Package ‘R453Plus1Toolbox’

September 18, 2025
Type Package
Title A package for importing and analyzing data from Roche's Genome
Sequencer System
Version 1.58.0
Date 2024-04-23
Author Hans-Ulrich Klein, Christoph Bartenhagen, Christian Ruckert
Maintainer Hans-Ulrich Klein <h.klein@uni-muenster.de>
Depends R (>=2.12.0), methods, VariantAnnotation (>= 1.25.11),
Biostrings (>= 2.47.6), pwalign, Biobase

Imports utils, grDevices, graphics, stats, tools, xtable, RZHTML,
TeachingDemos, BiocGenerics, S4Vectors (>= 0.17.25), IRanges
(>=2.13.12), XVector, GenomicRanges (>= 1.31.8),
SummarizedExperiment, biomaRt, BSgenome (>= 1.47.3), Rsamtools,
ShortRead (>= 1.37.1)

Suggests rtracklayer, BSgenome.Hsapiens.UCSC.hg19,
BSgenome.Scerevisiae. UCSC.sacCer2

Description The R453Plusl Toolbox comprises useful functions for the
analysis of data generated by Roche's 454 sequencing platform.
It adds functions for quality assurance as well as for
annotation and visualization of detected variants,
complementing the software tools shipped by Roche with their
product. Further, a pipeline for the detection of structural
variants is provided.

License LGPL-3

biocViews Sequencing, Infrastructure, Datalmport, DataRepresentation,
Visualization, QualityControl, ReportWriting

git_url https://git.bioconductor.org/packages/R453Plus1Toolbox
git_branch RELEASE_3_21

git_last_commit 3dce5fb

git_last_commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-09-17

2 Contents

Contents
alignShortReads 3
AnnotatedVariants-class 4
annotateVariants L. Lo 5
assayDataAmp 7
ava2vef ..o 8
AVASet . . e 9
AVASet-class e e 11
avaSetExampleo 14
avaSetFiltered 14
avaSetFiltered_annot e 15
baseFrequency 16
baseQualityHist e e 16
baseQualityStats L. e e e e e e 17
breakpoints L e e e 18
Breakpoints-class 18
calculateTiTv o e 20
CAPIUIEAITAY .« . . v o v v bt e e e e e e e e e e e e e e e e 21
complexity.dust e 22
complexity.entropyo e e e e e e 23
convertCigar e e e e e e e e e e 24
coverageOnTarget e 24
demultiplexReads 25
detectBreakpoints L e 26
dinucleotideOddsRatio 29
fDataAmp e 30
featureDataAmp L 31
filterChimericReads L 32
flowgramBarplot L 33
geContent L e e e e e e e 34
gcContentHist 34
gcPerPosition 35
genomeSequencerMIDs Lo 36
getAlignedReads 37
getAmInoAbbr L L e e 38
getVariantPercentages L. e e 38
homopolymerHist L 39
htmlReport 40
MapperSet L e e e 41
MapperSet-class 43
mapperSetExample 44
mergeBreakpoints L. L 45
mutationInfo 47
nucleotideCharts 47
plotAmpliconCoverage 48
plotChimericReads 49

plotVariants L 50

alignShortReads 3

plotVariationFrequency 53
positionQualityBoxplot 55
qualityReportSFF 55
readLengthHist L 56
readLengthStats e 57
readSFF o e 57
readsOnTarget e e e 58
referenceSequenceso e 59
TEZIONS .« . v v v v v e e e e e e e e e e e 60
removelinker L 60
sequenceCapturelinkers L 61
sequenceQualityHist L. 62
setVariantFilter 63
sff2fastqo 64
SFFContainer-class 64
SFFRead-class e 67
VarlantS e e e e e e 69
writeSFF L 69
Index 71
alignShortReads Exact alignment of DNA sequences against a reference
Description

This method aligns given sequences against a given reference genome using the matchPDict method.
Only exact (no errors) and unique matches are returned.

Usage

alignShortReads(object, bsGenome, seqNames, ensemblNotation)

Arguments
object The reads that should be aligned agiven either as a DNAStringSet or a AVASet
instance. In the latter case the reference sequences are extracted and aligned.
bsGenome A bsGenome instance providing the reference sequences.
segNames The names of the sequences in bsGenome that should be used. If omitted, all
reference sequences are used.
ensemblNotation
If set to TRUE, “chr” is removed from the reference sequences’ names in the
returned alignment. Default value is FALSE.
Details

All reads are aligned against the reference and its reverse complement. If the reads are not in 5’
to 3’ orientation, they should be reversed before. Note that only exact and unique alignments are
reported. Use matchPDict directly for more flexibility.

4 Annotated Variants-class

Value

An object of class AlignedRead or a AVASet instance.

Author(s)

Hans-Ulrich Klein

See Also

matchPDict, DNAStringSet, AlignedRead, AVASet

Examples

library(”"BSgenome.Scerevisiae.UCSC.sacCer2")

reads = DNAStringSet(c(
"CCGTTCAAAGAGCCCTTGGCCCATAATCCACCGGTT",
"ATCCTGCCACAGGAGTCCATGGAGGTTTCGCCA"))

alignShortReads(reads, Scerevisiae, segNames="chrIII")

AnnotatedVariants-class
Class "AnnotatedVariants"

Description

A class for storing annotation about variants. An object of this class is returned by the method
annotateVariants. The class has not been designed to be created by users directly.

Details

The list encapsulated by this class has one element for each variant. Each element is a nested list
with the elements genes, transcripts, exons and snps. All these elements are data frames listing
genes, transcripts, exons or snps respectively that were affected by the variant. Use the example
below to explore the data frames’ contents.

Objects from the Class

Objects can be created by calls of the form new(”AnnotatedVariants”). The method annotateVariants
returns Annotated Variants-objects.

