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This article is an introduction to the R package HMMmlselect for estimating the order

(i.e., the number of states) of hidden Markov models (HMM). Section 1 briefly describes the

theoretical framework of the marginal Likelihood method as proposed in Chen et al. [2017+].

Section 2 states R functions contained in the package. Section 3 demonstrates usage of the

package.

1 HMM Order Selection via Marginal Likelihood

A hidden Markov model (HMM) has two major components: an underlying (unobserved)

ergodic Markov chain, denoted by X = {Xi, i ≥ 0}, and an observed trajectory, denoted

by Y = {Yi, i ≥ 1}. Let K be the number of hidden states, then each Xi takes a value in

XK = {1, · · · , K}. The transition matrix of X is denoted by QK = {qkl, 1 ≤ k, l ≤ K} ∈ QK ,

i.e., qkl = P (Xi+1 = l|Xi = k) for all i ≥ 0. Conditioning on X, Y are independent random

variables on Y , and the distribution of Yi given Xi = k is f(·|θk) for i ≥ 1 and k ∈ XK , where

θk ∈ Θ. Denote the model parameters by φK = (QK ;θ1, . . . ,θK) ∈ QK ×ΘK = ΦK .

In an HMM with n observations, we observe y1:n = {y1, y2, · · · , yn} ∈ Yn but not the

underlying process x1:n = {x1, x2, · · · , xn}. The likelihood of y1:n given the parameters φK ,

after integrating out the hidden states x1:n, is

p(y1:n|φK) =
∑

x1:n∈Xn
K

[
K∏
k=1

{ ∏
i:xi=k

f(yi|θk)

}
×

{
n∏

i=1

qxi−1xi

}]
, (1.1)

where X n
K denotes the product space of n copies of XK .
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Let p0(φK) be the prior distribution for φK , then we estimate the number of hidden states

by the K that maximize the marginal likelihood, after integrating out the parameters,

K̂n := arg maxK≥1 {pK(y1:n)} = arg maxK≥1

{∫
ΦK

p(y1:n|φK)p0(φK)dφK

}
.

Computation. Since the marginal likelihood pK(y1:n) is the normalizing constant of the

posterior distribution p(φK |y1:n) = p(y1:n|φK)p0(φK)/pK(y1:n) and the un-normalized pos-

terior likelihood p(y1:n|φK)p0(φK) can be evaluated at any φK using the forward algo-

rithm [Baum and Petrie, 1966, Baum et al., 1970], we can use the importance sampling

(or reciprocal importance sampling) strategy to estimate the marginal likelihood [Geweke,

1989, Oh and Berger, 1993, Newton and Raftery, 1994, Gelfand and Dey, 1994, Chen and

Shao, 1997, DiCiccio et al., 1997, Neal, 2005, Steele et al., 2006, Ionides, 2008].

The detailed procedure for estimating the marginal likelihood pK(y1:n) is as follows.

1. Obtain posterior samples. Sample from p(φK |y1:n) using a preferred Markov chain

Monte Carlo (MCMC) algorithm (see Liu [2001] and references therein), and denote

the samples by {φ(i)
K }Ni=1 (where N is often a few thousand).

2. Find a “good” importance function. Construct the importance function g(·) by fitting

a Gaussian mixture with R package Mclust [Fraley and Raftery, 2006] or by simply

fitting a multivariate Gaussian using samples {φ(i)
K }Ni=1.

3. Choose a finite region. Choose ΩK to be a bounded subset of the parameter space such

that
∫

ΩK
g(·) ≈ 0.5. This is achieved through finding an appropriate finite region for

each mixing component of g(·), avoiding the tail parts.

4. Define p(y1:n,φ) = p(y1:n|φ)p0(φ). Estimate pK(y1:n) using either way as follows:

• Reciprocal importance sampling. Approximate pK(y1:n) by

p̂
(RIS)
K (y1:n) =

[
1

N
∫

Ωk
g(·)

N∑
i=1

g(φ
(i)
K )

p(y1:n,φ
(i)
K )

I
φ

(i)
K ∈ΩK

]−1

, (1.2)

where I
φ

(i)
K ∈ΩK

= 1 if φ
(i)
K ∈ ΩK and zero otherwise.

• Importance sampling.

(a) Draw M independent samples from g(·), denoted by {ψ(j)
K }1≤j≤M .
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(b) Approximate pK(y1:n) by

p̂
(IS)
K (y1:n) =

1

MPΩ

M∑
j=1

p(y1:n,ψ
(j)
K )

g(ψ
(j)
K )

I
ψ

(j)
K ∈ΩK

, (1.3)

where I
ψ

(j)
K ∈ΩK

= 1 if ψ
(j)
K ∈ ΩK and zero otherwise; PΩ = #S/N , where

S = {i : φ
(i)
K ∈ ΩK ; 1 ≤ i ≤ N} and #S denotes its cardinality.

Choice of Priors. We choose independent, conjugate priors for each θk and QK based on

two principles: first is to be flat/noninformative and second is to be conformal to the scale

of the data. The hyper parameters are set to be fixed constants, see Chen et al. [2017+] for

more details. The choice of priors is already implemented in the R package thus the user does

not need to supply it unless scientific knowledge indicates certain hyper parameter values,

which could be set manually by adding corresponding fields to the optional input list.

2 R Implementation

Order Selection. The function that estimates the order of a Gaussian HMM is

results = HMMmlselect ( y , optionalfit = list ( ) )

This function only requires the observed HMM trace (i.e., time-series) y1:n, a column vector,

and a list named optionalfit, which contains optional inputs and its default is an empty

list, see Appendix A for the available optional inputs and their default values.

