmc) ## ----------------------------------------------------------------------------- sample.rjmcmc <- bdgraph(data = data.sim, method = "ggm", algorithm = "rjmcmc", iter = 5000, save = TRUE, verbose = FALSE) ## ----eval = FALSE------------------------------------------------------------- # plotroc(list(sample.bdmcmc, sample.rjmcmc), data.sim, smooth = TRUE, # labels = c("BDMCMC", "RJMCMC"), color = c("blue", "red")) ## ----------------------------------------------------------------------------- compare(list(sample.bdmcmc, sample.rjmcmc), data.sim, main = c("True graph", "BDMCMC", "RJMCMC"), vis = TRUE) ## ----------------------------------------------------------------------------- plotcoda(sample.bdmcmc, verbose = FALSE) plotcoda(sample.rjmcmc, verbose = FALSE)