Slots

annotatedVariants: Object of class "1ist"” with one entry for each variant.

annotate Variants 5

Methods

annotatedVariants signature(object = "AnnotatedVariants"”): Get the list with variants.

annotated Variants<- signature(object = "AnnotatedVariants”, value = "list"): Setanew
list with variants.

names signature(x = "AnnotatedVariants"): Get the names of the with variants.

names<- signature(x = "AnnotatedVariants”, value = "character”): Set the names of the
variants.
Author(s)
Hans-Ulrich Klein

See Also

annotateVariants, htmlReport

Examples

variants = data.frame(
start=c(106157528, 106154991,106156184),
end=c (106157528, 106154994,106156185),

chromosome=c("4", "4", "4"),
strand=c("+", "+", "+"),

seqrRef=c("A", "ATAG", "---"),
seqMut=c("G", "----", "ATA"),

seqSur=c("TACAGAA", "TTTATAGATA", "AGC---TCC"),
stringsAsFactors=FALSE)

rownames(variants) = c("snp”, "del”, "ins")

Not run: av = annotateVariants(variants)

Not run: annotatedVariants(av)[["snp”]]

annotateVariants Adds genomic information to variants

Description

This method annotates given genomic variants (mutations). Annotation includes affected genes,
exons and codons. Resulting amino acid changes are returned as well as dbSNP identifiers, if
the mutation is already known. All information is fetched from the Ensembl GRCh37 server via
biomaRt using the datasets hsapiens_gene_ensembl and hsapiens_snp.

Usage

annotateVariants(object, bsGenome)

6 annotate Variants

Arguments
object A data frame storing variants or an instance of AVASet/MapperSet or a data
frame (see details).
bsGenome An object of class BSGenome giving the genome to be used as reference sequence
to calculate amino acid changes. This argument is only applicable when object
is of type MapperSet. Default is ‘BSgenome.Hsapiens.UCSC.hg19’. Note that
the genome should fit to the Ensembl annotation.
Details

If a data frame is given, the following columns must be present:

start genomic start position in the current Ensembl genome
end genomic end position in the current Ensembl genome
chromosome chromosome in ensembl notation (i.e. "1","2", ..., "Y")
strand "+" or "-" relative to the nucleotide bases given below
seqRef reference sequence

seqMut sequence of the observed variant

seqSur reference sequence extended for 3 bases in both directions

The rownames of the data frame are used as mutations’ names (IDs). See examples for a properly
defined data drame.
Value

An object of class AnnotatedVariants. Affected genes, transcripts and exon as well as known
SNPs are stored in a list-like structure. See the documentation of class AnnotatedVariants-class
for details.

Author(s)
Hans-Ulrich Klein

See Also

AnnotatedVariants-class, AVASet-class, MapperSet-class, htmlReport

Examples

variants = data.frame(
start=c(106157528, 106154991,106156184),
end=c (106157528, 106154994,106156185),

chromosome=c("4", "4", "4"),
strand=c("+", "+", "+"),

seqRef=c(”A", "ATAG", "---"),
segMut=c("G", "---=", "ATA"),

seqSur=c("TACAGAA", "TTTATAGATA", "AGC---TCC"),
stringsAsFactors=FALSE)

rownames(variants) = c("snp”, "del”, "ins")

Not run: annotateVariants(variants)

assayDataAmp 7

assayDataAmp Access the amplicon data of an AVASet.

Description

Similar to assayData of the Biobase ExpressionSet, this function returns the assay data of the
amplicon slot of an instance of the AVASet.

Usage
assayDataAmp(object)
Arguments
object An link{AVASet-class} object.
Value

The assay data of the amplicon slot consists of a list of two data frames with the number of forward
and reverse reads of all amplicons for each sample (see AVASet-class for details).

Author(s)

Christoph Bartenhagen

See Also

fDataAmp, featureDataAmp, AVASet-class

Examples

load an AVA dataset containing 6 samples, 4 amplicons and 259 variants
data(avaSetExample)

show contents of amplicon assay data
assayDataAmp(avaSetExample)

8 ava2vcf

ava2vcf Convert an AVASet object into a VCF object

Description

Converts all variants in a given AVASet object into a VCF object and writes it to a file in VCF
format if filename is given.

Usage

ava2vcf(object, filename, annot)

Arguments
object An object of class AVASet.
filename The name of the VCEF file to write in, if ommitted no file is written.
annot An object of class AnnotatedVariants. Optional, if given variants are anno-
tated with informations from dbSNP.
Value

An object of class VCF-class

Author(s)

Christian Ruckert

See Also

AnnotatedVariants-class, AVASet-class, VCF-class, writeVcf

Examples

data("avaSetFiltered")
vef <- ava2vcf(avaSetFiltered)

AVASet

AVASet

Creating an AVASet

Description

This function imports a project of Roche’s Amplicon Variant Analyzer (AVA) Software. It stores
all information into an extended version of the Biobase eSet.

Usage

AVASet (dirname,

Arguments

dirname

avaBin

file_sample
file_amp
file_reference

file_variant

avaBin, file_sample, file_amp, file_reference, file_variant, file_variantHits)

The path of the AVA project.

Without AVA-CLI (AVA version < 2.6): A directory that contains the files and

subdirectories "Amplicons/ProjectDef/ampliconsProject.txt", "Amplicons/Results/Variants/current Varian
"Amplicons/Results/Variants", "Amplicons/Results/Align".

Using AVA-CLI (recommended): Path usually ends with directory "project-

folder"

The directory containing the AVA-CLI binary doAmplicon (usually "bin" in the
AVA installation directory)

Sample information exported with the AVA-CLI. File has to be in CSV format.
Amplicons exported with the AVA-CLI. File has to be in CSV format.
Reference sequences exported with the AVA-CLI. File has to be in CSV format.
Variant information exported with the AVA-CLI. File has to be in CSV format.

file_variantHits

Details

Report of variant hits exported with the AVA-CLI. File has to be in CSV format.