It returns (1) the estimated number of hidden states using the marginal likelihood method,

(2) the marginal likelihood values corresponding to 2, 3, . . . number of hidden states, and (3)

the fitted model parameters given the estimated number of hidden states.

Visualization. The estimation results can be visualized using

PlotHMM ( y , results )

The input results is the output from function HMMmlselect.
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Simulation. The function that generates an HMM trace is

y = HMMsim ( n , optionalsim = list ( ) )

This function requires specifying the number of observations for the simulated HMM, n,

and an list named optionalsim, which contains optional inputs and its default value is an

empty list, see Appendix B for the available optional inputs and their default values.

3 Numerical Demonstration

Please run ’demon.R’ for annotated numerical examples that illustrate the usage of the

functions in the package and the corresponding results.

‘demon.R’

# Example 1: simple example with all tuning parameters set as default values

obs = HMMsim ( n = 200 )$obs # simulate a 200 observations HMM

results = HMMmlselect ( y = obs ) # perform order selection and estimation

PlotHMM ( y = obs, results ) # visualize the results, see figure 1

# Example 2: manually setting values for hyper parameters

of = list ( priors = list (mu_prior_mean = 1:3,

mu_prior_sd = rep (0.2, 3)),

nu = 2, s2 = 0.1,

P_prior = matrix(1, 3, 3),

pi_prior = rep(1, 3) )

results = HMMmlselect ( y = obs , optionalfit = of )
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Figure 1: A fitted trace after determining the number of states using HMMmlselect package.

# Example 3: use Gaussian mixture model marginal likelihood

results = HMMmlselect ( y = obs, list ( boolHMM = FALSE ) )

# Example 4: use BIC to determine the order of HMM

resultsBIC = RobustBIC ( y = obs )
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A Optional Inputs for HMMmlselect

The R command for specifying the optional inputs for function HMMmlselect is

of = list ( a = , b = , c = , ... ) # Caution: replace the a, b, c, ...

results = HMMmlselect ( y, optionalfit = of )

Users can set values for certain chosen fields by replacing the a, b, c, ... with corre-
sponding field names listed as follows and simply ignoring the other unnecessary fields.
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Name Explanation Default Value(s)

Kfits Possible Number of States (2, 3, . . . , 6)

RIS Using reciprocal importance sampling FALSE

IS Using importance sampling TRUE

RunParallel Using parallel computing TRUE

boolUseMclust Using Mclust package FALSE

priors A list of hyper parameters Flata

boolHMM Use HMM marginal likelihood TRUE b

aSee Chen et al. [2017+] for details.
bUse Gaussian mixture marginal likelihood if FALSE.

The list of hyper parameters for priors is

list (mu_prior_mean = , # prior (Gaussian) mean for mu

mu_prior_sd = , # prior standard deviation for mu

nu = , s2 = , # degree of freedom and scale
# for scaled inverse prior of sigma

P_prior = , # Dirichilet priors for rows of transition matrix

pi_prior = ) # Dirichilet prior for first hidden state

B Optional Inputs for HMMsim

The R command for specifying the optional inputs for function HMMsim is

os = list ( a = , b = , c = , ... ) # Caution: replace the a, b, c, ...

y = HMMsim ( n, optionalsim = os )

Users can set values for certain chosen fields by replacing the a, b, c, ... with corre-
sponding field names listed as follows and simply ignoring the other unnecessary fields.

Name Explanation Default Value(s)

Ksim Number of States 3

P Transition matrix Flat K ×K

mu Means of K states 1, 2, . . . , K

sigma Standard deviations of K states (0.1, . . . , 0.1)

pi Distribution of first hidden state Flat

BoolWritetoFile Output simulated trace to file FALSE

Filenameoutput Filename to output simulated trace ’HMMtrace.txt’
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C Other Functions

C.1 Robust BIC Computation

The Bayesian information criterion (BIC) is a widely adopted method for order selection of
HMMs. We also implement this in the package. Robust BIC values results from maximum
likelihood estimators (MLEs) obtained through multiple starting points and double-checked
with posterior samples. The function that calculates the BIC values robustly is:

BICresults = RobustBIC ( y , optionalbic = list ( ) )

This function only requires the observed HMM trace y and returns the BIC values of
K = 2, 3, . . . , 6 hidden states. The optional input, optionalbic, is an empty list by default
and can be specified as a list containing any of the following fields.

Name Explanation Default Value(s)

Kfits Possible number of states 2, 3, . . . , 6

Nstart Number of starting points 50

verbose Print details FALSE

This function returns the estimated number of hidden states through minimizing the BIC,
the BIC values of all the possible number of hidden states, and the fitted model parameters
under the estimated number of hidden states under the BIC method.

C.2 HMM and Gaussian Mixture Fittings

The following function performs (a) HMM fitting through the Expectation-Maximization al-
gorithm (METHOD = 1), (b) HMM fitting through the Markov chain Monte Carlo algorithm
(METHOD = 2), and (c) Gaussian mixture model fitting through the Markov chain Monte
Carlo algorithm (METHOD = 3).

results = HMMfit ( y , K, METHOD, optionalfit = list ( ) )

This function only requires the observed HMM trace y, the number of hidden states K,
and the METHOD chosen. The optional input, optionalfit, is an empty list by default and
can be specified as a list containing any of the following fields.

Name Explanation Default Value(s)

Ngibbs Number of samples 5000

Burnin Number of burnin 5000

Thin Number of thinning 10

Nstart Number of starting points 50

verbose Print details FALSE

priors Same as in HMMmlselect Flat
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This function returns the estimated number of hidden states through maximizing the
marginal likelihood, the marginal likelihood values of all the possible number of hidden states,
and a summary of posterior distributions (together with posterior samples) of model param-
eters under the estimated number of hidden states under the marginal likelihood method.
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