The five arguments for AVA command line interface (AVA-CLI) exports are optional and useful for
exported projects, when no AVA software is installed. For exporting, start the AVA-CLI with the
command "doAmplicon" and use the commands "open", then "list sample", "list amplicon", "list
reference", "list variant" and "report variantHits". See AVASet-class for more details.

Giving only a project directory and the path to the AVA-CLI binary doAmplicon, AVASet will import
all information by accessing the AVA-CLI from within R.

An AVASet object consists of three slots to store data about

1. variants

variantForwCount/variantRevCount: Data frames that contain the number of reads with the re-
spective variant in forward/reverse direction.

totalForwCount/totalRevCount: Data frames that contain the total coverage for every variant
location in forward/reverse direction.

10 AVASet

referenceSeq: Gives the identifier of the reference sequence.
variantBase/referenceBases: The bases changed in each variant.
start/end: The position of the variant on the reference sequence.

canonicalPattern/name: Short identifiers of a variant including the position and the bases changed.

2. amplicons

forwCount/revCount: Data frames that contain the number of reads for every amplicon and each
sample in forward/reverse direction.

primerl,primer2: The primer sequences for every amplicon.
referenceSeqID: The identifier of the reference sequence.

targetStart/targetEnd: The coordinates of the target region.

3. reference sequences

If additional information has been loaded from Ensembl via alignShortReads, this slot knows about the chromosom

The structure of the variant and amplicon data is derived from the Biobase eSet and thus separated
into assayData, phenoData and featureData. All information about the reference sequences is stored
into an object of class AlignedRead.

The phenoData of the variants lists the sample-IDs and name, annotation and group of the read data
for all samples. If available, the pico titer plate(s) (PTP) or MID(s) of each sample are shown as
well (using the AVA-CLI, PTPs and MIDs cannot be importet at the moment).

Value

An instance of the AVASet class.

Note

It is recommended to use the import via AVA-CLI access. Although deprecated, the import for
projects created with older version of the AVA software (< v2.6) is still possible.

Author(s)

Christoph Bartenhagen

See Also

AVASet-class, MapperSet-class, alignShortReads

AVASet-class 11

Examples

Loading a project from AVA version < 2.6:

Load an AVA dataset containing 6 samples, 4 amplicons and 259 variants
data(avaSetExample)

avaSetExample

Loading exported data, that was exported via AVA-CLI

Load an AVA dataset containing 6 samples, 4 amplicons and 222 variants

by specifying each file exported from the AVA-CLI

projectDir = system.file("extdata”, "AVASet_doAmplicon”, package="R453PlusiToolbox")

avaSetExample = AVASet(dirname=projectDir, file_sample="sample.csv", file_amp="amp.csv", file_reference="referer
avaSetExample

In case AVA software is installed:

Saying, for example, the AVA software was installed to the directory "/home/User/AVA",
the easiest way to import a project via AVA-CLI would look like:

avaSetExample = AVASet(dirname="myProjectDir", avaBin="/home/User/AVA/bin")

AVASet-class Class to contain Amplicon Variant Analyzer Output

Description

Container to store data imported from a project of Roche’s Amplicon Variant Analyzer Software. It
stores all information into an extended version of the Biobase ExpressionSet.

Objects from the Class

Objects can be created by calls of the form AVASet(dirname, avaBin). dirname is a character
giving the proejct directory and avaBin is a character giving the path to the AVA software installation
(i.e. the directory containing the doAmplicon binary). The constructor will start the AVA software
command line and import all necessary data.

If the AVA software is not installed on the same machine that runs R, all data must be exported man-
ually using the AVA Command Line Interface (AVA-CLI). After having exported all text files, the
constructor AVASet (dirname, avaBin, file_sample, file_amp, file_reference, file_variant,
file_variantHits) can be used to import them. See the example below.

Finally, old project folders generated by AVA software < 2.6 can be imported using AVASet (dirname).
Where dirname is the path to the project folder (i.e. a directory that contains the files and subdirecto-

ries "Amplicons/ProjectDef/ampliconsProject.txt", "Amplicons/Results/Variants/current VariantDefs.txt",
"Amplicons/Results/Variants", "Amplicons/Results/Align").

Slots

assayData: Object of class AssayData. Contains the number of reads and the total read depth for
every variant and each sample in forward and reverse direction. Its column number equals
nrow(phenoData).

12

AVASet-class

featureData: Object of class AnnotatedDataFrame. Contains information about the type, posi-
tion and reference of each variant.

phenoData: Object of class AnnotatedDataFrame. Contains the sample-IDs and name, annotation
and group of the read data for all samples. If available, the lane, pico titer plate(s) (PTP) or
MID(s) of each sample are shown as well.

assayDataAmp: Object of class AssayData. Contains the number of reads for every amplicon and
each sample in forward/reverse direction. Its column number equals nrow(featureDataAmp).

featureDataAmp: Object of class AnnotatedDataFrame. Contains the primer sequences, refer-
ence sequences and the coordinates of the target regions for every amplicon.

referenceSequences: Object of class AlignedRead. If additional alignment information were
computed via alignShortReads, this slot knows about the chromosome, position and the
strand of each reference sequence.

variantFilterPerc: Object of class numeric. Contains a threshold to display only those variants,
whose coverage (in percent) in forward and reverse direction in at least one sample is higher
than this filter value. See setVariantFilter for details about setting this value.

variantFilter: Object of class character. Contains a vector of variant names whose coverage
(in percent) in forward and reverse direction in at least one sample is higher than the filter
value in variantFilterPerc.

dirs: Object of class character. Based on a directory given at instantiation of the object, it
contains a vector of several directories containing all relevant AVA-project files.

experimentData: Object of class MIAME. Contains details of the experiment.

annotation: Object of class character. Label associated with the annotation package used in the

experiment.

protocolData: Object of class annotatedDataFrame. Contains additional information about the
samples.

.__classVersion__: Object of class Versions. Remembers the R and R453Toolbox version

numbers used to created the AVASet instance.

Extends

Class eSet, directly. Class VersionedBiobase, by class "eSet", distance 2. Class Versioned, by
class "eSet", distance 3.

Methods

object[i,j :] Allows subsetting an AVASet object by features (i) and samples (j).

assayDataAmp(object), assayDataAmp(object)<-value: Similar to assayData of the Biobase
ExpressionSet, this function returns/replaces the amplicon assay data.

fDataAmp(object): Similar to fData of the Biobase ExpressionSet, this function returns the am-
plicon feature data as a data frame.

featureDataAmp(object), featureDataAmp(object)<-value: Similar to featureData of the Biobase
ExpressionSet, this function returns/replaces the amplicon feature data and feature meta.

referenceSequences(object), referenceSequences(object)<-value: Returns/replaces the reference
sequence slot.

AVASet-class 13

alignShortReads(object, bsGenome): Retrieve the chromosomal positions of the amplicon se-
quences.

setVariantFilter(object): Sets the filter to display only those variants, whose coverage (in percent)
in forward and reverse direction in at least one sample is higher than the given value.

getVariantPercentages(object) Computes the coverage for every variant over all reads (forward
and/or reverse) and for each sample.

annotateVariants(object): Annotates given genomic variants. See annotateVariants for details.

htmlReport(object): Exports all (filtered) variant data into a html report. See htmlReport for
details

Author(s)

Christoph Bartenhagen

See Also

MapperSet-class, annotateVariants, alignShortReads, htmlReport, setVariantFilter, getVariantPercentages

Examples

sum up class structure
showClass("AVASet")

load an AVA dataset containing 6 samples, 4 amplicons and 259 variants
data(avaSetExample)
avaSetExample

show contents of assay, feature and pheno data
head(assayData(avaSetExample)$variantForwCount)
head(assayData(avaSetExample)$totalForwCount)
head(assayData(avaSetExample)$variantRevCount)
head(assayData(avaSetExample)$totalRevCount)
head(fData(avaSetExample))

pData(avaSetExample)

assayDataAmp(avaSetExample)
fDataAmp(avaSetExample)
referenceSequences(avaSetExample)

Use these commands to export a project from within the AVA-CLI (doAmplicon):
> list sample -outputFile sample.csv

> list amplicon -outputFile amp.csv

> list reference -outputFile reference.csv

> list variant -outputFile variant.csv

> report variantHits -outputFile variantHits.csv

e

Load an AVA dataset containing 6 samples, 4 amplicons and 222 variants
by specifying five files, that were exported with the AVA-CLI:
projectDir = system.file("extdata”, "AVASet_doAmplicon”, package="R453PlusiToolbox")
avaSetExample = AVASet (dirname=projectDir, file_sample="sample.csv", file_amp="amp.csv", file_reference="refe

14 avaSetFiltered

avaSetExample Amplicon Variant Analyzer data import

Description

This is an example of an 1ink{AVASet-class?} object containing the output of Roche’s Amplicon
Variant Analyzer Software. It consists of 6 samples, 4 amplicons and 259 variants.

Usage

data(avaSetExample)

Format

Formal class *AVASet’

Source

‘Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in
72.8 leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1’ (Kohlmann A
et al., J Clin Oncol. 2010 Aug 20;28(24):3858-65. Epub 2010 Jul 19)

Examples

data(avaSetExample)
avaSetExample

avaSetFiltered Amplicon Variant Analyzer data import

Description

This is an example of an 1ink{AVASet-class} object containing the output of Roche’s Amplicon
Variant Analyzer Software. It consists of 6 samples, 4 amplicons and 4 variants. The variants were
previously filtered according to the amplicon coverage (see setVariantFilter for details about
filtering an AVASet object).

Usage

data(avaSetFiltered)

Format

Formal class *AVASet’

avaSetFiltered_annot 15

Source

‘Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in
72.8 leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1’ (Kohlmann A
et al., J Clin Oncol. 2010 Aug 20;28(24):3858-65. Epub 2010 Jul 19)

Examples

data(avaSetFiltered)
avaSetFiltered

avaSetFiltered_annot AVASet variant annotations

Description

These are example annotations for 4 variants of an AVASet (try data(avaSetFiltered) to retrieve
the corresponding 1ink{AVASet-class} object). The annotations include affected genes, exons
and codons as well as resulting amino acid changes and dbSNP identifiers (if the mutation is already
known).

Usage

data(avaSetFiltered_annot)

Format

Formal class ’ Annotated Variants’

Source

‘Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in
72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS,
and RUNX1’ (Kohlmann A et al., J Clin Oncol. 2010 Aug 20;28(24):3858-65. Epub 2010 Jul 19)

Examples

data(avaSetFiltered_annot)

16 baseQualityHist

baseFrequency Absolute And Relative Frequency Of The Four Bases.

Description

This function returns the absolute and the relative frequency of the four bases (A, C, G, T).

Usage

baseFrequency(object)

Arguments

object An object of class DNAStringSet, ShortRead or SFFContainer.

Details

This function makes use of the alphabetFrequency function from package Biostrings.

Value

A data.frame with two columns containing the absolute and relative frequencies respectively and
six rows, one for each of the four bases (A, C, G, T), one for other symbols contained in the reads
and one summarizing the five aforementioned rows.

Author(s)

Christian Ruckert

baseQualityHist Plot A Histogram Of The Base Qualities.

Description

Create a histogram based on the quality of every single base from all sequences.

Usage

baseQualityHist(object, xlab="Quality score"”, ylab="Number of bases"”, col="firebrickl"”, breaks=40,

)

baseQualityStats 17

Arguments

object An object of class QualityScaledDNAStringSet, ShortReadQ or SFFContainer.

xlab The X axis label.

ylab The Y axis label.

col The plotting color.

breaks The number of breaks in the histogram (see ‘hist’).

Arguments to be passed to methods, such as graphical parameters (see ‘par’).

Author(s)

Christian Ruckert

baseQualityStats Statistics Of Base Quality

Description

This function returns mean, minimum, maximum and standard deviation of the base quality scores
over all sequences.

Usage
baseQualityStats(object)
Arguments
object An object of class QualityScaledDNAStringSet, ShortReadQ or SFFContainer.
Value

A numeric vector with four slots: mean, min, max, sd.

Author(s)

Christian Ruckert

18 Breakpoints-class

breakpoints Putative breakpoints of chimeric reads

Description

This example holds two consensus (pathogenic and reciproce) breakpoints of 12 chimeric reads
indicating an inversion on chromosome 16. The Breakpoints object gives access to the breakpoint
locations as well as alignment information for each of the 12 reads.

Usage

data(breakpoints)

Format

Formal class *Breakpoints’

Source

‘Targeted next-generation sequencing detects point mutations, insertions, deletions, and balanced
chromosomal rearrangements as well as identifies novel leukemia-specific fusion genes in a single
procedure’ (Leukemia, submitted)

Examples

data(breakpoints)

Breakpoints-class Class "Breakpoints"

Description

Container to store chimeric reads that were clustered to putative breakpoints indicating structural
variants. Related information like breakpoint position or alignment information about the chimeric
reads is stored as well.

Objects from the Class

Objects can be created by calls of the form new("Breakpoints”, ...). Usually, objects will be
created by calling the detectBreakpoints method. It is not intended that users create objects of
this class manually.

All slots of this class can be found twice. One slot name ends with “C1” and the other “C2”. The
slots labeled with “C2” are empty until mergeBreakpoints has been called and contain information
about putativly associated breakpoints detected by mergeBreakpoints.

Breakpoints-class 19

Slots

seqsC1: Object of class "1ist” with one data frame for each breakpoint. The data frame stores all
chimeric reads covering the first breakpoint together with the alignment information.

seqsC2: Object of class "1ist” with one data frame for each breakpoint. The data frame stores all
chimeric reads covering the second breakpoint together with the alignment information.

commonBpsC1: Object of class "1ist"” with one data frame for each breakpoint. The data frame
stores the consensus breakpoint sequence as well as the breakpoint coordinates of the first
breakpoint.

commonBpsC2: Object of class "1ist"” with one data frame for each breakpoint. The data frame
stores the consensus breakpoint sequence as well as the breakpoint coordinates of the second
breakpoint.

commonAlignC1: Object of class "1ist" with one object of class PairwiseAlignmentsSingleSubject-class
for each breakpoint storing the alignments of the chimeric reads against the consensus break-
point sequence for the first breakpoint.

commonAlignC2: Objectof class "1ist"” with one object of class PairwiseAlignmentsSingleSubject-class
for each breakpoint storing the alignments of the chimeric reads against the consensus break-
point sequence for the second breakpoint.

alignedReadsC1: Object of class "1ist"” with one object of class AlignedRead-class storing all
chimeric reads covering the first breakpoint and their alignments.

alignedReadsC2: Object of class "1ist"” with one object of class AlignedRead-class storing all
chimeric reads covering the second breakpoint and their alignments.

Methods
alignedReadsCl<- signature(object = "Breakpoints”,value = "list"): Setter-method for
the alignedReadsCl slot.

alignedReadsC1 signature(object = "Breakpoints”): Getter-method for the alignedReadsC1
slot.

alignedReadsC2<- signature(object = "Breakpoints”,value = "list"): Setter-method for
the alignedReadsC2 slot.

alignedReadsC2 signature(object = "Breakpoints”): Getter-method for the alignedReadsC2
slot.

commonAlignCl<- signature(object = "Breakpoints”,value = "list"): Setter-method for
the commonAlignCl1 slot.

commonAlignC1 signature(object = "Breakpoints”): Getter-method for the commonAlignC1
slot.

commonAlignC2<- signature(object = "Breakpoints”,value = "list"): Setter-method for
the commonAlignC2 slot.

commonAlignC2 signature(object = "Breakpoints”): Getter-method for the commonAlignC2
slot.

commonBpsCl<- signature(object = "Breakpoints”,value = "1ist"): Setter-method for the
commonBpsCl1 slot.

commonBpsC1 signature(object = "Breakpoints"”): Getter-method for the commonBpsCl1
slot.

20 calculateTiTv

commonBpsC2<- signature(object = "Breakpoints”,value = "list"): Setter-method for the
commonBpsC2 slot.

commonBpsC2 signature(object = "Breakpoints"”): Getter-method for the commonBpsC2
slot.

seqsCl<- signature(object = "Breakpoints”,value = "1ist"): Setter-method for the seqsCl1
slot.

seqsC1 signature(object = "Breakpoints"”): Getter-method for the seqsC1 slot.

sqsC2<- signature(object = "Breakpoints”,value = "1list"): Setter-method for the seqsC2
slot.

seqsC2 signature(object = "Breakpoints”): Getter-method for the seqsC2 slot.
[signature(x = "Breakpoints”, i = "ANY", j = "ANY"): Subsetting a Breakpoints object.
length signature(x = "Breakpoints”): Returns the number of breakpoints stored.

mergeBreakpoints signature(breakpoints = "Breakpoints”,maxDist = "missing”, mergeBPs
="list"): Merge presumably related breakpoints.

mergeBreakpoints signature(breakpoints = "Breakpoints”,maxDist = "missing”, mergeBPs
="missing"): Merge presumably related breakpoints.

mergeBreakpoints signature(breakpoints = "Breakpoints”,maxDist = "numeric”, mergeBPs
="missing"): Merge presumably related breakpoints.

names<- signature(x = "Breakpoints”, value = "ANY"): Set the names of the breakpoints.
names signature(x = "Breakpoints"”): Get the names of the breakpoints.

plotChimericReads signature(brpData = "Breakpoints”): Plot the structural variant and the
chimeric reads covering its breakpoints.

summary signature(object = "Breakpoints”): Create a data frame summaring information
about all breakpoints.

table signature(... ="Breakpoints”): Create a frequency table of cluster sizes.

Author(s)

Hans-Ulrich Klein, Christoph Bartenhagen

See Also

filterChimericReads, detectBreakpoints, mergeBreakpoints, plotChimericReads

calculateTiTv Calculate transition transversion ratio

Description

When many point mutations are detected, the ration of transitions to transversions can be used as
quality measure to assess the number of false positives.

captureArray 21

Usage

S4 method for signature 'AVASet'
calculateTiTv(object)

S4 method for signature 'MapperSet'
calculateTiTv(object)

Arguments

object An instance of AVASet or MapperSet storing the detected variants.

Details

For more information about the Ti/Tv ratio see http://www.broadinstitute.org/gsa/wiki/index.php/QC_Methods

Value

A list with two elements: A substitution matrix summarizing all observed substitutions and the
transition/transversion ratio.

Author(s)
Hans-Ulrich Klein

Examples

data(avaSetExample)
ava = setVariantFilter(avaSetExample, c(0.03, 0.03))
calculateTiTv(ava)

captureArray Custom capture array design

Description

Design of a custom Roche NimbleGen 385k capture array. The array captures short segments
corresponding to all exon regions of 92 distinct target genes (genome build hgl19). In addition,
contiguous genomic regions were represented for three additional genes, i.e. CBFB, MLL, and
RUNXI.

Usage

data(captureArray)

Format

Formal class ’CompressedIRangesList’

22 complexity.dust

Source

‘Targeted next-generation sequencing detects point mutations, insertions, deletions, and balanced
chromosomal rearrangements as well as identifies novel leukemia-specific fusion genes in a single
procedure’ (Leukemia, submitted)

Examples

data(captureArray)

complexity.dust Sequence Complexity Using The DUST Algorithm

Description

This function evaluates the sequence complexity using the DUST algorithm.

Usage
complexity.dust(object, xlab="Complexity score (@=high, 100=1ow)", ylab="Number of sequences",
xlim=c(@, 100), col="firebrickl"”, breaks=100, ...)
Arguments
object An object of class DNAStringSet, ShortRead or SFFContainer.
xlab The X axis label.
ylab The Y axis label.
x1lim The limits of the X axis.
col The plotting color.
breaks The number of breaks in the histogram (see ‘hist’).

Arguments to be passed to methods, such as graphical parameters (see ‘par’).

Details

The complexity score is based on how often different trinucleotides occur and is scaled between
0 and 100. A sequence of homopolymer repeats (e.g. TTTTTTTTTT) has a score of 100, of
dinucleotide repeats (e.g. TATATATATA) has a score around 49, and of trinucleotide repeats (e.g.
TAGTAGTAG) has a score around 32. Scores above seven can be considered low-complexity.

Value

A numeric vector containing the complexity score for each sequence.

Author(s)

Christian Ruckert

complexity.entropy 23

References

Schmieder R. (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics,
2011 Mar 15;27(6):863-4.

complexity.entropy Sequence Complexity Using The Shannon-Wiener Algorithm

Description

This function evaluates the sequence complexity using the Shannon-Wiener Algorithm.

Usage
complexity.entropy(object, xlab="Complexity score (@=low, 100=high)", ylab="Number of sequences”,
xlim=c(@, 100), col="firebrick1"”, breaks=100, ...)
Arguments
object An object of class DNAStringSet, ShortRead or SFFContainer.
x1lab The X axis label.
ylab The Y axis label.
x1lim The limits of the X axis.
col The plotting color.
breaks The number of breaks in the histogram (see ‘hist’).

Arguments to be passed to methods, such as graphical parameters (see ‘par’).

Details

The entropy approach evaluates the entropy of trinucleotides in a sequence. The entropy values
are scaled from O to 100 and lower entropy values imply lower complexity. A sequence of ho-
mopolymer repeats (e.g. TTTTTTTTTT) has an entropy value of 0, of dinucleotide repeats (e.g.
TATATATATA) has an entropy value around 16, and of trinucleotide repeats (e.g. TAGTAGTAG)
has an entropy value around 26. Scores below 70 can be considered low-complexity.

Value

A numeric vector containing the complexity score for each sequence.

Author(s)

Christian Ruckert

References

Schmieder R. (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics,
2011 Mar 15;27(6):863-4.

24

coverageOnTarget

convertCigar Basic functions for CIGAR strings

Description

These are temporary methods, that are likely to be replaced by methods from the Rsamtools package
in near future.

Usage
extendedCIGARToList(cigars)
listToExtendedCIGAR(cigarList)
Arguments
cigars A character vector with CIGAR strings.
cigarlList A list of converted CIGAR strings as produced by extendedCIGARToList
coverageOnTarget Computes the coverage restricted to the target region.
Description

This method computes the approximate coverage of each base in a given region.

Usage

coverageOnTarget(alnReads, targetRegion)

Arguments

alnReads A list as returned by scanBam storing aligned reads.

targetRegion The target region as a GRanges object. The chromosome names must fit to the
chromosome names used in the alignment information of the given reads.

Details

The detailed alignment information given by the CIGAR strings in .bam files are ignored by the
function. Instead, it is assumed that the whole read alignes to the reference without indels. This is
often not true for longer read (e.g. generated with Roche 454 Sequencing), but saves computation
time.

Value

A list of the same length as the alnReads argument. Each list element is an integer vector of the
same length as the target region (in bases) and stores the coverage generated by the reads from the
corresponding list element of alnReads.

demultiplexReads 25

Author(s)
Hans-Ulrich Klein

See Also

scanBam

Examples

library(Rsamtools)

bamFile = system.file("extdata”, "SVDetection”, "bam”, "N@1.bam", package="R453Plus1Toolbox")
bam = scanBam(bamFile)

region = GRanges(IRanges(start=118307205, end=118395936), segnames=11)

cov = coverageOnTarget(bam, region)

demultiplexReads Performs MID/Multiplex filtering

Description

Roche’s Genome Sequencer allows to load two or more samples on one region. To allocate se-
quences to samples, each sample has a unique multiplex sequence. The multiplex sequence should
be the prefix of all sequences from that sample. This method demultiplexes a given set of sequences
according to the given multiplex sequences (MIDs).

Usage

S4 method for signature 'XStringSet,XStringSet,numeric,logical’
demultiplexReads(reads, mids, numMismatches, trim)

Arguments
reads A DNAStringSet instance that contains reads starting with MIDs
mids A DNAStringSet instance that contains the MIDs
numMismatches The maximal number of mismatches allowed, default 2.
trim Whether the MIDs should be cutted-out, default TRUE

Details

All given MIDs must have the same length. The algorithm computes the number of mismachtes
for each MID. The read is assigned to the MID with the lowest number of mismatches. If two or
more MIDs have the same number of mismachtes, or if the number of mismachtes is greater than
the given argument numMismachtes, the read is not assigned to any MID. The default number of
allowed mismatches is 2.

Value

demultiplexReads returns a list with one DNAStringSet instance for each MID.

26 detectBreakpoints

Author(s)

Hans-Ulrich Klein

See Also

genomeSequencerMIDs, DNAStringSet

Examples

library(Biostrings)
mids = genomeSequencerMIDs(c("MID1", "MID2", "MID3"))
reads = DNAStringSet(c(
paste(as.character(mids[["MID1"]1]), "A", sep=""),
paste(as.character(mids[["MID1"]1]), "AA", sep=""),
paste(as.character(mids[["MID2"11), "AAA", sep="")))
demultiplexReads(reads, mids)

detectBreakpoints Clustering and consensus breakpoint detection for chimeric reads

Description

Given a set of chimeric reads, this methods computes all putative breakpoints. First, chimeric reads
are clustered such that all reads spanning the same breakpoint form a cluster. Then, a consensus
breakpoint sequence and breakpoint position is computed for each cluster.

Usage

detectBreakpoints(chimericReads, bpDist=100, minClusterSize=4, removeSoftClips=TRUE, bsGenome)

Arguments

chimericReads A list storing chimeric reads as returned by filterChimericReads. The list
must have the format as defined by the scanBam method.

bpDist The maximum distance in base pairs between the breakpoints of two chimeric
reads at which the reads are merge to a cluster.

minClusterSize Cluster whose size is below minClusterSize are be excluded from breakpoint
detection.
removeSoftClips

If true, soft-clipped bases at the beginning or the end of a sequence are removed
(see details below).

bsGenome A bsGenome instance providing the reference sequences. If missing, the library
BSgenome.Hsapiens.UCSC.hg19 is used by default.

detectBreakpoints 27

Details

This method is usually invoked after calling filterChimericReads and before calling mergeBreakpoints.
It first forms clusters of chimeric reads (reads with exactly two local alignments) that span the same
breakpoint and than computes a consensus breakpoint sequence for each cluster.

To carry out a hierarchical clustering, a measure for the distance between two chimeric reads must
be defined. If reads span different chromosomes, their distance is set to infinity. The strand in-
formation of the local alignments may also indicate that two chimeric reads do not span the same
breakpoint even if they span the same chromosomes. For example, the first reads has two local
alignments on the positive strand whereas the second read has one local alignment on the positive
strand and the other on the negative strand. In this case, the distance is set to inifinty, too. Finally, the
distance measure distinguishes between the two breakpoints (sometimes called the pathogenic and
the reciproce breakpoint) that originate from the same structual variant. The distance between a read
from the pathogenic and a read from the reciproce breakpoint is infinity so that two different clus-
ters will emerge. These two related breakpoints can be merge later using the mergeBreakpoints
method. We observed that the breakpoints of these two cases often differ by a few ten or even a few
hundred basepairs.

If the chromosome and strand information between two reads x and y are coherent, the Euclidian
distance is used:

d(z,y) = (bp(x, ChrA) — bp(y, ChrA))* + (bp(z, ChrB) — bp(y, ChrB))?

where bp gives the coordinates of the breakpoint for the given read and chromosome. Hierarchical
clustering is applied with complete linkage and the dendrogram is cutted at a height of bpDist
to obtain the final clusters. The bpDist argument does usually not influence the result, because
we observed that reads spanning the same breakpoint have very little variation (only a few base
pairs) in their local alignments due to sequencing errors or due to ambiguity caused by same/similar
sequence of both chromosome near the breakpoint.

Although the given set of reads may belong to the same chimeric DNA, their individual breakpoints
may differ in a few base pairs. Furthermore, a single read may have more than one possible break-
point if a (small) part of the read was aligned to both parts.

The following step determines a consensus breakpoint for each cluster. It uses the supplied bsGenome
to construct a chimeric reference sequence for all possible breakpoints over all reads within each
cluster. After the reads were realigned to the chimeric reference sequences, the one that yields the
highest alignment score is taken to represent best the chimeric DNA and its breakpoints.

As a preprocessing step, detectBreakpoints offers to remove soft clips occuring after the align-
ment:

Some reads may contain soft-clipped bases (e.g. linker sequences) at the beginning of the first part
of the read or at the end of the second part. By default, detectBreakpoints removes these un-
aligned subsequences and adjusts the cigar string, the sequence, the sequence width (qwidth) and
the local start/end coordinates.

Value

detectBreakpoints returns an object of class breakpoints, which is a list of breakpoint clusters,
which gives access to all alignments and consensus breakpoints:

28

seqgs

commonBps

commonAlign

alignedReads

Author(s)

detectBreakpoints

This IRanges DataFrame is mainly a rearranged version of the alignment input
in chimericReads. In addition, it shows the corresponding breakpoints and
local alignment coordinates.

A dataframe listing the breakpoints for both parts of the chimeric reference,
the associated chromosome, strand and the reference sequence itself, including
positions "localStart"/"localEnd" indicating which part of the reference belongs
to which breakpoint.

An object of class PairwiseAlignmentsSingleSubject of the Biostrings pack-
age that contains the alignment to the (best) consensus reference sequence.

On the basis of commonAlign and commonBps, alignedReads is an instance
of class AlignedRead containing all aligned reads including their associated
chromosomes, strands, and positions. Since the reference is a chimeric sequence
each read has two chromosome and two strand entries.

Hans-Ulrich Klein, Christoph Bartenhagen

See Also

filterChimericReads mergeBreakpoints plotChimericReads

Examples

Construct a small example with three chimeric reads

(=6 local alignments) in bam format as given by

aligners such as BWA-SW.

The first two reads originate from the same case but
from different strands. The third read originate from
the reciprocal breakpoint.
library("BSgenome.Scerevisiae.UCSC.sacCer2")

bamReads = list()

bamReads[[1]] = list(
gname=c("seql"”, "seql”, "seq2", "seq2", "seq3", "seq3"),
flag = as.integer(c(@, @, 16, 16, 0, 0)),
rname = factor(c("II", "III", "III", "II", "III", "II")),
strand = factor(c("+", "+", "=", U=V Mt 0NNy
pos = as.integer(c(99951, 200000, 200000, 99951, 199950, 100001)),
gwidth = as.integer(c(100, 100, 100, 100, 100, 100)),
cigar = c("50M50S","50550M" , "50550M" , "50M50S" , "50M50S", "50S50M"),
seq = DNAStringSet(c(
paste(substr(Scerevisiae$chrIIl, start=99951, stop=100000),

substr(Scerevisiae$chrIII, start=200000, stop=200049),
sep=""),

paste(substr(Scerevisiae$chrIIl, start=99951, stop=100000),

substr(Scerevisiae$chrIII, start=200000, stop=200049),
sep=""),

paste(substr(Scerevisiae$chrIIl, start=200000, stop=200049),

substr(Scerevisiae$chrII, start=99951, stop=100000),
sep=""),

dinucleotideOddsRatio 29

paste(substr(Scerevisiae$chrIIl, start=200000, stop=200049),
substr(Scerevisiae$chrII, start=99951, stop=100000),
sep=""),

paste(substr(Scerevisiae$chrIII, start=199950, stop=199999),
substr(Scerevisiae$chrII, start=100001, stop=100050),
sep=""),

paste(substr(Scerevisiae$chrIII, start=199950, stop=199999),
substr(Scerevisiae$chrII, start=100001, stop=100050),

sep="")))
)
bps = detectBreakpoints(bamReads, minClusterSize=1, bsGenome=Scerevisiae)
summary (bps)
table(bps)

mergeBreakpoints(bps)

dinucleotideOddsRatio Dinucleotide Odds Ratio

Description

This function calculates the dinucleotide odds ratio for each of the sixtheen possible dinucleotides.

Usage
dinucleotideOddsRatio(object, xlab="Under-/over-representation of dinucleotides”,
col="firebrick1"”, ...)
Arguments
object An object of class DNAStringSet, ShortRead or SFFContainer.
xlab The X axis label.
col The plotting color.

Arguments to be passed to methods, such as graphical parameters (see ‘par’).

Details

The dinucleotide odds ratio assigns a value between 0 and 2 to each of the sixtheen possible din-
ucleotides (AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT). For values
below 1 the dinucleotide is under-represented compared to the randomly expected frequency of this
dinucleotide in a sequence of the given length and with the given frequencies of the four nucleotides
(A, C, G, T). For values above 1 this dinucleotide is over-represented.

Value

A matrix with sixtheen columns, one for each dinucleotide, containing the dinucleotide odds ratio
values for each sequence in a seperate row.

30 fDataAmp

Author(s)

Christian Ruckert

References

Schmieder R. (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics,
2011 Mar 15;27(6):863-4.

fDataAmp Access the amplicon data of an AVASet.

Description

Similar to fData of the Biobase ExpressionSet, this function returns the feature data of the amplicon
slot of an instance of the AVASet.

Usage
fDataAmp(object)
Arguments
object An link{AVASet-class} object.
Value

The feature data of the amplicon slot contains the names, primers, start/end positions and reference
sequences of all amplicons (seeAVASet-class for details). It returns a data frame.

Author(s)

Christoph Bartenhagen

See Also

featureDataAmp, assayDataAmp,AVASet-class

Examples

load an AVA dataset containing 6 samples, 4 amplicons and 259 variants
data(avaSetExample)
avaSetExample

show contents amplicon feature data
fDataAmp(avaSetExample)

featureDataAmp 31

featureDataAmp Access the amplicon data of an AVASet

Description

Similar to featureData of the Biobase ExpressionSet, this function returns the feature data and
feature meta of the amplicon slot of an instance of the AVASet.

Usage
featureDataAmp(object)
Arguments
object An link{AVASet-class} object.
Value

The feature data of the amplicon slot contains the names, primers, start/end positions and refer-
ence sequences of all amplicons (see AVASet-class for details). The returned object is of class
AnnotatedDataFrame.

Author(s)

Christoph Bartenhagen

See Also

fDataAmp, assayDataAmp, AVASet-class,

Examples

l